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ELSEVIER Physica D 107 (1997) 186-198 

PHYSICA D 

From random walks to spin glasses 

B. Derr ida 1 
Laboratoire de Physique Statistique, E.N.S. 24 rue Lhomond, F-75005 Paris, France 

Abstract 

The talk was a short review on systems which exhibit non-self-averaging effects: sums of random variables when the 
distribution has a long tail, mean field spin glasses, random map models and returns of a random walk to the origin. Non-self- 
averaging effects are identical in the case of sums of random variables and in the spin glass problem as predicted by the replica 
approach. Also we will see that for the random map models or for the problem of the returns of a random walk to the origin, the 
non-self-averaging effects coincide with the results of the replica approach when the number n of replica n = - ) /2 or n = - 1. 

Keywords: Spin glass; Broken symmetry of replica; Random walks; Non-self-averaging effects; Levy distributions 

1. I n t r o d u c t i o n  

An important outcome [ 1,2] of  the replica theory of  spin glasses has been the prediction of  non-self-averaging 

effects: in the low temperature phase, phase space can be thought of  as if it was decomposed into infinitely many 

pure states or, the weights of  which remain sample dependent even in the thermodynamic limit (i.e. when the system 

size becomes infinite). The fluctuations of  these weights W~ can be described by considering their moments Yk 

defined by 

rk = ) - ~ ( w J ,  (1) 
o/ 

where in (1) the sum runs over all the pure states c~. The fact that these moments Yk have non-trivial probabili ty 

distributions, even in the thermodynamic limit appears as a signature of  the presence of  non-self-averaging effects 

in the spin glass phase. 

The goal of  this lecture is to show that similar non-self-averaging effects are present in much simpler systems 

such as sums of identically distributed random variables or random map models. We will see in particular that the 

statistical properties of  the moments Yk are identical in the case of  sums of  random variables and of  mean field spin 

glasses. We will also see that the statistical properties of  the moments Yk for several other systems (random map 

models, returns of  a random walk to its starting point) coincide with what one would obtain from the Parisi scheme 

] E-mail: bernard.derrida@physique.ens.fr. 

0167-2789/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved 
PH S0167-2789(97)00086-9 



B. Derrida/Physica D 107 (1997) 186-198 187 

for breaking the symmetry between the replica for some unusual limits of  the number n of  replica (n = - 1/2 or 

n = - 1 ) .  
The presentation of  this lecture is as follows: the case of  sums of positive random variables is discussed in 

Section 2. The replica approach for mean field spin glasses is presented in Section 3 and the calculation of  the Yk 

within the replica scheme is given in Section 4. Section 5 shows how the Yk can be computed for random map 

models whereas the problem of the returns of a random walk to its starting point is discussed in Section 6. After the 

conclusion in Section 7, some recent developments are discussed in Section 8. 

2. Sums of  random variables 

Let us consider the sum SN of N independent random variables xl . . . . .  XN 

N 

SN = )_..£ x~. (2) 
ct=l 

We assume that these variables are all positive and that they are distributed according to a probability distribution 

p(x) which decays slowly as x --~ oc 

A 
p(x) -- (3) 

xl+/z 

with 0 < # < 1. For large N, it is well known that SN/N 1/lz has a stable distribution called a Levy distribution 

(see [3] and references therein). One can define the weight W~ of the term xa in the sum as 

Xot 
W~ -- (4) 

SN" 

Obviously one has 

Yl = Z W,~ = 1. (5) 

For large N, one can show that the moments Yk defined by (1) (for k > /z) have a probability distribution which 

depends only on/z  and k (and becomes independent of  N or A). For example, one can calculate (Yk) in the large N 

limit by using the following identity 

k _ ~ dte-t_~,x~ xa t k -  1 ~-~ k (6) k j V(k)  Z.."x'~" 
", = Z o ot  Ol 

(This is a direct consequence of  the definition of  the F function: F(z) = f o  tz-le-t dt.) When one averages over 

the x~, one gets 

o c  

N f t k-I dt(e-tX) N-l(xke-tx). (7) (Y~)- r(k) 
0 

For large N, the integral is dominated by the small t behavior. One can easily see that for small t 

O0 

(e -tx) = 1 - - / ( 1  -- e-tX)p(x) dx "~ exp[-t~A(-F(-Iz))],  (8) 

0 
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whereas for k > # ,  one has 

(xke -tx) = f xke-tXp(x) dx ~_ A t~-kF(k  - #). 

0 

This gives for large N 

(9) 

091 = ( - -  log z l ) - l / u ,  (15) 

¢.0i+1 = O) i ( l  - -  (.0~ log Zi+l ) - - 1 / # .  (16) 

Then the Yk computed by 

Yk Z O)i = (17) 
i = l  - ('On 

has the same distribution as the Yk defined by (1) and (4). In fact, one can show that w l / ~ n  Wn has the same 
distribution as Wmax, o 9 2 / ~ n  t-On has the same distribution as the second largest weight and so on. So a good 
approximation to the Yk is to keep only the first few terms in the sums over i and n which appear in (17). 

o0 

N A F ( k  - It) f 
(Yk) ~- F(k) ,I t ~-1 d t e x p [ - ( N  - 1)tUA(-F(-lZ))] ,  (10) 

0 

which for N ---> oo leads to 

F(k  - tz) (11) 
(Yk)Levy = F(k)F(1 - ~t)" 

Exact expressions of  all the correlation functions between the Yk can be obtained by similar (but of  course longer) 

calculations. For example, for k > / z  and U > / z ,  one can show that 

F(k + k' - lZ) F(k - #)F(k '  - lz) 
(YkYk')Levy = F(1 -- #)F(k  + k') + tx [F(1 - / z ) ] 2 F ( k  + k')" (12) 

Remark 1. The fact that (y2) ¢ (yk)2 indicates that the distribution of  Yk remains broad even in the large N limit. 

Therefore, the moments Yk and consequently the weights Wa are non-self-averaging quantities. 

Remark 2. A consequence of the fact that (Yk) has a non-zero limit as N ---> oo is that the largest term in the sum 

SN contributes as a non-zero fraction to the sum SN. Indeed, if one defines Wmax by 

Wmax = max Wa, (1 3) 
c¢ 

one has 

(Yk )=(~a  w k ) <  {(Wmax)k-1) . ( 1 4 )  

So the fact (1 1) that (Yk) > 0 implies that Wmax > 0 with at least a non-zero probability. 

Remark 3. There exists an easy way of  generating by a Monte Carlo procedure the probability distributions of  the 

Yk. To do so one can generate an infinite sequence of  independent random numbers z l, z2 . . . . .  uniformly distributed 

between 0 and 1 and one can contruct a sequence wj, 09 2 . . . . .  by 
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3. Mean field spin glasses 

We are going to see now that quantities similar to the Yk can be introduced also in the spin glass problem. To do 
that one needs to recall briefly the Parisi replica approach [ 1,2,4] to the Sherrington-Kirkpatrick model [5,6]. 

The Sherrington-Kirkpatrick model is a model of N Ising spins Si = + 1 which interact with random long-range 
interactions. The system has 2 ° possible spin configurations and the energy E,~ of a configuration a ---- {S~} is 

given by 

Ec~=- Z JijS~Sg. (18) 
l<i<j<_N 

In the Sherrington-Kirkpatrick model, for each pair ij of spins, there is a random interaction Jij chosen according 

t o  

P (Ji j)  = exp . ( 1 9 )  

A given sample corresponds to a random choice of the interactions IJij } and the partition function of each sample 

is given by 

2 u 

Z({J/j}) --- Z exp ( - - ~ ) ,  (20) 

where T is the temperature. As usual in the theory of disordered systems, the meaningful quantity to consider is 
(log Z), the average of log Z over all the possible realizations of the interactions Jij. 

A possible approach to try to calculate (log Z) is to use the replica method. So far, the replica approach is still 
mathematically poorly understood, but it is very much used in the theory of disordered systems, mostly because in 
many cases, it is the only available approach. There are, in fact, only a few problems like the random energy models 
or the mean field theory of directed polymers in a random medium for which there exist alternative approaches to 
compute (log Z) and for which the replica approach, with a symmetry broken as predicted by the Parisi approach, 
has been shown to give the right answer [7-9]. 

The replica method to calculate (log Z) consists of two steps. First, one computes the integer moments (Z n) of 

the partition function Z for all integer n. Then, one tries to use the following limiting procedure: 

log(Z n) 
(log Z) = lim - -  (21) 

n--+O n 

In general, it is the second step which is mathematically hard to justify, mostly because the knowledge of (Z n) for 
integer n is usually not sufficient to determine the value of that quantity for non-integer n. 

Let us see how the first step can be done. The calculation of the first moment of Z is trivial and one finds 

N 
(Z) = 2 N exp 4T 2 . (22) 

The calculation of the other integer moments of Z requires a little more work. For example the second moment 
(Z 2) is given by 

2 u 2 u 

(Z2) = Z exp T " 
u = l / ~ = 1  " 
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It can be seen easily from expressions (18) and (19) that (exp -(E~ + E~)/T) depends only on the overlap qat~ 
between the two configurations u and fl 

N 
1 

qu~ = ~ Z S~ S~. (24) 
i=1 

For large N it can be written as 

exp r ~ exp[Nf(q~)l (25) 

with the function f(q) = (1 + qZ)/T2. Thus to calculate the large N behavior of  (Z2), it is sufficient to know the 

number of  pairs of  configurations u and fl having a given overlap q ~  and to sum over q ~ .  The number of pairs 

of configurations having a given overlap qa~ is an entropic term which behaves like exp[Ns(q~)] for large N. 

Therefore, the large N behavior of  (Z 2) can be determined by a saddle point method 

log(Z 2) 
-- max{f  (qua) + s(qu3)}. (26) 

N q,~,e 

This reasoning can be easily extended to calculate all higher integer moments and for each n, the large N behavior 

of  (Z n ) can be obtained as a saddle point in a space of  the n (n - 1)/2 variables q,~/~: 

log(Z n) 
- -  -- max g({qu~}, n), (27) 

N {qa# } 

where the function g({qu~}, n) contains both the energy and the entropy terms. 

4. The Parisi broken symmetry of replica 

Even when n is an integer, finding the maximum of a complicated function of n (n - 1)/2 parameters is a difficult 

task. It turns out that for integer n, the maximum is symmetric [10,11], i.e. all the qa~ are equal to some value q. 

Then the problem of finding the maximum is greatly simplified as one needs to find the maximum of a function of  

a single variable q. This is what Sherrington and Kirpatrick [5,6] originally did to calculate the moments (zn). The 

n dependence was simple enough that they could obtain an expression of (log Z) via the formula (21). However, 

they noticed from the very beginning that their expression could not be correct as it predicted a negative entropy at 

sufficiently low temperature. 

Several works followed the one of  Sherrington-Kirkpatrick to test the assumption that the saddle point was 

symmetric [12,13]. In 1979, Parisi proposed an ansatz for which this symmetry was broken [2,4]. His idea was to 

assume that the qat~ depends on the pair ufl in such a way that the calculation can be done for any value of  n, the 

number of  replica. In its simplest version, one groups the n replica into n/# blocks of /z  replica each. One takes 

two possible values ql and q2 for the overlap and one looks for a saddle point such that q,~ = ql whenever c~ 

and fl belong to the same group and qu~ = q2 when ot and/3 belong to different groups. For this saddle point 

the function g({q,~}, n) becomes a function of  ql, q2 and # and one tries to find the extremum with respect to 
these three parameters ql, q2 and/z. (In fact what Parisi proposed was a little more complicated as he considered 
situations where the blocks were themselves decomposed into blocks and so on.) 

Of course, this kind of  saddle point is in principle acceptable only if n is an integer and if it is divisible by/z .  
However, Parisi proposed to forget the fact that n was an integer, and he suggested that all the calculations be done as 
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if n, n / l z  and/z were integers and at the end of the calculation the limit n --+ 0 be taken, by replacing the constraint 

that 1 < /z < n, by 0 < /z < 1. I shall not try to explain why this procedure is believed to lead to the correct 

expression of (log Z) [ 1,2,4,14]. Here, I just want to show that within this replica approach the calculation of the 

moments of  the Yk becomes extremely easy. 
Consider a system of n replica (or n objects) grouped into n//z blocks of/z  replica each. If  one chooses k different 

replica among these n replica, the probability that the k replica are in the same group is given by 

n ( / 2 -  1 ) ( / 2 -  2 ) - . .  ( # -  k + 1) (28) 
(Yk)replica = n ( n  - 1)(n - 2 ) - . .  (n - k + 1) 

For non-integer n this can be written as 

F ( k  - # )  F(1 - n) (29) 
(Yk)replica = F(1 - Iz) F ( k  - n) 

with the convention that when n is an integer, one takes the limit of this expression as n tends to its integer value. 

Now let us assume that for a given choice of  the interactions Ji j ,  phase space is decomposed into regions of 

weights Wo. If  one considers k realizations of  the same sample (i.e. k copies of  the system with the same set of  
interactions, or k ' typical '  spin configurations of  the same sample), the probability that the k of them are in the same 

region of phase space is 

Yk = )--~(w~) k. (30) 
ot 

When one tries to compute this expression within the replica approach [ 1,2], each realization appears as a different 
replica and on averaging over the disorder, one ends up with expression (29) in the limit n --~ 0. Therefore, for the 

mean field spin glass problem, the Parisi approach predicts 

F ( k  - # )  (31) (Yk)spinglass = lim (Yk)replica = 
. -~o  r ( l  - t z ) r ( k )  

and the value of /z  which enters in this expression is a complicated function of the temperature T as it is the optimal 

value of # when one tries to find the extremum of the function g({q~},  n). 

One can repeat this calculation for all the correlation functions between the Yk: for example, if we have n replica 

grouped into n / #  blocks of/~ replica each, the probability that k of them are together in a block and k' of them are 

also together in a block is given by 

n ( # -  l ) ( / z -  2) . . .  ( / z -  k -  U + 1) 
n(n  - l )(n - 2 ) . . .  (n - k -  k' + 1) 

n ( u -  1 ) ( / z -  2 ) . . .  ( # -  k + 1)(n - / z ) ( # -  1 ) ( / z -  2 ) . . .  ( / z -  k' + 1) 
+ (32) 

n ( n  - 1)(n - 2 ) . . .  (n - k -  k t + 1) 

The first term represents situations where the k + k' replica are all in the same block whereas the second term 

represents the situations where the first k replica are in one block and the other k' replica are in a different block. 

As before, one can rewrite (32) as 

= F ( k  + U - / z ) F ( 1  - n)  - I z ) F ( U  - / z ) F ( 1  - n) 
(YkYk')replica r ( l  - l z ) F ( k  + U - n)  + (Iz - n) F[(k(1 - U ) ] 2 F ( k  + k'  - n)  (33) 

Then the correlation function (Yk Yk') for the spin glass problem is given by 

r ( k  + k '  - iz) r ( k  - i z ) r ( U  - Ix) 
(YkYk')spinglass = li~mo(YkYk')replica = r ( l  - t ~ ) r ( k  + kO + # [F(1 - u)12r(k + k')  (34) 



192 B. Derrida/Physica D 107 (1997) 186-198 

Remark 4. We see from (31), (34) that the results are identical to expressions (11), (12) of Section 2, obtained for 

sums of random variables. Therefore, the statistical properties of the weights of the pure states of spin glasses as 

given by the replica theory are the same as what one obtains in the case of sums of random variables with long tails. 

Remark 5. The simplest way of understanding the relation between spin glasses and sums of random variables is 

probably to consider the random energy model [7,15,16], for which the calculation of the moments Yk can be done 

either by the replica method or by an approach very similar to the one presented in Section 2. This was first pointed 

out to me by Jean-Philippe Bouchaud who noticed that the non-integer moments of the partition function of the 

random energy model [ 17] have identical expressions as the moments of random variables distributed according to 

Levy distributions. 

Remark 6. We will see in Sections 5 and 6 that expressions (29) and (33) give also the moments of the Yk when 

one chooses for n values other than n = 0. 

5. Random map models 

We are now going to see that the moments and the correlations of the Yk have very similar expressions in several 
other examples. We will discuss in this section the case of random map models, which appear as very simplified 

mathematical problems related to the theory of random networks of automata such as the Kauffman model [ 18,19] 
and in Section 6 the problem of the returns to the origin of a random walk. 

I shall consider here two cases: first, the random map model [20] without any constraint, and then the area 

preserving random map model. 

5.1. The random map model 

One considers a system which consists of M possible configurations. The dynamics is determined by a random 

map F in this phase space: if the system is in configuration Ct at time t, then its configuration Ct+I at time t + 1 is 

given by 

Ct+l = F(Ct). (35) 

By definition of the model the function F is totally random, i.e. for each C, F(C) is chosen at random among the 

M configurations with equal probability. As the map is deterministic and phase space is finite, all the trajectories 
converge to periodic orbits (or fixed points). Thus phase space can be decomposed into the basins of attraction of 

the different periodic orbits. 
One can define the weight W~ of a given orbit ot as the fraction of phase space belonging to its basin. This means 

that 
S2~ 

W,~ = -~- ,  (36) 

where I2a is the number of points in the basin of the attractor t~. Once the weights W,~ are defined, one can consider 
their moments Yk with the usual relation (1) 

Yk = ~_~(Wc~) k. (37) 
Ol 

From this expression, it is easy to see that Yk is the probability that k randomly chosen configurations belong to the 
same basin. If we choose k random initial configurations C 1, C 2 . . . . .  C k converging to the same attractor and if we 
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call m ] the number of  different configurations in the trajectory of C l, m2, the number of different configurations 

in the union of the trajectories of  C 1 and C 2 . . . . .  mx, the number of  different configurations in the union of the 
trajectories of  C 1 . . . . .  C x, one has [20] 

(Yk) . . . .  1 -- mlmlm2m3 ' ' ' m k - I  
mk=lmk_l=l 1 [ i=0 Mk (38) 

For large M, the sums become integrals and if one makes the change of variables mz -- x/-Mxz, one gets 

OG X k x 2 

<r >=fax fdx _, fd lx x x  ( 3 9 )  

0 0 0 

One can perform these integrals and one gets 

r ( k ) r ( 3 / 2 )  
(Yk)random map -- /'-'(k + 1/2) ' (40) 

The calculation of the correlations between the Yk can be done in a very similar way. For example, one can use the 

fact that 

(YkYk') = E ( w ~ ) k + k '  + ~-~(W~)k(Wfl) k'. (41) 

The first term corresponds to k -4- k' configurations belonging to the same basin and the second term to the first k 

configurations belonging to one basin and the other k' configurations belonging to a different basin. The calculation 
follows the same steps as before and one obtains 

r ( k  + k ' ) r  (3/2) l r ( k ) r ( k ' ) r  (3/2) 
(YkYk')random map = F (k -I'- k '  -t- 1/2)  q- 2 /'-' (k -t- k '  4- 1/2)  (42) 

Remark 7. We see from (40) and (42) that in general ( y2 ) ~ (Yk) 2. Thus for the random map model too, the moments 

Yk and the weights Wa are non-self-averaging quantities (for example (Y2) = 2/3 whereas (y2) = 52/105 7e (y2)2). 

Remark 8. It is interesting to notice as was first pointed out to me by Giorgio Parisi that expressions (40) and (42) 

are exactly the same as those obtained in (29) and (33) in the l imit/z = 0 and n = - 1 / 2 .  So the non-self-averaging 

effects are exactly the same for the random map model as what one gets from the replica calculation in the case of  

- 1/2 replica blocked into infinitely many blocks of  0 replica each. The reason for this identity between the results 
obtained in the random map model and the replica approach for this special choice o f n  and/x is so far a coincidence. 

Of course, it would be interesting to try to develop a replica approach to random map models in order to see whether 
these values of  n and/z  come out in a natural way. 

5.2. The area preserving random map model 

A simple extension of the previous model is the area preserving random map model. In that case, the map F is 
random as before except that it is a one-to-one map. So F is a random permutation of the M points of  phase space. 
In that case, obviously the basin of  attraction of an attractor and the attractor itself coincide. So each point of  phase 
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space belongs to an attractor and the period of the attractor c~ is equal to the number of points I2~ of this attractor. 

Given a point chosen at random in phase space, the probability P(I2) that it belongs to an attractor of I-2 points is 

1 ( m -  1)! 
P(I2) = (M - S2)!(S2 - 1)!. (43) 

M! (M - ~)!(12 - 1)! 

Each term in this product can be understood easily: the first term corresponds to the total number of functions F; the 

second to choosing the I2 - 1 other points of the attractor among the M - 1 other points of phase space; the third 

term is the number of permutations of the remaining M - S2 points of phase space; the fourth term corresponds to 

the number of ways that the 12 - 1 other points of the attractor are visited by the dynamics. This expression is easy 
to simplify to give 

1 
P(I-2) = - - .  (44) 

M 

Similarly, it is easy to show that the probability Q(I2, I2') that two different points belong to two different attractors 
of periods I2 and 12' is given by 

1 
a ( I2 ,  I2') - (45) 

M ( M -  1) 

Then one can deduce from that the expressions of (Yk) and (YkYk') by 

M 

(Yk) = ~ P(I2) I2k-I (46) 
I2=1 

and 

M M-1 M-I2  

(rkYk') = Z P(~)J '2k+k'-I  + Z Z Q(I2 '  I2')I '2k-lI '2 'k '-l" 
I2=1 I2=1 I2'=1 

For large M, this leads to the following expressions: 

1 
(Yk)area preserving - -  k '  

1 r (k ) r (k ' )  
<Yk Yk' )area 

k + k--------' + F ( k  + k' + 1)" 
preserving 

(47) 

(48) 

(49) 

Remark 9. We see from (48) and (49) that (y2) # (yk)2, and thus here again, the moments Yk and the weights Wu 
are non-self-averaging quantities (for example (Y2) = 1/2 whereas (y2) = 7/24 # (y2)2). 

Remark 10. In this case too, expressions (48) and (49) are identical to what the replica calculation (29) and (33) 
would give for n = - 1 and/z = 0. 

6. O n  the returns to the origin of  a r a n d o m  walk  

Let us finally discuss a very simple problem related to the statistics of the returns of a one-dimensional random 
walk to the origin. Consider a random walk of 2T steps starting and ending at the origin. Each step is either +1 or 
- 1 with equal probability. There are of course 

(2T)! 
ZT -- T ! T! (50) 
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such walks. For each walk, one can decompose the interval 2T into subintervals 2tl, 2t2, . . -  2ti ..., where 2ti is the 

time interval separating the (i - 1)th and the ith visits of  the origin by the walk. Of  course, one has 

T = t l  + t 2 . . . + t i  " ."  (51) 

So the interval of  time 2T is partitioned into subintervals delimited by the successive returns to the origin. For each 

walk, one can define the weight Wi of the ith subinterval as 

ti 
Wi = --  (52) 

T 

and the Yk as 

Yk = Z ( W i )  k. (53) 

Thus if one chooses k times at random between 0 and 2T, (Yk) is the probability that these k times fall in the same 

subinterval (this is because, the probability for one time to fall in the ith subinterval is Wi, and for k times to fall in 

the ith subintervals this probability is W/k). In the large T limit, one can obtain the following exact expressions: 

1 
(Yk)random walk - -  2k - l '  (54) 

1 F ( k -  l / 2 ) F ( k ' -  1/2) 
(YkYk')random walk - -  2(k + k t) - 1 + 2r(l/2)r(k + k '  + 1/2) '  (55) 

where ( ) denotes the average over the ZT walks. The derivation of (54) and (55) is not difficult. One needs the 

expression of the number QT of walks starting at the origin and returning to the origin for the first time after 2T 

steps. 

(2T - 2)! 
QT = 2 T I ( T _  1)!" (56) 

One can show that 

l T l t , k  

(Yk) = ~ r  ,=o ~=o 
(57) 

The generic term in this sum represents a subinterval of  length 2t starting at time 2r  and it gives to the probability 
over all walks that this subinterval contibutes to (53). Using the asymptotic forms of ZT and QT for large T 

22T 22T 
Z T " ~ - - ~  and QT--~ 2 ~ '  (58) 

one obtains for large T expression (54). 
Similarly, (Yk Yk') is the probability that if one chooses k + k' times at random, the first k of  them fall in the same 

subinterval and the last k' of  them fall in another (possibly the same) subinterval. If  one distiguishes the two cases, 

i.e. the case where the two subintervals are identical and the case where they are different, one finds 

T T - t l  T - t l - t 2  T - t l - t 2 - r l  1 

= t2=0 r l=0 l"2=0 

k U U k 
t l t  2 + t  1 t 2 

Zrl  Qtl Zr2 Qtz Zr-q-t2-n-r2 ~.~-~7 , (59) 

which again leads to (55) in the large T limit. 
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Remark  11. Expressions (54) and (55) correspond again to a special case of (29) and (33) for n = - 1 / 2  and 
/z = 1/2. Therefore this problem corresponds to broken replica symmetry for which - 1 / 2  replica are grouped into 
- 1  block of 1/2 replica each. 

7. Conclusion 

This lecture was an attempt to show that very similar non-self-averaging effects occur in a variety of systems. 

We saw in particular that the prediction of the Parisi replica theory for spin glasses (31), (34) gives exactly the 

same answer as a much simpler problem, that of sums of random variables (11 ), (l 2). Moreover, if one allows the 

number n of replica to be non-zero, the replica calculation (29), (33) gives the same expressions as for the random 

map models (40), (42) for n = - 1 / 2 ,  # = 0 and (48), (49) for n = - 1 , / z  = 0 or as the random walk problem 

(54), (55) for n = - 1 ,  # = 1/2. Of course it would be very interesting to find other examples of systems with 
non-self-averaging effects which would correspond to the expressions obtained by the replica method (29), (33) for 

other values of n and ~. This would mean that the spin glass problem, at least in its mean field version, belongs 

to a larger class of problems [21], and it would then be very interesting to develop a more general theory than the 
presently existing replica approach to treat these more general problems. 

The expressions obtained by the replica approach for a number of replica n ~ 0 has previously been considered 
in the literature. First, non-integer values of n were considered to try to better understand the n ~ 0 limit in the 

spin glass problem [22,17]. More recently, non-zero values of n became important both as a mathematical tool to 

calculate the exact free energy of some disordered models [23], and also for physical reasons to describe situations 

where the quenched variables (the interactions { Jij } in the spin glass model) are no longer quenched but they are 
allowed to evolve according to slow dynamics [24]. 

As a final remark, I should say that the examples presented in this lecture could leave the impression that all 

problems with non-self-averaging effects are always special cases of (29) and (33) for some value of n and/z. This 

in fact is not true as one can easily build examples [25] for which the expressions of the moments of the Yk do not 
correspond to any value of n and #. 

8. Further developments 

One can repeat the calculation of Section 2 on the sums of independent random variables in the case where the 
number N of terms in the sum (2) is arbitrary but with the sum SN fixed at a certain (very large) value. One then 

finds [26] by an extension of the calculation of Section 2 that this case corresponds to the replica calculation (29), 
(33) w i t h n = - # a n d - 1  < n  < 0 .  

One can also show [26] that the general case (arbitrary n and #) of the statistics predicted by the replica calculation 

can be achieved by the following construction of the weights Wa: define a sequence of random numbers z l, z2, z3 . . . .  
where each zk is distributed according to a distribution Pk (z) 

F ( ( k  - 1)/z - n +__~z_tZ(1 _ z)k~z_n_ 1 
pk z) = n , ~6o) 

and then construct the weights W,~ by 

WI = z l  W 2 = z 2 ( 1 - W 1 )  W 3 = z 3 ( 1 - W I - W 2 )  etc. (61) 

The Yk calculated from these random weights as in (1) have, for all choices of n and/z, the statistical properties 
predicted by the replica approach (29), (33). 
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Closely related questions as the joint distribution of the Wg have been studied in the mathematical literature 

[27-31 ]. There also, there is a two parameter family of distributions (the Poisson Dirichlet distributions) which are, 

up to a change of notations, identical to the distributions discussed here (and indexed here ith the two parameters n 

and/z). Also, as noted by Higgs [32], the statistical properties of the Yk play an important role in genetics. 

We have seen in Section 4 that one step of broken replica symmetry gives the same statistics for the weights W~ 

and for the Yk as sums of independent random numbers. If one considers the broken replica symmetry with more 

than one step [33], as for example in the GREM [8,34], the weights W~ can be regrouped into clusters and clusters 

of clusters, with more general correlations which can be calculated [33,34]. 

This text is an updated and extended version of [35]. 
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