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Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading in-
dications for liver transplantation in Western societies. Given the wide use of both prescribed and over
the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel
and effective therapies. Although significant progress has been made in understanding the molecular
mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI
is largely due to both discordance between human and animal DILI in preclinical drug development and a
lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is
exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its
extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro
models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this
expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we
aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more
realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present
novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and
in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve
prediction of clinical outcomes of DILI.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Drug-induced liver injury (DILI) is an infrequent,
multifaceted and potentially life-threatening
adverse reaction to medications and other chemi-
cal compounds that represents one of the most
challenging liver disorders with regards to its
prediction, diagnosis and management.1–4 Idio-
syncratic DILI (iDILI) leads to hospitalisation of 23%
of affected individuals,5 accounting for 11% of acute
liver failure (ALF) cases in advanced economies,
with acetaminophen (paracetamol, APAP) over-
dose, the prototypical example of intrinsic, pre-
dictable DILI, representing 50% of all attributable
ALF cases.6 In addition, 8% of acute DILI cases
remain unresolved.7 As a consequence, DILI jeop-
ardises patient safety and represents a major
concern for regulatory authorities; it is both a
cause of drug attrition during clinical development
and a leading reason for drug withdrawal from the
market. The treatment of iDILI is not evidence-
Journal o
based8 and often relies on ad hoc treatment with
steroids or ursodeoxycholic acid, particularly in
more severe cases.9 N-acetylcysteine (NAC) has
proven effective in very specific instances, such as
APAP intoxication,. Clinical aspects of DILI have
been covered in a recent review.1

DILI pathogenesis is considered a multifactorial
process involving several factors other than the
generation of toxic intermediate(s) from parental
drug metabolism, such as environmental, physio-
logical and genetic factors as well as altered
immunological responses. Thus, there is a need for
the identification of mechanisms that contribute to
DILI in order to develop protective/preventive
therapeutic interventions.6,10 While some of these
mechanisms are dose related, others derive from
individual susceptibility to the toxic effects of a
certain drug, leading to the classification of DILI as
either intrinsic, which is considered predictable,
f Hepatology 2021 vol. 75 j 935–959
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reproducible and dose-dependent or idiosyncratic,
which is unpredictable and not necessarily dose-
dependent. DILI covers a broad clinical and histo-
logical phenotypic spectrum, including hepatocel-
lular damage, cholestasis, and acute steatosis,
which are often detected late in phase III clinical
trials or post-marketing.

APAP hepatotoxicity is the archetypal model of
DILI and probably the most relevant to human DILI,
with billions of analgesic doses consumed annu-
ally. APAP hepatotoxicity in humans can be
modelled in rodents after administration of an
acute or cumulative overdose, often after fasting.
However, despite intensive efforts, the mecha-
nisms involved in the hepatotoxicity of APAP are
not fully understood, highlighting the imposed
limitations of interspecies variability and differ-
ences in metabolism between humans and rodents,
whilst existing in vitro hepatic cell systems based
on human cell lines or rodent hepatocytes are sub-
optimal. These factors have severely hampered
pre-clinical efforts to accurately predict DILI and to
unravel hidden mechanisms that occur in vivo.

In this review, we summarise the pathophysi-
ology of DILI exemplified by the APAP paradigm,
describing existing pre-clinical models for DILI. In
addition, we assess emerging models, including the
development of multi-parametric approaches and
humanised models for better DILI prediction. We
also highlight how advanced technological inte-
gration and innovation could enhance phenotypic
profiling, leading to a better understanding of DILI.
Future avenues are also explored including novel
approaches in delineating mechanistic DILI and the
utility of disruptive technologies, such as liver on-
chip, to advance DILI prediction.

DILI pathophysiology
The APAP paradigm
APAP-induced liver damage is characterised by
haemorrhagic centrilobular necrosis and high
plasma transaminase levels in both humans and
animals.2,10 Although APAP is normally metab-
olised to its glucuronidated and sulphated non-
toxic metabolites in the liver, APAP overdose sat-
urates these pathways and excess APAP is metab-
olised mainly by cytochrome P450 (CYP)2E1 but
also by CYPA2, CYP2A6, CYP2D6 and CYP3A4 into
the highly reactive metabolite N-acetyl-p-benzo-
quinoneimine (NAPQI). This highly toxic byproduct
is rapidly conjugated with glutathione (GSH)
resulting in non-toxic mercapturic acid and
cysteine conjugates that are excreted in the urine.
In APAP overdose or in conditions of GSH limitation
(e.g. fasting), free unconjugated NAPQI reacts with
sulfhydryl groups on cysteine and lysine residues,
generating adducts with proteins (APAP-protein
adducts) in hepatocytes, and particularly in mito-
chondria, leading to mitochondrial dysfunction and
cell death.11–13 Despite being the most compre-
hensively studied and understood hepatotoxic
Journal of Hepatology 2021 vol. 75 j 9
drug, our understanding of the underlying mech-
anisms involved in APAP hepatotoxicity are still
incomplete. Indeed, APAP can also elicit an idio-
syncratic response in humans2 and the use of APAP
even at therapeutic doses can have deleterious ef-
fects.14,15 Although models of iDILI are lacking, it is
postulated that reactive drug metabolites may
elicit an immune response in susceptible in-
dividuals.16 The complex and multifactorial nature
of APAP hepatotoxicity extends to DILI itself.
Clearly, developing more realistic human models to
foster a better understanding of the mechanistic
basis of DILI is imperative. In turn, improved
models that allow for more accurate prediction of
pre-clinical DILI may help uncover effective thera-
peutic interventions.

Other DILI-causing drugs
Besides APAP, other classes of drug such as non-
steroidal anti-inflammatory drugs (NSAIDs) and
statins are important causes of DILI, although with
a relatively low overall incidence rate. Some of the
molecular and cellular mechanisms underlying
NSAID-DILI have been identified: (i) mitochondrial
injury, (ii) induction of cholestasis, (iii) protein
adduct formation by reactive drug metabolites,
and (iv) possible direct consequences of cyclo-
oxygenase 2 (COX) inhibition.17 In isolated rat
liver mitochondria, diclofenac decreased hepatic
ATP content and impaired ATP synthesis causing
mitochondrial permeability transition (MPT),
leading to generation of reactive oxygen species
(ROS), mitochondrial swelling and oxidation of
NADPH and protein thiols.18 Besides diclofenac,
indomethacin, celecoxib and ibuprofen NSAIDs
can induce endoplasmic reticulum (ER) stress
response-related proteins, particularly CHOP,
leading to apoptosis.19

Statins are generally well tolerated and adverse
effects are relatively rare.20 Mitochondrial
dysfunction due to a significant increase in ROS,
causing lipid peroxidation and the inhibition of the
respiratory chain (complex I and III) which trigger
apoptosis, may explain the mechanisms of statin-
induced hepatotoxicity.21

Emerging mechanisms and signalling
cascades governing APAP hepatotoxicity
APAP overdose has major clinical relevance as the
primary cause of ALF in advanced economies and a
major reason for liver transplantation, and it is
regarded as a model hepatotoxin. In the following
section we briefly summarise the role of major
players that contribute to APAP-induced liver
damage. A key question in the pathophysiology of
DILI is how a toxin or its (reactive) intermediate
metabolites trigger cell damage, which has been
intensively investigated in the case of APAP. In this
regard, cell-specific (i.e. hepatocytes, immune cells)
signalling cascades governing APAP hepatotoxicity
have attracted much attention since activation/
35–959
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Key point

Gaps in our understanding
of DILI and the complexity
of underlying mechanisms
coupled with interspecies
differences have hampered
efforts to develop repro-
ducible animal models.
inhibition of these pathways could be of pivotal
importance in patients who do not respond to
standard treatment.

MAPK family: JNK
The c-Jun-N-terminal kinase (JNK) is a serine/
threonine kinase that belongs to the mitogen-
activated protein kinase (MAPK) family, which
has been shown to play a causal role in APAP
hepatotoxicity by mediating an amplification loop
in APAP-induced mitochondrial targeting and
oxidative stress.22 In the liver, 2 JNK genes, Jnk1
and Jnk2, are expressed.23 Antagonising JNK acti-
vation using the classical inhibitor SP600125 has
protective effects against APAP-induced liver
injury, by significantly reducing necrosis both
in vivo and in vitro.24,25 Although SP600125 may
have effects independent of JNK inhibition, com-
bined Jnk1 and Jnk2 germ-line deletion or knock-
down by antisense oligonucleotides in adult mice
markedly protected against APAP hepatotoxicity.26

In addition, simultaneous deletion of Jnk1 and
Jnk2 in adult hepatocytes in Jnk1+2f/f mice
following injection with an associated adenovirus
expressing Cre recombinase driven by the
hepatocyte-specific promoter TBG (AAV-TBG-Cre)
protected against APAP-mediated liver injury.27 In
contrast with these findings, a recent report in
mice with hepatocyte-specific Jnk1 and Jnk2 dele-
tion (JnkDhepa) questioned the role of JNK in APAP-
induced hepatotoxicity, as JnkDhepa mice devel-
oped greater liver injury than wild-type animals
after APAP overdose, suggesting a beneficial role
for combined JNK1 and JNK2 activation in hepato-
cytes.28 Whilst the reasons underlying these
opposing findings remain to be fully unravelled, in
the latter study Jnk2 was globally deleted in all cell
types and Jnk1 was specifically knocked down in
hepatocytes but not in non-parenchymal cells
(NPCs), implying opposing roles for Jnk1 in
different types of liver cells, as well as in infiltrating
inflammatory cells.

The specific contribution of JNK1 and JNK2 in
DILI remains controversial. No differences in APAP
hepatotoxicity in Jnk1 knockout mice were
observed,26 despite a clear pro-apoptotic and pro-
fibrogenic function of Jnk1 in tumour necrosis fac-
tor (TNF)-induced cell death,29 and in liver
fibrosis.30 Regarding Jnk2, increased susceptibility
towards APAP, TNF and lipopolysaccharide-induced
liver injury was reported upon Jnk2 deficiency,31

whilst Jnk2 disruption protected against APAP-
induced liver injury.26 Recent findings have
shown that both hepatocyte Jnk2 knockout and
knockdown ameliorated ibuprofen-mediated
DILI.32 Recent investigations highlighted the crit-
ical role of immune cells in APAP-induced ALF,
including activation of resident hepatic macro-
phages (Kupffer cells [KCs]) following hepatocyte
necrosis as well as massive CCR2-dependent
recruitment of monocytes.33
Journal o
JNK activation factors
Preclinical findings in constitutive and conditional
knockout mice have shown that JNK can be acti-
vated by many factors, ranging from various path-
ogens and cytokines, including transforming
growth factor-b (TGF-b), interleukin-1b and TNF to
oxidative stress and DNA damage in both hepato-
cytes and infiltrating cells.22,34 Phosphorylation of
JNK is mediated by MAP2Ks,35 which, in turn, are
phosphorylated and activated by MAP3K. The best
characterised MAP3Ks are the apoptosis signal-
regulating kinase-1 (ASK1) and mixed-linage ki-
nase 3 (MLK3). ASK1 participates in APAP-induced
JNK activation,36 which is achieved by dissociation
from thioredoxin-1 (Trx-1) (Fig. 1). MLK3, a mem-
ber of the Ser/Thr protein kinase family, mediates
the initial phase of JNK activation.37 Glycogen
synthase kinase 3b (GSK-3b) is also involved in the
early-phase of JNK activation. Inhibition of GSK-3b
in mice prevented JNK activation and ameliorated
APAP-derived toxicity.25 The MAP2Ks (MKK4 and
MKK7) are capable of phosphorylating JNKs at Thr/
Tyr residues.38 Furthermore, MKK4 activates both
JNK and p38 kinases, while MKK7 only activates
JNK. An additional factor that contributes to sus-
tained JNK phosphorylation in APAP hepatotoxicity
is impaired MAPK phosphatase (Mkp) activity.
Mkp deficiency in mice has been shown to exac-
erbate APAP-induced liver injury along with sus-
tained JNK activation, while Mkp activation
prevents JNK activation and subsequent APAP
hepatotoxicity.39,40

JNK amplification loop
In recent studies utilising novel mouse liver
models, a feedforward self-sustaining signalling
pathway referred to as the JNK amplification
loop41,42 was reported to maintain sustained JNK
activation, leading to liver damage and dysfunction
in response to APAP. Activated JNK (p-JNK) trans-
locates to mitochondria and binds to the Sab
(SH3BP5) protein on the outer mitochondrial
membrane,43,44 impairing mitochondrial respira-
tion and enhancing the release of ROS.45 ROS
release, in turn, activates ASK1 and MKK4, which
sustain JNK activity and amplify the toxic effect.
The binding of JNK to the outer mitochondrial
membrane via Sab further induces MPT, thus
changing the permeabilisation of the mitochon-
drial outer membrane and allowing the exit of
molecules less than 1,500 Da, including cyto-
chrome c, apoptosis inducing factor (AIF) and
endonuclease G.46 Although release of cytochrome
c and AIF is a hallmark of apoptosis, as they activate
caspase 3/7 and lead to nuclear DNA cleavage,
respectively,47,48(Fig. 1), the major form of cell
death in APAP toxicity is necrosis.49 This may be
because the marked injury in the mitochondria and
the pronounced reduction in ATP cannot sustain
activation of the apoptotic cascade. It should be
noted that, currently, other less familiar modes of
f Hepatology 2021 vol. 75 j 935–959 937
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Fig. 1. Pathophysiology of APAP-induced liver injury. APAP toxicity is caused mainly by the
excess formation of NAPQI. Enhanced NAPQI depletes hepatic GSH, covalently binds to proteins
and forms protein adducts. ROS accumulation oxidises and removes Trx-1 from Trx-ASK1
complexes, leading to activation of ASK1 and subsequently the apoptosis signalling cascade.
Activated JNK translocates into the mitochondria and alters the mitochondrial membrane
potential, which triggers DNA fragmentation and cell death. Opening of the MPT contributes to
the predominant APAP-induced necrotic cell death, compared to the minor role of the release
of Cyt c, and apoptosis factors AIF, Smac/endo G. The increase of misfolded or unfolded proteins
in the ER lumen triggers the ER stress-mediated UPR, which has 3 different effectors: PERK,
ATF6 and IRE1a. If the UPR cannot efficiently restore ER homeostasis, it will ultimately induce
the elevated expression of CHOP and lead to cell death. AIF, apoptosis inducing factor; APAP,
acetaminophen; ASK1, apoptosis signal-regulating kinase-1; ATF6, activating transcription
factor 6; Bak, BCL2 antagonist/killer; Bax, BCL2 associated X, apoptosis regulator; CHOP,
CCAAT-enhancer-binding protein homologous protein; Cyt c, cytochrome c; ER, endoplasmic
reticulum; GSH, glutathione; IRE1a, inositol-requiring enzyme 1a; JNK, c-Jun-N-terminal ki-
nase; MPT, mitochondrial permeability transition; NAPQI, N-acetyl-p-benzoquinone imine;
PERK, protein kinase RNA-like ER kinase; ROS, reactive oxygen species; tBid, truncated Bid,
Trx-1, thioredoxin-1; UPR, unfolded protein response; XBP1, X-box binding protein 1.
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Currently, none of the
existing models are
approved by regulatory
agencies in Europe and the
US, given the limited pre-
dictive value of current
preclinical systems.
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cell death including pyroptosis, necroptosis and
ferroptosis with alternate mechanistic pathways
are under active investigation with respect to their
contribution to APAP hepatotoxicity.50 Moreover,
although autophagy is another form of cell death, it
is considered a protective mechanism against APAP
hepatotoxicity (see below).

ER stress and mitochondrial cholesterol
accumulation
The ER stress-mediated unfolded protein response
(UPR) is an adaptive stress response resulting in
accumulation of unfolded or misfolded proteins in
the ER lumen.51 ER stress can be detected late after
APAP challenge (500 mg/kg) in murine models, and
becomes highly significant 12 hours following APAP
administration.52 The ER stress response has 3 sig-
nalling arms: (i) protein kinase RNA-like ER kinase
(PERK), (ii) activating transcription factor 6 (ATF6),
and (iii) inositol-requiring enzyme 1a (IRE1a). These
pathways are maintained in an inactive state
throughbinding to BiP (HSPA5) innon-stressed cells.
Upon APAP-mediated ER stress, IRE1a, PERK and
ATF6 become activated, triggering an inflammatory
Journal of Hepatology 2021 vol. 75 j 9
response and cell death mediated via ASK1 and
JNK52(Fig. 1). However, in mice with genetically
deleted XBP1 (X-box binding protein 1), constitutive
IRE1a hyperactivation in hepatocytes resulted in
reduced JNK activation and protection from APAP
through suppression of CYP activity.53 Recently, the
steroidogenic acute regulatory protein 1 (STARD1), a
mitochondrial cholesterol transport protein, has
been identified as a key player in ER-stress mediated
APAP hepatotoxicity.27

In this respect, STARD1 promotes cholesterol
trafficking and accumulation in mitochondria,
which in turn leads to mitochondrial GSH deple-
tion and contributes to mitochondrial dysfunction,
exacerbated ROS generation and necrotic cell death
(Fig. 2). An intriguing finding is the protection of
mice with liver-specific STARD1 deletion despite
preserved mitochondrial Sab/p-JNK activation,
suggesting that the deleterious effect of p-JNK in
mitochondrial dysfunction and hepatocyte cell
death is dependent on STARD1.27 In addition,
hepatocyte-specific deletion of Sab or p-JNK1+2
was also protective against APAP hepatotoxicity,
preventing APAP-induced ER stress and subsequent
STARD1 upregulation. Further mechanistic studies
utilising human models and clinical samples (see
below) will likely lead to confirmation of the mo-
lecular basis for the complementary role of
STARD1/mitochondrial cholesterol and the Sab/p-
JNK axis in APAP hepatotoxicity – and the up-
stream events involved in p-JNK1/2 induced ER
stress.

Furthermore, as mitochondrial dysfunction
contributes to APAP hepatotoxicity, removal of
damaged mitochondria through mitophagy has
emerged as a critical mechanism in APAP-induced
ALF.13 Besides transcriptional regulation, auto-
phagy can also be modulated by lysosomal lipid
composition. Indeed, accumulation of lipids (e.g.
cholesterol) in lysosomes has been shown to
impair the fusion of autophagosomes (containing
disrupted mitochondria) with lysosomes, contrib-
uting to perpetuation of damaged mitochondria,
which sensitises to APAP hepatotoxicity.54 Thus, it
is not only the intermediates of APAP metabolism
(e.g. NAPQI) acting directly on mitochondria that
determine APAP hepatotoxicity, but also secondary
factors that delay mitochondrial turnover via
mitophagy. The latter can be of particular clinical
relevance in non-alcoholic steatohepatitis (NASH),
which canpotentiateDILI55 (see Section Implications
of DILI in clinical contexts). In fact, it has previously
been reported that patients with NASH exhibit
increased expression of STARD1,56 suggesting that a
subset of patients with advanced non-alcoholic fatty
liver disease (NAFLD), with enhanced free choles-
terol content and STARD1 expression, may develop
liver injury on APAP ingestion.

In summary, it is clear that the JNK signalling
pathway isacritical component inDILI,particularly in
APAP pathogenesis. Since JNK differentially regulates
35–959
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Key point

APAP hepatotoxicity is
multifaceted and molecular
pathways incompletely
understood, although
disruption of mitochon-
drial function is a well-
recognised player in APAP-
mediated liver injury.
Novel and emerging
mechanisms have been
identified in this critical
step, although they remain
to be validated in human
DILI.
important biologic targets, this cascade can be either
beneficial ordetrimental indifferent cells and tissues,
and compensatory mechanisms need to be modu-
lated or even discarded. In addition, upstream or
downstream pathways regulating the JNK-specific
role in cell death during APAP hepatotoxicity are
pivotal to developing new therapeutic interventions
in patients with DILI.

Other signalling pathways and mechanisms
Apart from MAPK, other pathways have been re-
ported to modulate APAP hepatotoxicity. Inhibition
of protein Kinase C (PKC) prevents APAP hepato-
toxicity by blocking ROS-mediated hepatic necro-
sis.57 The receptor interacting protein kinases
(RIPKs) that modulate necroptosis have a contro-
versial role in DILI which is the subject of intensive
research. RIPK3-deficient mice were protected
from early phase APAP toxicity, which also resulted
in the prevention of ROS-JNK associated signal-
ling.58 In contrast, other studies found no evidence
that RIPK3 or the pseudokinase MLKL participate in
APAP-mediated injury.59 Indeed, RIPK1 inhibition
reversed APAP-induced JNK activation and liver
damage, a possible mechanism associated with
ASK1 and ER stress.36,60 As these studies used
global RIPK1/3 deletion, conditional deletion in
adult mice would be needed in order to unequiv-
ocally demonstrate the role of RIPK1/3 in APAP
hepatotoxicity.

Liver sinusoidal endothelial cells (LSECs) form
the wall of hepatic sinusoids, regulate hepatic
vascular tone and contribute to the maintenance of
a low portal pressure. LSECs help maintain hepatic
stellate cell quiescence, and thus essentially inhibit
intrahepatic vasoconstriction and fibrosis devel-
opment. In line with their key role in hepatic ho-
meostasis, LSECs play a key role in the initiation
and progression of chronic liver disease and DILI.61

Pioneering studies identified LSEC as a target for
APAP toxicity,62 with further investigations
revealing the ability of APAP to cause LSEC
apoptosis via Trail,63 leading to hepatic congestion
and haemorrhagic lesions. Quite intriguingly,
recent findings revealed that the accumulation of
free cholesterol in the endolysosomes of LSECs
exacerbates APAP hepatotoxicity via Toll-like re-
ceptor 9/inflammasome pathway.64 These findings
highlight that hepatic steatosis, and in particular
increased liver cholesterol, emerge as a risk factor
for APAP hepatotoxicity (see section NAFLD and
ageing as a susceptibility state for DILI).

Adaptive and cellular protective mechanisms:
Autophagy | Keap1/Nrf2
Macroautophagy (autophagy) is a non-selective
bulk degradation process aimed at recycling
cellular components and damaged organelles in
response to a variety of stimuli, such as nutrient
deprivation and toxic stress, including APAP hep-
atotoxicity. Using primary mouse hepatocytes and
Journal o
GFP/light chain 3 transgenic mice, Ni and col-
leagues reported that APAP-induced autophagy
correlated with recycling of damaged mitochon-
dria.65 APAP suppressed mTOR complex 1 and
APAP-induced autophagy was blocked by NAC,
suggesting APAP mitochondrial protein binding
and the subsequent production of ROS elicited
APAP-mediated autophagy. Importantly, pharma-
cological inhibition of autophagy further exacer-
bated APAP-induced hepatocytoxicity, while
induction of autophagy by rapamycin inhibited
APAP-induced liver injury. The hepatoprotective
role of autophagy in APAP hepatotoxicity was due
to the elimination of damaged mitochondria by a
more selective process called mitophagy,65 which
impacted removal of APAP-protein adducts.66

Interestingly, the APAP-induced mitophagy ap-
pears to be predominant in zone 3 of the liver
compared to zone 1 (coinciding with the site of
APAP metabolism), suggesting mitophagy as an
adaptive mechanism to promote cell survival and
restrict the expansion of necrotic areas.67 In line
with these findings, adiponectin has emerged as an
adaptive mechanism to ameliorate APAP
f Hepatology 2021 vol. 75 j 935–959 939



Key point

Novel approaches and
emerging mechanisms in
APAP hepatotoxicity and
DILI may be of significance
for the discovery of poten-
tial treatments.

940

Seminar
hepatotoxicity by promoting mitophagy through
stimulation of autophagosome formation by
AMPK-dependent activation of Unc-51-like kinase
1.68

Besides mitophagy, ROS generation can be offset
by an antioxidant stress response controlled by
nuclear erythroid-2-related factor 2 (Nrf2).69 The
Kelch-like ECH-associated protein 1(Keap1)/Nrf2
system is recognised as an important cytopro-
tective pathway combating cellular oxidative
injury.70 Liver conditional Keap1 knockout or acti-
vators of Nrf2 provide protection against APAP-
induced liver injury, while deletion of Nrf2 results
in hypersensitivity to APAP hepatotoxicity.71

Indeed, farrerol, a 2,3-dihydro-flavonoid isolated
from rhododendron, has been shown to confer
rapid (within 1 hour) protection against APAP
hepatotoxicity by activation of Nrf2 and auto-
phagy.72 Thus, whether targeting autophagy and
Nrf2 in combination with NAC may be a relevant
approach to reduce APAP-mediated ALF remains to
be investigated.

Emerging mechanisms and approaches
in DILI
Extracellular vesicles
Like other cell types, hepatocytes secrete extracel-
lular vesicles (EVs), both under physiological and
pathological conditions, including in chronic injury,
such as liver fibrosis, and in DILI.73 EVs are
membrane-bound vesicles released into the extra-
cellular milieu, protected by a lipid bilayer, which
also include protein receptors and signal triggering
molecules. The EVs carry diverse cargo that include
proteins, active enzymes, coding and non-coding
RNA, DNA, and metabolites.74–76 Three different
types of EV can be released from cells (exosomes,
microvesicles [MVs], and apoptotic bodies) and are
closely related to the mechanism of biogenesis.
Exosomes are the smallest EVs (30-150 nm),77

which are formed in multivesicular bodies (MVBs)
of the endocytic and secretory pathway.78,79

Microvesicles (50-3,000 nm) are formed directly
by outward budding of the plasma membrane.80

Whilst apoptotic bodies are EVs (>500 nm) that
originate from cells undergoing apoptosis.81 In the
liver, the first descriptions of hepatocyte-derived
vesicles were obtained from primary culture of rat
hepatocytes,82 and isolated hepatic stem cell cul-
tures.83 Many researchers have since contributed to
the characterisation of liver-derived EVs in different
contexts of liver disease.84–86

Of relevance to DILI, hepatocyte-derived EVs
can be influenced by drug metabolism, affecting
the protein cargo composition, morphology and
number.87,88 Following APAP or diclofenac expo-
sure released EVs have been shown to contain
liver-specific mRNA (e.g. ALB gene),89 liver-specific
miRNA (such as miR-122),84 and liver specific
proteins such CPS1, MAT1 and COMT.87,89–93

Several studies have further unravelled the
Journal of Hepatology 2021 vol. 75 j 9
diverse cargo of EVs in DILI (Fig. 3), including
the presence of CYPs, such as CYP2A1, 2B3, UDP-
glucuronosultransferases (UGT), and 2B2 iso-
forms, and sulfotransferase 1A1 in rats.82 Notably,
CYPs 1A2, 2B6, 2E1, 3A4 and UGT 1A1, and
other isoforms have been detected in circulating
EVs isolated from the plasma of patients with
DILI.93,94

Apart from CYPs, EVs may also harbour other
active enzymes, such as Arginase 1 (Arg1)95 or the
carboxylesterase 3 (CES3).90 Due to this capability
of transporting active liver enzymes, it is likely that
circulating EVs are also involved in the pathogen-
esis of DILI, since they can reach different tissues,
such as the lung or brain,96 and modify acceptor
cell responses, such as the contractile capability of
blood endothelium95 – potentially playing a role in
the pathogenesis of lung hypertension related to
liver damage. Moreover, the presence of active
CYP2E1 in EVs suggest that they may exacerbate
APAP-induced toxicity in hepatocytes and mono-
cytes.97 The presence of drug-induced protein
modifications within the EV cargo can potentially
have negative effects through covalent binding to
certain drugs, such as amoxicillin or flucloxacillin.
These protein-adducts can also induce the activa-
tion of dendritic cells when exposed to EVs
released by hepatocytes, indicating that EVs
could play a role in drug-induced autoimmune
hepatitis.98

AOP framework
As DILI is a highly heterogeneous process, the
mechanistic characterisation underlying this wide
spectrumofhepatotoxicmanifestations is a requisite
to improve prediction. Effective experimental ap-
proaches forDILI evaluation require novel preclinical
test systems that faithfully mimic these heteroge-
neous pathways. Context-specific in vitromodels for
assessing hepatotoxicity have been characterised
recently99 – and several new technological ap-
proaches are being developed in the search formore
predictive systems (see Sections Towards capturing
hepatocellular complexity and Advanced
technologies).

Although a substantial amount of mechanistic
data on DILI is currently known (e.g. obtained
through genome-wide association studies
[GWAS]100 or transcriptomics approaches101), there
remain significant gaps in our understanding of
hepatotoxic outcomes following chemical expo-
sure. The lack of detailed understanding of the
mechanistic pathways underlying the multifactorial
nature of DILI has impeded the development of
improved treatment and cell systems to test novel
therapies. Support for theAOP concept102 has gained
momentum and, together with parallel improve-
ments in test systems, couldhelp tobridge this gap in
knowledge.

AOP is a mechanistic representation of critical
toxicological effects that propagate over different
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Fig. 3. Role of extracellular vesicles in DILI. Hepatotoxic drugs induce the release of
extracellular vesicles from hepatocytes carrying a differential cargo which can be isolated
from plasma or urine, providing a unique source of low-invasive biomarkers. Extracellular
vesicles carry cargo including active enzymes that can modify the microenvironment,
participating in drug clearance, but also forming active drug-protein adducts that increase
toxic effects, or deplete metabolites from blood. Drug-modified proteins can trigger an im-
mune response when extracellular vesicles are presented to dendritic cells. Studies thus far
suggest that extracellular vesicles play an important role in the pathogenesis of DILI, but also
offer an opportunity for drug diagnosis (as biomarkers) and therapy. Alb, albumin; APAP,
acetaminophen; Arg1, arginase 1; COMT, catechol-O-methyltransferase; CPS1, carbamoyl-
phosphate synthase 1; CYP, cytochrome P450; DILI, drug-induced liver injury; Hp, hapto-
globin; MAT1, methionine adenosyltransferase 1; miR, microRNA; Rbp4, retinol binding
protein 4.
layers of biological organisation, from the initial
interaction of a chemical compound with a mo-
lecular target, to an adverse outcome at the indi-
vidual or population level (Fig. 4). An AOP
describes a sequence of events starting with a
molecular initiation event (the molecular target),
with progression through a series of key events,
linked by key event relations, which may occur at
the sub-cellular/cellular-/or tissue-level, up to the
whole organism. It describes only toxicodynamic
interactions and pathways, and as such, is com-
pound agnostic, i.e. independent of any specific
chemical or its dose level. AOP is a valuable
approach to incorporate mechanistic knowledge as
demonstrated for APAP, chlorpromazine and other
DILI-causing drugs102,103 – it is a multi-scale data
integration tool in which newly obtained mecha-
nistic data can be used to feed the linear AOP
structure (see below, and Fig. 4). Moreover, AOP
can enhance our mechanistic knowledge,102 as it
can identify deficits in existing tests and models
intended to predict DILI. The AOP framework could
be particularly helpful in delineating underlying
causes and mechanisms in iDILI. As such, piecing
together currently fragmented data sets from
studies on iDILI in an AOP scheme will fill knowl-
edge gaps, enabling the design of effective experi-
mental approaches to unveil pathway(s) and help
reduce the unpredictability of iDILI. Additionally,
AOP is geared towards the indication of potential
DILI biomarkers as early indicators of DILI, as
practical read-outs in experimental approaches, as
well in pharmacovigilance. Initial AOPs for several
forms of DILI have recently been established104 and
contain substantial mechanistic information on
liver fibrosis, steatosis, and cholestasis.

The linear schematisation of current mecha-
nistic information in AOP generates relevant data
on metabolic alterations, such as bile acid homeo-
stasis,105 mitochondrial dysfunction,106 or the role
of innate immune responses.107 In addition, this
workflow points to AOP as a practical tool for the
design, development, and validation of improved
experimental models for DILI prediction. Indeed, a
recent AOP approach that integrates mechanistic
knowledge of multiple data sources enabled se-
lection of a number of in vitro assays as effective
predictors of DILI risk.108

Toxicogenomic approaches can further reveal
fundamental molecular mechanisms and improve
prediction of toxicity through integration of cross-
omics technology including epigenomics, tran-
scriptomics, proteomics and metabolomics, along
with physiologically based pharmacokinetic ex-
periments. This has been used in 3D human liver
and heart microtissues with advanced in silico
bioinformatics to predict DILI.109

Toxicogenomics approaches
Next generation genomic technologies are now
being used as powerful tools in the armament to
Journal o
investigate DILI. Toxicogenomics allows for
detailed analysis of altered gene and protein
expression profiles and across biological scales
(which are also relevant to AOP: molecular-single
cell – population levels) in response to xenobiotic
exposure.110 Its potential for application is
enhanced by the availability of accessible databases
that can facilitate and harness generated Omics
and imaging data (e.g. Open TG-GATEs111). GWAS
have resulted in highly revealing findings, such as
HLA polymorphisms related to DILI;112 whilst
transcriptomics-based Big Data-driven analysis has
identified adverse outcomes at cellular and or-
ganism levels.101 The relative risk for complex
diseases such as coronary artery disease can be
predicted by calculating the polygenic risk score
(PRS). Recently, Koido et al. used a GWAS-based
PRS prediction strategy to demonstrate that ge-
netic variation in susceptibility to DILI resides in
hepatocytes. The authors used PRS, which sums up
the effects of hundreds or thousands of variants,
combined with genomic, cellular and organoid
‘polygenicity-in-a-dish’ approaches to delineate a
f Hepatology 2021 vol. 75 j 935–959 941



Molecular Organelle Cellular Tissue Organ Organism Population

In
chemico
in silico

In vitro In vivo Epidemiology

KER1 KER2 KER3 KER4 KER5 KERn

Adverse outcome pathway

MIE KE1 KE2 KE3 KE4 KEn AO

Fig. 4. Adverse outcome pathway in DILI. General representation of the structure of the adverse outcome pathway, applicable in DILI research. The structure is
fed with information obtained from different levels of biological experimentation. It can be considered as a multi-scale data integration tool, helpful in identifying
knowledge gaps and prone toward indicating potential biomarkers. (adapted from: Vinken et al., 2017104). AO, adverse outcome; DILI, drug-induced liver injury;
KE, key event; KER, key event relation; MIE, molecular initiation event.

942

Seminar
spectrum of DILI-causing agents including fasigli-
fam (TAK-875).113 This demonstrates the utility of
toxicogenomics approaches for DILI and other rare
diseases.113

Recent application of single-cell transcriptomics
in DILI has, for the first time, enabled the identifica-
tion of unique subsets of MYC-dependent, activated
liver-resident cellular types or ‘states’ (Kupffer, stel-
late, and liver sinusoidal endothelial cells) in APAP-
induced ALF in mice, which correlated with human
ALF.114 This approach may enable pathway-specific
therapeutic interventions for ALF. Metabolomics
can also be highly informative for DILI prediction,
whereby detection of endogenous metabolites/
reactive metabolites can be complemented with the
development of AOP for the design of more effective
approaches for DILI prediction.115

Thus, whilst current methods to study DILI pa-
thology have involved mostly well-defined end-
point assays such as immunostaining, multi-
parametric image analysis (cell viability), ultra-
structural imaging, quantitative reverse-
transcription PCR, western blot or flow cytometry
techniques, powerful complementary assays are
increasingly becoming available that, when coupled
with emerging human-based multi-cellular
models, can shed light on human-specific toxicity
mechanisms.

Towards capturing hepatocellular
complexity
Choice of cells - not all cells are equal
Conventional hepatic culture models for drug dis-
covery assays mostly use rodent primary hepato-
cytes or human immortalised cell lines. However,
these rapidly lose polarity and differentiated
phenotype116,117 and are not representative of
normal liver tissue. Such models often lack the
functional repertoire of primary human
Journal of Hepatology 2021 vol. 75 j 9
hepatocytes (PHHs), including the ability to
metabolise drugs (CYP activity). However, PHHs
have a short culture life-span, and exhibit pheno-
typic variability and instability in culture with
intermittent supply and high unit costs.118 The
multi-billion dollar drug development process is
often hampered by the fact that candidate drugs,
which show promise in preclinical animal models,
subsequently do not show efficacy in humans, due
to interspecies metabolic differences.116 DILI is a
leading cause of drug withdrawal from the market,
highlighting the fact that current preclinical
models of toxicity are not universally predictive of
drug effects in humans.119 DILI accounts for a 30%
of attrition of all pharmaceutical compounds,120

therefore a robust and scalable human hepatic
in vitro cell culture platform would enable physio-
logically relevant preclinical data for drug
screening for DILI.

HepaRG cell line
The human liver-derived HepaRG cell line is now
considered the closest surrogate to PHHs for DILI
applications. The HepaRG cell line is a unique and
sustainable intrinsic human co-culture model sys-
tem for reproducible measurements of drug up-
take, metabolism and toxicity. The hepatic HepaRG
bipotential progenitor cell line can differentiate
into mature hepatocyte-like cells (HLCs) and biliary
epithelial cells (BECs). Various liver-specific
phenotypic functions15,121 are stably expressed in
HepaRGs, including the major CYPs – at levels
comparable to those found in PHHs, with high
functional stability for several weeks. This cell line
has been used as a scaffold-free spheroid to screen
toxicity profiles and thresholds of a number of
compounds.122 Altogether, HepaRGs provide a
high-fidelity, sustainable organotypic model sys-
tem for exploring mechanisms of APAP toxicity and
35–959



other forms of DILI such as chlorpromazine.122–124

Coupling organotypic human HepaRG cells with
various combinations of NPC types: hepatic stellate
cells (HSCs), KCs, and LSECs provides a rational
approach to providing context-specific models to
investigate DILI, viz: i) Immunomodulatory (Hep-
aRG:KCs), ii) vascular (HepaRG:LSECs); and iii)
fibrogenic (HepaRG:HSCs) models. Stepwise inte-
gration of these cell types within a micro-
physiological system as well as novel 2D-3D
platforms (see below, and Section Advanced
technologies), could be an important step in
enhancing our understanding of DILI pathophysi-
ology to solve the prediction dilemma in drug
development. In principle, this approach may begin
to discern what factors are lacking from current
models to improve model relevance for DILI
and thus unravel novel toxicity mechanisms lead-
ing to DILI.

Alternative in vitro hepatic models: iPSC-derived
hepatic tissue
Alternative strategies to provide liver cell surro-
gates are found in 2 forms of human pluripotent
stem cells (hPSCs): human embryonic stem cells
(hESCs) and induced pluripotent stem cells (iPSCs).
Both have the potential to serve as a source of HLCs
and other key cellular players for drug discovery
and DILI research. However, ethical considerations,
with moratoria or outright bans on hESC use in
many countries, have prevented their widespread
adoption. Therefore, hiPSCs, which are derived
through the reprogramming of somatic cells, such
as fibroblasts, are the mainstay of HLC-based, and
multicellular human liver models (Fig. 5).125–127

iPSCs have the potential to expand indefinitely
and differentiate into any cell type (Fig. 5). These
characteristics make iPSCs an ideal source from
iPSCs

Reprogramming

Yamanaka
factors

Somatic cells

Personalized cells
Patient derived Gene editing

D
diff

Org

co-d

Fig. 5. Representation of methodological pathway for the u
strategies, directed differentiation to liver cell surrogates or
biotechnological and biomedical applications. iPSCs, induced pl

Journal o
which to obtain patient-specific cell types or to
generate cells with specific genomic features
resembling those of a particular human population
using genome editing technologies.128 Moreover,
the pluripotent state of iPSC means they can act as
a single source for the generation of the different
hepatic cell types facilitating multicellular in vitro
systems with the same genetic background or pre-
existing disease.129,130 This technology enables
production of highly novel cellular models for
studying unique and unexplored aspects of DILI
such as cell-specific responses and multiorgan
interaction.131–134

Early protocols for HLC generationwere based on
addition of stage-specific morphogenic cues
mimicking hepatic embryonic development. More
recently, growth factor-free approaches have been
reported using small molecules that activate or
mimic the effect of growth factors with a significant
reduction in costs.135–138 The iPSC-derived HLCs
exhibit many hepatic functions, including serum
protein production, urea synthesis and xenobiotic
metabolism. Human iPSC-derived HLCs have
similar attributes to the hepatoma cell lineHepG2139

and HepaRG cells (at least in 3D culture),140 with
lower metabolic activity compared with PHHs, and
exhibit a mixed adult/foetal phenotype.141 To
improve HLCs’ functionality, strategies include gen-
eration of HLCs in 3D using collagen matrices to
achieve cellular polarity, induction of mature hepa-
tocyte genes by small molecules, or mimicking
liver maturation (postpartum) by exposing HLCs to
bile acid synthesis components, drug metabolism,
amino acid transport or microbiome composi-
tion.142–146 Remarkably, supplementation of the
growthmediumwith high concentrations of defined
amino acids drovemetabolicmaturity (PHH levels of
CYP activity) of both HLCs and HepG2 cells.140
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As all liver cell types are involved in disease
processes and DILI, different approaches have
evolved to generate HSCs, LSECs, and KCs. iPSC-
derived human cholangiocytes with functional
characteristics of primary cholangiocytes147 have
been developed and used to model disease (Ala-
gille syndrome, chronic cholestasis due to reduced
intrahepatic bile ducts) and for drug validation,
highlighting hiPSCs’ utility.148,149

NPCs are essential for liver homeostasis and
immunological function, and play a key role in DILI.
Therefore, generation of NPCs has been an intense
area of research for development of complex
in vitro systems. Tissue-resident human macro-
phages with KC characteristics have recently been
generated, which exhibit low mismatch-
background inflammatory response when co-
cultured with hepatocytes.150 HSCs also play a
crucial role in response to injury/wound healing in
the liver and are the main cell type responsible for
not only extracellular matrix (ECM) production and
degradation, but also ECM deposition and remod-
elling in fibrosis. In this regard, Coll and collabo-
rators151 generated HSC-like cells displaying
features of quiescent HSCs that could be activated
by inflammatory and pro-fibrogenic stimuli, such
as lipopolysaccharide or TGF-b.145

A feature of pluripotent stem cells is their ability
to recapitulate aspects of liver organogenesis/
development in the dish. In a landmark study,
Takebe et al. combined human umbilical vein
endothelial cells (HUVECs) and mesenchymal stem
cells with specified iPSC-derived hepatic endo-
derm. This approach resulted in the formation of a
3D structure resembling a liver bud, which upon
transplantation into mice protected against DILI.152

In vitro organogenic recapitulation of the liver by
iPSCs has been used to generate liver organoids
containing HLCs and other NPCs, which could be
useful for liver disease modelling, toxicity testing
and drug screening.153–155

As an alternative to primary hepatocytes, iPSC-
derived cultures of HLCs have several applications
for early preclinical hepatotoxicity assessment and
drug screening in 2D and 3D culture systems.156

iPSC-derived 3D organoids demonstrated a toxic
response to clinically relevant concentrations of
drugs withdrawn from the market due to
hepatotoxicity.157

DILI is frequently characterised by common
pathogenic mechanisms observed in chronic liver
disease, such as inflammation, fibrosis and chole-
stasis. In order to link these responses to toxicity,
more complex in vitro systems that capture aspects
of vivo architecture, and contain different liver cell
populations such as HSCs, cholangiocytes and in-
flammatory cells are required.

3D liver cell models
New in vitro cell and tissue engineering technologies
are being developed to improve hepatocyte
Journal of Hepatology 2021 vol. 75 j 9
performance and are expected to generate more
robust data on the potential risks of environmental
agents and pharmaceuticals to humans. To achieve
more efficient DILI prediction models, it will be
necessary to develop new test systems that expand
capabilities of target molecules more efficiently,
reduce animal testing, increase drug development
efficiency and are able to predict adverse
effects.158–166

The major shortcomings of the currently avail-
able 2D in vitro liver systems are insufficient
hepatocyte-like function and metabolic compe-
tence. A valid alternative for in vitro toxicology
testing comprises more predictive cell models
closer to the in vivo environment. These are sum-
marised in Table 1, whilst bioengineering aspects of
3D liver systems, including the use of dynamic or
static bioreactor devices are discussed further in the
supplementary information (Sections 1.1 and 1.2).

Advanced technologies
Current hepatic-based microphysiological
systems
Development of reliable human hepatic organo-
typic culture systems that are compatible with
medium-high throughput screening (HTS) would
have a significant impact on streamlining the drug
development pipeline. Commercially available
bioengineered liver models, including Emulate
Inc., HlREL® Biochip, RegeneMed, Hepregen and
LiverChip systems (Table 1), are based on
hepatocyte-stromal cell interactions providing
biomimetic cues to enhance hepatic phenotype/
functionality. However, these systems utilise
either heterologous hepatic co-cultures (rodent,
primate or PHHs), combined with complex multi-
step microfabrication manufacturing processes
(e.g. soft-lithography, microfluidics), significantly
increasing unit costs. Furthermore, the Hepregen
system contains 3T3-J2 mouse fibroblasts, seeded
on rat collagen-I, which can stabilise the function
of the co-cultured PHHs. Such systems, however,
are bio-incompatible, as they may introduce con-
founding variables in drug metabolism assays,
given the presence of xeno-derived proteins and
the fact that fibroblasts are not abundant in the
functional liver acinus. Distinct challenges there-
fore remain with regard to realisation of a stand-
ardised, cost-effective, fully customised and
widely available, organotypic in vitro human
model.

‘Liver-on-a-chip’ models
Organ-on-a-chip (OoC) models are being devel-
oped as potentially improved experimental devices
to overcome the limitations of current in vitro
models of DILI. They are multicellular models
connected by microfluidic flow that mimic features
and functions of the organ represented. OoC
models are rapidly emerging as an alternative to
animal models to study human disease, while
35–959



Table 1. Advantages and limitations of complex in vitro hepatotoxicity cell culture systems.

Advantages Disadvantages

Cell models
ECM sandwich
cultures266–268

Low complexity
Hepatocytes regain polarity, maintain proper
basolateral and canalicular transporters
localisation and functional bile canaliculi
Enables estimation of transport clearance,
enzyme-transporter interplay, and bile acid
mediated hepatotoxicity

Leakage, bile canaliculi dam-
age and development of
cholestasis in a time-depen-
dent manner

266–268

Stirred
bioreactors

Low complexity
Scalable
Long-term culture
Co-culture of different cell types
Enables perfusion
Enables online monitoring

Requires specialised equip-
ment
Shear stress
Variation in size/cell number/
shape

169,269–273

Hollow-fiber
bioreactors

Moderate throughput
Counter-directional flow
Scalable
Long-term culture
Possibility of PBPK studies
Real-time monitoring

Complex system
Microscopic evaluation is only
possible in the end of the
experiment
Requires high number of cells
Cell sampling not possible

269,271,273–276

Multi-well
perfused
bioreactors

High throughput
Cells form 3D tissue constructs
Sustained liver-like cell functionality
Physiological shear stress
Good correlation with in vivo clearance rates
Ability for microscopic examination

Uses greater cell numbers and
larger media volumes

172,277

Single-organ OoC models
HmREL®

Biochip
Moderate throughput
Allows for multiple cell types and interaction
between cell types
Preservation of cell viability and metabolic
competency
Microscopic imaging and oxygen sensing
Physiologically relevant ratios of liquid:cells
and shear stress
Requires less media and cells than traditional
culture
Good correlation with in vivo clearance rates

A complex system to establish
and maintain
Sample removal difficult
No 3D tissue constructs

278

Multi-organ
OoC models

Long term culture
Improved cell functionality
More physiologic model
Enables tissue communication

Complex system
Requires specialised
equipment

Microfluidic
devices
(e.g. LiverChip
system)

Long term culture
Laminar flow of cell culture media mimics
the blood flow hemodynamics
Stable low shear pressure
Possibility to study multiple organs interac-
tion
Possibility of PBPK studies
Real-time monitoring of metabolic function

A complex system to develop
and establish
Very low-sample and cell
amounts

278–282

Liver
bioprinting

Allows to build/design specific structures
including endothelial and other cell types

A complex system to establish
The printing process induces
stress on cells

279

OoC, organ-on-a-chip. Adapted from 272,279–281,283.
academic research and industrial drug discovery
have implemented this approach for drug target
identification, validation, as well as efficacy and
safety testing. Compared with 2Dmicro-engineered
or bioprinted co-culture models, OoC models are
generally less amenable to HTS due to their inherent
complexity, and the need to incorporate biosensors
for longitudinal real-time monitoring of biological
events. Instead, they aim presently to address more
Journal o
complex physiological outcomes, including the pre-
clinical phase of drug development.

Complex events of liver drug metabolism, as
described for APAP, are a predominant feature of
adverse drug reaction events leading to DILI.
Therefore, to emulate organ physio-/pathophysi-
ology in OoC models, integration of increasingly
sophisticated and more realistic hepatic models, in
combinationwith microfluidics and miniaturisation,
f Hepatology 2021 vol. 75 j 935–959 945
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are crucial. This goal requires the convergence of
tissue engineering processes and technologies to
attain physiologically relevant systems. 3D bio-
printing technology is a relatively new and rapidly
evolving technology that is strategically placed to
significantly enhance development and utility of
biomimetic OoC models for preclinical applications.
In addition, 3D bioprinting can be implemented as a
stand-alone system to fabricate multicellular human
hepatic models for HTS-amenable screening for-
mats. Recent work has addressed major issues
including limited structural complexity and resolu-
tion of many 3D-bioprinter systems, enabling as-
sembly of complex vascular networks within 3D-
printed hydrogels.167 Many novel integrative
bioengineering approaches have been adopted, with
new designs and innovations continuing to evolve
at a rapid pace. For example, Bhise et al.168 devel-
oped an integrated Liver-on-a-chip platform for
drug toxicity assessment, based on a bioreactor
interfaced with a 3D-bioprinter. Hepatocyte
(HepG2/C3A cells) spheroid-laden hydrogel con-
structs were bioprinted directly into a ‘bioreactor’
chip. This system exhibited a functional hepatic
phenotype with an in vivo-like response to APAP
toxicity. Ever more sophisticated, multi-cellular OoC
models are now emerging. Digital light processing-
based 3D-bioprinting systems can rapidly print tri-
cultures of hiPSC-derived HLCs, endothelial and
mesenchymal cells on hexagonal 3D-hydrogel scaf-
folds. The biomimetic liver lobule patterns demon-
strated a robust functional metabolic profile (CYP
expression) and suitability for hepatotoxicity
screening and DILI prediction, as well as down-
stream personalised drug-screening applications.169

Ingber’s group recently developed a species-specific
Liver-Chip that recapitulates complex liver cyto-
architecture, phenotypic profile and species-
specific drug toxicities using rat, dog, and human
cells.170 Crucially, this system could identify both
species-specific toxicity of drugs, such as APAP, and
identify toxic events in hepatocyte and vascular
channels.

Various levels of in vivo-like complexity have
been achieved with improved PHH stability and
functionality based on urea, albumin production,
and CYP activity.171 This has also been demon-
strated using hepatocytes co-cultured with stromal
cells present in vivo (e.g. liver KCs; sinusoidal
epithelial cells).172–174

Whilst an organotypic human liver C3A cell
line/HUVEC co-culture system demonstrated pro-
found susceptibility to APAP-induced toxicity in
endothelial cells (reflecting the situation found
in vivo) compared with the monocultures; it is
speculated that the vascular signals were likely
hepatoprotective in the (APAP-resistant) co-cul-
tures.175 Proteomic analysis of LSECs may provide
mechanistic insights allowing for the identification
of sensitive and specific biomarkers through com-
parison and validation of omics data from
Journal of Hepatology 2021 vol. 75 j 9
preclinical animal models, in vitro human models
and clinical biospecimens (see also sections AOP
framework and Toxicogenomics approaches).

OoC models may also find a particularly rele-
vant niche in the investigation of multi-organ
systems, allowing for the examination of how
bidirectional signals (e.g. metabolic, pro-
inflammatory) in drug metabolism can affect
other organs, and to study drug pharmacokinetics
and ADME (absorption, distribution, metabolism,
excretion). In particular, OoC models have attrac-
ted the interest of the pharmaceutical industry by
demonstrating the ability to predict metabolic
drug clearance rates in accordance with clinical
data.176 The circulation of drugs and metabolites
between the liver and intestine has been explored
using “liver-gut" models that replicate the intes-
tinal barrier function. The parent compound
phenacetin passed through the gut barrier and
was metabolised to APAP by hepatic cells,177 while
a model including KCs mimicked inflammatory
gut-liver interactions.178

Examples of dual-organ OoC models include
liver/kidney interactions that recapitulated the
nephrotoxicity of ifosfamide when metabolised by
liver cells,179 whilst skin and tumour compart-
ments proved efficacious for substance testing.180

More complex multi-organ models are under
development, including: i) Liver/cardiac/muscle/
neuronal system to investigate drug toxicity
(doxorubicin, atorvastatin, valproic acid, APAP and
N-acetyl-m-aminophenol),181 and ii) a gut/skin/
liver/kidney system in which organ-level functions
were maintained for 28 days.182 Recently, improved
drug and toxicological readout was demonstrated
with liver/lung/cardiac organoids derived from
primary and iPSCs linked with microfluidics.183

Increasing OoC complexity has recently been
explored with up to 10 interconnected organs to
explore drug and metabolite bio-distribution
together with a pharmacokinetic model.184 At
present, OoC technology is still in its infancy, and
while it is demonstrating important tissue engi-
neering principles and proof of concept,
complexity and interactions resulting from multi-
organ models are presently very challenging to
decipher, whilst being inherently incompatible
with HTS. This makes OoC models (and eventually
multi-organ models) more suited to mechanistic
studies and to predict safety and efficiency of
compounds, as well as their pharmacokinetics,
later in the drug discovery pipeline.

Non-invasive technologies to screen DILI
models
High-content live cell confocal microscopy is
particularly suited to screen DILI models. Real-time
stress response pathways such as oxidative stress,
UPR and DNA damage can be evaluated quantita-
tively at the single cell level,185 and in individual 3D
spheroids to screen for DILI.186 In addition, novel
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improve mechanistic un-
derstanding in order to de-
risk DILI.
fluorescence dyes (e.g. thioflavin T) that react with
aggregated proteins can be utilised for the deter-
mination of unfolded protein aggregations and
thus to monitor ER stress induced by hepatotoxic
drugs in live cell imaging settings.187,188

Mitochondrial stress and lysosomal dysfunction
are also important mechanistic targets of DILI (see
earlier section on emerging mechanisms and
signalling cascades). Endosomes, cellular vesicle
motion and mitochondrial fission-fusion are highly
dynamic events (>3 lm/s) that require both super-
resolution and fast acquisition (<<30 ms for 100 nm
resolution). While PALM, STORM or STED super-
resolution microscopy cannot currently provide
such fast live imaging, a novel implementation of
SIM using spinning disk confocal microscope optics
has been developed189,190 to achieve a spatial and
temporal resolution of respectively, 120 nm,189,190

and 6 lm/s.191

Optical screening of 3D organotypic models for
DILI
3D tissue-like DILI models can be very challenging
for optical microscopy. Novel high-resolution and
super-resolution optical imaging methods that
achieve 3D optical sectioning in real-time have very
recently been developed,192–197 providing insight
into 3D in vitro model systems of DILI.185,186,192–197

Finally, optical coherence tomography is particu-
larly suited to imaging dense tissue-like structures
at mm depth. Indeed, we have recently demon-
strated label-free and non-destructive measure-
ment of the hepatotoxic response to APAP in 3D
human liver spheroids which correlated well with
cellular metabolic activity assays.198

Super-resolution fluorescence nanoscopy
A new technological revolution in microscopic
imaging called super-resolution fluorescence
nanoscopy has been developed, enabling molecular
scale resolution, localisation (<2 nm) and tracking
of molecules, using a light microscope.199 This
affordable and flexible system (MINFLUX nano-
scopy) will open up enormous possibilities in DILI,
including 3D phenotypic profiling, imaging of
protein complexes (drug-protein adducts) in
pharmacological, ADME and toxicological studies,
with simultaneous 2-colour (fluorophore) staining
and recording. The Adaptive Optics system permits
sharp deep tissue images down to 250 lm; while
live-cell imaging of 3D-organoids to a depth of
37 lm into the sample can be attained using the
easy3D STED imaging system. Fluorescence nano-
scopy has already shown its applicability as a dis-
covery tool in key areas transferable to mechanistic
DILI studies. Indeed, nanoscopy studies of mito-
chondrial apoptotic mechanisms have demon-
strated the assembly of Bax (BCL2 associated X,
apoptosis regulator)/Bak (BCL2 antagonist/killer)
proteins in the mitochondrial outer membrane,
revealing a structural mechanism of membrane
Journal o
rupture and intracellular tracking of cancer-derived
exosomes in in vivo mouse models.196,200

Impedance biosensing
As a non-invasive alternative to optical imaging,
impedance-based cellular assays201 have the
advantage of enabling label-free and real-time
monitoring of in vitro liver models, and they pro-
vide unique dynamics and quantitative insights
into the impact of hepatotoxic drugs on cell-cell
junctions.15,202 Recent advances in impedance-
based cellular assays also allow for the measure-
ment of 3D models.203 Advances in non-invasive
imaging technologies in parallel with improved
cell systems are powerful tools for improving DILI
prediction and revealing critical DILI events, such
as cellular reactive metabolite formation or oxida-
tive stress at the molecular level and in real-time.

Emerging in vivo models of DILI
Mouse models with humanised livers
The biology and metabolism between mice and
humans differ and hence the pharmacokinetics and
toxicity profile of drugs can be substantially
different between humans and mice. Although
some limitations have been partially addressed
using alternative approaches such as human he-
patic cell lines, liver microsomes, PHHs or engi-
neered human micro-livers,204 these models are
of limited predictive value regarding the pharma-
cokinetics and toxicity of drug metabolism in vivo
and hence of limited relevance to human safety.205

The development of chimeric models with bio-
artificial livers repopulated with human adult he-
patocytes could be an important advance for
predicting human pharmacokinetics, drug in-
teractions and in vivo safety (Fig. 6). This will be
briefly described in the following sections.

Generation of chimeric mice with humanised
livers
Several models of chimeric mice suitable for
repopulation with human adult hepatocytes have
been developed over the years. The first chimeric
mice with a partially humanised liver was
described almost 20 years ago using a urokinase-
type plasminogen activator-transgenic SCID (uPA+/

+/SCID) mouse.124,206 The degree of repopulation of
human hepatocytes in these initial studies was
modest (about 15%), which was sufficient in the
context of hepatitis viral infection, but inadequate
to investigate human phamacokinetics (ADME) in
mice in vivo. Tateno et al. generated chimeric uPA+/

+/SCID mice, replacing 70% of the liver with PHHs
following anti-human complement factor treat-
ment (estimated by serum levels of human albu-
min and cytokeratin 8/18 immunostaining207).
Another model used TK-NOG mice expressing a
herpes simplex virus type 1 thymidine kinase
transgene in the liver of highly immunodeficient
NOG mice.208 Mouse hepatocyte deletion was
f Hepatology 2021 vol. 75 j 935–959 947
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performed by exposure to ganciclovir followed by
xenotransplantation of human hepatocytes. Both
models exhibited substantial repopulation of hu-
man hepatocytes in the liver of chimeric mice and
were useful in investigating the expression and
activities of enzymes involved in drug metabolism.

Azuma et al.209 also generated robust expansion
of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/−

(FRG) mice (humanised liver FRG mice). Fumaryl
acetoacetate hydrolase (Fah) is involved in the
tyrosine catabolic pathway, and genetic deletion of
Fah acts as a molecular switch to control the demise
of Fah-/- murine hepatocytes as its ablation causes
massive damage to the endogenous mouse hepa-
tocytes, driven by the accumulation of fumaroyl
acetoacetate. The injection of human Fah+/+ hepa-
tocytes through the spleen, leads to the gradually
repopulation of the liver of FRG mice over time.

Initial studies reported the use of these chimeric
mice models to investigate the expression, levels
and activities of human drug metabolising enzymes
and transporters. For instance, the expression and
enzyme activities of several CYPs in the livers of
humanised uPA/SCID mice were similar to those in
the donor liver or even greater than those found in
cryopreserved human hepatocytes.205,207,210

Furthermore, protein and enzyme activity levels of
human UGT, sulfotransferase, N-acetyltransferase
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and glutathione-s-transferase in the humanised
livers of uPA/SCID mice were reported to be similar
to those in the donor liver.211 Similar findings in
terms of expression and enzymatic activities of CYPs
with respect to the donor livers were reported in the
liver of TK-NOG mice repopulated with human he-
patocytes.212 Therefore, these data validate the
functional retention of human drug metabolising
enzymes and transporters in the humanised livers of
chimeric mice, further highlighting the utility in
predicting relevant drug-drug interactions in
humans.213,214

Drug metabolism and DILI in chimeric mice with
humanised CYP and human liver chimeric
mouse models
In addition to mouse models with humanised
livers, several human CYP-transgenic mouse
models have been generated. Most human CYP
family members that are involved in xenobiotic
metabolism, including members of the CYP1-CYP4
gene families, have been introduced into the mouse
genome as a transgene (summarised recently in215).
Although these models are potentially useful,
metabolism of drugs in these transgenic humanised
models reflects the action of a single human CYP
transgene. Hence the relevance to human drug
metabolism and safety may be of limited
PHH
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significance for human drug metabolism as this
process may involve the function of multiple CYPs.

Moreover, the advantage of chimeric mouse
models with humanised livers over CYP transgenic
humanised models is that the former has been
shown to generate human-specific metabolites and
hence are of potential relevance for clinical drug
development.215 For instance, chimeric mice with
humanised livers were recently used to study the
metabolism of fenclozic acid, a drug that was
developed as an alternative to high-dose therapy
with aspirin in the mid 70s, and while it showed a
good safety profile in experimental animals, it had
to be withdrawn from late-clinical development
because of hepatotoxicity. Interestingly, although
fenclozic is off the market, these studies are useful
to illustrate the ability of the chimeric mice to
generate human-specific metabolites, such as the
presence of fenclozic acid with side-chain exten-
sion in the plasma, which is not detected in con-
ventional mice.216 However, a drawback of the
chimeric mice with humanised livers is that the
remaining murine hepatocytes contain an
expanded set of CYPs that form the major class of
drug-metabolising enzymes. To exploit the poten-
tial of the human hepatocytes repopulating the
livers of chimeric mice, and to provide xenobiotic
metabolism, Barzi et al. generated a chimeric
model in which the NADPH-cytochrome P450
oxidoreductase gene (POR) was knocked out in a
liver-restricted manner in Il2rg−/−/Rag2−/−/Fah−/−

(PIRF) mice. This provided a model with the
advantage that drug metabolism in this engineered
liver reflected the predominant activities of human
CYPs.217 Indeed, in response to the anticancer drug
gefitinib or the retroviral drug atazanavir, the POR-
deleted humanised PIRF mice developed higher
levels of the major human metabolites and were
consequently able to better predict human drug
metabolism.237

Despite the relevance of APAP in human DILI,
few studies have investigated APAP hepatotoxicity
in chimeric mice with humanised livers. In this
regard, Sato et al. examined the susceptibility of
uPA++/SCID mice whose livers were repopulated
with human adult hepatocytes to APAP hepato-
toxicity compared with control mice.218 APAP
administration resulted in vacuolation of hepato-
cytes and hepatocellular degeneration, leading to
the detection of some areas of TUNEL-positive cells
in the human hepatocyte zones. The hepatotoxic
effects of APAP in the chimeric livers were milder
than the severe liver injury observed in the control
mice.218 Further analysis indicated that APAP-
related changes correlated with human CYP2E1
expression. In addition to these findings, a recent
study reported on APAP hepatotoxicity in chimeric
FRG mice bred on a NOD background (FRGN). These
mice underwent xenotransplantation with human
adult hepatocytes that had been pre-sensitised
with valproic acid (VPA) pretreatment.27
Journal o
Comparable with wild-type mice, VPA pretreat-
ment sensitised humanised FRGN mice to APAP
hepatotoxicity, although the degree of injury was
somewhat lower than that seen in wild-type mice,
in line with findings in uPA++/SCID chimeric mice. A
caveat from these studies is that the degree of
APAP-induced hepatotoxicity was milder with
respect to wild-type mice. Given immature hepa-
tocytes such as oval cells are reported to be resis-
tant to APAP toxicity,219 it is conceivable that the
reduced toxicity of APAP in the chimeric mice
(uPA+/+-SCID or FRGN) may be due to functional
immaturity of the repopulating human hepato-
cytes. In addition, whether a reduced presence of
inflammatory cells in the liver of chimeric mice
(e.g. macrophages or neutrophils) contribute to the
milder hepatotoxicity remains to be investigated.
In this regard, FRGN but not FRG mice are an
amenable model for double humanisation
following reconstitution with hepatocytes and
haematopoietic cells. This is achieved by treatment
with human CD34+ stem cells220 and may be a
useful approach to faithfully reproduce the
observed hepatotoxicity of APAP in humans and to
pinpoint the interactions between human hepato-
cytes and inflammatory cells. The impact of double
humanization of FRGN mice with both human he-
patocytes and hematopoietic cells in DILI still re-
mains to be established.

Zebrafish, as a DILI model
Zebrafish is a vertebrate model organism widely
used in development and genetics, which poten-
tially provides a powerful tool for modelling
DILI221–223 (Fig. 7). Advantages of the zebrafish
model include: a significant level of genomic, his-
tological and functional similarity with humans;
transparency of embryos and larvae, allowing for
thorough imaging of the liver in vivo; and the
availability of large numbers of offspring,
increasing the feasibility and statistical power of
drug screening experiments. Multiple types of as-
says have been described to characterise DILI in the
zebrafish, including the detection of accumulated
lipids in zebrafish larvae/liver as well as quantifi-
cation of changes in liver size and numbers of
liver cells using transgenic zebrafish lines express-
ing hepatic-specific fluorescent proteins.224–226

Further applications of zebrafish for DILI model-
ling are discussed below and in the supplementary
information (section 1.3).

Implications of DILI in clinical contexts
NAFLD and ageing as a susceptibility state for
DILI
NAFLD, also now referred to as metabolic
dysfunction-associated fatty liver disease (MAFLD),
is currently the most prevalent chronic liver dis-
ease worldwide due to its association with the
obesity epidemic. NAFLD is a spectrum of liver
disorders beginning with steatosis, which can
f Hepatology 2021 vol. 75 j 935–959 949
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says in zebrafish embryos and larvae can be used for screening
of drug- or genetically induced liver damage, using wild-type,
mutant or transgenic zebrafish injected with different drugs of
interest or morpholinos/CRISPR constructs to knockdown/
knockout specific genes in a high throughput screening
format. The effects of treatments are scored by microscopy
manually or robotically starting from day 3 post-fertilisation
(3dpf) to observe differences between the control and treat-
ment groups in terms of differences in liver size and/or lipid
accumulation. DILI, drug-induced liver injury; WT, wild-type.
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progress to non-alcoholic steatohepatitis (NASH),
cirrhosis and ultimately hepatocellular carcinoma.
Although many drugs can induce steatosis as an
early sign of potential hepatotoxicity, in this sec-
tion we focus on growing evidence indicating that
NAFLD can sensitise patients to DILI.

There are increasing clinical reports suggesting
that patients suffering from obesity and NAFLD
may be more susceptible to DILI.55,227–231 This
paradigm implies 2 possible scenarios. First, drugs
such as APAP (in the context of overdose), halo-
thane and isoflurane may cause more severe and/
or more frequent ALF in individuals with
NAFLD.228,232 Second, pharmaceuticals such as iri-
notecan, methotrexate and tamoxifen seem to be
more hepatotoxic in obese patients than in lean
individuals by triggering the transition from stea-
tosis to NASH, and/or worsening pre-existing
steatosis, necroinflammation and fibrosis.55,233,234

In spite of these emerging and distinct clinical
situations, well-designed prospective clinical
studies are urgently needed in order to identify the
full repertoire of drugs which pose a particular risk
in patients with NAFLD.55,233 However, detection of
Journal of Hepatology 2021 vol. 75 j 9
DILI using the standard clinico-biological parame-
ters could be difficult in patients with NASH,235

while not all drugs necessarily pose a specific risk
in NAFLD. For instance, hepatotoxicity induced by
amiodarone and statins do not seem to be more
frequent in patients with NAFLD.233 Interestingly,
the cytotoxicity induced by amiodarone, atorvas-
tatin and lovastatin was not greater in a cellular
model of NAFLD using the HepaRG cell line.236 In
contrast, the antiretroviral ritonavir was found to
be less cytotoxic in this model, although clinical
investigations are warranted to determine whether
this observation can be confirmed in patients.

Except for a few drugs,55,233 the mechanisms
whereby some drugs are more hepatotoxic in
NAFLD are complex and not well understood. Some
drugs could induce more severe ALF in individuals
with NAFLD because this disease is associated with
altered activity of CYPs and other xenobiotic-
metabolising enzymes (XMEs), which can in-
crease the generation of toxic metabolites or
conversely impair detoxification pathways.55,228,233

For instance, human NAFLD is often associated
with increased CYP2E1 activity and reduced
CYP3A4 activity and also with higher glucuronide
formation for some drugs such as APAP and lor-
azepam.237–239 For drugs and other xenobiotics
triggering the transition from simple fatty liver to
NASH, or aggravating pre-existing liver lesions,
experimental data strongly suggest a significant
role for mitochondrial dysfunction, ER stress and
ROS overproduction.55,233,240

In this context, preclinical models of NAFLD can
be useful for distinct purposes. First, they can be
used to confirm the specific toxicity of some
pharmaceuticals in NAFLD, which might have been
revealed during clinical investigations. Second,
these experimental models can help to decipher
the mechanisms whereby some drugs or other
xenobiotics are more hepatotoxic in this liver dis-
ease. Lastly, these models might also be useful in
preclinical safety studies, in particular for drug
candidates that would be essentially prescribed in
obese patients.

Numerous rodent models of NAFLD have been
useful to study drug-induced hepatotoxici-
ty.233,241,242 However, it should be stressed that
some of these models do not fully tally with the
clinical situation, particularly in the context of
NAFLD. For instance, leptin deficiency in genetically
obese and diabetic ob/ob mice curbs the develop-
ment of liver fibrosis,243 and thus these mice are
not appropriate to determine whether drugs are
able to aggravate liver fibrosis;233 whilst ob/ob
mice do not present augmented hepatic CYP2E1
activity, which limits liver injury induced by
APAP.228,244 Moreover, mice fed a methionine
choline-deficient diet consistently lose weight and
can develop hypoglycaemia.233,245 Finally, it should
be mentioned that numerous types of energy-
dense diets can be used to induce obesity
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associated with simple fatty liver or NASH, but the
degree of the different histopathological lesions
can greatly vary between diets.241,242,246 However,
the extent of obesity and related metabolic disor-
ders (e.g. insulin resistance and diabetes) as well as
the severity of some liver lesions (e.g. steatosis and
necroinflammation) are likely to influence the ac-
tivity of different XMEs such as CYPs and
UGTs.55,239 Finally, zebrafish larvae fed lipid-
enriched diets can also be used to evaluate hepa-
totoxicity in obesity and NAFLD. Although to the
best of our knowledge this model has not been
used for pharmaceuticals, recent investigations
showed that obese zebrafish larvae were more
sensitive to the hepatic toxicity of a mixture of
benzo[a]pyrene and ethanol.247 Interestingly, re-
sults collected in this zebrafish model were
reproduced in a cellular model of NAFLD progres-
sion, as mentioned below.247

As with in vivomodels, numerous in vitro NAFLD
models have been established for various research
purposes, particularly in the field of pharmacology
and toxicology.233,248–251 These cellular models of
NAFLD are based on different types of cells (i.e.
primary hepatocytes or cell lines, such as HuH7,
HepG2, and HepaRG), fatty acids (used individually
or in mixture), and duration of lipid overload (from
a few hours to 15 days).233,248–251 Interestingly,
human iPSC-derived hepatocytes have recently
been used in both 2D and 3D format to model
NAFLD.252 Another promising approach is the use
of human iPSC-derived hepatocytes from patients
with NAFLD including NASH, which might repro-
duce the inter-individual differences classically
observed in DILI.253,254 However, some experi-
mental conditions might not be optimal for deter-
mining whether a drug is more toxic in the setting
of NAFLD. For instance, the human hepatoma cell
lines HuH7 and HepG2 do not have the full reper-
toire of XMEs,255,256 whereas rodent hepatocytes
do not have the same profile of drug metabolism as
human hepatocytes, as discussed in the section
‘Towards capturing hepatocellular complexity’. In
addition, numerous studies have been performed
in cells incubated with fatty acids for only a short
duration of time (from a few hours to 2 or 3 days).
Thus effects of prolonged or repeat-dose xenobiotic
exposure are excluded, while this period may not
be long enough to induce NAFLD-related alter-
ations of XME expression and activity.233

Recently, a cellular model of NAFLD was estab-
lished using differentiated and metabolically
competent HepaRG cells incubated with 100 lM
stearic acid for 7 days257 (or with a mixture of
stearic and oleic acids [150 lM each] for 14
days236,240,247). Notably, these in vitro models of
NAFLD were characterised by enhanced CYP2E1
activity and reduced CY3A4 activity, thus repro-
ducing what has been consistently observed in
clinical studies, as previously mentioned. Of note,
incubation of HepaRG cells with 100 lM stearic
Journal o
acid for 48 hours did not change CYP2E1 and
CYP3A4 activities,257 thus underscoring the
importance of the duration of fatty acid exposure.
Interestingly, a comparison by gene set enrichment
analysis between the transcriptome GSE102536
dataset obtained in lipid-laden HepaRG cells247 and
the GSE61260 dataset obtained from biopsies of
obese patients with fatty liver258 revealed a highly
significant correlation (p <0.001) concerning the
upregulated genes (B. Fromenty and S. Bucher,
unpublished data). These models disclosed higher
cytotoxicity of APAP,257 troglitazone236 and a
mixture of benzo[a]pyrene and ethanol240,247 in
NAFLD cells compared with the non-steatotic cells.
Regarding APAP toxicity,257 these in vitro in-
vestigations confirmed previous studies carried out
in obese mice and humans with NAFLD.228,232,244

Furthermore, mechanistic investigations showed
that higher CYP2E1 activity in lipid-loaded HepaRG
cells was, at least in part, responsible for higher
APAP cytotoxicity.257 Finally, it would be inter-
esting to add cholesterol to fat-laden HepaRG cells
in order to determine whether this lipid derivative
could further enhance APAP cytotoxicity. Indeed,
feeding wild-type mice a cholesterol-enriched diet
(0.5%), which induces microvesicular steatosis and
cholesterol accumulation in mitochondria, sensi-
tises to APAP hepatotoxicity without fasting (JCFC
and CGR, unpublished observations). As for NAFLD,
there is evidence that older people might be at risk
of DILI, at least with specific pharmaceuticals such
as antimicrobials and cardiovascular agents.259,260

In addition to the role of some specific medica-
tions, polypharmacy is deemed to be a risk factor
for DILI in old age, although this does not seem to
be related to impaired intrinsic drug meta-
bolism.259–261 Although old mice can be used as a
preclinical model,262 cellular models of hepatocyte
ageing might also be useful. For instance, by using
the senescence b-galactosidase assay, the occur-
rence of an ageing process has been observed in
long-term confluent HepaRG cells,263 and cellular
senescence favours lipid deposition in the
liver.264,265 By using appropriate pre-clinical
models, it would thus be interesting to determine
whether NAFLD and ageing further increase the
risk of DILI with some drugs.

Application of emerging mechanisms and
approaches to human DILI
In the supplementary information, we select and
briefly highlight a few examples of how some of
the emerging mechanisms and approaches
described above could be of value in human DILI.

Conclusions and future perspectives
Early pre-clinical identification of the toxic events
leading to DILI is the primary goal and driver of
major efforts in the pharmaceutical industry and
academia to develop more realistic human-based
models for DILI prediction. DILI represents an
f Hepatology 2021 vol. 75 j 935–959 951
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unexpected liver injury caused by either prescribed
or over-the counter drugs, which entails damage to
hepatocytes as well as NPCs. Severe DILI is a serious
clinical outcome and a major cause of ALF requiring
liver transplantation. Besides its clinical relevance,
DILI can be a primary reason for drug withdrawal
from the market. Unlike intrinsic DILI, which is
predictable, reproducible, and dose-dependent,
iDILI is unpredictable, not strictly dose-
dependent, and although rare it accounts for 10%
to 15% of ALF cases in the United States. Due to its
central role in biotransformation (metabolism) of
xenobiotics entering the gastrointestinal tract, the
liver is the main target of DILI and hepatocyte cell
death stands as the major manifestation of DILI.
The mechanisms inflicting hepatocellular demise
in response to drugs are still not fully understood –

representing a multifactorial process wherein
activation of an immune response often contrib-
utes to overall death of hepatocytes and the spread
of the damage to other NPCs. The limitation of our
understanding of the underlying mechanisms and
interplay between different players involved in DILI
have hampered the delineation of effective thera-
pies and the ability to accurately predict pre-
clinical DILI development. This reflects the use of
inadequate models used for DILI research. Indeed,
unfortunately most experimental models currently
used for DILI mechanistic studies do not adequately
reflect the complexity of human biology and barely
reproduce the features of DILI described in
humans, highlighting the need to establish
improved models for preclinical evaluation of DILI.
Ideally these improved approaches should include
experimental models that exhibit a higher
concordance with human outcome through intro-
duction of biological variation and complexity,
leading to delineation of mechanistic and predic-
tive signals that are relevant to DILI. In parallel, this
paradigm shift in approaches to DILI must embrace
a technological ‘bioconvergence’ encompassing
multidisciplinary approaches across biology, engi-
neering and medicine, such as coupling non-
invasive imaging, multi-omics approaches, and
conceptual frameworks (AOP) to organise modes
and mechanisms of action, combined with micro-
physiological and other emerging 2D-3D multicel-
lular platforms. Stepwise integration of appropriate
human hepatic (acinar unit) cell types within
microphysiological devices, as well as in novel 2D-
3D platforms, and experimental decoupling of the
acinar unit could be an important step in
enhancing our understanding of DILI pathophysi-
ology from single-cell to organ level – to solve the
prediction dilemma in drug development. In prin-
ciple, this approach may begin to discern what
factors are lacking from current models to improve
model relevance for DILI and thus better unravel
mechanisms leading to DILI.

Bioconvergence offers a rich landscape for
innovation, and includes the development of
Journal of Hepatology 2021 vol. 75 j 9
highly differentiated iPSC-derived hepatic tissues,
which are accepted by regulatory agencies and the
pharmaceutical industry because of the potential of
this cell resource to populate OoC models and to
develop multi-cellular organotypic 3D liver models
with personalised medicine capability. Impor-
tantly, the use of chimeric mice with humanised
livers and CYP biotransformation potential could
offer transformational insights into specific aspects
of DILI such as immune signals – and as a
comparator system with next generation human-
based in vitro models. This range of integrative
approaches complemented with the development
of state-of-the art non-invasive imaging methods
for screening 2D-3D models within a flexible reg-
ulatory acceptance framework could improve the
prediction of DILI and even iDILI with the possi-
bility of identifying new targets for intervention
and treatment.
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