
HAL Id: hal-03283051
https://hal.science/hal-03283051v1

Submitted on 9 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast zone-based algorithms for reachability in pushdown
timed automata

S Akshay, Paul Gastin, Karthik R Prakash

To cite this version:
S Akshay, Paul Gastin, Karthik R Prakash. Fast zone-based algorithms for reachability in pushdown
timed automata. 33rd International Conference on Computer-Aided Verification (CAV’2021), Jul
2021, Los Angeles, United States. �hal-03283051�

https://hal.science/hal-03283051v1
https://hal.archives-ouvertes.fr

Fast zone-based algorithms for reachability in
pushdown timed automata?

S. Akshay1[0000−0002−2471−5997], Paul Gastin2[0000−0002−1313−7722], and
Karthik R. Prakash1[0000−0003−4304−1382]

1 Department of CSE, Indian Institute of Technology Bombay, Mumbai, India
{akshayss,karthikrprakash}@cse.iitb.ac.in

2 Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, France
paul.gastin@lsv.fr

Abstract. Given the versatility of timed automata a huge body of work
has evolved that considers extensions of timed automata. One extension
that has received a lot of interest is timed automata with a, possibly
unbounded, stack, also called pushdown timed automata (PDTA). While
different algorithms have been given for reachability in different variants
of this model, most of these results are purely theoretical and do not give
rise to efficient implementations. One main reason for this is that none of
these algorithms (and the implementations that exist) use the so-called
zone-based abstraction, but rely either on the region-abstraction or other
approaches, which are significantly harder to implement.
In this paper, we show that a naive extension, using simulations, of the
zone based reachability algorithm for the control state reachability prob-
lem of timed automata is not sound in the presence of a stack. To un-
derstand this better we give an inductive rule based view of the zone
reachability algorithm for timed automata. This alternate view allows
us to analyze and adapt the rules to also work for pushdown timed au-
tomata. We obtain the first zone-based algorithm for PDTA which is
terminating, sound and complete. We implement our algorithm in the
tool TChecker and perform experiments to show its efficacy, thus lead-
ing the way for more practical approaches to the verification of timed
pushdown systems.

Keywords: Timed automata, Zone-based abstractions, Pushdown au-
tomata, Simulations, Reachability

1 Introduction

Timed automata [7] are a popular formalism for capturing real-time systems, and
of use for instance, in model checking of cyber-physical systems. They extend
finite automata with real variables called clocks whose values increase over time;
transitions are guarded by constraints over these variables. The main problem

? This work was partly supported by ReLaX CNRS IRL 2000, DST/CEFIPRA/INRIA
project EQuaVE and SERB Matrices grant MTR/2018/00074.

2 S. Akshay, P. Gastin and K. R. Prakash

of interest is the reachability problem, which asks whether a given state can be
reached while satisfying the constraints imposed by the guards. This problem is
known to be PSPACE-complete (already shown in [7]). The PSPACE algorithm,
uses the so-called region-automaton construction, which essentially abstracts
the timed automaton into an exponentially larger finite automaton of regions
(collections of clock valuations), which is sound and complete for reachability.

Despite this complexity-theoretic hardness, the model of timed automata
has proved to be extremely influential and versatile, resulting in an enormous
body of work on its theory, variants and extensions over the past 25 years. Al-
most since its inception, researchers also began to develop tools to extend from
theoretical algorithms to solve practical problems. Such tools range from the
classical and richly featured tool UPPAAL [9,23] to the more recent open-source
tool TChecker [19], which have been used on industry strength benchmarks and
perform rather well on many of them. These tools use a different algorithm for
reachability, where reachable sets of valuations are represented as zones and ex-
plored in a graph. While a naive exploration of zones does not terminate, the
algorithms used identify different strategies [8,21,18], e.g., subsumption or simu-
lations, extrapolations, for pruning the zone-based exploration graphs, while pre-
serving soundness and completeness of reachability. While this does not change
the worst case complexity, in practice, the zone exploration results in much bet-
ter practical performance as it allows on-the-fly computation of reachable zones.
One could even argue that the wider adoption of timed automata paradigm in
the verification community has been a result of scalable implementations and
tools built on this zone-based approach.

In light of this, zone-based algorithms are often looked for to improve prac-
tical performance of extensions of timed automata as well. For instance, for
timed automata with diagonal constraints, classical zone-based approaches were
shown to be unsound [11,12], but recently, an approach has been developed which
adapts the existing construction and obtains fast zone-based algorithms [17]. In
the present paper, we are interesting in adding a different feature to timed au-
tomata, namely an unbounded lifo-stack. This results in a powerful model of
pushdown timed automata (PDTA for short), in which the source of “infinity”
is both from real-time and the unbounded stack. Unsurprisingly, this model and
its variants have been widely studied over the last 20 years with several old and
recent results on decidability of reachability, related problems and their com-
plexity, including [1,2,3,4,5,10,13,14,15,16]. A wide variety of techniques have
been employed to solve these problems, from region-based abstractions, to using
atoms and systems of constraints, to encoding into different logics etc. However,
except for [5,4], to the best of our knowledge, none of the others carry an im-
plementation. In [5], the implementation uses a tree-automaton implicitly based
on regions and the focus in [4] is towards multi-pushdown systems. A common
factor of all these works is that none of them consider zone-based abstractions.

In this paper, we ask whether zone-based abstractions can be used to decide
efficiently reachability questions in PDTA. We focus on the problem of well-
nested control-state reachability of PDTA, i.e., given a PDTA, an initial and

Fast zone-based algorithms for reachability in pushdown timed automata 3

a target state, does there exist a run of the PDTA that starts at the initial
state with empty stack and reaches the target state with an empty stack (in
between, i.e., during the run, the stack can indeed be non-empty). As with
timed automata, our goal here is towards its applicability to build powerful
tools which could lead to wider adoption of the PDTA model and showcase its
utility to model-checking timed recursive systems. As the first step, we examine
the difficulties involved in mixing zones with stacks and point out that a naive
adaptation of the zone-based algorithm would not be sound. Then we propose
a new algorithm that modifies the zone-based algorithm to work for pushdown
timed automata. This is done in three steps.

– First we view the zone-graph exploration at the heart of the zone-based
reachability algorithm for timed automata as a least fixed point computation
of two inductive rules. When applied till saturation, they compute a sound
and complete finite abstraction of the set of all reachable zones.

– Next, this view allows us to generalize the approach in the presence of a
stack by adding new inductive rules that correspond to push and pop tran-
sitions, and hence are specific to the stack operation. There are two main
technical difficulties in this. First, we need to ensure termination of the fixed
point computation, using a strong enough pruning condition of the (a priori
infinite) zone graph to ensure finiteness, while being sound and not adding
spurious runs. Second, we want to aggressively prune the graph as much
as possible to obtain an efficient zone-exploration algorithm. We show how
we can minimally change the condition of pruning in the zone exploration
graph to achieve this delicate balance. Indeed, in doing so we use a judicious
combination of the subsumption (or simulation) relation and an equivalence
relation for obtaining a fixed point computation for PDTA that is terminat-
ing, while being sound and complete.

– Finally, we build new data structures that allow us to write an efficient
algorithm that implements this fixed point computation. While getting a
correct algorithm is relatively simple, to obtain an efficient one, we must
again encounter and overcome several technical difficulties.

We implement our approach to build the first zone-based tool that efficiently
solves well-nested control state reachability for PDTA. Our tool is built on top
of existing infrastructure of TChecker [19], an open source tool and benefits
from many existing optimizations. We perform experiments to show the practi-
cal performance of multiple variants of our algorithm and show how our most
optimized version is vastly better in performance than other variants and of
course the earlier region-based approach on a suite of example benchmarks.

We note that our PDTA model differs slightly from the model considered
in [1,3], as there is no age on stack and time spent on stack cannot be com-
pared with clocks. Hence our model is closer to [10,16]. However, in [13], it was
shown that these two models are equivalent, more specifically, the stack can be
untimed without loss of expressivity (albeit with an exponential blowup). Thus
our approach can be applied to the other model as well by just untiming the
stack. There are other more powerful extensions [15,14] studied especially in the

4 S. Akshay, P. Gastin and K. R. Prakash

context of binary reachability, where only theoretical results are known. We also
remark that the idea of combining the subsumption relation between zones with
an equivalence relation also occurs while tackling liveness, or Buchi acceptance,
in timed automata. This has been studied in depth [24,22,20], where the naive
zone-based algorithm does not work, forcing the authors to strengthen the simu-
lation relation in different ways. Though these problems are quite different, there
are surprising similarities in the issues faced, as explained in Section 3.

The structure of the paper is as follows: we start with preliminaries and move
on to the difficulty in using zones and simulation relations in solving reachability
in PDTA. Then, we introduce in Section 4 our inductive rules for timed automata
and PDTA and show their correctness. In Section 5, we present our algorithm and
helpful data-structural advancements. We show the experimental performance
in Section 6 and end with a brief conclusion. Proofs that are missing and more
experimental results can be found in the long version of the paper available at [6].

2 Preliminaries

2.1 Timed automata

Timed automata extend finite-state automata with a set X of (non-negative)
real-valued variables called clocks. We let Φ(X) denote the set of constraints
ϕ that can be formed using the grammar: ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ,
where x, y ∈ X, c ∈ N, ∼ ∈ {≤,≥, <,>}, where each x ∼ c is called an atomic
constraint. A clock valuation is a map v : X → R≥0 and is said to satisfy ϕ,
denoted v |= ϕ, if ϕ evaluates to true when each clock x ∈ X is replaced
with v(x). For δ ∈ R≥0, we write v + δ to denote the valuation defined as
(v + δ)(x) = v(x) + δ for all clocks x. For R ⊆ X, we write [R]v to denote the
valuation obtained by resetting clocks in R, i.e., ([R]v)(x) = 0 if x ∈ R, and
([R]v)(x) = v(x) otherwise. Finally, v0 is the valuation that sets all clocks to 0.

A timed automaton A is a tuple (Q,X, q0, ∆, F), where Q is a finite set of
states, X is a finite set of clocks, q0 ∈ Q is an initial state, F ⊆ Q is the set of
final states and ∆ ⊆ Q × Φ(X) × 2X × Q is a set of transitions. A transition
t ∈ ∆ is of the form (q, g, R, q′), where q, q′ are states, g ∈ Φ(X) is the guard
of the transition and R ⊆ X is the set of clocks that are reset at the transition.
The semantics of a timed automaton A is given as a transition system TS (A)
over configurations. A configuration is a pair (q, v) where q ∈ Q is a state and
v is a valuation, with the initial configuration being (q0, v0). The transitions are

of two types. First, for a configuration (q, v) and δ ∈ R≥0, (q, v)
δ−→ (q, v + δ) is

a delay transition. Second, for t = (q, g, R, q′) ∈ ∆, (q, v)
t−→ (q′, v′) is a discrete

transition if v |= g and v′ = [R](v). A run is an alternating sequence of delays
and discrete transitions starting from the initial configuration, and is said to be
accepting if the last state in the sequence is a final state.

Fast zone-based algorithms for reachability in pushdown timed automata 5

2.2 Reachability, Zones and simulations

The problem of control-state reachability asks whether a given timed automa-
ton has an accepting run. This problem is known to be PSPACE-complete [7],
originally shown via the so-called region abstraction. Note that, since TS (A) is
infinite, some abstraction is needed to get an algorithm. In practice however,
the abstraction used to solve reachability, e.g., in tools such as UPPAAL [23]
or TChecker [19] is the zone abstraction. A zone Z is defined as a set of val-
uations defined by a conjunction of atomic clock constraints. Given a guard

g and reset R, we define the following operations on zones: time elapse
−→
Z =

{v + δ | v ∈ Z, δ ∈ R≥0}, guard intersection g ∩ Z = {v ∈ Z | v |= g} and reset
[R]Z = {[R]v | v ∈ Z}. The resulting sets are also zones. With this, we can define
the zone graph ZG(A) as a transition system obtained as follows: the nodes are

(state, zone) pairs and (q, Z)
t−→ (q′, Z ′), if t = (q, g, R, q′) is a transition of A

and Z ′ =
−−−−−−−→
[R](g ∩ Z). The initial node is (q0, Z0 =

−−→
{v0}) and a path in the zone

graph is said to be accepting if it ends at an accepting state. The zone graph is
known to be sound and complete for reachability, but as the graph may still be
infinite, this does not give an algorithm for solving reachability yet.

To obtain an algorithm, one resorts to different techniques such as extrapola-
tion or simulation. Here we focus on simulation relations which will lead to finite
abstractions. Given a timed automaton A, a binary relation � on configurations
is called a simulation if whenever (q, v) � (q′, v′), we have q = q′ and
– for each delay δ ∈ R≥0, (q, v + δ) � (q, v′ + δ) and
– for each t = (q, g, R, q1) ∈ ∆, if v |= g then v′ |= g and (q1, [R]v) � (q1, [R]v′).

We often simply write v �q v′ instead of (q, v) � (q, v′). We can now lift
this to sets Z,Z ′ of valuations as Z �q Z ′ if for all v ∈ Z there exists v′ ∈ Z ′
such that v �q v′. We say that node (q, Z) is subsumbed by node (q, Z ′) when
Z �q Z ′. As a consequence we obtain the following lemma.

Lemma 1. If (q, Z)
t−→ (q1, Z1) in ZG(A) and Z �q Z ′, then (q, Z ′)

t−→ (q1, Z
′
1)

and Z1 �q1 Z ′1.

Proof. Indeed, let v1 ∈ Z1 =
−−−−−−−→
[R](g ∩ Z). We find v ∈ Z and δ ≥ 0 such that

v |= g and v1 = [R]v+δ. Since Z �q Z ′, we find v′ ∈ Z ′ with v �q v′. We deduce
that v′ |= g and [R]v �q1 [R]v′, which implies v1 �q1 v′1 with v′1 = [R]v′ + δ ∈
Z ′1 =

−−−−−−−→
[R](g ∩ Z ′). ut

A simulation � is said to be finite if for every sequence of nodes (q1, Z1),
(q2, Z2), . . . there exist two nodes (qi, Zi) and (qj , Zj) with i < j such that
qi = qj and Zj �qi Zi. The importance of the finiteness is that it allows us
to stop exploration of zones along a branch of the zone graph: when a node
(qj , Zj) is reached which is subsumed by an earlier node (qi, Zi), we may cut
the exploration since all control states reachable from the latter are already
reachable from the former. For a timed automaton A, we call this pruned graph
as ZG�(A). Thus, if the simulation relation � is finite, then ZG�(A) is finite,

6 S. Akshay, P. Gastin and K. R. Prakash

sound and complete for control state reachability. We formalize this algorithm
in Section 4, using inductive rules.

Various finite simulations have been shown to exist in the literature, including
the famous LU-abstractions [8], and more recent G-abstractions based on sets
of guards [17]. Hence this theory indeed has resulted in better implementations
and is used in standard tools in this domain.

We will see that using simulation in the context of pushdown timed automata
is not always sound, in some cases we need a stronger condition to stop the ex-
ploration. Towards this, we consider the equivalence relation on nodes induced
by the simulation relation: Z ∼q Z ′ if Z �q Z ′ and Z ′ �q Z. We say that the
simulation � is strongly finite if the induced equivalence relation ∼ has finite
index. Notice that strongly finite implies finite but the converse does not neces-
sarily hold. Fortunately, the usual simulations for timed automata, in particular
the LU-simulation and the G-simulation, are strongly finite.

2.3 Pushdown timed automata (PDTA)

A Pushdown Timed Automaton A is a tuple (Q,X, q0, Γ,∆, F), where Q is a
finite set of states, X is a finite set of clocks, q0 ∈ Q is an initial state, Γ is the
stack alphabet, F ⊆ Q is the set of final states and ∆ is a set of transitions. A
transition t ∈ ∆ is of the form (q, g, op, R, q′), where q, q′ are states, g ∈ Φ(X) is
the guard of the transition and R ⊆ X is the set of clocks that are reset at the
transition, op is one of three stack operations: nop or pusha or popa for some
a ∈ Γ .

The semantics of a PDTA A is given as a transition system TS (A) over
configurations. A configuration here is a tuple (q, v, χ) where q ∈ Q is a state, v
is a valuation, χ ∈ Γ ∗ is the stack content, with the initial configuration being
(q0, v0, ε). The transitions are of two types. First, for a configuration (q, v, χ)

and δ ∈ R≥0, (q, v, χ)
δ−→ (q, v + δ, χ) is a delay transition. Second, for t =

(q, g, op, R, q′) ∈ ∆, (q, v, χ)
t−→ (q′, v′, χ′) is a discrete transition if v |= g,

v′ = [R](v) and

– if op = nop, then χ′ = χ,
– if op = pusha then χ′ = χ · a,
– if op = popa, then χ = χ′ · a.

A run is an alternating sequence of delays and discrete actions starting from the
initial configuration. It is accepting if the last state in the sequence is final.

Our main focus is the well-nested control state reachability problem for PDTA,
which asks whether a configuration (q, v, ε) with q ∈ F is reachable, where the
stack is empty. Later, in Section 7, we remark how our solution can be extended
to solve general control state reachability, i.e., asking whether a configuration
(q, v, χ) with q ∈ F is reachable, possibly with a nonempty stack χ.

Fast zone-based algorithms for reachability in pushdown timed automata 7

q0 q1 q2 q3 q4
pusha pusha pusha y ≤ 3,popa, {x}

x ≥ 1, popa, {x}

Fig. 1: A simple PDTA with 2 clocks {x, y}. Note that if we ignore the push/pop
actions we get a TA, say A.

q0, Z0 q1, Z0 q2, Z0 q3, Z0 q4, (0 ≤ y − x ≤ 3) q4, (1 ≤ y − x ≤ 4)
pusha pusha pusha popa popa

Fig. 2: Zone graph with simulation edges for finiteness. Again ignoring push/pop
actions gives us a zone graph for the TA. Z0 is the initial zone.

3 Zones in PDTA and the problem with simulations

As mentioned earlier, zones are collections of clock valuations defined by conjunc-
tions of timing constraints, and exploring zones reached by a timed automaton
gives a sound and complete abstraction for state reachability. To make sure that
the exploration is finite we need to prune the graph and one way this is done
by simulation, i.e., not exploring paths from some nodes if they are “subsumed”
by earlier nodes visited in the graph. Consider Figure 1, in which we ignore the
pusha and popa or we can think of them as internal actions. Then the usual
zone-graph construction with simulation would give the graph depicted in Fig-
ure 2. In this section, just for illustration we instantiate the simulation relation
to be the well-known LU-simulation (we do not give the definition here as it is
not relevant to what comes later, instead we refer to earlier work [8]). Using this,
we obtain that the rightmost node is subsumed by the previous one, and hence
the dotted simulation edge. If we did not do this we immediately observe that
we get an infinite graph with increasing sets of zones.

Now, our first question is whether this zone exploration with simulation can
be lifted to PDTA. In this example, if we were to add back the push/pop edges,
we get exactly the same Zone graph with annotations, and further, the final
state is indeed reachable. Hence, for this particular example we do obtain a
finite, sound and complete graph exploration. However, in general it turns out
that the procedure is not sound.

Consider the example in Figure 3. In this example, again considering it as a
TA (ignoring the push/pops), we would get the zone graph below, which would
be finite, sound and complete for reachability in that TA. But if we consider it
as a PDTA, now doing the same does not preserve soundness. In other words,
in the PDTA, q3 is no longer reachable. However, in the zone graph we would
conclude that it is reachable due to the simulation edge. If, to fix this, we remove
the dotted simulation edge, then we will lose finiteness.

Thus, it seems that we have a difficult situation where zones with the simula-
tion relation, needed for termination, do not preserve soundness. This situation
resembles the situation studied in [24,22,20], where the authors study liveness
or Buchi-acceptance conditions in timed automata. Again in that situation, the

8 S. Akshay, P. Gastin and K. R. Prakash

q0 q2 q3

q1

x ≥ 1, {x}y ≤ 1, pusha

popa popa
q0, Z0 q2, Z0

q1, y − x ≥ 1

q3, Z0

q0, y − x = 1
pusha

popa popa

Fig. 3: A PDTA and its zone graph with simulation. With the simulation (dotted)
edges, q3 is reachable in the zone graph, but its not reachable in the PDTA.

naive algorithm with zone simulation does not work and the authors are forced
to strengthen the simulation relation in different ways.

Surprisingly, it turns out, that even in our very different problem setting of
reachability in PDTA, a similar solution works. That is, we replace simulation by
equivalence (defined in the previous section) as the pruning criterion. However,
there are two issues (i) it is not easy to prove its correctness and (ii) this is far
from efficient as shown in the experimental section. Our goal to use zones in the
first place was efficiency and hence we would like to prune the zone graph as
much as possible, i.e., we would like to use simulation edges as much as possible.
In the next two sections, we describe our fix. We first show a different view of
the exploration algorithm as a fixed point rule based approach. This allows us to
then describe our fix in the same language, which is much easier to understand
conceptually. Also as a corollary we will be able to show that using equivalence
everywhere also gives a correct algorithm. After proving the correctness of our
rule-based algorithm, we then tackle the challenges in implementing it.

4 Viewing reachability algorithms using rewrite rules

In this section, our goal is to compute a set S of nodes of the zone graph of a
PDTA, as a least fixed point of a small set of inductive rules, such that a control
state q occurs in S, i.e., (q, Z) ∈ S for some Z iff q is reachable in the PDTA
from its initial state. To understand the rules and their correctness it is easier
to first visualize this on plain timed automata without any push-pop edges.

4.1 Rewrite rules for Timed automata.

Given a TA A = (Q,X, q0, ∆, F), the set S containing all reachable nodes of the
zone graph, can be obtained as the least fixed point of the following inductive
rules, with a natural deduction style of presentation.

start
S := {(q0, Z0)}

(q, Z) ∈ S q
g,R−−→ q′ Z ′ =

−−−−−−→
R(g ∩ Z) 6= ∅

Trans
S := S ∪ {(q′, Z ′)}

Fast zone-based algorithms for reachability in pushdown timed automata 9

Let S∗ denote the set at the fixed point by starting with the start rule and
repeatedly applying the trans rule. It is easy to see that this computes the set
of all reachable nodes of the zone graph: the start rule starts with the initial
node and each application of trans rule takes a reachable node and applies a
transition of the automaton and includes the resulting node reached. However,
this set S∗ is a priori infinite since number of zones is infinite.

To make it finite we add a condition under which we will apply the transition
rule based on a finite simulation relation (let us denote it �) for A.

(q, Z) ∈ S q
g,R−−→ q′ Z ′ =

−−−−−−→
R(g ∩ Z) 6= ∅

Trans-�
S := S ∪ {(q′, Z ′)}, unless ∃(q′, Z ′′) ∈ S, Z ′ �q′ Z ′′

Thus to obtain an algorithm, we would explore all nodes in the Zone graph
using a search algorithm (say DFS/BFS) and we would add a node only if it is not
subsumed by an already visited node, according to the simulation relation. We
explained in Section 2.2 that doing this preserves soundness and completeness
and gives a finite exploration.

Lemma 2. Let S∗� denote any set obtained from the start rule and by repeatedly
applying Trans-� till a fixed point is reached. Note that depending on the order
of applications we may have different sets. Then we have:

1. (finiteness) S∗� is finite.
2. (soundness and completeness) For all q ∈ Q, a configuration (q, v) is reach-

able from (q0, v0) in the TA A iff (q, Z) ∈ S∗� for some zone Z.

We do not give the proof here as (i) it is only a reformulation of known results
and (ii) it will be subsumed by the much stronger theorem we prove next.

4.2 Rewrite rules for PDTA.

Let A = (Q,X, q0, Γ,∆, F) be a PDTA, we will need not just a set but a tuple
of sets. More precisely, we maintain a set of nodes S called root nodes. For
each root node (q, Z) ∈ S, we also maintain a set of nodes, denoted S(q,Z). The
intuition is that root nodes are those that can be reached after pushing a symbol
to the stack, whereas S(q,Z) will be the set of nodes that can be reached from
(q, Z) with a well-nested run, i.e., starting with an empty stack and ending in
an empty stack. This is to avoid storing the stack contents in our algorithm,
which would be another source of infinity. Again, we use simulations to make
the computation finite. So we fix a strongly finite simulation relation � for A.

Our inductive rules for the control state reachability of pushdown timed
automata are given in Table 1. Note that the internal rule is just the same
as for timed automata above. The start rule not only starts the set of nodes
computation but also the set of roots computation as described above. So the
only interesting rules are the Push and Pop rules. The push rule says that when a
push is encountered, then we must start exploring from a new root (i.e., context).
So the only complicated rule is the Pop rule. Here the intuition is that if we see

10 S. Akshay, P. Gastin and K. R. Prakash

Start
S := {(q0, Z0)}, S(q0,Z0) := {(q0, Z0)}

(q, Z) ∈ S (q′, Z′) ∈ S(q,Z) q′
g,nop,R−−−−−→ q′′ Z′′ =

−−−−−−→
R(g ∩ Z′) 6= ∅

Internal
S(q,Z) := S(q,Z) ∪ {(q′′, Z′′)}, unless ∃(q′′, Z′′′) ∈ S(q,Z), Z

′′ �q′′ Z′′′

(q, Z) ∈ S (q′, Z′) ∈ S(q,Z) q′
g,pusha,R−−−−−−→ q′′ Z′′ =

−−−−−−→
R(g ∩ Z′) 6= ∅

Push
S := S ∪ {(q′′, Z′′)}, S(q′′,Z′′) = {(q′′, Z′′)}, unless ∃(q′′, Z′′′) ∈ S, Z′′ ∼q′′ Z′′′

(q, Z) ∈ S

(q′′, Z1) ∈ S

(q′, Z′) ∈ S(q,Z)

(q′1, Z
′
1) ∈ S(q′′,Z1)

q′
g,pusha,R−−−−−−→ q′′

q′1
g1,popa,R1−−−−−−−→ q2

Z′′ =
−−−−−−→
R(g ∩ Z′) ∼q′′ Z1

Z2 =
−−−−−−−−→
R1(g1 ∩ Z′1) 6= ∅

Pop
S(q,Z) := S(q,Z) ∪ {(q2, Z2)}, unless ∃(q2, Z′2) ∈ S(q,Z), Z2 �q2 Z′2

Table 1: Inductive rules for control state reachability of PDTA

a push at a node and from a root equivalent to the root created from it, (i.e., its
context) we see a matching pop reaching a new node, then this push-pop context
is complete, and we can add this new node to the set of reachable nodes. This
is precisely the point where we need equivalence rather than simulation and this
will be made clear in the proof of the theorem below.

Theorem 1. Let S∗ and (S(q,Z))(q,Z)∈S∗ denote any tuple of sets obtained from
the start rule and by repeatedly applying the rules in Table 1 till a fixed point
is reached3. Note that we always have (q0, Z0) ∈ S∗. The following statements
hold:
1. (finiteness) S∗ is finite and for each (q, Z) ∈ S∗, S(q,Z) is finite.

2. (completeness) For each (q, Z) ∈ S∗, if there exists a run (q, v, ε)
∗−→ (q′, v′, ε)

of A with {v} �q Z, then there exists (q′, Z ′) ∈ S(q,Z) such that {v′} �q′ Z ′.
3. (soundness) For each (q, Z) ∈ S∗, (q′, Z ′) ∈ S(q,Z) and v′ ∈ Z ′, there exists

a run in PDTA from (q, v, ε) to (q′, v′′, ε) with v ∈ Z and v′ �q′ v′′.

Proof. 1. Note that only the Push rule creates new root nodes and the red
condition states that a new root node is added only if there isn’t already an
equivalent node in S∗. Since the simulation relation is strongly finite, the set
of roots S∗ must be finite. Also, before adding a node to some S(q,Z) with the
internal rule or the pop rule, we check that the node is not subsumed by an
existing one. Since the simulation relation is finite, this ensures that each set
S(q,Z) is finite.

2. Let (q, Z) ∈ S∗ and assume that (q′, v′, ε) is reachable from some (q, v, ε)
with v �q Z, i.e., there exists a run (q, v, ε) = (q1, v1, χ1)→ · · · → (qn, vn, χn) =

3 As before, there could be several such sets depending on the order in which the rules
are applied.

Fast zone-based algorithms for reachability in pushdown timed automata 11

(q, v, ε)
∗−→ (qi, vi, ε)

t−→ (qi+1, vi+1, a)
∗−→ (qn−1, vn−1, a)

t1−→ (qn, vn, ε)

v �q Z vi �qi Zi vi+1 �qi+1 Zi+1 vn−1 �qn−1 Zn−1 vn �qn Zn

(q, Z) ∈ S (qi, Zi) ∈ S(q,Z) Zi+1 =
−−−−−−→
R(g ∩ Zi) (qn−1, Zn−1) ∈ S(qi+1,Z

′
i+1)

Zn =
−−−−−−−−−−→
R1(g1 ∩ Zn−1)

Zi+1 ∼qi+1 Z
′
i+1 Zn �qn Z′n

(qi+1, Z
′
i+1) ∈ S (qn, Z

′
n) ∈ S(q,Z)

Fig. 4: Construction for the completeness-push-pop last sub-case.

(q′, v′, ε). We will then show that vn �qn Z ′ for some (qn, Z
′) ∈ S(q,Z). The proof

is by induction on n. Base case: For n = 1 we have q′ = q and v′ = v. The result
is obtained by taking Z ′ = Z. Notice that (q, Z) ∈ S(q,Z) follows immediately
from the start rule if q = q0, Z = Z0 or from the push-create rule.

Let us then assume that the statement holds for runs of length at most n−1.
Consider any run of the form (q, v, ε) = (q1, v1, χ1) → · · · → (qn, vn, χn = ε)
with v �q Z. Notice that its last transition (qn−1, vn−1, χn−1) → (qn, vn, χn)
cannot be a push transition (in the PDTA) since χn = ε. Hence, we have three
subcases, depending on the last transition.
– Time elapse. χn−1 = χn = ε, qn−1 = qn = q′, vn = vn−1 + δ for some
δ ∈ R≥0. Applying induction hypothesis, we have vn−1 �q′ Z ′ for some

(q′, Z ′) ∈ S(q,Z). Since zones are closed under time elapse, we get Z ′ =
−→
Z ′

and by definition of the simulation relation vn = vn−1 + δ �q′
−→
Z ′ = Z ′. This

completes the case.

– Discrete internal transition. In this case χn−1 = χn = ε, t = qn−1
g,nop,R−−−−−→

qn, vn−1 |= g and vn = [R]vn−1. Then applying induction hypothesis, there

exists (qn−1, Z
′) ∈ S(q,Z) such that vn−1 �qn−1

Z ′. Now let Z ′′ =
−−−−−−→
R(g ∩ Z ′).

From the definition of the simulation relation we get vn �qn Z ′′. Then,
applying the Internal rule, there exists (qn, Z

′′′) ∈ S(q,Z) such that Z ′′ �qn
Z ′′′, with possibly Z ′′′ = Z ′′. Hence, vn �qn Z ′′ �qn Z ′′′, which completes
the case.

– Pop transition. Then there exists 1 ≤ i < n − 1 such that the run has

the form: (q1, v1, ε) → . . . → (qi, vi, χi = ε)
pusha−−−−→ (qi+1, vi+1, χi+1 = a) →

. . .→ (qn−1, vn−1, χn−1 = a)
popa−−−→ (qn, vn, χn = ε), where the push and pop

are matching transitions, i.e., |χj | ≥ 1 for all i < j < n − 1 (see Figure 4).
Then by induction hypothesis at i, we have

vi �qi Zi for some (qi, Zi) ∈ S(q,Z) . (1)

From the push transition we have

∃t = qi
g,pusha,R−−−−−−→ qi+1 ∈ ∆ with vi |= g and vi+1 = [R]vi . (2)

Let Zi+1 =
−−−−−−→
R(g ∩ Zi). By definition of the simulation relation, we deduce

from vi �qi Zi that vi+1 �qi+1
Zi+1. We can apply the Push rule to obtain

(qi+1, Z
′
i+1) ∈ S∗ for some Z ′i+1 ∼qi+1

Zi+1 (3)

12 S. Akshay, P. Gastin and K. R. Prakash

possibly with Z ′i+1 = Zi+1 as a special case.
Further the segment of run (qi+1, vi+1, a)→ . . . (qn−1, vn−1, a) in the PDTA
never pops the symbol a (by choice, since otherwise the push and pop would
not be matching). Hence we will also have the same sequence of transi-
tions forming a run (qi+1, vi+1, ε) → . . . (qn−1, vn−1, ε). Using vi+1 �qi+1

Zi+1 ∼qi+1
Z ′i+1, we deduce that vi+1 �qi+1

Z ′i+1. By induction hypothesis,

vn−1 �qn−1 Zn−1 for some (qn−1, Zn−1) ∈ S(qi+1,Z′i+1)
. (4)

Finally, we have the pop transition

t1 = qn−1
g1,popa,R1−−−−−−−→ qn ∈ ∆ with vn−1 |= g1 and vn = [R1]vn−1 . (5)

We let Zn =
−−−−−−−−−−→
R1(g1 ∩ Zn−1). From vn−1 �qn−1 Zn−1 and the definition of

the simulation relation we obtain vn �qn Zn. Then, combining all the above
equations (1–5), and applying the Pop-rule we obtain some (qn, Z

′
n) ∈ S(q,Z)

with Zn �qn Z ′n (possibly Z ′n = Zn). Finally we get vn �qn Zn �qn Z ′n. This
completes the proof.

3. We will show that the following property is invariant by rule applications:

∀(q, Z) ∈ S, ∀(q′, Z ′) ∈ S(q,Z),∀v′ ∈ Z ′, there is a run

(q, v, ε)
∗−→ (q′, v′′, ε) with v ∈ Z and v′ �q′ v′′ (Inv)

The invariant holds initially, i.e., after application of the start rule. Indeed, in this
case we have S = {(q0, Z0)} and S(q0,Z0) = {(q0, Z0)}. Hence (q′, Z ′) = (q, Z) =

(q0, Z0) and for all v ∈ Z0 we can choose the empty run (q0, v, ε)
0−→ (q0, v, ε).

We show below that (Inv) is preserved by application of an internal/push/pop
rule. Therefore, the invariant still holds when reaching the fixed point, which
proves the soundness. Let us write S− and S−(q,Z) for the sets before the ap-

plication of the rule and S and S(q,Z) for the sets after the application of the
rule.

Internal rule. Let (q, Z) ∈ S = S−, (q′, Z ′) ∈ S(q,Z) and v′ ∈ Z ′. If (q′, Z ′) ∈
S−(q,Z) then we get the result since (Inv) holds before applying the internal rule.

Otherwise, there is some (q1, Z1) ∈ S−(q,Z) and a transition t = q1
g,nop,R−−−−−→ q′

with Z ′ =
−−−−−−→
R(g ∩ Z1).

By definition, there exists v1 ∈ Z1 such that v1 |= g and v′ = [R]v1 + δ for

some δ ≥ 0. Hence we have a run (q1, v1, ε)
t−→ δ−→ (q′, v′, ε). Since the invariant

holds before the internal rule, there is a run (q, v, ε)
∗−→ (q1, v

′
1, ε) with v ∈ Z and

v1 �q1 v′1. Now since � is a simulation we obtain that (q1, v
′
1, ε)

t−→ δ−→ (q′, v′′, ε)
with v′ �q′ v′′ and we are done.

Push rule. Let (q, Z) ∈ S, (q′, Z ′) ∈ S(q,Z) and v′ ∈ Z ′. If (q, Z) ∈ S− then
we get the result since (Inv) holds before applying the Push rule. Otherwise, we

must have (q′, Z ′) = (q, Z) and we can choose the empty run (q, v′, ε)
0−→ (q, v′, ε).

Fast zone-based algorithms for reachability in pushdown timed automata 13

(q′1, v4, a)
t1−→ δ′−→ (q2, v

′, ε)�

(q′′, v3, a)
∗−→ (q′1, v

′
4, a)� �

(q′, v2, ε)
t−→ δ−→ (q′′, v′3, a)

�

� �

(q, v, ε)
∗−→ (q′, v′2, ε)

t−→ δ−→ (q′′, v′′3 , a)
∗−→ (q′1, v

′′
4 , a)

t1−→ δ′−→ (q2, v
′′, ε)

Fig. 5: Construction for the soundness.

Pop rule. Let (q, Z) ∈ S = S−, (q2, Z2) ∈ S(q,Z) and v′ ∈ Z2. Again, if

(q2, Z2) ∈ S−(q,Z) then we get the result since (Inv) holds before applying the Pop

rule. Otherwise, by definition of the pop rule we have:

1. some (q′, Z ′) ∈ S(q,Z),

2. some push transition t = q′
g,pusha,R−−−−−−→ q′′,

3. some (q′′, Z1) ∈ S with Z1 ∼q′′ Z ′′ =
−−−−−−→
R(g ∩ Z ′),

4. some (q′1, Z
′
1) ∈ S(q′′,Z1),

5. some pop transition t1 = q′1
g1,popa,R1−−−−−−−→ q2,

with Z2 =
−−−−−−−−→
R1(g1 ∩ Z ′1). The construction below is illustrated in Figure 5.

Since v′ ∈ Z2, we get some v4 ∈ Z ′1 such that v4 |= g1 and v′ = [R1]v4 + δ′

for some δ′ ≥ 0. Hence we have a run (q′1, v4, a)
t1−→ δ′−→ (q2, v

′, ε).

Now, applying the invariant to (q′′, Z1) ∈ S, (q′1, Z
′
1) ∈ S(q′′,Z1) and v4 ∈ Z ′1,

we get a run (q′′, v3, ε)
∗−→ (q′1, v

′
4, ε) with v3 ∈ Z1 and v4 �q′1 v

′
4. Hence, we also

have a run (q′′, v3, a)
∗−→ (q′′, v′4, a).

Let v′3 ∈ Z ′′ =
−−−−−−→
R(g ∩ Z ′) ∼q′′ Z1 with v3 �q′′ v′3. we get some v2 ∈ Z ′

such that v2 |= g and v′3 = [R]v2 + δ for some δ ≥ 0. Hence we have a run

(q′, v2, ε)
t−→ δ−→ (q′′, v′3, a).

Finally, we apply the invariant to (q, Z) ∈ S, (q′, Z ′) ∈ S(q,Z) and v2 ∈ Z ′,
we get a run (q, v, ε)

∗−→ (q′, v′2, ε) with v ∈ Z and v2 �q′ v′2.

By repeatedly applying the property of simulation �, we may extend the

run from (q′, v′2, ε) with (q′, v′2, ε)
t−→ δ−→ (q′′, v′′3 , a)

∗−→ (q′1, v
′′
4 , a)

t1−→ δ′−→ (q2, v
′′, ε)

where v3 �q′′ v′3 �q′′ v′′3 and v4 �q′1 v
′
4 �q′1 v

′′
4 . Finally v′ �q2 v′′. Therefore, the

invariant holds after the pop rule. ut

5 Algorithm for PDTA Reachability via Zones

In this section, we describe Algorithm 1 implementing the fixed point computa-
tion defined by the inductive rules in Table 1. We describe the structure of the
algorithm and its main data-structures.

14 S. Akshay, P. Gastin and K. R. Prakash

Notice first that the sets S and S(q,Z) for (q, Z) ∈ S can be alternatively
represented as a single set of pairs of nodes:

S = {[(q, Z), (q′, Z ′)] | (q, Z) ∈ S and (q′, Z ′) ∈ S(q,Z)} .

We can recover S as the first projection of S and S(q,Z) as the second projec-
tion of S filtered by the first component being (q, Z). We use both notations
below depending on which is more convenient. The start rule initializes S to
{[(q0, Z0), (q0, Z0)]}.

Let us consider first the rule for internal transitions. For each already dis-
covered pair of nodes [(q, Z), (q′, Z ′)] ∈ S (or (q′, Z ′) ∈ S(q,Z) with (q, Z) ∈ S),

we have to consider each possible internal transition q′
g,nop,R−−−−−→ q′′ and check

whether the node (q′′, Z ′′) with Z ′′ =
−−−−−−→
R(g ∩ Z ′) should be added to S(q,Z) or is

subsumed by an existing node. This is like a graph traversal. The set S stores
the already discovered pairs of nodes, and we will use a ToDo (unordered) list
to store the newly discovered nodes from which outgoing transitions should be
considered. The ToDo list should also consist of pairs [(q, Z), (q′, Z ′)] so that
when a new node (q′′, Z ′′) is discovered by an internal transition from (q′, Z ′)
we know to which set S(q,Z) it should be added.

As we can see from Theorem 1-soundness, given (q, Z) ∈ S, the set S(q,Z)

should consist of nodes reachable from (q, Z) via a well-nested run. Hence, when

dealing with a pair [(q, Z), (q′, Z ′)] ∈ S and we see a push transition q′
g,pusha,R−−−−−−→

q′′ with Z ′′ =
−−−−−−→
R(g ∩ Z ′), we should not try to add the pair (q′′, Z ′′) to S(q,Z) since

the corresponding run would not be well-nested. Instead, we should search for
a matching pop transition which could be taken after a well-nested run starting
from (q′′, Z ′′). This is why the push rule adds the new root (q′′, Z ′′) to S (unless
it is equivalent to an existing root). The pair of nodes [(q′′, Z ′′), (q′′, Z ′′)] is newly
discovered and added to the ToDo list for further exploration.

The push transition may be matched with several pop transitions (which
could be already discovered or yet to be discovered by the algorithm). To avoid
revisiting the push transition many times, it will be stored by the algorithm
in an additional set Spush. More precisely, we will store in Spush the tuple
[(q, Z), a, (q′′, Z ′′)] meaning that the root node (q′′, Z ′′) may be reached from
the root node (q, Z) via a well-nested run reaching some (q′, Z ′) followed by a
transition pushing a onto the stack.

Finally, assume that, when dealing with a pair [(q1, Z1), (q′1, Z
′
1)] ∈ S, we see

a pop transition q′1
g1,popa,R1−−−−−−−→ q2 with Z2 =

−−−−−−−−→
R1(g1 ∩ Z ′1). We will check whether

it can be matched with an already visited push transition, stored in the set Spush
as a pair [(q, Z), a, (q′′, Z ′′)] with (q′′, Z ′′) = (q1, Z1). If this is the case, the pop
rule may be applied and the node (q2, Z2) added to S(q,Z) (unless it is subsumed
by an existing node). The newly discovered pair of nodes [(q, Z), (q2, Z2)] is also
added to the ToDo list for further exploration. Once again, the pop transition
may also be matched with push transitions that will be discovered later by the
algorithm. To avoid revisiting the pop transition many times, we store the tuple
[(q1, Z1), a, (q2, Z2)] in a new set Spop.

Fast zone-based algorithms for reachability in pushdown timed automata 15

Data structures. We use a data structure TLM to store the triple of sets
(S,Spush,Spop) and which is accessed with the following methods.

– TLM.create() creates the data structure with the three sets empty.
– TLM.add(q, Z, q′, Z ′) adds [(q, Z), (q′, Z ′)] to S.
– TLM.addPush(q, Z, a, q′, Z ′) adds [(q, Z), a, (q′, Z ′)] to Spush.
– TLM.addPop(q, Z, a, q′, Z ′) adds [(q, Z), a, (q′, Z ′)] to Spop.
– TLM.isNewRoot(q, Z) returns [false, Z ′] if there exists some (q, Z ′) ∈ S with
Z ′ ∼q Z, and returns [true, Z] otherwise.

– TLM.isNewNode(q, Z, q′, Z ′) returns false if ∃[(q, Z), (q′, Z ′′)] ∈ S with Z ′ �q′
Z ′′, and returns true otherwise.

– TLM.isNewPop(q, Z, a, q′, Z ′) returns false if ∃[(q, Z), a, (q′, Z ′′)] ∈ Spop with
Z ′ �q′ Z ′′, true otherwise.

– TLM.isNewPush(q, Z, a, q′, Z ′) returns false if [(q, Z), a, (q′, Z ′)] ∈ Spush, and
returns true otherwise.

– TLM.iterPop(q, Z, a) returns the list of (q′, Z ′) with [(q, Z), a, (q′, Z ′)] ∈ Spop.
– TLM.iterPush(a, q′, Z ′) returns the list of (q, Z), s.t. [(q, Z), a, (q′, Z ′)] ∈ Spush.

Concretely, the data structure should store sets of nodes (q, Z) and be able
to search or iterate through such sets. In order to make the algorithm slightly
faster, we will segregate our sets of nodes, with the name of the state. We will
use a hashmap in order to accomplish this task. See Figure 6 where the concrete
data structure is depicted.

We will use a first level hashmap to store the set of roots S. To implement
TLM.isNewNode(q, Z, q′, Z ′), we first search for (q, Z) in the first level map, then
a pointer TLM[q][Z][0] will lead to a second level hashmap for the set of nodes
S(q,Z) and we search for (q′, Z ′) in this second level map. See Figure 6(b).

To implement TLM.isNewPop(q, Z, a, q′, Z ′) and TLM.iterPop(q, Z, a), we first
search the root node (q, Z) in the first level map, then a pointer TLM[q][Z][2]
will lead to a second level hashmap storing the set of triples (a, q′, Z ′) such that
[(q, Z), a, (q′, Z ′)] ∈ Spop. To speed up the access, this second level pop map is
segregated first on the key a, then on the key q′ to get the list of corresponding
zones Z ′. See Figure 6(c,d).

Finally, we also store the set Spush to implement TLM.isNewPush(q, Z, a, q′, Z ′)
and TLM.iterPush(a, q′, Z ′). Notice that Spush consists of triples [(q, Z), a, (q′, Z ′)]
where both (q, Z) and (q′, Z ′) are root nodes from S. Notice also that for the iter-
ation we fix the second node (q′, Z ′). To get an efficient implementation, we first
search the root node (q′, Z ′) in the first level map, then a pointer TLM[q′][Z ′][1]
will lead to a second level hashmap storing the set of triples (a, q, Z) such that
[(q, Z), a, (q′, Z ′)] ∈ Spush. To speed up the access, this second level push map is
segregated first on the key a, then on the key q to get the list of corresponding
zones Z. See Figure 6(c,d).

16 S. Akshay, P. Gastin and K. R. Prakash

Algorithm 1 PDTA Reachability Using Zones.

1: procedure PDTAReach
2: TLM.create()
3: TLM.add(q0, Z0, q0, Z0) . Start Rule
4: ToDo = {[(q0, Z0), (q0, Z0)]}
5: while ToDo 6= ∅ do
6: [(q, Z), (q′, Z′)] = ToDo.get() . (q, Z) ∈ S ∧ (q′, Z′) ∈ S(q,Z)

7: for t = q′
g,op,R−−−−→ q′′ and Z′′ =

−−−−−−→
R(g ∩ Z′) 6= ∅ do

8: if op = nop ∧ TLM.isNewNode(q, Z, q′′, Z′′) then
9: TLM.add(q, Z, q′′, Z′′) . Internal Rule

10: ToDo.add([(q, Z), (q′′, Z′′)])
11: else if op = pusha then
12: [isNew,Z1] = TLM.isNewRoot(q′′, Z′′)
13: if isNew == true then
14: TLM.add(q′′, Z′′, q′′, Z′′) . Push Rule
15: ToDo.add([(q′′, Z′′), (q′′, Z′′)])
16: end if
17: if TLM.isNewPush(q, Z, a, q′′, Z1) then
18: TLM.addPush(q, Z, a, q′′, Z1)
19: for (q2, Z2) in TLM.iterPop(q′′, Z1, a) do
20: if TLM.isNewNode(q, Z, q2, Z2) then
21: TLM.add(q, Z, q2, Z2) . Pop Rule
22: ToDo.add([(q, Z), (q2, Z2)])
23: end if
24: end for
25: end if
26: else if op = popa then
27: if TLM.isNewPop(q, Z, a, q′′, Z′′) then
28: TLM.addPop(q, Z, a, q′′, Z′′)
29: for (q3, Z3) in TLM.iterPush(a, q, Z) do
30: if TLM.isNewNode(q3, Z3, q

′′, Z′′) then
31: TLM.add(q3, Z3, q

′′, Z′′) . Pop Rule with q = q3, Z = Z3

32: ToDo.add([(q3, Z3), (q′′, Z′′)]) . q2 = q′′, Z2 = Z′′

33: end if
34: end for
35: end if
36: end if
37: end for
38: end while
39: end procedure

Fast zone-based algorithms for reachability in pushdown timed automata 17

q1 Z1
...

q2 Z2
...

q3 Z31
... Z32

... Z33
...

q4 Z41
... Z42

... Z43
...

q5 Z51
... Z52

... Z53
...

q6 Z61
... Z62

... Z63
...

(a) First level map constructed using equivalence ∼q
for controlling size. Keys will be state names, values
will be lists of quadruplets, each of which has four
pointers to second level maps, second level pushes
maps, second level pops maps, and zones.

q1 Z1

q2 Z′2

q3 Z′3

q4 Z42 Z45

q5 Z57

q6 Z61

(b) Second level map corre-
sponding to S(q1,Z1). Each first
level map node will have its
own second level map.

a1 .

a2 .

a3 .

a4 . .

a5 .

(c) Pushes/Pops map cor-
responding to root node
(q1, Z1). Each pointer points
to a different map where
(q, Z) are stored.

q1 Z1

q2 Z2

q3 Z32

q4 Z42 Z43

q5 Z53

q6 Z61

(d) For pushes/pops map, this
is a map corresponding to root
node (q1, Z1), and symbol a2
(say). The (q, Z) stored here is
constructed using equivalence
(pushes map), or using simu-
lation (pops map).

Fig. 6: Two level map implementing the data structure TLM storing the sets S,
Spush, Spop.

18 S. Akshay, P. Gastin and K. R. Prakash

We now show correctness of Algorithm 1. Note that TLM encodes a triple of
sets (S,Spush,Spop) defined by:

S = {[(q, Z), (q′, Z ′)] | (q′, Z ′) ∈ TLM[q][Z][0]}
Spush = {[(q, Z), a, (q′, Z ′)] | (a, q, Z) ∈ TLM[q′][Z ′][1]}
Spop = {[(q, Z), a, (q′, Z ′)] | (a, q′, Z ′) ∈ TLM[q][Z][2]}

Recall also the correspondence explained at beginning of Section 5 between a
set S of pairs of nodes, and the set of roots S together with the sets of nodes
S(q,Z) for (q, Z) ∈ S.

Theorem 2. The set S encoded by TLM computed by Algorithm 1 is a fixed
point obtained starting from the empty set by applying the inductive rules in
Table 1. Therefore, Algorithm 1 terminates and is sound and complete for well-
nested control state reachability of pushdown timed automata.

Proof (sketch).

1. For termination, if we look at our algorithm, we can clearly see that before
adding a pair of nodes to the ToDo list, we add the same pair to S with
TLM.add, and before that, we always check whether the pair is already in our
TLM or not (isNewNode or isNewRoot). Since the size of the TLM is always
bounded because we check either the first level map or the second level map
before adding, the outer while loop will be called only a finite number of
times. From this we can conclude that the algorithm will terminate.

2. For soundness we have prove that any change to the TLM is equivalent
to applying one of the rewrite rules to (S,Spush,Spop), which is already
known to be sound from Theorem 1. The changes to the TLM occur in
lines 3, 9, 14, 21, 31. Since line 3 simply adds [(q0, Z0), (q0, Z0)] to S, it
simulates the start rule. For line 9, we can see that the pre conditions of
internal rule Table 1 are met, with (q, Z) ∈ S, (q′, Z ′) ∈ S(q,Z), the if-
statement (just above the line) stating that there is an nop transition from q
to q′, and Z ′′ 6= φ. Using all these we can see that indeed the operation can
be performed. Similar arguments can be made for line 14, which simulates
the push rule, and line numbers 21, 31 both for the pop-rule.

3. For completeness we have to prove that after termination of the algorithm,
using (S,Spush,Spop) to encode TLM, we cannot use any of the rules men-
tioned in Table 1, to add anything extra to the TLM. Then from Theorem 1-
completeness we can conclude. For the start rule we can simply say that it
was definitely executed (Line 3), so it cannot be executed again. For the in-
ternal rule we argue that if it can be applied after termination, then it should
have been applied during execution. Since all transitions are considered in
the for-loop, and the conditions before line 9 checks all the preconditions of
the internal rule, it is certainly the case that a node (q′′, Z ′′) could not be
added because either it was already added, or (q′′, Z ′′′) ∈ S(q,Z), Z

′′ �q′′ Z ′′′.
The argument for the push rule is similar. For the pop rule to be applied

Fast zone-based algorithms for reachability in pushdown timed automata 19

we argue that there must be a push transition and a pop transition sat-
isfying the pre-conditions in the pop rule. Since both of these are already
present for zones in the TLM, we say that they must have been added to
Spush and Spop. We then concern ourselves with the order, arguing that if
the push transition was discovered later the node either must already have
been added (Line 21) or another node simulating the node must have been
present in the TLM (Line 20). A similar argument is made in case the order
of discovery is reversed.

For the full proof details, we refer the reader to the long version [6]. ut

6 Experiments and Results

Implementation We build on the existing architecture of an open-source tool for
analysis of timed automata, TChecker [19]. Our tool along with the benchmarks
we used is available at https://github.com/karthik-314/PDTAreachability
and more details can be found [6]. The input for our implementation are PDTA,
rather than TA so we modify TChecker in order to run our experiments. While
most of the TChecker file format will remain the same, the only place where we
make a change to the syntax of the input, will be the edges. TChecker uses the
following format, for its transitions,

edge:<Process>:<src>:<tgt>:<label>{

do:<Reset1(x=0)> ; <Reset2(y=0)> :

provided: <guard1(x==0)> && <guard2(y>=1)>}

The new format in order to incorporate the pushes and pops will be,

edge:<Process>:<src>:<tgt>:<label>{

do:<Reset1(x=0)> ; <Reset2(y=0)> :

provided: <guard1(x==0)> && <guard2(y>=1)>}

[<push/pop>:<symbol>]

In case the operation is nop, the square brackets are left empty.
We have implemented two variants of Algorithm 1 for PDTA and we will

compare these between each other and also with a region-based approach. More
precisely, we consider the following 3 algorithms:
– Simulation Based Approach (�LU): Direct implementation of Algorithm 1.
– Equivalence Based Approach (∼LU): This is a variation of Algorithm 1,

with two methods changed,
• TLM.isNewNode(q, Z, q′, Z ′): Returns false if ∃[(q, Z), (q′, Z ′′)] ∈ S with
Z ′ ∼q′ Z ′′, and true otherwise.
• TLM.isNewPop(q, Z, a, q′, Z ′): Returns false if ∃[(q, Z), a, (q′, Z ′′)] ∈ Spop

with Z ′ ∼q′ Z ′′, and true otherwise.
As mentioned in Section 4, if instead of simulation, we just use equivalence
everywhere, we do obtain a correct algorithm for reachability in PDTA.
Hence it is interesting to compare it with the above approach.

https://github.com/karthik-314/PDTAreachability

20 S. Akshay, P. Gastin and K. R. Prakash

– Region Based Implementation (RB): A previous implementation [5],
uses a region based approach in order to solve the non-emptiness problem in
PDTA. We note two features of the algorithm. First, it uses a tree-automaton
based approach for efficiency and correctness, but underlying it is the region
(rather than zone) construction. Second, it works only with closed guards,
while our approach works with closed and open guards.
We note the following important points regarding our implementation:

1. The � used in our implementation will be �LU [8], without extrapolation
and with global clock bounds.

2. The ToDo list used currently uses LIFO (stack) ordering for popping of el-
ements. This corresponds to a DFS exploration of the zone-graph. But we
can use other data structures for this purpose as well, e.g., changing it to
FIFO would give us a BFS exploration etc.

3. Both the simulation based and equivalence based approach are tested on
PDTA with empty and non-empty languages, but we have ensured that
both of them return an answer only after the entire exploration has been
completed. In other words, we do not stop the exploration when we reach
a final state. This is to make fair comparisons, where we do not terminate
because of being “lucky” in encountering the final state early. Of course in
practice we would not do this. In contrast, we note that the RB approach
is an on the fly approach which returns non-empty as soon as the final state
turns out to be reachable.
All experiments are run on Intel-i5 10th Generation processor, with an 8GB

RAM, with a timeout of 120 seconds.

Benchmarks. We used a total of 10 benchmarks in our experiments, but parame-
terized several of them in order to test the scalability and to give us more insight
into performance comparisons. The benchmark and their parameterizations are
explained in [6]. We highlight only some salient points here. The benchmark
B1 is the PDTA from Figure 1. B2(k) is directly adapted from Figure 3 with
the constant y ≤ 1 parametrized to y ≤ k, and k + 1 pops between q0 and q2.
Note that q3 is unreachable regardless of the value of k. Benchmarks B3, B4 are
adapted from [5] with B3 involving untiming of a stack age into normal clocks.
B5, B6 involve significant interplay of push/pop edges and clocks and B6, B7 also
have open guards. More details can be found in [6]. We also note that automata
B1, B3(3, 4), B5(k1, k2), B8, B9(k1, k2) accept a nonempty language, while the
rest are empty. As described earlier this does not change the performance of the
simulation and equivalence based approaches, but may significantly change the
performance of the Region Based Approach.

Results Table 2 contains a selection of our experimental results; more can be
found in [6]. From the table, we conclude first that the zone based approach
is indeed faster than the Region Based Approach for all examples. Second, the
simulation based approach runs faster than the equivalence based approach for
all examples if the ToDo priority for removal remains the same. In fact, the
performance of the simulation based approach depends mostly on the size of the

Fast zone-based algorithms for reachability in pushdown timed automata 21

Benchmark �LU �LU ∼LU ∼LU RB RB
Time # nodes Time # nodes Time # nodes

B1 0.2 17 0.2 17 235.6 4100
B2(10) 0.8 77 0.8 77 6835.8 30200
B2(100) 20.0 5252 20.7 5252 T.O. ≥154700
B3(4, 3) 0.2 6 0.2 6 1043.8 14300
B3(3, 4) 0.2 9 0.2 9 98.8 3400
B4 0.2 8 0.1 8 0.3 17
B5(100, 10) 0.8 202 5.4 2212 OoM OoM
B5(100, 1000) 0.7 202 3564.3 201202 OoM OoM
B5(5000, 100) 23.2 10002 3429.3 1010102 OoM OoM
B6(5, 4, 1000) 0.3 30 611.8 30047 NA NA
B6(5, 4, 10000) 0.3 30 60271.9 300047 NA NA
B6(501, 500, 100) 38.2 3006 501.0 34799 NA NA
B7 112.4 4475 113.1 4475 NA NA

Table 2: Results on the Benchmarks. Time recorded in ms, and timeout (T.O.)
used is 120 seconds. OoM stands for Out of Memory kill. Results rounded up
to 1 decimal. # nodes refers to the number of nodes in the zone/region graph
explored. In case of timeout ≥ n, refers to recorded number of nodes n before
timeout occurred. NA in RB columns represents that the region based approach
does not handle open guards in transitions (B6, B7 have open guards.)

PDTA, but the equivalence based approach is dependant on the constants used
in guards as well, which is even more the case for the region based approach.
Finally, our approach can easily handle closed and open guards.

Most of the timeouts that occurred during the experiments are due to Out of
Memory (OoM) kills, especially for larger sized PDTAs. For smaller sized PDTA
such as B2(100), the recorded number of nodes before timeout was 154700.

Regarding the performance, we would like to emphasize that B1, B2, B3, B4,
B7 were designed to compare the Zone approach to the region (RB) approach.
As a consequence these models are very simple and the number of explored nodes
remains almost the same regardless of whether we use ∼ or � to prune, which
reflects in the times/sizes not being too different. However, the other examples
B5, B6 are more complex and have nodes that get pruned during exploration
(both using ∼ and �). Here we can see the clear improvement of � over ∼ both
in terms of time taken and also of number of explored nodes.

7 Discussion and Future work

In this paper, we examined how an unbounded stack can be integrated seamlessly
with zone-abstractions in timed automata. We would like to point out that two
easy extensions of our work are possible. First, as remarked earlier, our algorithm
checks for well-nested reachability, i.e., it requires to reach a final state with
empty stack for acceptance. But we can generalize this to general control-state
reachability by showing that a control state q is reachable in the PDTA (with

22 S. Akshay, P. Gastin and K. R. Prakash

possibly a non-empty stack) iff some node (q, Z) is discovered by our algorithm
and added to some S(q′,Z′) (and not just to S(q0,Z0) as in the well-nested case).
While this idea is simple and requires only minor edits to the existing algorithm,
the proof of correctness requires more work and we leave this for future work.

Secondly, we can handle the model with ages in stack as in [3,1] with an
exponential blowup (thanks to [13]). However, an open question is whether this
blowup can be avoided in practice. As noted earlier, there exist extensions [15,14]
studied especially in the context of binary reachability, which are expressively
strictly more powerful, for which decidability results are known. It would be
interesting to see how we can extend the zone-based approach to those models.

Finally, it seems interesting to examine further the link to the liveness prob-
lem, possibly allowing us to transfer ideas and obtain faster implementations.
Another possibility would be to use the extrapolation operator (rather than, or
in addition to, simulation), which we have not considered in this work.

References

1. Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Dense-timed
pushdown automata. In Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science, LICS 2012, Dubrovnik, Croatia, June, pages 35–44, 2012.

2. S. Akshay, Paul Gastin, Vincent Jugé, and Shankara Narayanan Krishna. Timed
systems through the lens of logic. In 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June, pages 1–13, 2019.

3. S. Akshay, Paul Gastin, and Shankara Narayanan Krishna. Analyzing Timed Sys-
tems Using Tree Automata. Logical Methods in Computer Science, Volume 14,
Issue 2, May 2018.

4. S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Sparsa Roychowdhury.
Revisiting underapproximate reachability for multipushdown systems. In Tools
and Algorithms for the Construction and Analysis of Systems - 26th International
Conference, TACAS 2020, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2020, Ireland, Proceedings, Part I, volume
12078 of Lecture Notes in Computer Science, pages 387–404. Springer, 2020.

5. S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Ilias Sarkar. Towards
an efficient tree automata based technique for timed systems. In 28th International
Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin,
Germany, pages 39:1–39:15, 2017.

6. S. Akshay, Paul Gastin, and Karthik R. Prakash. Fast zone-based algorithms
for reachability in pushdown timed automata. CoRR arXiv preprint:2105.13683,
https://arxiv.org/abs/2105.13683, 2021.

7. Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

8. Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek Pelánek.
Lower and upper bounds in zone based abstractions of timed automata. In Tools
and Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, Proceedings,
volume 2988 of Lecture Notes in Computer Science, pages 312–326. Springer, 2004.

https://arxiv.org/abs/2105.13683

Fast zone-based algorithms for reachability in pushdown timed automata 23

9. Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Uppaal—a tool suite for automatic verification of real-time systems. In Interna-
tional Hybrid Systems Workshop, pages 232–243. Springer, 1995.

10. Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the automatic veri-
fication of systems with continuous variables and unbounded discrete data struc-
tures. In International Hybrid Systems Workshop, pages 64–85. Springer, 1994.

11. Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods
Syst. Des., 24(3):281–320, 2004.

12. Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diagonal con-
straints in timed automata: Forward analysis of timed systems. In Formal Model-
ing and Analysis of Timed Systems, Third International Conference, FORMATS
2005, Uppsala, Sweden, September 26-28, 2005, Proceedings, volume 3829 of Lec-
ture Notes in Computer Science, pages 112–126. Springer, 2005.

13. Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015, page 738–749, 2015.

14. Lorenzo Clemente and Slawomir Lasota. Reachability relations of timed pushdown
automata. J. Comput. Syst. Sci., 117:202–241, 2021.

15. Lorenzo Clemente, Slawomir Lasota, Ranko Lazic, and Filip Mazowiecki. Timed
pushdown automata and branching vector addition systems. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

16. Zhe Dang. Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci., (1-3):93–121, 2003.

17. Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling
diagonal constraints in timed automata. In Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, USA, Proceedings, Part I,
volume 11561 of Lecture Notes in Computer Science, pages 41–59. Springer, 2019.

18. Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz. Using non-
convex approximations for efficient analysis of timed automata. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2011, December 12-14, 2011, Mumbai, India, volume 13 of LIPIcs,
pages 78–89. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

19. Frédéric Herbreteau and Gerald Point. Tchecker. Available at https://github.

com/fredher/tchecker.
20. Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why

liveness for timed automata is hard, and what we can do about it. ACM Trans.
Comput. Log., 21(3):17:1–17:28, 2020.

21. Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for
timed automata. In Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages
375–384. IEEE Computer Society, 2012.

22. Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guld-
strand Larsen, and Jaco van de Pol. Multi-core emptiness checking of timed büchi
automata using inclusion abstraction. In Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia. Proceedings, volume
8044 of Lecture Notes in Computer Science, pages 968–983. Springer, 2013.

23. Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International
journal on software tools for technology transfer, 1(1-2):134–152, 1997.

24. Stavros Tripakis. Checking timed büchi automata emptiness on simulation graphs.
ACM Trans. Comput. Log., 10(3):15:1–15:19, 2009.

https://github.com/fredher/tchecker
https://github.com/fredher/tchecker

	Fast zone-based algorithms for reachability in pushdown timed automata

