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An exactly soluble non-equilibrium system:
The asymmetric simple exclusion process

B. Derrida*

Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France

Abstract

A number of exact results have been obtained recently for the one-dimensional asymmetric simple exclusion process,
a model of particles which hop to their right at random times, on a one-dimensional lattice, provided that the target site is
empty. Using either a matrix form for the steady-state weights or the Bethe ansatz, several steady-state properties can be
calculated exactly: the current, the density profile for open boundary conditions, the diffusion constant of a tagged
particle. The matrix form of the steady state can be extended to calculate exactly the steady state of systems of two species
of particles and shock profiles. © 1998 Elsevier Science B.V. All rights reserved.

PACS: 05.40.4+7j; 05.60. +w

1. Introduction

In equilibrium statistical mechanics, one usually associates an energy function E(C) to every
possible configuration C of a system. At equilibrium, each configuration C has a weight propor-
tional to exp[ — E(C)/T]

Peq(C) = Z_le_E(C)/T 5 (1)

where T is the temperature and Z the partition function. The problem is then to calculate
equilibrium properties by averaging over all configurations weighted by Eq. (1).
The dynamics towards such an equilibrium is often described by a master equation of the form
dP(C)

= Cz M(C, C")P(C)), (2)
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where M(C, C’')dt is the probability of a transition from configuration C’ to configuration C during
the infinitesimal time interval dt. To conserve the probability, the diagonal term has to satisfy

M(C,C)= — ) M(C,C).

C'#C
(— M(C,C)P(C)dt represents the probability of escaping from configuration C during the time
interval dt). To insure that a distribution P(C) evolving according to Eq. (2) has a long time limit
independent of the initial condition, the rule of evolution M(C, C’) should not leave any subset of
configurations disconnected from the rest (i.e. there should be a path of non-zero matrix elements
connecting any pair of configurations). Moreover, the simplest way for the limit to be P.,(C) given
by Eq. (1) is to choose a matrix M(C, C’) which satisfies detailed balance, meaning that for any pair
of configurations C,,C,

M(Cbcz) Peq(CZ) = M(CZaCO Peq(cl)- (3)

In out-of-equilibrium systems, there is usually no energy function E(C) and the system is only
defined by its dynamical rules. Typically, for a system with stochastic dynamics, only a matrix M is
given, and the evolution of the weights P(C) is governed by the master equation (2). In the long-time
limit, the system usually (if all the configurations are connected) reaches a steady state Pgeady state(C)
which in general does not satisfy the detailed balance condition (3) but only the weaker condition of
stationarity:

Z M(C,a C)Psteady state(C) = Z M(C, C,)Psteady state(C,) . (4)
Cc’ Cc’

Eq. (4) expresses the fact that the probabilities of entering and of leaving the configuration C during
the time interval dt are equal. (The stationarity conditions (4) are weaker than detailed balance (3)
since for a system of Q configurations, stationarity imposes Q equations (4) whereas detailed
balance (3) usually requires many more conditions.)

A trivial example of system reaching a steady state without satisfying detailed balance (3) is the
problem of a biased random walker on a ring of N sites. During each infinitesimal time interval dt,
the walker hops with probability pdt to its right and ¢ dt to its left. There are N possible positions
i for the walker and the solution of Eq. (4) for the steady state probability is just Peady state(i) = 1/N.
Obviously, M(i + 1,1)Pgeady state(i) = p/N # q/N = M(i,i + 1)Pgeaay staei + 1) and detailed balance
(3) is not satisfied as soon as there is a bias (i.e. p # q).

In general, the steady state weights Pgeaqy state(C) have to be determined by solving the equations
(Eq. (4)) and the expressions obtained are usually complicated. Once the steady state weights are
known, the calculation of steady state properties becomes very similar to that of equilibrium
properties: one has to average physical quantities with the steady state weights.

One of the simplest non-equilibrium systems one can consider is the fully asymmetric simple
exclusion process ASEP in one dimension [ 1-4]. The model describes a driven lattice gas [ 5] in one
dimension with hard core repulsion. At large scale [ 6], the ASEP is expected [ 7-10] to be described
by a noisy Burgers equation or equivalently by the Kardar—Parisi-Zhang equation. Therefore, the
long time and large scale properties of the ASEP can be reinterpreted as asymptotic properties of
directed polymers in a random medium or of growing interfaces.
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In one dimension, the ASEP can be defined as follows. Each site of a one-dimensional lattice is
either occupied by one particle or empty. A configuration of the system can therefore be character-
ized by binary variables {t;} where 7; = 1 if site i is occupied by a particle and t; = 0 if site i is
empty. During every infinitesimal time interval dt, each particle hops with probability dt to its right
if this site is empty (and does not move otherwise).

For any initial configuration {7,(0)}, one can write the evolution of arbitrary correlation
functions by considering the possible events which occur during the time interval d¢. For example,
the evolution of the occupation t; of site i during the time interval dt is given by

7i(t) with probability 1 — 2dt,
Tt + dt) = (7;-1(t) + Ti(t) — Ti— 1(O)T2) with probability dr, (5
Tit)7i 4+ 1(2) with probability dt,

(the first line corresponds to updating neither the bond (i — 1,i) nor the bond (i,i + 1), the second
line corresponds to updating the bond (i — 1, i) and the third line corresponds to updating the bond
(i,i + 1)) and the average over the history between times 0 and t leads to

d<¢t.
iiTtJ ={tim1y — {1y — {Tim 1Ty + 0Tt 1) - ©

For a pair of neighboring sites, one can write

Tt + db)t; 1 1 (¢ + dp)

(1)t 1(0) with probability 1 — 3dt,
(Ti—1(t) + 7i(t) — Ti— 1(OTit))Ti 4 1(2) with probability dt,

" 0t 4(0) with probability dr ,
Tit)Ti + 1(t)Ti 4 (1) with probability dt,

which gives for the evolution equation of {7;7;; 1)

d<t;tis 1)

di =Ti-1Tiv 1) — {TiTiv1) — {Tio1TTiv 1) + {TiTiv1Tiv2) (7)

and a similar reasoning allows one to derive the evolution equations of higher correlations. What is
visible in Egs. (6) and (7) is that all the correlation functions are coupled in the hierarchy. To
determine in Eq. (6) the one-point functions {t;», one needs to know the two-point functions
{t7;+ 1. Trying to calculate these nearest-neighbor correlations in Eq. (7) requires the knowledge
of further correlations <t;_7;+1y or of higher-order correlations <7;_7;7;+1» and so on. This
shows that the problem is a N-body problem and so far it has not been possible to derive an
expression of the correlations at time ¢, given an arbitrary initial condition {t,(0)}.

2. The steady state for periodic conditions

For periodic boundary conditions, its turns out that the steady state of the ASEP is particularly
simple. For a system of P particles on a ring of N sites, one can show that in the steady state all
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possible configurations have equal weight [11] as

P! (N — P)!

N! ®)

Psteady state(c) =
This is because, if n(C) is the number of clusters in the configuration C, the probability of leaving
configuration C during the time interval dt is n(C)P(C)dt (by the move of the first particle of each
cluster) whereas the probability of entering the configuration C is ) P(C’) dt where the sum runs
over the configurations C’ obtained from C by moving one step backwards of the last particle of
each cluster. As the number of configurations C’ is equal to the number of clusters n(C), the
stationarity condition (4) is fulfilled when all configurations have equal weight.
This simplicity of the steady state makes the calculation of equal time correlation functions very
easy. For example

(1) =

P P(P—1) P(P — 1)(P —2)
N W ENyNoy YW S NN DN =)

The fact that the weights (8) of the configurations in the steady state are simple, Eq. (8) does not
make all the steady state properties easy to calculate. For example, unequal time correlation
functions like {t(0)t;(t)) are not known, even in the steady state. One of the simplest quantity
which contains some information about unequal time correlations is the diffusion constant A of
a tagged particle [ 12-14] on the ring. If we tag one of the particles (without in anyway changing its
dynamics) and call Y, the number of hops the particle has made up to time ¢, one expects that the
following two limits exist:

im Y2~y lim i =< _t ot

t— o0 t— o0

A 9

and these two limits define the velocity v and the diffusion constant A. The exact expressions of
v and of A are given by [15]

o=t (10)
B (2N — 3)! (P—1) (N —P)]?
4 (2P —1)! 2N —2P — 1)1[ (N — 1) } ' (11)

The expression for v is a simple consequence of the fact (8) that all configurations with P particles
have equal probability [11] in the steady state. The expression for 4, on the other hand, is harder to
obtain and was first derived in [15] using a generalization of the matrix approach discussed in
Section 3. We will see in Section 4 that it can also be recovered using the Bethe ansatz.

The expression of 4 in terms of correlation functions is usually complicated. However, for the
ASEP on a ring with periodic boundary conditions, using the fact (8) that all configurations have
equal weight, one can show that

N(N —P) 2N?
P(N—1) ' P?

A:

P3N — P)Z}. 12)

Jw df{(ﬁ(f)[l — T+ (][ — 7(0)]7i 4 1(0)) — NN 1)

0
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For large N, keeping the density p = P/N of particles fixed, Eq. (11) becomes
[ (1 —p)P*] 1
A~ f[ R (13)

The fact that 4 vanishes for N — oo indicates that in the infinite system, for fixed initial conditions,
the fluctuations in the distance travelled by a tagged particle are subdiffusive [12-14].

3. The steady state for open boundary conditions

Another case for which the weights of the configurations in the steady state can be calculated
exactly [16,17] is the ASEP with open boundary conditions [4] which is defined as follows: each
site i of a one-dimensional lattice of N sites is either occupied (t; = 1) by a particle or empty (t; = 0);
during a time interval dt¢ (with dr < 1), each particle has a probability d¢ of hopping to its right,
provided the target site is empty; moreover, during the time interval d¢, a particle may enter the
lattice at site 1 with probability odt (if this site is empty) and a particle at site N may leave the
lattice with probability §dt (if this site is occupied).

The evolution equations (Egs. (6) and (7)) remain valid in the bulk (i.e., as long as all the sites
involved in the equations belong to the system). At the boundary, they are modified to include the
boundary effects. For example Eq. (6) becomes

d<drtl> =l =)y = <{nl = 12)y, "
d<C;;V> = {an- 11 —1n)) — f<wy - -

In the steady state, all the equal time correlation functions become time independent. In
particular, the left-hand sides of Egs. (6), (7), (14) and (15) vanish.

The steady state properties of this asymmetric exclusion model with open boundary conditions
can be calculated exactly [16-18] for any N,« and f. The solution described below consists in
writing the steady state weights of the configurations as the matrix elements of products of
N matrices [17]. This type of approach, initially introduced in connection with the Bethe ansatz
[19,20], has been used to solve several problems in statistical mechanics, in particular, the problem
of directed lattice animals [21].

The main idea is to write the weight Pgeaqy state(T1 -+ Ty) Of €ach configuration in the steady state
as

N
Psteady state(rl TN) = Z_1<W|H [TiD + (1 - TE)E:||V> > (16)

i=1

where D, E are matrices, {W|, |V ) are vectors, the 1; are the occupation variables and the
normalization factor Z is given by

z=y .. Y% <W|.]=_[1 [riD+(1—ri)E]|V>=<W|(D+E)N|V>. (17)

7,=1,0 w=1,0
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In other words, in the product (16) a matrix D appears whenever a site is occupied (t; = 1) and
E whenever a site is empty (t; = 0). Since D and E do not commute in general, the weights
Pgieady state(T1 -+- Ty) are complicated functions of the configuration {7, --- ty}.

In [17] it was shown that Egs. (16) and (17) do give the weights in the steady state of the
asymmetric exclusion model when the matrices D and E and the vectors {W| and |V') satisfy the
following algebraic rules:

DE=D+E, (18)
(WIE = (W], (19)
DIV =%|V>. (20)

Proofs that this is so are rather easy and have already been published [17,22]. Let us just explain it
with a simple example. Consider a configuration of the form

00"‘0 1 1" 1 (21)
H_J H_J
p N-p

During each time interval dt, the probability of entering this configuration is

(W|EP"'DEDN " ?~ 1|V
(W|D + EMV)

dt (22)

by coming from configuration

00--01011--1. (23)
\ ) H_J
p—1 N-p-1

The probability of leaving this configuration is given by

(WIEPDY PV
(WD + BNV

(& +p) dt (24)

since one particle may enter at site 1 or the particle at site N may leave. In the steady state these two
expressions should be equal (4) to ensure that the weight of configuration (21) remains unchanged
(WIEP~IDEDN P~ 1 V> = (o + P)XWI|EPDN 2|V (25)

and this equality is easy to check using Egs. (18)+(20). A generalization of this reasoning to
arbitrary configurations is given in [22] and provides a proof that Eq. (16) gives the steady state
weight of all the configurations.
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Once the weights are known from Egs. (16) and (17), one can calculate all the equal time steady
state properties. For example, the average occupation <z;» of site i is given by

<Ti> = Z Z T; Psteady stale(rl TN) ) (26)
7,=0,1 w=0,1

which becomes in terms of the matrices D and E and the vectors {W| and |V}

(W|(D + Ey~'D(D + E)X V)

D= 27

v WD+ EPIV 27

We see that, to evaluate Eq. (27), one has to calculate the matrix elements of the form
(W|D™E"D"™E" ... |V . (28)

One way to do it [17,22] is to construct matrices and vectors which satisfy Egs. (18)—20). One
can show, however, that the calculation of all these matrix elements can be done directly from the
algebraic rules Egs. (18)—(20) without using any specific representation of the algebra. First, from
Egs. (19) and (20), it is obvious that all the matrix elements of the form {(W|EP’D V) are easy to
calculate and is given by

1
OCpﬁq
It is also easy to see, using DE = D + E, that any more complicated matrix element (28) can be

reduced to simple matrix elements of the form (29). For example, the matrix element {E*DE*D)
becomes, using Eq. (18)

(E3DE?D) = (E°D) + {E*D) + (E3D?).

(WIEPDUVS = —(WIVS. (29)

In particular, one can obtain that way the expression of the denominator {W|(D + E)"|V for all
N as

WD+ EYVy _
WV B

PON — 1= prt — a7
L NI B

M=

(30)

p

In the large N limit, one can calculate from Eq. (27) the average occupation p = {1;) for a site i far
from the boundaries and one finds the phase diagram shown in Fig. 1 with the three following

phases:
Phase I: For « > % and 8 > 3,
p=3%. (3D
Phase 1I: For « <3 and « < 3,
p=a. (32)

Phase III: For p <4 and B < «,
p=1-§. (33)
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Fig. 1. The phase diagram.

Fig. 2. The average occupation p = {t+1)2, of the central site versus o for N = 61 and N = 121 when = 0.2.

Phase I is the maximal current phase, phase II is a low density phase and phase I11 is a high density
phase. The lines « = 4, B > 3 and = 3, « > } are second-order transition lines (p is continuous)
whereas the line « = f <3 is a first-order transition line (p is discontinuous). The first-order
transition can be seen in Fig. 2 where the average occupation of the central site p = {ty+1)2) 15
plotted versus « (at f = 0.2 fixed) for two system sizes N = 61 and N = 121. As N increases, one
observes that p becomes discontinuous along the first-order transition line o = f.

There is a line in the phase diagram, the line

it p=1 (34)

along which there exists a solution of Egs. (18)—(20) such that the matrices D and E commute. If one
chooses D and E to be numbers, one must have from Egs. (19) and (20), D = 1/ and E = 1/o and
condition (18) imposes that 1/o + 1/ = 1/(«f5) which leads to Eq. (34). Along this line, there is no
correlation between the different sites and

Psteady state(Tl TN) = D |:7'-ioC + (1 - Ti)(l - OC)] . (35)

This line plays the role of a disordered line in usual statistical mechanics models [23].

One can try to calculate for the ASEP with open boundary conditions unequal time correlations.
Because the steady state is more complicated than in the case of periodic boundary conditions,
unequal time correlations are also much harder to obtain. So far only the diffusion constant of the
integrated current, which generalises expression (11) to the case of open boundary conditions, has
been calculated exactly [24]. However, contrarily to what was said in [24], the relation to unequal
time correlation functions is usually much more complicated than (12).
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4. The Bethe ansatz method

For the ASEP, the Bethe ansatz was first used [25-27] to calculate the gap which gives the
largest relaxation time in the system. In this section we will see that it gives also the diffusion
constant (11) in the case of periodic boundary conditions [28].

Because on a ring the particles cannot overtake each other, they all cover the same distance Y,,
up to fluctuations which remain bounded when t becomes large. Therefore, if one calls X the total
distance covered by the three particles during the time ¢, one has X; ~ PY, or more precisely, if one
considers the generating function of X, and of Y,, the two following limits coincide

X, PyY,
lim Lgf ’ _ lim 71°g<i ) _

t— o

A7) (36)

t— o0

and their common value A(y) can be calculated using the Bethe ansatz.

To see how the Bethe ansatz works, it is easier to consider a system of three particles (P = 3) on
a ring of N sites. One can show [28] that A(y) is the largest eigenvalue of a N(N — 1)(N — 2)/
6 x N(N — 1)(N — 2)/6 matrix. A configuration C of the system can be labelled by the positions
1 < x; < x5 < x3 < N of the three particles and if y(x, X5, x3) is the eigenvector corresponding to
the eigenvalue /, the equations satisfied by  and A are

(X1, X2, X3) = €' [P(xy — 1,x2,X3) + Y(x1, X2 — 1,X3) + Y(xq, X2, X3 — 1)] — 3h(x1, X2, X3).
(37)

These equations are valid only when the positions of the three particles are not neighbours (and
xy # 1). If x, = x; + 1, the hard core condition modifies Eq. (37) and it becomes

Ap(xy,x1 + 1,x3) = €[h(xy — 1, x1 + 1,x3) + Ylx, x1 + Lxz — 1)] — 2¢(xq,xq + 1,x3) .
(38)

Similarly, when x3 = x, + 1 one obtains

(X1, X2, X2 + 1) = €[P(xy — 1,x0,%5 + 1) + Y(x1, x5 — Lxs + 1)] — 20(x1, X2, X, + 1)
(39)

Lastly, periodic boundary conditions lead to

A1, x5, x3) = €"[Y(x2, X3, N) + Y(1,x, — 1,x3) + (1, x5, x5 — 1)] — 3(1,x,,x3) . (40)

Usually, solving the Egs. (37) and (38) for arbitrary N is very hard because the problem is
a three-body problem. The idea of the Bethe ansatz consists in trying to see whether a certain
simple form for the eigenvector y(x, x,, X3) can solve the eigenvalue problem. For P = 3 particles,
one looks for an eigenvector which is a sum of 6 terms

W(X1, X2, X3) = A12321'253°25 + Ap13 232725 + - + Az 232527 (41)

where the three parameters z4, z,, z3 and the 6 parameters 4;,3, ..., A3,; are unknown. Then one
inserts this form (41) into Egs. (37)~(40) to find the conditions that these parameters have to satisfy
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for Eq. (41) to be an eigenvector. If one inserts Eq. (41) into Eq. (37), one finds

, 1 1 1
) = ey[— +—+ —J -3 (42)
Zy  Zz Z3
and when one tries to satisfy Egs. (38) and (39) also, one finds that

el —z e’ —z

Aziz= — y 21‘1123 = T = 114231 >
€ 1 ¢ 3
el —z el —z

Az12= — = 31‘1132 = -7 114321 >
€ 1 ¢ 2
e’ —z el —z

Az = — Az = — 7 2As12
€ — 2z, c 1

whereas Eq. (40) gives
Aiaz =2V 4531 = 23V A515,
Azzy = Z]2\7A312 = Z1_NA123 >
Az1p = 213\714123 = ZENAzsl .

One can check that these linear equations for the A4;; are compatible when the z; are solutions of
the following three equations:

3
zi Me” — zy) H e’ —zj). (43)

Therefore, for each choice of the z; which satisfy Eq. (43), expression (41) is an eigenvector with
eigenvalue (42). As we want the largest eigenvalue, one has to choose the solution such that A(y) —» 0
as 7 — 0. This solution is obtained by choosing the solution of {zy,z,,z3} which converges to
{1,1,1} as y >0 (because the matrix is finite, there is no crossing of eigenvalues, so that the
eigenvalue for any y can be obtained by continuity from the solution A(0) for y = 0).

It is straightforward to extend the Bethe ansatz from 3 particles to an arbitrary number P of
particles. The eigenvector (41) becomes a sum of P! terms. The eigenvalue A(y) given by Egs. (42)
and (43) becomes for general P and N

M) = —p+e Z l (44)

llZl

where the z; satisfy
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Finding the z; solutions of Eq. (45) is not easy. It turns out that the right hand side of Eq. (45) is
independent of i, thus it can be rewritten as

zi Mz — €)' =B, (46)
where
B=(—=D"""]] (z; —¢"). 47)
j=1

Now, we need to select the P roots z; of Eq. (46) which tend to 1 as y — 0 and B — 0. To do that
we can use the Cauchy formula

§ dz (z —e")P71[Pz — N(z — ¢")]

Y, hz) =

1<j<P

2miz (z —e)f — BN h(z), (48)

where the integration contour is a small circle (for small B) around ¢” which surrounds P roots of

the polynomial (z — ¢’)’ — Bz".
Using h(z) = (¢’ — z)/z in Eq. (48), one gets

)= = PY oA

( N—=P)y\a
> (gl (Nq —Pq— 1B " (49)

The z; are solutions of Eq. (46) and depend both on B and y which so far are not related. In
principle, one could use these z, into Eq. (47) in order to find a self-consistent equation relating
B and y. A way of relating B and y, simpler than checking that Eq. (47) is satisfied, consists in
writing that z,z, --- zp = 1 or equivalently

i logz, = (50)

which expresses the fact that the eigenvector associated to the largest eigenvalue is translational
invariant (Y(xq, X5, x3) = ¥(x; + 1,x, + 1,x3 + 1)). Using Eq. (48), one can rewrite (50) as

dz (z —e")!’'" [Pz — N(z — ¢")]
2miz (z —e") — BN

logz =0 (51)

and by expanding this last expression in powers of B, one obtains

& (Ng — 1)!
=1 (P! (Nq — Pq)!

The two series (49) and (52) give 4 as a function of y by eliminating B (this elimination can of
course be done for small B but the coefficients of 1 in powers of y are much more complicated than
those appearing in Egs. (49) and (52); moreover, as the largest eigenvalue /(y) remains isolated as
y varies, the function A(y) given by the two series (Egs. (49) and (52)) for small y can be analytically
continued to the whole real axis).

Y= — (BeW~Prya (52)
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With the two expressions (49) and (52), it is easy to calculate the successive derivatives of A with
respect to y. From Eq. (36), one has

Y _1di

di re) =<y 1 d%
t _de y=0

4 =1 = ——
and im . P 4o

t— o0

v = lim

t— o0

(53)

and this leads to Eq. (9). In fact, A(y) contains also all the higher cumulants of Y, and it can be used
to calculate the large deviation function [28].

In the case of open boundary conditions [24] (Section 3) as well for a ring with a partial
asymmetry [29], the diffusion constant has been calculated by an extension of the matrix method of
Section 3. The calculation by the Bethe ansatz has not been extended yet to these cases.

5. Two species of particle on a ring

The matrix method of Section 3 can be generalized to obtain the exact steady state of systems of
more complicated systems, in particular, systems with two species of particles [30]. Consider a ring
of N sites with two species of particles represented by 1 and 2, and holes represented by 0 and in
which the hopping rates are

10->01 withratel,
20 - 02 with rate o, (54)
12521 withratef.

One can show [30] that the steady state weights may be written as
traCC(X1X2 XN) . (55)

where X; = D ifsite i is occupied by a 1 particle, X; = A ifitis occupied by a 2 particle and X; = E if
it is empty, provided that the matrices D, A and E satisfy the following algebra:

DE=D+E  pDA=A; wAE=4A. (56)

The last two of these equations are satisfied when A is given by

A=|V)XW], (57)
and
1 1
DIV = BIV>; (WIE = &<W| : (58)

So, one can use the same matrices D, E as those of Section 2 for the case of open boundary
conditions, and construct matrix 4 from the vectors {W| and |V .

The proof that Egs. (55) and (56) gives the steady state of the two species problem is very similar
to the proof for the case of open boundary conditions: one shows that the loss term and the gain
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term for the probability of each configuration are equal. For example, for a configuration of the
type

p q r s

on a ring, the loss term during dt is

(o + p)trace(EPDIAE®)dt (60)
as there are only two possibilities of leaving this configuration and the gain term is

trace(E? " 'DEDY ' A"E®%)dt (61)

as there is a single way of entering this configuration. For such configurations, it is almost evident
from Eq. (56) that the loss term and the gain term coincide.

To illustrate a situation with two species, let us consider on a ring of N sites a single particle
2 and P particles 1 [31,32]. The parameters « and f§ which appear in Eq. (54) are chosen such that

p<l—ua.

This implies in particular that o < 1 and f < 1, so that the particle 2 is slower than particles 1 and
as f < 1, it plays the role of a moving obstacle. In other words, particles 1 can be thought as cars
and the particle 2 as a single slow truck.

Using the algebraic rules (56), it is possible to calculate Y(N, P) defined by

1 N—-1
YIN.P) = s ;0 e go 1 csh+,_4+t‘vl,,><W|.E[1 [tD + (1 —ri)E]|V> (62)

and show thatfor ] <P <N —2

NI ] (N=2—p!(N—=2—q) [p(P—¢q)+q(N —1—P)]
Y(N.P) = p; q;)avﬁq PI(N—1—P)(P—q!(N—1—P—p)

; (63)

whereas Y(N,0) =o ¥~V and Y(N,N — 1) = "™~ D Then the average velocity v, of particle
2 (the truck) is given by

Y(N—1,P)— Y(N —1,P — 1)

= 64
(%) Y(N, P) ] ( )
whereas the average velocity v; of particles 1 (cars) is given by
NY(N—-1,P—-1)
U; =0, +F Y(N.P) (65)

These velocities are shown in Fig. 3 as a function of the density p = P/N of particles 1 for
two system sizes (N = 100 and N = 200). For large N, we see that as p varies, v, presents a plateau
for 1 —a < p < f where v, =« — 5. Along this plateau, the ring consists of two macroscopic
regions: a region of high density p. = 1 — « following the truck and a region of low density f
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Fig. 3. The velocities v; and v, of the particles 1 and 2 versus the density p of first class particles for two rings of 100 and
200 sites when o = 0.15 and § = 0.25. Finite size effects are small enough to make the curves for 100 and 200 hard to
distinguish.

ahead of the truck. These two regions are of length Ly = N(p — f)/(1 —a —f) and L_ =
N(1 —a — p)/(1 — o — p) so that the total density is

_ L.p,+L_p_
— N

The expression of the average velocity v, of the particles 1 can also be obtained in this coexistence
region, by

Lipsvy +L_p_v_
vy = P

withvy =1 — py ie.

(1 —o)p
vy=a—f+——.
' p
In the thermodynamic limit, three phases can be observed as the density p = P/N of particles
1 varies. The steady state velocities v; of the particles 1 and v, of the particle 2 have the following
expressions (which can be obtained from the asymptotic behavior of Eq. (63)):

For p < 3, vy =1—p; V=0 —p.
Forf<p<1—ao, vy =a—pf+ 1 —o0)p/p; v, =0 —f.
For 1 —ua < p, vy =1—p; v,=1—p—p.

It is interesting to notice that in the range f < p < 1 — «, the truck (particle 2) has a constant
velocity, whereas in that range, cars (particles 1) have an average velocity slower than 1 — p (the
velocity in absence of the truck). In this whole range there is a coexistence of two macroscopic
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regions, one of low density § and one of high density 1 — o, very similar to the coexistence between
the liquid and the gas for a fluid.

A case of the two species problem of particular interest and which, as we will see in Section 6, can
be used to study shocks is that of first and second class particles [33—-36]. This corresponds to
o= pf =1 1in Eq. (54) so that all hopping rates are 1. Both first and second class particles hop
forward when they have a hole to their right, but when a first class particle has a second class
particle to its right, the two particles interchange positions. Thus, a second class particle tends to
move backwards in an environment of a high density of first class particles and tends to move
forwards in an environment of a low density of first class particles so that it gets trapped by a shock.
The matrix method was used in [30] to calculate exactly the profile of a shock as seen from
a second class particle by starting from the steady state weights (55) of the two species problem on
a ring. We are going to see in Section 6 that the shock profile can also be calculated directly on an
infinite line.

6. Shock profile

It is possible to generalize the calculation of Sections 3 and 5 to describe shock profiles in an
infinite system.

Consider an infinite system with only one kind of particles (as in Sections 2—4). If the initial
condition is a Bernoulli measure with density p ; at the right of the origin (i.e. the 7; are independent
and {1;) = p, for i > 0) and with density p_ at the left of the origin ({z;> = p_ for i <0), the
evolution of the ASEP develops a shock. The shock has a velocity

v=1—p_—p, (66)

and this can be easily understood from the conservation of mass. The current far to the right of the
shock is p+(1 — p+) and far to the left is p_(1 — p_). Therefore, in a large region containing the
shock, the number of particles increases by [p_(1 — p_) — p+(1 — p+)]t during the time t. This
increase in the number of particles has the effect of a translation of the shock of vt so that

(p-—pt=[p-(1 —p-)—p+(1 —pi)It

which gives (66).

A more delicate question is that of the shape of a shock. Because the dynamics is stochastic, one
first needs to locate the shock. There exist several ways of locating the shock. For example, one can
choose [38] an irrational value p, which satisfies p_ < p, < p+ and define the position of the
shock as the value m, which minimizes S,

Y=tk — Py, form>0,
Sm = 0, form=0, (67)
_Zg:7m+1(rk_p*), form <0,

(as the density is p ;. to the right of the shock, the sum increases like (p + — p,)masm — + oo, thus,
for almost all configurations {z,}, there is a unique minimum m,). With this definition of the
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position of the shock (which depends on p,,), one can study the measure seen from this position. For
example, the profile {7, is just the average occupation at position m,, + n(given that the minimum
of Eq. (67) is located at m,,). Obviously, as the location of the minimum depends on the value of p,,,
the profile (z,> or the measure seen from the minimum m,, will depend on p,.. This means that two
observers looking at exactly the same physical situation, but using two different values of p,, to
locate the shock, will observe different profiles. The profile {z,) is, therefore, not an intrinsic
property of the shock.
One can, however, define some properties of shocks [38] like sums of the type

o0

Bo= ) L= p)Nturk— P+, (68)

nh= — 0o

which are independent of the definition chosen to locate the shock and can therefore be thought as
intrinsic properties of the shock. For example [38], one expects @, to be always given by

e}

¢, = Z = p)Ntnr1—p+)> =p-(1 —py)

n= — o

irrespective of the method chosen to locate the shock, in particular irrespective of the value of p,,.

A convenient way of locating the shock consists in replacing one hole in the system by a second
class particle (i.e. with dynamics given by Eq. (54) with oo = f§ = 1). This replacement does not affect
the dynamics of the particles 1 and so does not disturb the configurations of the shock. The second
class particle has a larger velocity in the region of density p_ than in the region of density p ., and
one can show that it gets trapped by the shock [30,33-35,37]. Therefore, the position of the second
class particle can be used to locate the shock.

One can try to describe the measure seen from this second class particle. It is possible to show
[22,37,38] that the steady state weights of all possible environments of the second class particle in
presence of a shock characterized by the two asymptotic densities p+ and p_ can be written in
a matrix form similar to Eq. (16).

If the occupation numbers 7; are specified for the n sites at the left of second class particle and the
n’ sites at its right, the steady state probability of the configuration is given by

Prob(t_, - 11,11 - Tp) = <W|[. ﬁ (Dt; + E(1 — ri))}A[ﬁ (Dt; + E(1 — rl—)):||V> (69)

1= —n

when the matrices 4, D, E and the vectors |V) and (W| satisfy

DE=(1—-p-)1—ps)D+p_p+E,
DA=p_p.A4; AE=(1—-p-)1—-pi)A4,
(WD + E) =<W; (D+ENV> =V,
(WIAVS =1.
For example, Prob(11 02110 1) = (W|D*EAD?ED|V ).

So as in Section 5, for each particle we put a D, for each hole an E and for the second class
particle we put the matrix A. Asin Section 3, it is easy to see that all the matrix elements of the form
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{W|D"AE"|V) can be calculated immediately from Eq. (71)

(WID"AE"|VY = [p—p+ 11 — po)(1 — p)]”

and that, by using the algebra (71), all the other matrix elements can be reduced by using the
algebra to such elements.
One can calculate that way the profile seen from the second class particle

‘o {<W|A(D L EP'DVY  forn>1,
Tn) = _
(WIDID + E)"" 14|V forn< —1.

One finds in particular

iy =p++p-—psp-; Top=psp-; o) =psp- +p-p+(l —p-)1 —py)

and so on, in agreement with [30]. One can check that the velocity v of the second class particle
given by

v=_1—-1)—1-1p=1—ps —p_

coincides with the shock velocity (66), as it should since the second class particle is trapped by the
shock.

The algebra (71) which gives the measure seen from the second class particle, can of course be
used to calculate all the intrinsic properties of the shock, in particular the sums @, defined in
Eq. (68). It is possible to show [38] from the algebra (71) that there is a relation between the profile
{1,» seen from the second class particle and the intrinsic sums (68)

Qi1 —B=(p+ —p-)p+ — <))

Of course such a relation has no reason to remain valid when the profile {t,) is seen from
a different location than the second class particle.

7. Conclusions

The matrix method described in Sections 3, 5 and 6 has been extended recently to a number of
cases: parallel dynamics [39,40], partial asymmetry [17,37,41-44], transient properties [45],
systems with two or more species of particles [46—49], reaction diffusion models [50,51], cases with
disorder [52]. However, there remains a number of simple generalizations of the asymmetric
exclusion model such as the case of a fixed blockage [53], the calculation of general unequal time
correlations [ 54], more general reaction diffusion models [ 55], open systems with several species of
particles [56], for which exact solutions are still lacking.

Trying to extend the Bethe ansatz calculation of Section 4 to other cases (several species, partial
asymmetry, open boundary conditions) would certainly lead to new interesting results and make
more transparent the link with the matrix method.
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