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Abstract: In this paper, we extend the correspondence between Bayesian
estimation and optimal smoothing in a Reproducing Kernel Hilbert Space
(RKHS) by adding convex constraints to the problem. Through a sequence
of approximating Hilbertian subspaces and a discretized model, we prove
that the Mazimum a posteriori (MAP) of the posterior distribution is ex-
actly the optimal constrained smoothing function in the RKHS. This paper
can be read as a generalization of the paper [14], where it is proved that
the optimal smoothing solution is the mean of the posterior distribution.
Synthetic and real data studies confirm the correspondence established in
this paper.
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00X00.
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1. Introduction

Gaussian processes (GPs) are a powerful type of Bayesian model that is widely
used in the machine learning community for nonparametric function estimation
[26]. The flexibility of the covariance functions of GPs allows to incorporate prior
assumptions, such as regularity, stationarity, sparsity, and constraints related to
derivative information [10, 26]. Incorporating shape constraints into GPs like
monotonicity, convexity and boundedness improves significantly the prediction
accuracy and provides more realistic credible intervals [12, 21, 19, 17, 15, 33,
28, 16]. Recently, the authors in [31] conducted a survey of various methods for
incorporating shape constraints into GPs.

In this paper, the finite-dimensional GP approximation originally proposed
in [21] is considered. It is able to incorporate various shape constraints, such as
monotonicity, boundedness, and convexity, in the entire domain. This approach
has been considered in many recent papers [19, 18, 27, 33] and has been tested
on real-world applications in different domains [7, 8, 9, 32]. The authors in
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[18] have extended this approach to address multiple constraints. In the present
paper, the asymptotic behavior of this approach has been investigated. The
generalization of the Kimeldorf-Wahba correspondence between Bayesian esti-
mation and optimal smoothing [14] has been established. We prove that the
maximum a posteriori (MAP) estimate converges to the constrained optimal
smooth function in the reproducing kernel Hilbert space (RKHS).

The paper is organized as follows: in Section 2, we briefly review GP regres-
sion. In Section 3, we present the framework of the correspondence. Section 4 is
devoted to constructing the finite-dimensional GP approximation. In Section 5,
the asymptotic analysis of the proposed method is investigated and the cor-
respondence between Bayesian estimation and constrained optimal smoothing
is established. Section 6 is devoted to numerical experiments, where the per-
formance of the MAP estimate in terms of prediction accuracy is highlighted.
Finally, in Section 7, a real data study is presented.

2. Gaussian process review

A GP namely Y is characterized by its mean function p and covariance function
k,ie.,Y ~ GP(u, k). It can be written as follows:

Y()=pu()+U(),
where U is a zero-mean GP with covariance function k, i.e., U ~ GP(0, k),
k() = Cov(U(-),U(-)) = E[UCU(C],

where Cov and E denote respectively the covariance and the expectation. The
following regression problem is considered

iid.
yi = u(@;) + e, € = N(0,0000), (1)

where v is an underlying function, {(x;,v;), ¢ = 1,...,n} is a dataset of size
n, with ; € R? and y; € R and ¢; is an additive and independent Gaussian
noise with constant noise variance o nome We denote by y = [y1,...,yn] the
vector of data and by X = [z1,...,x,]" the n x d matrix of designs, where d
represents the dimension. A GP prior on the underlying function u is assumed.

Conditionally on y = [y1,...,¥s] ", the conditional process is still a GP [14, 26]

{UC) 1UX) + €=y}~ GP(a(), k()

where € = [e1,...,€,] " is a zero-mean Gaussian vector N'(0,,, 02 ;.. I,,), with I,
the n x n identity matrix, 0,, = [0,...,0]" the n-dimensional zero vector, and
where @ and k are respectively the conditional mean and covariance functions

() =E[UC) |UX) +e=y] =k(-.X)T (k(X, 2ieln) Y (2)
('7 ) = k(? ) - k( X) (k(x X) + Un01seIn) k( X)

<

I
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TABLE 1
Some popular covariance functions with their degree of smoothness [26] in one-dimensional
case, i.e., r,x’ €R.

Name Expression Class
Squared Exponential exp (, (1;912/)2 oo
Matérn v = 3/2 (1 + \/5\959*1'|> exp <_ ﬁlzfz'\) ol
Exponential exp <, @) o

Let us recall that k(X, X) is the covariance matrix of U(X) € R™ of dimension
nxmn and k(-, X) is the vector of covariance between U(-) and U (X) of dimension
n.

Table 1 shows some popular covariance functions used in the machine learn-
ing community [26], ordered by decreasing degree of smoothness, where 6 is
the correlation length parameter. These covariance functions are used in the
numerical experiments of this paper.

3. Framework of the correspondence

Consider X as a nonempty set in R?, where d > 1, and let E be a Banach space
of functions from X to R. The smoothing problem is to estimate a function u
defined on X that satisfies a priori information and a set of n noisy observations
y; at points x; € X. In the Bayesian framework, Kimeldorf and Wahba in [14],
chose the prior information to be a zero-mean GP (U(x))gzex, defined by its
covariance function [26]

k(z,z') = Cov (U(z),U(z')) = E[U(x)U(z')], Va,z’'e X. (3)

The Bayesian estimator @ of u is the mean of the posterior distribution of the
GP (U(x)) x> conditionally on the given data

i(@) = B[U(x) | UX) + e = y]. (4)

According to Section 2, the Bayesian estimation (4) has the following explicit
expression [14, 26],

a(x) = k(z)" (K + UfmiseInf1 y, z€X,
where k(z) = [k(x,21),.. .,k(:ua:n)]—r is the vector of covariance between

U(x) and U(X), and K = k (X, X) is the covariance matrix of U(X) of dimension
n X n.

For the unconstrained case (i.e., without any additional constraints on u),
Kimeldorf and Wahba, in the late sixties, highlighted the correspondence be-
tween the Bayesian estimator @, defined by Equation (4), and the following
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smoothing optimization problem [14]:

n

min [l + —— > (uls) ~ i), (5)

noise ;—1

where H is the RKHS associated with the GP (U(x))zex, and opoise is the
constant noise standard deviation.

Lemma 3.1 (Kimeldorf-Wahba correspondence [14]). If U is a GP with the
corresponding RKHS H, then

n

- . 1 2
u = argmin JullF + 2 Z (w(i) — i)™,

noise ;_—1

where u(x) is the Bayesian estimator (4), i.e., the mean of the posterior distri-

bution {U(x) | UX) + € = y}.

The notion of RKHS makes it possible to build a bridge between the de-
terministic world of optimization, Equation (5), and the probabilistic world of
estimation, Equation (4). In 1950, Aronszajn published the theory of repro-
ducing kernels [1], and in 1959, Parzen published ’Statistical inference on time
series by Hilbert space methods’ [25]. Later, Schwartz extended the formalism
to topological spaces [29]. In the 1970s, Kimeldorf and Wahba popularized the
use of reproducing kernel Hilbert spaces (RKHS) as a tool for providing efficient
computations in Bayesian estimations [14, 4]. The GP (U(«))zex is represented
by the Hilbert space spanned by the kernel k, which is defined by its covariance
function (3). In the unconstrained case, the mean a posteriori (mAP) estimate,
denoted as @, corresponds to the maximum a posteriori (MAP) estimate. This
result is confirmed by the numerical example presented in Section 4.3.

We now consider the case where the underlying function w is known to sat-
isfy additional information, such as monotonicity, boundedness, or convexity
constraints [19, 21]. This can be expressed as u € C, where C represents the
set of functions satisfying the constraints. We can consider the mean of the
posterior distribution,

EU(®)|U e C,UX)+e=1y] (6)

as in the unconstrained case. However, this conditional expectation (6) does
not admit an explicit formula in general. The difficulty of making inference for
the distribution of the GP U conditioned on the given data {U(X) + € = y}
and the constraints {U € C} lies in the fact that this conditional distribution
is a truncated multivariate normal distribution in an infinite-dimensional linear
space. As such, it cannot be expressed by a probability density function (pdf)
associated with a Lebesgue equivalent measure.

To overcome this difficulty, we use the idea from approximation theory of
approaching the original GP U with a finite-dimensional GP Uy that tends
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to U in a certain sense as N tends to infinity (see [21] for more details). It
makes sense to consider the density of the posterior distribution of the finite-
dimensional GP

{Un(x) | Un € C,Un(X) + € =y} (7)

with respect to the N-dimensional Lebesgue measure. We define its MAP esti-
mator as Uy, whose limit % can be considered as an estimator of u. In Section 5,
we prove that the MAP estimator uy of the finite-dimensional posterior distribu-
tion (7) is also the solution of the following discretized constrained optimization
problem

1 n
min un||? —_ un(x;) — y; 27 8
uNEHNﬂC'H NHHN * 1210ise 1221( N( l) yl) ( )
where Hy is the RKHS associated with the GP approximation Uy and C' is
the set of functions verifying the constraints. Moreover, we prove that Uy is
convergent to u solution of the following optimization problem

n

, 1 2
min_[Julfy + —— > () - )°.

ueHNC noise 1

This result can be seen as a generalization of the Kimeldorf-Wahba correspon-
dence (refer to Lemma 3.1) for constrained cases involving Bayesian estimation
and optimal smoothing.

In what follows, for simplicity, we consider X to be the unit interval [0, 1] in
R, and we take F to be the linear space of real-valued continuous functions on
[0,1] equipped with the supremum norm, i.e., £ = C([0,1],R). The constraints
are represented by a closed convex set C' in F.

4. Constrained Gaussian processes
4.1. Constrained Gaussian process approximation

In this section, the parent GP U is approximated by a finite-dimensional GP
Up. To define Uy, a partition Ay of the interval X = [0, 1] is required:

Ay 0=t1 <...<ty =1, (9)

such that 0y = max {|t;41 —t;], j=1,...,N — 1} tends to zero as N tends to
infinity. We assume
Ay C AN+1- (Hl)

This assumption is not essential. It facilitates the proof of the convergence. By
using the partition (9), we approximate the GP U with the following finite-
dimensional GP [21, 19]:

Un(z) := ZU(%‘)%(!E) = Zﬁj%(x)a r € X, (10)



/Constrained optimal smoothing and Bayesian estimation 6
where [p1,...,¢n]" are the so-called hat functions, which are the basis of the
piecewise linear function associated with the partition, and &; = U(t;) for any
Jj€1,...,N. As far as we know, the basis sequence {,} originally proposed in
[21] possesses several attractive properties, which are not necessarily shared by
other bases, such as Bernstein polynomials [11], regression splines [6, 23], and
restricted splines [30]. The hat functions are defined as follows:

wﬂ@w(m %>, zeX, (11)
on

for any j = 1,..., N, where o(z) = (1 — [#|)1|_y 1)(2) is the hat function on
[-1,1]. Under Equation (10), the coefficients can be interpreted as the values
of the GP (U(x))zex at the discretization points {t;}. As U is a zero-mean
GP, the vector & := [U(t1),...,U(ty)]" is also zero-mean and Gaussian with a
covariance matrix I'y:

'y = COV(E) = (COV(U(tj)v U(té)))1§j,g§jv = (k(tj’té))1§j7g§Na

where we recall that k is the covariance function of the original GP U. These
basis functions (11) have an interesting property: various shape constraints are
equivalent to linear restrictions on the coefficient vector & = [£1,...,&n] . For
instance, let C' be the set of functions that satisfy inequality constraints, such
as boundedness, monotonicity, or convexity

Cy:={f €CUX,R)s.t. l, < f(x) <up, Yz € X}
C.:= {f € C°(X,R) s.t. f(y;:i(x) < f(zi:i(y), Ve<y<ze X}
(12)
where [, and uy, are the lower and upper bounds respectively (I, < up € R), and
where C%(X,R) is the set of continuous functions from X to R. Then,

UvelC & €€€ (13)

where £ is a set of linear constraints on the coefficients & in RY. According to
(12), we get

E:={2€R": <z <w, ¥j=1,.. N}
Em={2€RN: 21 <z, Vj=2,...,N}
25— Zj-1

&= = (14)
E. = 2 e RN, 2Tl J72§ ,
tj—l — tj_g tj — tj—l

w:anqN}

which corresponds to boundedness, monotonicity, and convexity constraints re-
spectively. Let us mention that the above linear inequality constraints on the
coefficients (14) can be written in a matrix form as follows:

{€eRY st L < AE<u},

where A € R™*V is the matrix of constraints, and I and wu are respectively the
lower and upper bounds vectors. For the boundedness constraints £ € &, the
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matrix of constraints A is the N x N identity matrix I, and the lower and
upper bounds vectors are I = [l,...,l;]T € RY and w = [up,...,up]" € RY
respectively. In that case, sampling the GP approximation Uy under linear
inequality constraints {Ux € C} is equivalent to the simulation of the Gaussian
vector € ~ N(Oy,T'y) such that I < A€ < wu [20, 24].

4.2. Constrained Gaussian process approxrimation with noisy
observations

In this section, the GP approximation (10) with both noisy observations and
linear inequality constraints is considered

al Un(X)+e=1y (noisy observations)

B N " _ X \ ),
Un(z) = Zlgﬂ piz),z € X st { UyeC (inequality constraints),
i=

where € is an additive and independent zero-mean Gaussian vector with noise
covariance matrix o2, I,,. The noisy observations can be written in a matrix
form as follows:

A +e=y,

where A is the n x N matrix defined as A;; := ¢;(x;), for ¢ = 1,...,n and
j=1,...,N. Based on the equivalence shown in (13), we can obtain the con-
ditional distribution of Uy under both noisy observations {Uy(X) + € = y}
and constraints {Ux € C} from the conditional distribution of the Gaussian
coefficients & given {A€ + e =y} and {£ € £}

E~N(ON,Ty) sit. { ?g ;6 ¥ (15)

The sampling procedure is summarized as follows: under only noisy observations,
the conditional distribution of £ is a multivariate normal (MVN) [22, 26]

{£ | A€ +e= y} NN(“72), where,

r = (‘AFN)T(‘AFN‘AT + UioiseIn)_ly’
Y = I'y—(ATN) (ATNAT +02,, 1,) 'ATy.

Thus, the posterior distribution (15) is the following truncated MVN
{16 Al +e=y}t ~Nr(p, B, 1L u),

where N7 (m, M, a,b) is the MVN distribution with mean m and covariance
matrix M truncated between the lower bound a and upper bound b. In this
paper, the efficient Hamiltonian Monte Carlo (HMC) sampler [24] implemented
in the R package tmg is used. Now, we can define the MAP estimate of the
GP approximation (10). Before defining the MAP estimate, we compute the
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posterior mode p* of the posterior distribution (15), which corresponds to the
maximum of the posterior pdf,

ut o= argmﬁin{&TFNE ’A£+e=y,l§/\€§u}~ (16)

This is a quadratic optimization problem under linear inequality constraints
[5, 13]. In this paper, the function solve.QP of the R package quadprog is used
to compute p* in (16).

Definition 4.1 (MAP estimate). The Maximum a posterior (MAP) estimate of
Uy conditionally on the inequality constraints and noisy observations is defined
as

N
un () = Zu}fs@j(ﬂr) =)'y, zeX, (17)

where p* € RY is the posterior mode defined in (16) and p(z) = [¢1(z),...,on(2)]".

Note that the MAP estimate is independent of the sampling procedure and
only depends on a quadratic optimization problem with linear inequality con-
straints (16).

Definition 4.2 (mAP estimate). The mean a posteriori (mAP) estimate of Uy
conditionally on the inequality constraints and noisy observations is defined as

an(z) == E[Un(z) | Un(X) + € =y,Uy € C] = p() " i, (18)

where p.:=E[€ | AE + € = y,l < A€ < u] is the posterior mean which is com-
puted from simulations.

In the next section, the behavior of these two estimates (MAP and mAP) is
investigated. Additionally, a comparison in terms of mean squared prediction
error (MSPE) is given. The MAP estimate produces better results in terms of
MSPE compared to the mAP estimate.

4.3. Motivating example

In this section, we examine the behavior of the MAP and mAP estimates using
a bounded function defined on X = [0, 1], as follows

_ [ cos(m(2z+ 1)) ifz€(0,2/3];
filz) = { 0.5 ( ° ) otherwise.

This is a challenging situation because the true function, which is bounded
between —1 and 0.5, is flat in the region [2/3,1] and attains the upper bound
constraint.

Figure 1 shows the GP approach (10) with boundedness constraints. We used
the efficient HMC sampler [24] to sample from the posterior distribution of the
basis coefficients {{;} in (15). We fix N = |n/8], where n is the number of
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training sample. We use the Matérn covariance function with regularity param-
eter v = 5/2 (see Table 1), and correlation length parameter 6 fixed at 0.4.
The black stars represent the 100 training data points generated randomly from
(1) with true function f; and a true noise variance o2, = 0.4% The black
solid curve represents the true bounded function fi, while the red dashed curve
corresponds to the MAP estimate 4y (17), and the blue dashed-dotted curve
corresponds to the mAP estimate 4y (18). The black dashed horizontal lines
represent the lower and upper bound constraints. The gray shaded area repre-
sents the 95% pointwise confidence interval. Both the mAP and MAP estimates
satisfy the boundedness constraints over the entire domain. In the left panel, the
MAP estimate fits the model better, especially where the true function is close
to the lower or upper bounds, whereas the mAP estimate fails to capture the
flat region. To rigorously compare the two estimates, we put a prior on the cor-
relation length parameter 6 ~ 4(0.3,1), and generate a dataset of size n = 500
from (1) using the true function f; and a true standard deviation opeise = 0.4.
They are randomly split into a training set of size 300 and a testing set of size
200. We conduct numerical studies on 1,000 replicates, obtaining an average
MSPE of 7.41 x 1072 (standard deviation 5.19 x 1073) for the MAP estimate
and 9.19 x 1072 (standard deviation 5.03 x 10~3) for the mAP estimate.

In the right panel, we relaxed the boundedness constraints from [—1,0.5] to
[—1.5,1], a range where the constraints do not impact the model. As expected,
the MAP and mAP estimates coincide, confirming that the mAP estimate for
the unconstrained case is also the MAP.

5. Main results: asymptotic analysis

In this section, we investigate the asymptotic behavior of model (10) and es-
tablish the convergence of the MAP estimator 4y to the constrained optimal
smoothing solution of problem (P) through rigorous analysis. The covariance
function of the GP approximation Uy can be computed as follows:

N
Ve € X, kn(e,a)) = 3 ki to)e;@)ei(@’) = o(z) Tne(),
je=1

where o(z) = [p1(2),...,on(x)]", for any z € X. The GP approximation
Uy induces a RKHS Hpy which is the classical subspace of piecewise linear
continuous functions associated to the partition Ay:

Hy :=Span{y;, j=1,...,N}.

It is equipped with the following scalar product: for all uy,vy € Hy

T —1
<UN,UN>HN = CuNFN Cuns

where ¢f = [f(t1),..., F(tn)]". This scalar product induces the following norm

lunllry = cun TN Cun-
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In the following proposition, we prove that Hy is a RKHS with kernel ky
associated with Uy, and is a Hilbertian subspace of E.

Lemma 5.1 (Characterization of Hy). As in Theorem 1 of [3] and Lemma 2
of [2], Hy is a RKHS with kernel ky associated with Uy, and is a Hilbertian
subspace of E, that is, for any hy € Hy,

Ianlle < dlhnllmy, (19)

where d is a constant independent of N.
Proof. The proof is given in [2], Lemma 2, p. 1592. O
The posterior pdf of {Ux | Uy € C,Un(X) + € =y} is of the form

_ 1
L}])VL;S(UN) = VNl]luNEHNﬂC €xXp <_2JN(UN)> )

where V is a normalizing constant and

n

Tn(un) = lunl + —— > (un (@) — 50)?.

noise ;—1

Then, the MAP estimator uy (17) as the mode of the posterior distribution
{Uny | Unv € C,Un(X) + € = y} is well defined and is the solution of the
discretized optimization problem

n

1
. 9 )
+ — E D — a2y
uz\fg}{lgﬂc ||UN||HN ﬁoise i:1(uN(x1) yz) )
which can be rewritten as
i J . P
UNg}'}gﬂC N(UN) ( N)

The problem (Py) can be seen as the discretization of the constrained optimal
smoothing

uér}}%ch(u), where (P)
1 n
T = [l + 5 — > () - )?.
noise ;—1

Before showing the existence and the uniqueness of problems (Py) and (P),
let us give the following two assumptions.

1. Assume that
mn(C) C C, (H2)

where 7w is the classical piecewise linear interpolation projection defined
from E onto Hy by

VIeE, wn(f)=)_ f(t)e;
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Hypothesis (H2) is clearly fulfilled in the cases treated in this paper
(boundedness and monotonicity constraints).
2. The set C'is a closed convex set of E such that

HnC #0. (H3)

This assumption is important, in particular, in the proof of the existence
of problems (P) and (Py).

Proposition 1 (Uniqueness of problem (Py)). Under hypotheses (H2) and (H3),
the problem (Py) has a unique solution denoted Uy .

Proof. Jp is strongly convex, Fréchet differentiable and

lim JIn(vn) = F00.
H“NHHN — 400
Let ¢ € H N C, then, thanks to hypothesis (H2), mn(g) € Hy N C. So that
Hy N C is a nonempty closed convex set of Hy . O

Proposition 2 (Uniqueness of problem (P)). Under (H3), the problem (P) has
a unique solution, denoted by u.

Proof. Tt is easy to see that J is Fréchet differentiable and
J(v) = +o0.

lvll g —+o0
Moreover, J is strongly convex: for all u,v € H and ¢t € [0, 1],
J(tu+ (1 —t)w) < tJ(u) + (1 —t)J(v) —t(1 —t)|lu —v|/%.
As H N C is a nonempty closed convex set, we have the result. O

Now, we are ready to give the main result of this paper which is represented
by the following important theorem.

Theorem 5.2 (Convergence to the constrained optimal smoothing). Under
hypotheses (H1) and (H2), we have the following result: If u is the solution of
problem (P), then
ﬁN — U in E,
N—~+oco
where we recall that E is the usual Banach space of continuous functions on
X =[0,1].

Before showing the proof of Theorem 5.2, we give some intermediate results
represented by series of propositions with their proofs. They are needed to show
that, if uy is the solution of (Py) and @ is the solution of (P), then in E,

This means that the MAP estimate using the proposed approach, iy, converges
uniformly to the constrained optimal smoothing solution, @, of problem (P).
The proof is highly technical and involves approximation theory and functional
analysis, including weak convergence and compactness.
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Proposition 3 (Stability of 7). For any h € H, we have

I () ey < ([ All & (20)

Moreover, H is characterized by
H= {h €EE : st;fp”mv(h)HHN < Jroo} (21)
and, for all h € H, by
Bl = Jim (B By (22)

Proof. See [2], Theorem 3.1, p. 1587. O
Let us define the linear operator py : Hy — H defined by

N
Yoy € Hy, pn(vn) = Zejk(-,tj), (23)
=1

where © = [0y, .. .,GN]T , solves 'O = ¢y .

Proposition 4 (Isometric property of py and convergence property). For all
UN € HN,

lox ()7 = €0 TN Con- (24)

The operator py is an isometry from Hy into H, i.e.

Yoy € Hy, o (on)lE = ol (25)
Vhe H,  |pn(mn(h)) =hllg — 0. (26)
N—+oco
Proof. The proof is detailed in [3], Propositions 3 and 5. O

Proposition 5. We have

sup [|pn (b (7)) = k(@) |l — 0.
reX — 400

Proof. The proof is given in [3], Lemma 5. O
We will prove two intermediate results leading to the convergence result.
Proposition 6. Under hypotheses (H1), (H2) and (H3), we get

i In (@) = J(@);

lim  Jy(iy) = J(@).

N—4o0
The proof of Proposition 6 is deferred to the Appendix.

Proposition 7. We have the following result

Jlim (@ = Al = 0. (27)
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Proof. As Jy is strongly convex and differentiable, then
In(mn (@) = In(an) > (Jy(@n), 7n (@) = n)uy + 7n (@) =yl %, ,
where J}, denotes the derivative of Jy. As mny () € HyNC and Uy solves (Py),
(Jn(@n), 75 (@) — Un)ay 20,

so that, |7y (@) — un|%, < Jn(mn (@) — Jy(@y). The result in (27) comes
from the application of Proposition 6. O

Proof of Theorem 5.2. We have
[un —tlle < llux —7n(@)e + 7y (@) — ul 5.
We know from approximation theory in the Banach space E that

Iy @ — s — 0. (28)

As Hy is a Hilbertian subspace of E, see Equation (19),
I (@) = Un e < cllrn () — Uy ||y -

Proposition 7 gives the result. O

6. Performance behavior of the MAP

In this section the correspondence established in the previous section between
the MAP estimate and the optimal constrained smoothing function solution
of problem (P) is illustrated. Additionally, the performance of the proposed
approach (10) is investigated and the advantage of the MAP estimate iy (17)
over the mAP estimate @y (18) in terms of prediction accuracy is highlighted.
We consider the case where the function f satisfies monotonicity (nondecreasing)
constraints. In this case, the associated convex set is given by :

C={fec(0,1]) : f(z) < f(@'),Va <a'}.

The approximately flat function used in [33] is considered:

100
fo(x) = V2> 70T sin(0) cos(n(€ — 0.5)(1 - z)), Vo e[0,1].  (29)

£=1

This is a challenging situation because the real function fs is slightly flat on
[0.7,1] and it decreases in certain regions, which allows us to evaluate the per-
formance of the proposed model under slight model misspecification. The aim
is to investigate the behavior of both the MAP and mAP estimates in terms of
prediction accuracy.
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In Figure 2, the GP approach developed in this paper (10) has been used
to assess the prediction accuracy of the function fo defined in (29). We fix
N = |n/8], where n is the number of training samples. We use the Matérn
covariance function with regularity parameter v = 3/2 (Table 1), and correlation
length parameter 6 fixed at 0.4. The efficient HMC sampler from the R package
tmg was used to sample from the posterior distribution of the basis coefficients
{&} (15). We generate 500 pairs of responses from (1) using the true function
f2 and a true noise variance o2 ;.. = 0.4%. The dataset is divided randomly into
training samples of size 300 and testing samples of size 200. The black stars in
Figure 2 represent the 300 training samples. The black curve corresponds to the
true function, the red dashed curve represents the MAP estimate, and the blue
dashed-dotted curve corresponds to the mAP estimate. The mAP estimate ay
(18) was computed using 5,000 samples of the posterior distribution obtained
with the efficient HMC sampler. We observe that the posterior distribution and
the mAP estimate fail to capture the flat region, contrary to the MAP estimate.
This is due to the phenomenon of mass-shifting, which is well described in [33].

To rigorously compare the MAP and mAP estimates in terms of prediction
accuracy, we propose to put a prior on the correlation length parameter 6 ~
U(0.3,1). We generate a dataset of size 500 from (1) using the true function fo
and a true noise variance o2 ;. = 0.4% and randomly split it into a training set
of size 300 and a testing set of size 200. When using the MAP estimate, we get
an average MSPE over 1,000 replicates equal to 4.01 x 1072 ( standard deviation
1.45 x 107%), and when using the mAP estimate, we get an average MSPE over
1,000 replicates equal to 7.04 x 1073 (standard deviation 1.68 x 1073).

The monotonicity constraints in two dimensions is considered. Without loss
of generality, we suppose that X? is the unit square, i.e., X? = [0, 1]2. The real
function f is supposed monotone (nondecreasing) with respect to the two input
variables. For any o = (x1,22) and 2’ = (2}, 25) in X2, we have

x1 <] and z <zh = f(z,m0) < flah, h).

The two-dimensional GP approximation is defined as follows:

N1 N

Un(z1,22) =Y > Ulty te) oy (1)@ (@), Vl(wr,a) € X2 (30)
j=1¢=1

where go% and ? refer to the hat functions defined in the one-dimensional case
(11), and N7 and N» represent the number of discretization points (i.e., knots)
for the corresponding input sets.

In Figure 3, the two-dimensional squared exponential (SE) covariance func-
tion has been used:

(21— ) (s —2)°
k(;[,'7x/) = exp <_ 20% - 29% )
where z = (z1,22) and 2’ = (2},24) are in X? = [0,1]?, and the correlation
length parameters (6;,62) are fixed at (0.5,0.8). We set N3 = Ny = 7, resulting
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in 49 basis functions and knots. The five hundred training data points (repre-
sented by black stars) were generated using the Hypercube Latin method from
the R package lhs, as well as from the regression problem given in (1), where the
true nondecreasing function is f(z1,x2) = 3/ (1 + exp(—10z1 + 0.2)) + z2 + 2
and the true noise variance is 02 ;.. = 0.4%. In the left panel, we illustrate the
true function f together with the training data. In the middle panel, we show
the mAP estimate @y, which is computed using the HMC sampler. The right
panel presents the MAP estimate 4 alongside the training data.

To rigorously compare the accuracy of the mAP and MAP estimates in terms
of prediction, we propose to put a prior on the correlation length parameters 6,
and 03, with 6; ~2(0.1,1) and 63 ~ U(0.1,1), as well as on the noise standard
deviation oyeise; With opoise ~ U(0.5,1). We conduct a numerical experiment
with one hundred replicates, using a dataset of size n = 500 generated from
(1) with the true function f and a noise standard deviation oyeise. The dataset
is randomly split into 80% training samples and 20% testing samples. In this
case, the average MSPE is equal to 2.68 x 10~2? with standard deviation of
order 1.08 x 102 when using the MAP estimate and equal to 3.07 x 102 with
standard deviation of order 1.12 x 10~2 when using the mAP estimate.

7. Real application (age and income dataset)

In this section, the GP approach (10) has been applied to a real-life dataset
consisting of age (in years) and the logarithm of income (log.income) for 205
Canadian workers from a 1971 Canadian Census Public Use Tape. The aim is
to estimate the logarithm of income as function of age. This real-life data will
be used to demonstrate the performance of the MAP compared to the mAP
estimate in terms of prediction accuracy. Data suggests that the underlying
function is monotone nondecreasing with a flat region when age is greater than
26. The Matérn covariance function with regularity parameter v = 5/2 is used
as recommended in [26]. We compare the performance of the MAP and mAP
estimates in terms of prediction accuracy through the MSPE criterion.

Figure 4 presents performance illustrations of the proposed approach (10) for
the real-world application. We set N = [n/8] to avoid overfitting. This choice
is justified later in this section. We use 5,000 samples obtained by the efficient
HMC technique to get the mAP estimate uy (18) as well as the 95% point-
wise credible interval (gray shaded region). The red dashed curve represents
the MAP estimate, while the blue dashed-dotted curve represents the mAP
estimate. We observe that both the MAP and mAP estimates align the data
points well. However, contrary to the MAP estimate, the posterior distribution
as well as the mAP estimate fail to capture the flat region (age> 26). This is
because of the mass-shifting phenomenon that arises from the truncated MVN
sampling, as described in [33]. To compare the two estimates MAP and mAP
rigorously in terms of prediction accuracy, we propose putting a prior on the cor-
relation length parameter, 8 ~ ¢(10,50), and on the noise standard deviation,
Onoise ~ U(0.5,1). By randomly splitting the total dataset of size 205 into 80%
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training and 20% testing datasets, we obtain an average MSPE over one thou-
sand replicates of 33.84 x 1072 when using the MAP estimate and 36.82 x 1072
when using the mAP estimate.

To avoid overfitting, we analyze the value of the number of discretization
points, N, as a function of the number of samples, since its value influences
the prediction accuracy of the proposed approach (10). It is more reasonable to
choose the number of discretization points, N, to be smaller than the number of
samples. We consider the case where N € {n, |n/2], [n/4], |n/8]} to conduct a
thorough analysis on our real-world dataset application, where n represents the
number of training samples.

Figure 5 shows the 5-fold CV MSPEs repeated fifty times as a function of the
correlation length parameter, 8 € {5, 10, 20, 30,40}, with N € {n, |[n/2], |n/4], |n/8]}.
The noise standard deviation is fixed at oypise = 0.5 (resp. opeise = 1) in the left
(resp. right) panel. First, we observe that in both cases, the MSPEs drop rapidly
for small values of the correlation length parameter 6 and then increase for large
values of 6. Second, we observe that using a different number of discretization
points N provides similar MSPE values. These numerical experiments guided
us to choose, for example, N = |n/8], in this real-world application. Finally,
we mention that with the smallest standard deviation oppise, the optimal MSPE
is obtained at a smaller correlation length parameter, whereas with the largest
standard deviation, the optimal MSPE is obtained at a larger correlation length
parameter. In fact, the noise standard deviation opise can be interpreted as a
compromise between smoothness and fidelity to the data.

8. Conclusion and applications

The purpose of this paper was to address the problem of inferring a GP de-
noted U based on noisy observations and a set of constraints represented by a
closed convex set C. To do so, we first approximated the GP U with an efficient
finite-dimensional GP Upy. We then demonstrated that the Maximum a Poste-
riori (MAP) of the conditional distribution (posterior distribution) corresponds
to a constrained discrete optimal smoothing problem, which is convergent to
a constrained optimal smoothing problem in the Reproducing Kernel Hilbert
Space (RKHS) associated with U as the dimension N tends to infinity. This
result generalizes the correspondence established by Kimeldorf and Wahba [14].
We also showed that for constrained cases, the optimal smoothing corresponds
to the MAP and not to the mean a posteriori (mAP) estimate. Both synthetic
and real datasets were used to confirm the theoretical result.

Proof of Proposition 6

Proof of Proposition 6. Let us set
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Let us prove that there exists ey — 0 and ny — 0 as N — +o0o and constants
¢, and c3 such that

J(BY) < In(tn) + csen < In(mn (@) + csen < J(@) + iy + csen. (31)

According to (19) and (20),

ey (@) (@) < ey @)lle < dlry @)y < dljullz
[u(z:)| < [ulle < cllulla.
Hence
~ - Ly
In(n (@) = @y + 27— > (an(@)(@i) - i)
noise ;—1
~12 1 ¢ ~ 2
< allf + —— > (v (@) () — i)
noise ;—1
., 1< - -
< J@)+ o7 Z [(mn (@) (23) = i) = (i) — vi)?]
noise ;_—1q
PO T o T e -
< J@) + = > [ (@) (@) — @] [@a) + o (@)(@) - 240)]
noise ;—1
N nllc+d)|ullg + 2max |y; -
(@) < G+ O 2malull gy gy
c1
Thus, setting ny = |7y (@) — @||g, according to (28), we have ny — 0 as
N — +oo0.

In(mn (@) < J(@) + e,

where the constant ¢; is independent of N. By definition of uy, Jy(uy) <
Jn(mn (@) so that

In(un) < J(@) +cinn.
We have
lon (un)(@:)| < llpn (un)l|e < clloy (Un)||le = dlun|ay < c¢In(un) < eJ(@) + ceny
and
[un (zi)| < [[unlle < dlun|ay < dIn(Un) < dJ(@) + derny.
Let ¢o be such that, for all N,

(c+d)(J (@) + cnn) < ca.
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We have, according to the isometric property of py,

n

Ton (@) = lox @l + 57— 3 (ow(En)(w) -
= Tl + g Y o))~
= In(in) ~ Z (@) = 0 + 7 Z (o (@) (1) — )’
= N + Z [(on ) ) = 91)? — (@) — 0]
= )+ g S ) + o) = 2] )~ )
< iy + 2R S > (i) e) - (o)

Thanks to the reproducing properties of H and Hy and to the isometric prop-
erty of py:

lpn(un)(xi) —un(zi)| = [{pn(@Un), k(o xi))a — (Un, b (2)) by
= [on@n), k(7)) m — (pn(an), pn (b (- 20))) m |
= [pn(un), k(i) — pn (kN (-, 24))) |

lon @)l % (K, @ ) pn (kn (i) | o

(J (@) + ey ) max |[k(., xz)—ﬂN(kN( i)la-

[VANVAN

Let us set
en = max|[|k(:, zi) — pn(kn (5 20)) | o
According to Proposition 5, ey — 0 as N — +o00 and

J(pn(un)) < JIn(un)+czen, with

neg + 2nmax |y;|
C3 = 3 .
O noise

Then, we get (31). As
1W< J(RY) < J(@) + exiw + esew,

then the sequence (h™)xen is bounded in H so that, by weak compactness in
the Hilbert space, there exists a sub-sequence (h™*)en and h* € H such that

R i h* € H, (weak convergence).
—+o00
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As H is a RKHS with kernel K, for all ¢; € Ay, k(-,t;) € H and

(BN k(- ty) e = hNs(t;) = (R k() m = B (t;).

k—4oc0

Therefore, for all N > 1,

(b S v (h)

in the finite-dimensional space Hy. According to assumption (H1) (i.e., Ay C
Any1), as far as Ny > N

mn (W) = mn (pw, (i) = 7 (),
so that

WN(iL\Nk) lcjoo WN(h*) in Hy.

As Hy is a Hilbertian subspace of E (Inequality (19) of Lemma 5.1),

WN(aNk) kjoo WN(h*) in .

Under hypothesis (H2), my(un,) € C and C is closed in E, so that for all N,
7wy (h*) e C.

The set C' is closed in E and 7y (h*) Ny h* in E, then
—+0o0

K eC and J(@) < J(hY).

Then, as J is convex and lower semi continuous and AV — h* € H, using

k—4o00
(31),
J@) < J(h) < lm J(hY) = lim Jy, (Bx,) + csen,
k k N~
=0
< mJNk (aNk) +c3en, < J(u) +m01m\r + c3en
k —— k
_ —_—
=0 ~
so that

()~ J(@).

Equation (31) implies that

Tn (o, (@) | I (@).

As the sequences (Jy(an))nen and (Jy(mn(2))nen are in the compact set
[0, J (@) + supy (c1nn + csen)], then the results hold. O
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Fig 1: Comparison of estimates for the bounded flat function f; using the GP
approach with boundedness constraints. The black solid curve represents the
true function, while the red dashed curve shows the MAP estimate and the blue
dashed-dotted curve shows the mAP estimate. The black stars represent the
100 training data generated from (1) using the true f; and a true noise variance
02 e = 0.4%. The gray shaded area indicates the 95% pointwise confidence

interval. The two dashed horizontal lines represent the lower and upper bounds:
[—1,0.5] on the left and [—1.5,1] on the right.
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Fig 2: Prediction accuracy for f, using the proposed GP approach with mono-
tonicity constraints: the black solid curve corresponds to the true function, the
red dashed curve represents the MAP estimate, the blue dashed-dotted curve
corresponds to the mAP estimate, and the black stars are the 300 training data
generated from (1) with f and a true noise variance o2 ;. = 0.42.

noise

Fig 3: Left: the true nondecreasing function with respect to the two inputs
together with the training data (black stars). Middle (respectively, Right): the
mAP estimate (respectively, MAP estimate) from the GP approach defined in
Equation (30) with the training data.
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Fig 4: The estimation accuracy of the proposed approach applied to the age-
income data is shown. The red dashed curve corresponds to the MAP estimate,
while the blue dashed-dotted curve corresponds to the mAP estimate. The black
stars represent the noisy data, and the gray shaded area represents the 95%
pointwise confidence interval.
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Fig 5: MSPEs as a function of the correlation length parameter, 6, us-
ing the b5-fold cross-validation technique for different values of N €
{n,|n/2],|n/4],|n/8]} and standard deviation, oyneise, €qual to 0.5 (left panel)
and 1 (right panel).
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