F R Éd

Éric Goualard

F Goualard

A Drawing random floating-point numbers from an interval

Keywords: CCS Concepts:, Theory of computation → Rounding techniques, •Mathematics of computing → Random number generation, Numerical analysis, floating-point number, IEEE 754 standard, random float 1 Or, more accurately, pseudo-random, since the whole process is deterministic

Drawing a floating-point number uniformly at random from an interval [a, b) is usually performed by a location-scale transformation of some floating-point number drawn uniformly from [0, 1). Due to the weak properties of floating-point arithmetic, such a transformation cannot ensure respect of the bounds, uniformity or spatial equidistributivity. We investigate and quantify precisely these shortcomings while reviewing the actual implementations of the method in major programming languages and libraries, and we propose a simple algorithm to avoid these shortcomings without compromising performances.

INTRODUCTION

To simulate the throw of a fair six-sided die, most people would know better than to take the modulo of some large random positive integer: as pointed out by Lemire [START_REF] Lemire | Fast Random Integer Generation in an Interval[END_REF]], such a method favors the less random bits of weak Random Number Generators (RNGs); it destroys even so slightly the uniformity of the process whenever 6 is not a divisor of the number of different outcomes offered by the RNG; and lastly, it can be quite expensive as it relies on division. Whatever the knowledge and skills of a software developer, major programming languages, or their standard libraries, usually offer functions to directly draw integers from an interval whose implementation is both efficient and correct regarding the uniformity of the outcome.

When random floating-point numbers ("floats", for short) are needed, the functions available in most programming languages start by computing a random 1 float x in [0, 1) and apply the affine transformation y = a + (ba)x to get a value y in the interval [a, b), as would be done with real numbers. However, the properties of floats as defined by the ubiquitous IEEE 754 standard [IEEE 2019] lead to several problems, among which are a lack of uniformity of the outcome and the generation of values outside the requested domain.

In Section 2.1, we present just enough of IEEE 754 binary floating-point arithmetic necessary to understand the consequences of its use on the generation of random floats, shown in Section 2.2. Readers already familiar with the IEEE 754 standard may skip Section 2.1 and only refer to Table I for the notations used.

We review in Section 3 the documentation and the implementation of fifteen programming languages and libraries regarding the generation of floating-point numbers in an interval, pointing out the shortcomings and/or errors in both the documentation and the code.

In Section 4, we perform a detailed error analysis of the methods presented in Section 3. Lastly, we propose in Section 5 a simple algorithm to compute random floats in an interval, which tries to avoid the problems plaguing the methods reviewed in Section 3, and we compare its performances with theirs.). The floats with a significand in [0, 1 -2 1-p] are subnormal floats. Subnormal floats all have the same scale factor equal to 2 1-emax . They represent very small floats. An underflow happens when a number smaller than λ occurs in a computation.

Floats from a format F emax p are represented in memory by three fields: the sign bit s, the exponent E (stored in memory as the biased positive value e = E +emax) and the fractional part f of m (that is, the p -1 bits to the right of the fractional point). Figure 2 shows the representation of the binary32 single precision format and the binary64 double precision format, which are two of the formats explicitly specified by the IEEE 754 standard.

When the result of a computation involving floats is not itself a float, rounding takes place. The IEEE 754 standard imposes that all arithmetic operations be correctly rounded : the result must be computed as if infinite precision was available, and then approximated by the closest float. For example, considering F 1 4 , adding 1.0 to 1.875 gives 2.875, which is not representable. That value is therefore rounded to the closest float. The two surrounding floats are 2.75 and 3.0, which are exactly at the same distance. The rule in that case is to round to the float x whose internal representation (Figure 2) has its rightmost bit equal to zero (a property noted fraceven(x)), 3.0 here.

Given some set of floats, the correctly rounded value of a real r ∈ R will be written fl(r). The rounded result of a computation C will be written fl C (note the angled brackets replacing the parentheses to indicate that rounding takes place recursively at all nodes of the computation, not solely at the highest level). A property that will be used repeatedly in this article is the monotonicity of rounding:

∀(r 1 , r 2) ∈ R 2 : r 1 r 2 =⇒ fl(r 1) fl(r 2)
Requiring a correct rounding of all arithmetic operations brings important benefits in that it allows to compute the maximum error for a computation involving more than one operation. In particular, given an operator ∈ {+, -, ×, ÷}, we will use the following:

∀r ∈ R : fl(r) = r(1 + δ), with δ ∈ [-2 -p , 2 -p] and ∀(x, y) ∈ F emax p × F emax p : fl(x y) = (x y)(1 + δ), with δ ∈ [-2 -p , 2 -p]
provided no underflow occurs. In case of underflow, other rules apply but we will not present them here as we will always assume the absence of underflow.

Table I summarizes all the notations introduced in this section that will be used in the rest of the article.

Drawing floats uniformly at random

Even though it might be more useful to generate floating-point numbers in the open interval (0, 1), it is often more convenient, from an implementation standpoint, to consider the halfclosed interval [0, 1) and use a rejection procedure to get rid of unwanted values, if necessary.

Consider the set of floats F 3 4 ∩ [0, 1] illustrated in Figure 3 and let us note S 1 0 the set of floats that can be drawn at random from [0, 1). Since the distance between a float and the next doubles for every power of two, a procedure to draw floats uniformly at random cannot simply return any float from the interval [0, 1). We easily see that the distance between 1.0 and prev (1.0) directly dictates the maximum number of floats we can sample uniformly in [0, 1): if we draw values in the set S 1 0 = {k2 -p | 0 k < 2 p }, they are all perfectly representable uniformly-spaced floats in [0, 1); considering a set with less than 2 p values is wasteful (we could draw more); on the other hand, allowing more than 2 p values destroys uniformity.

Some authors (e.g., Marsaglia and Tang [Marsaglia and Tsang 2004], or Holian et al. [START_REF] Lee Holian | Pseudorandom number generator for massively parallel molecular-dynamics simulations[END_REF]) have proposed algorithms to draw random floating-point numbers from [0, 1) directly. However, most programming languages and libraries surveyed seem to resort to one of the two following procedures: -Generate a random integer in the interval [0, 2 k -1] and divide it by 2 k to obtain a float in [0, 1). As seen above, the best choice for k is p but some languages use other values [START_REF] Goualard | Generating Random Floating-Point Numbers by Dividing Integers: a Case Study[END_REF]]; -Generate a fractional part as a p -1 bits random integer, add the integer "emax" shifted to the left by p -1 positions, and reinterpret the resulting integer as the IEEE 754 representation of a floating-point number in the domain [1,[START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF]. It then suffices to subtract 1.0 from it to obtain a float in [0, 1).

The second procedure can only generate 2 p-1 different floats, differing all by their p -1 bits fractional part. We then have:

S 1 0 = {k2 1-p | 0 k < 2 p-1 }.
That is only half the number of floats that could legitimately be drawn from [0, 1).

The rest of the paper, and particularly the analysis performed in Section 4, assumes the existence of a procedure to draw values from S 1 0 = {k2 -p | 0 k < 2 p } uniformly at random. Once a float x has been drawn from [0, 1), it can be affinely transformed into a float y in the interval [a, b) by the formula:

y = fl a + (b -a)x (1)
That transformation poses several problems that are presented without any theoretical analysis in the following paragraphs. We will quantify them precisely from a theoretical standpoint in Section 4.

The quantity ba may overflow if b and a have opposite signs and are large in absolute value. This is often not taken care of by actual implementations, as we will see in Section 3. Consider, for example, the following commands in Julia: julia> using Random, Distributions julia> rand(Uniform(-1.8f38,1.8f38)) Inf

Trying to draw a binary32 single precision float in the domain [-1.8 [3,5) using an affine transformation of all floats from S 1 0 with F 15 6 .

- (b) Number of occurrences of each float in [-1, 1) using an affine transformation of all floats from S 1 0 with F3 3 .

Fig. 4: Some examples of problems induced by computing an affine transformation, illustrated with small float sets.

By the pigeonhole principle, if [a, b) contains less than 2 p floats, the affine transformation will map -through rounding errors-several floats from [0, 1) to the same float in [a, b), thereby potentially destroying uniformity. This situation happens very easily, since the distance between adjacent floats increases at every power of two. Figure 4a shows an example with F 15 6 . The histogram presents the number of floats from S 1 0 that are mapped to each float in [3,5). Note that even though each float in S 1 0 has the same probability to be drawn, the probability of each float in [3, 5) to be drawn will not be uniform, as some floats are mapped to five times more than others. In addition, due to rounding errors, the value 5.0 is among the values drawn, while we were expecting values from [3,5).

Rounding errors may also induce a lack of uniformity, even when [a, b) contains a number of floats that is equal or greater to the one in S 1 0 , even more so when the distance between The vector L contains the affine transformation of all values in S 1 0 for the binary32 single precision format; Lcount is a dictionary associating for each unique value in L its number of occurrences; the function nb_fp_numbers() computes the number of floats between its two arguments, themselves included. The output of the code is: There are exactly 2 24 values in [0.25, 1) ∩ F 127 24 but only 13981013 of them (≈ 83 %) are mapped to. Hence, some values in L occur necessarily more often than others; in addition, the variance of the distances between adjacent values mapped to in [0.25, 1) is non-null, showing that the values that can be drawn in [0.25, 1) are not spatially equidistributed.

When [a, b) contains more values than S 1 0 , it is wasteful to only map the 2 p values from S 1 0 . Consider, for example the domain [-1, 1]. There are 2 p+1 equidistant values that could be drawn from the domain. By mapping only 2 p values, we consciously waste half of them (see Figure 4b for an example in F 3 3). Lastly, up to now we have only considered the problem of drawing values in an halfclosed interval [a, b), which is dictated by the fact that most languages and libraries first draw floats in [0, 1). We have already encountered one problem, viz. that through rounding errors, we may nevertheless draw the right bound b. We will see in Section 4 some sufficient conditions for this event not to happen. Rounding errors hinder the devising of procedures that would draw floats from intervals with specific bounds (left-open/right-closed, . . .) with any certainty.

DRAWING FLOATS FROM AN INTERVAL: HOW DO THEY DO IT?

All major programming languages provide functions, directly or through standard libraries, to draw floating-point numbers uniformly at random from the intervals [0, 1) and/or (0, 1). We review in this section the facilities offered by fifteen programming languages to draw floats uniformly from a more general interval [a, b) (or, sometimes, (a, b)); we also evaluate the corresponding implementation, either as mandated by the standard of the language, or the way it is actually programmed in popular compilers/interpreters.

C

The C language does not have any function to draw a float from an interval [a, b). On the other hand, the GNU Scientific Library, which might be considered the closest thing to a C standard numerical library, offers the gsl_ran_flat() function. According to its documentation, given a random float x ∈ [0, 1), the function computes a float y ∈ [a, b) with the formula:

y = a(1 -x) + bx (2)
Over the reals, Equation. (2) is equivalent to y = a + (ba)x. Over the floating-point numbers, it has, however, the advantage of avoiding an overflow when a and b are large and of opposite signs. Unfortunately, as the example below shows, Formula (2) does not protect against drawing the right bound: Right bound obtained after 2751203 iterations! As we will see in Section 4.3, Formula 2 is also not numerically stable and its evaluation may incur very large rounding errors, thereby thrashing any hope of uniformity in drawing floats from [a, b).

C++

The C++ standard library offers the uniform_real_distribution() function to draw floats from an interval [a, b). The ISO/IEC 14882:2020 standard for C++ specifies only that the bounds a and b should be such that a b and ba floatmax(T), with T the type of a and b.

The implementation in GNU C++ v. 11.1.0 uses the formula:

y = x(b -a) + a (3)
where x is a random float drawn from [0, 1). As the example below shows, it is possible to draw the right bound for some values of a and b, in violation of the definition in the C++ standard:

int main(void) { std::mt19937_64 rd(43

Right bound drawn: true

This is quite ironic since the implementation of the function generate_canonical(), which draws floats from [0, 1), is carefully designed, in this version of the GNU C++ library, to never return its right bound (see [START_REF] Goualard | Generating Random Floating-Point Numbers by Dividing Integers: a Case Study[END_REF]] for an history of past failures to do so).

The web page for uniform_real_distribution() on cppreference.com -a respected and authoritative website about C++-warns the user that some implementations of the function may sometimes return the right bound when instantiated for single precision (the C++ float type). As our example above shows, this is only partially correct and conflates two unrelated issues: by interpreting literally the standard, past implementations of generate_canonical() used to draw single precision floats in [0, 1] instead of [0, 1). This problem is completely unrelated to the one induced by rounding errors when computing Equation (3) with either single or double precision floats.

The same web page also suggests to call the constructor uniform_real_distribution() with the parameters a and next (b) to get floats in the interval [a, b]. As we will see in Section 4, rounding errors make such an expedient a misguided approach that will not work in general.

C#

The C# RandomNextDouble() function returns a random float in [0, 1). There is no dedicated function to draw a float in an interval [a, b) but the Microsoft official documentation for the Random class helpfully suggests four ways to do so, depending on the values of a and b:

(1) If b = a + 1, compute y = a + Random.NextDouble() (2) If a = 0, compute y = Random.NextDouble() × b (3) If b = 0, compute y = Random.NextDouble() × a (4) For all other cases, compute y = Random.NextDouble() × (b -a) + a
We will see in Section 4.1 that none of these formulas is without its flaws.

Fortran

In Fortran 90, the RANDOM_NUMBER function returns a float in [0, 1) but there is no standard way to draw a float in an interval [a, b). The RANLIB library, available on NetLib, has the genunf() function, which simply implements the usual affine transformation:

y = a + (b -a)x
with x ∈ [0, 1), without checking for possible overflows.

Go

Go offers only the functions Float32() and Float64() in the rand package to draw single precision and double precision floats from [0, 1). It is up to the user to write the code to draw from [a, b).

Java

The ThreadLocalRandom package offers the method nextDouble() to draw a random float from [a, b). In OpenJDK, it is implemented by first drawing a value x in [0, 1) and applying the affine transformation y = a + (ba)x. The Mozilla SpiderMonkey implementation of Math.random() divides a random integer drawn from [0, 2 53 -1] by 2 53 to obtain a double precision float in [0, 1). To obtain a float in [a, b) from a float x in [0, 1), the official Mozilla documentation proposes the code for a function getRandomArbitrary() that implements the affine transformation y = x(b-a)+a. A note warns the user that, due to rounding, the function may return the right bound "[i]f extremely large bounds are chosen (2 53 or higher) [. . .]". This is an incorrect statement, since it is easy to check that the situation may happen with small bounds too. For example, with x = 1 -2 -53 , a = 3.5 and b = 4.5, we have: fl x(ba) + a = b.

Julia

The Random standard package draws floats uniformly at random from [0, 1) by first generating a float in [1, 2) and then subtracting 1.0. As a consequence,

S 1 0 = {k2 1-p | 0 k < 2 p-1 -1}.
The Distributions package defines the Uniform distribution to draw floats from an interval [a, b]. However, its implementation simply applies the affine transformation y = a + (ba)x with x ∈ [0, 1). We would therefore expect the definition to consider [a, b) only. It looks like the developers of the package wanted to take into account the possibility to obtain the right bound through rounding errors, even though it introduces an unwarranted expectation from the user since some values for a and b will never allow to reach the bound b.

MATLAB

Matlab allows to draw a float x uniformly in (0, 1) with the rand() function. The official documentation suggests to use the affine transform y = (ba)x + a to obtain a float in (a, b). A note warns the user that both bounds may occasionally be returned even though "this is extremely unlikely to happen". No suggestion of being wary of overflows when a and b are large floats of opposite signs is made, though.

GNU Octave

Octave is a free open-source clone of Matlab. Its rand() function returns a single or double precision float in (0, 1). The unifrnd() function from the statistics package returns floats drawn from [a, b]. Since its implementation computes a value x with rand() and performs the affine transformation y = a+(b-a)x, it is quite surprising to read in the documentation that y will belong to [a, b], as being able to draw the bounds a and b themselves is entirely dependent on their actual values.

Python

The random standard library for Python 3 computes a double precision float x in [0, 1) by using a Mersenne Twister [START_REF] Matsumoto | Mersenne Twister: A 623-dimensionally Equidistributed Uniform Pseudo-random Number Generator[END_REF]] to obtain a 53 bits random integer that is multiplied by 2 -53 . The uniform() function applies the affine transformation y = a + (ba)x to obtain a number in [a, b). However, the documentation explicitly states that b may or may not be returned depending on the rounding.

The Numpy numerical library offers the Random.uniform() function to generate a float in [a, b). Its implementation uses the usual affine transformation: y = a + (ba)x. A note in the documentation states that "[T]he high limit may be included in the returned array of floats due to floating-point rounding in the equation low + (highlow) * random sample()". The documentation is inconsistent in that it first declares that the intended domain is [a, b), then proceeds to state that the value returned is lower or equal to b.

New code in Numpy uses the concept of generators. The uniform generator uses the same function as Random.uniform(), which relies on the affine transformation seen previously. However, it first checks that b-a does not overflow and returns an error if it does. Contrary to the documentation for Random.uniform(), the documentation for the generator erroneously claims throughout that b will never be returned, and does not warn the user about rounding errors, even though the code used is the same.

3.12. R R provides the function runif() to compute values in a domain (a, b). It first checks that neither a nor b are infinite; it then draws a float x in (0, 1) using rejection to ensure that none of the bounds is ever drawn, and computes y = a + (ba)x. The formula does not preclude y to be b and allows ba to be infinite without check.

The documentation explicitly states that neither a nor b are returned except in some conditions: "runif will not generate either of the extreme values unless max = min or max-min is small compared to min, and in particular not for the default arguments."

In all generality, the remark would be incorrect. Take for example a = 2.0 and b = 4.0. We have ba = a, which means that ba is not small compared to a and still, fl a + (ba)(1 -2 -53) = b, which means that the bound b can be attained. However, since the RNGs provided with R all generate double precision floats by dividing a 31 bits or 32 bits integer by 2 31 or 2 32 , the objection may not hold for the standard generators provided by R but it will hold for packages providing better RNGs, such as dqRNG. It would seem that the expressions y = bx or y = ax would be subject to the same problem. As the following lemma will help to prove, the first expression respects bounds while the second does not.

Lemma 4.1. For any normal floating-point number c in F emax p , we have:

fl |c| (1 -2 -p) = |c| (1 -2 -p) if P 2 (c), fl |c| (1 -2 -p) < |c| (1 -2 -p) otherwise, (7)
provided no underflow occurs.

Proof. For clarity, we use c = |c|. Let us first note that c (1 -

2 -p) = c -c × 2 -p and that fl c (1 -2 -p) = fl c -c × 2 -p
because there is only one operation that may need being (correctly) rounded on both sides (provided no underflow occurs while multiplying by 2 -p). We can therefore consider fl cc × 2 -p instead of fl c (1 -2 -p) .

Assume first that c is a power of 2. We then have: c = 1.0 × 2 ec and:

c -c × 2 -p = p bits 1. 0 0 • • • 0 0 0 0 0 • • • 0 0 ×2 ec -0. 0 0 • • • 0 0 1 0 0 • • • 0 0 ×2 ec 1 1 1 • • • 1 1 (borrows) 0. 1 1 • • • 1 1 1 0 0 • • • 0 0 ×2 ec
After renormalization, we get:

fl c -c × 2 -p = p bits 1.11 • • • 11 ×2 ec-1 , which means that c - c × 2 -p = fl c -c × 2 -p
The first part of the result ensues.

Considering now c = 1.b p-2 b p-3 • • • b 0 × 2 ec with at least one b i non-null, we have:

c -c × 2 -p = 1. b p-2 b p-3 • • • b 1 b 0 0 0 0 • • • 0 0 ×2 ec -0. 0 0 • • • 0 0 1 b p-2 b p-3 • • • b 1 b 0 ×2 ec 0 β p-2 β p-3 • • • β 1 1 1 w p-3 w p-4 • • • w 0 (borrows) 1. b 2p-1 b 2p-2 • • • b p+1 b p 0 b p-2 b p-3 • • • b 1 b 0 ×2 ec
Since one of the b i s is non-null, the borrow in bold red italic must be equal to 1. Consequently, the first non-storable bit of the result is a zero, which means that c -c ×2 -p must be rounded by default and not by excess. The result ensues.

If a = 0, we can now assert that the left bound of [a, b) can be attained -when x = 0and that the right bound cannot, by monotonicity of rounding and thanks to Lemma 4.1. By symmetry, if b = 0, we cannot obtain a while we can obtain b, which betrays the user's expectation.

Besides the problem of reaching the bounds, there is also the problem of uniformity, or lack thereof. For the formulas (6a), (6b), and (6c), if the distance between adjacent floats varies in [a, b), the number of floats from S 1 0 being projected after rounding to each float of [a, b) will also vary.

Analyzing Formula (4)

We have already pointed out in Section 2 that Formula (4), the most often implemented formula, overflows when a and b are large floats with opposite signs.

Before investigating further, we will state two lemmas that will prove useful later on.

Lemma 4.2. Given (x 1 , x 2) ∈ S 1 0 × S 1 0 and a pair of normal floats (a, b), with a < b, we have:

x 1 < x 2 =⇒ fl a + (b -a)x 1 fl a + (b -a)x 2 (8)
So, the order of the values in S 1 0 is not changed by the affine transformation, despite rounding errors.

Proof. We have: b. We have:

fl(b -a) x 1 < fl(b -a) x 2 since fl b -a is equal to 0 only if a = b,
fl(b -a) (1 -2 -p) = (b -a)(1 + δ)(1 -2 -p), δ ∈ [-2 -p , 2 -p]. Since (1 + δ)(1 -2 -p) < 1, we get: fl(b -a) (1 -2 -p) < (b -a) If b -a is not a power of two, we have fl (b -a)(1 -2 -p) < fl(b -a) (1 -2 -p) by Lemma 4.1. Then: a + fl (b -a)(1 -2 -p) < a + fl(b -a) (1 -2 -p) < a + (b -a) Therefore: fl a + fl (b -a)(1 -2 -p) b
by monotonicity of rounding.

The proof when ba is a power of two can be done analogously and will be omitted.

We can prove a sufficient condition on a and b for fl a + (ba)x to be different from b for all values x in S 1 0 :

Proposition 4.4. Given a normal float a, and b a normal float or zero, with a < 0 and a < b, we have: The gist of the proof for b = 0 is to show that, under the conditions of Equation (9), the final addition is errorless:

a b × (1 -2 -p) 3 (1 -2 -p) 3 -1/2 ∧ a b × 2 -2p -1 1 + 2 -2p =⇒ fl a + (b -a)x = b, ∀x ∈ S 1 0 , (9
fl a + (b -a)(1 -2 -p) = a + fl (b -a)(1 -2 -p) (10)
because, as we have: 11)

fl (b -a)(1 -2 -p) = (b -a)(1 + δ 1)(1 -2 -p)(1 + δ 2), with δ 1 ∈ [-2 -p , 2 -p], δ 2 ∈ [-2 -p , 0], (
the largest possible value for fl (b -a)(1 -2 -p) is (b -a)(1 + 2 -p)(1 -2 -p)(1 + 0), that is (b -a)(1 -2 -2p
), which is strictly smaller than ba. As a consequence, with the errorless addition from Equation (10), fl a + (ba)(1 -2 -p) must be strictly smaller than b.

To prove Equation (10), we can use the inequality just given:

fl (b -a)(1 -2 -p) (b -a)(1 -2 -2p)
Through simple algebraic manipulations, it comes:

   a b × (1-2 -p) 3 (1-2 -p) 3 -1/2 =⇒ fl (b-a)(1-2 -p) -a 1 2 a b × 2 -2p -1 1+2 -2p =⇒ fl (b-a)(1-2 -p) -a 2
Using Sterbenz's lemma [START_REF] Sterbenz | Floating-point computation[END_REF]], we deduce that the subtraction fl (ba)(1 -2 -p) -(-a) is errorless, which proves Equation (10) and concludes our proof.

For the IEEE 754 binary64 double precision format ("Float64" in Julia, "double" in C, C++, and Java), Proposition 4.4 translates to the following result:

a < 0 ∧ a b < 2 ∧ a < -b =⇒ fl a + (b -a)x = b, ∀x ∈ S 1 0 Figure 6a presents an exhaustive search of all pairs (a, b) in F 15 6 verifying fl a + (b -a)x = b for x in S 1 0 .
Note that, due to overflows, there is a whole set of pairs in the upper part of the leftmost topmost quadrant that cannot be tested.

Analyzing Formula (5)

We now investigate the expression from the GSL C library: As already said, that expression has the advantage of avoiding overflows for large bounds a and b with opposite signs. It is, however, prone to catastrophic cancellation [Muller 2010, p. 124] when fl a(1x) ≈ -fl(bx).

y = a(1 -x) + bx
Contrary to Formula (4), monotonicity is not preserved and we do not have a lemma equivalent to Lemma 4.2. We can nevertheless prove a limited version: Lemma 4.5. Given (x 1 , x 2) ∈ S 1 0 × S 1 0 , and a and b two normal floats with a < 0 and b > 0, we have:

x 1 < x 2 =⇒ fl a + (b -a)x 1 fl a + (b -a)x 2 (12)
So, provided a < 0 and b > 0, the order of the values in S 1 0 is not changed by the affine transformation.

Proof. Given x 1 < x 2 , a < 0 and b > 0, we have: bx 1 < bx 2 and a(1

-x 1) < a(1 -x 2)
By monotonicity of rounding, we get:

fl(bx 1) fl(bx 2) and fl a(1 -x 1) fl a(1 -x 2)
Therefore:

fl a(1 -x 1) + fl(bx 1) fl a(1 -x 2) + fl(bx 2)
And, by monotonicity of rounding again: Under the conditions of Lemma 4.5, we may now easily analyze Formula (5) as we did for Formula (4) to find sufficient conditions for fl a(1x) + bx to be strictly smaller than b for any value in S 1 0 . Proposition 4.6. Given two normal floats a and b, we have:

fl a(1 -x 1) + bx 1 fl a(1 -x 2) + bx 2 𝑎 𝑏 prev (𝑏) 𝛾 (𝑏)/2 fl⟨𝑎(1 -𝑥)⟩ + fl(𝑏𝑥) 𝛾 (𝑏)
a < 0 ∧ b > 0 =⇒ fl a(1 -x) + bx < b ∀x ∈ S 1 0 (13)
Proof. Thanks to Lemma 4.5, we can consider x = 1 -2 -p only. Given two normal floats a < 0 and b > 0, the condition fl a(1

-x) + bx < b requires: b -fl a(1 -x) + fl(bx) > γ(b)/2, for x = 1 -2 -p
since it means that fl a(1x) + fl(bx) cannot round to b (Figure 7). In truth, the strict inequality is only necessary when fraceven(b), but we consider this stronger constraint for the sake of simplicity.

We have:

b -fl a(1 -x) + fl(bx) = b -a2 -p + b(1 -2 -p)(1 + δ 1)
with δ 1 ∈ [-2 -p , 0] by Lemma 4.1. Expanding the equation, we get:

b -fl a(1 -x) + fl(bx) = (b -a)2 -p + bδ 1 (2 -p -1)
From the bounds on δ 1 , we deduce:

b -fl a(1 -x) + fl(bx) (b -a)2 -p
Since we want:

b -fl a(1 -x) + fl(bx) > γ(b)/2
we must have:

(b -a)2 -p > γ(b)/2 Then: (b -a)2 -p b > 2 -p 2 e b b , if ¬P 2 (b) (b -a)2 -p b > 2 -p 2 e b -1 b , if P 2 (b)
As b is a normal float, it is of the form m × 2 e b with 1 m 2 -2 1-p . We can then deduce:

a < b × 1 -2 1-p 2 -2 1-p
The intersection of the set of pairs of floats (a, b) verifying both this equation and a < 0∧b > 0 is the set of pairs (a, b) with a < 0 and b > 0.

Figure 6b shows graphically the set of pairs (a, b) for which we can prove fl a(1x) + bx < b and the set of pairs (a, b) for which fl a(1x) + bx = b. Comparing Figures 6a and6b, Formula (5) seems to have the advantage over Formula (4), even though it is less often used4 , as it is not subject to overflows and the set of pairs (a, b) for which we can prove that the bounds are respected is larger.

A NEW PROCEDURE

We have seen in Section 2.2 some of the problems that plague all the formulas studied:

-The formulas generate exactly 2 p equidistributed values from [0, 1) and apply a transformation to some interval that may contain more or less than 2 p equidistributed values.

Factoring in the inevitable rounding errors, it is difficult to ensure a generation of equidistributed values from an interval [a, b) in a uniform manner; -Rounding errors make it difficult to ensure that bounds are respected; -Some formulas are limited by the possibility of overflows for some arguments.

Formula 4 could easily be modified to avoid overflows by writing:

y = 2 a 2 + b 2 - a 2 x (14
)
instead of y = a + (ba)x. Provided no underflow occurs, the two formulas are equivalent and we also have:

fl a + (b -a)x = fl 2 a 2 + b 2 - a 2 x
Formula (14) requires a bit more computation but its performances are not much worse (See Table VII) as the division by two is very cheap. Despite its advantage, we have not observed the use of that method in the languages and libraries we surveyed. Formula (14) only cures the problem of overflows, however. To solve all the other problems, we need a new procedure. In order to ensure spatial equidistribution, it should not use floating-point arithmetic, except where operations are guaranteed to be errorless.

When a and b have the same sign and the same exponent, we can consider their fractional parts f a and f b as integers, draw an integer f c in the interval [f a , f b) and create a float with the same exponent and sign as a and b, and the fractional part f c . Since floats with the same exponent are uniformly distributed, the procedure is sound, provided f c is computed uniformly at random. This is a generalization of the second method described on Page 4. It is also easy to respect the bounds of the interval [a, b) (and even to consider other bounds such as (a, b), . . .) as no floating-point computation is involved. For example, to draw a float in (a, b), we would draw an integer f c in [f a + 1, f b -1) for b > 0. Technically, the procedure could be extended to [a, b] ⊆ [-2λ, 2λ], as all floats are spatially equidistributed in that interval, but the handling of the sign and exponent makes the method messier to implement.

If a and b do not have the same sign or the same exponent, we have to take into account the largest gap γ(a, b) between floats in [a, b] (See Figure 8). SESS is the method presented at the beginning of this section when a and b have the same exponent and sign.

"Bound respect" is "Yes" when the method always respects the open right bound and never returns b; "Spatial equidistribution" is "Yes" when the set of floats S b a in [a, b) that can be returned is spatially equidistributed; "Uniformity" is "Yes" when each float of S b a has the same probability to be returned; "No overflow " is "Yes" if the computation required by the method never overflows.

Note that only the new γ-section method is of general applicability and has a "Yes" in all columns. A caveat is that spatial equidistribution is guaranteed only when it is feasibly possible: if ba is not a multiple of γ(a, b), one float of S b a will be closer to its neighbor in S b a than all other consecutive floats in S b a . Table VI compares the number of instructions needed to implement each method. Since all methods ultimately require the computation of an integer drawn from some interval, the cost of generating that integer is not presented. As can be seen in Table VII, the superscalar features of modern processors ensure that the methods requiring the largest computes an integer in a domain with the Mersenne Twister (almost 25 reference clock cycles per value). Figure 9 illustrates the benefits of using the γ-section method when using a Monte Carlo algorithm to compute an approximation of π: the γ-section method allows to draw four times more unique points uniformly distributed in [-1, 1] × [-1, 1] than the location-scale transformation a + (ba)x (cf. Figure 4b), which leads to a better approximation of π for the same number of draws. Using γ-section: π ≈ 3.1435

Fig. 9: Computing an approximation of π with a Monte Carlo algorithm on F 15 6 (8 000 draws).

CONCLUSION

It seems ironic that so much care is taken by languages and their libraries to ensure that a float can be drawn uniformly at random from the interval [0, 1) without ever returning 1 to fail at ensuring the same for other intervals by disregarding the properties of floatingpoint arithmetic. As Table II shows, none of the languages surveyed implements correctly the drawing of a float in an interval [a, b). We have also found that the documentation accompanying the functions offered is sometimes misleading in asserting the properties guaranteed.

Regarding the respect of the bounds, Propositions 4.4 and 4.6 give sufficient conditions on a and b, should a programmer elect to use the method currently implemented in ones language. All our results hold in the absence of underflow. For most applications, it is standard practice to discount the possibility of underflow in error analysis. In addition, we did not consider it worthwhile to investigate further in the event of underflows as their occurrence would require the computation of very small floats for all practical formats (values of the order of 10 -38 for single precision and 10 -308 for double precision).

With the double precision format, the probability of returning the value of an open bound with one of the flawed implementations we analyzed is very low (for fixed a and b, of the order of one in 10 16 with p = 53). The risk is still there, and other problems plague the methods currently used, such as a lack of spatial equidistributivity and uniformity.

Perfect spatial equidistributivity may not be achievable by any means for some intervals, as shown in Section 5. We could define a simple measure of equidistributivity for a sequence of floats S in an interval [a, b], [a, b), (a, b], or (a, b) as the pair (k, d) where k is the cardinality of S and d is the sum of discrepancies from the expected distance between two adjacent floats. As an example, we may draw the values in S 1 = (3.625, 3.75, 4.0, 4.25) from the interval [3.625, 4.25] ⊂ F 7 5 with an expected distance of γ(3.625, 4.25) = 0.25. The measure of S 1 is (4, 0.125). Armed with our measure, we may define a sequence of floats as having an optimal equidistributivity for an interval I if there is no other sequence of floats from I with a higher value for k and a value for d that is less or equal. Even though the γ-section method presented in this article ensures that equidistributivity is violated for at most only one float, it does not ensure optimal equidistributivity, however. As a counter-example, consider again the interval [3.625, 4.25] ⊂ F 7 5 : the sequence S 2 = (3. 625, 3.75, 3.875, 4.0, 4.25) has the measure (5, 0.125) for the expected distance of 0.125, which is better than what γ-section would compute. Unfortunately, devising a fast procedure to ensure optimal equidistributivity in the general case is still an elusive goal.

Failure to respect the bounds seems to be the more serious sin since it could lead to catastrophic errors, say when performing some Monte Carlo quadrature for a function with singularities at the bounds of the interval [Beebe 2017, p. 202]. I do not have any direct knowledge of occurrences of serious problems due to a failure of current methods to ensure spatial equidistributivity and uniformity. I suspect that, given the large number of random floats required by most stochastic methods, a measurable impact could only be detected if uniformity or equidistributivity were severely violated, which will depend on the bounds of the interval [a, b) considered.

However, Table VII shows that it is possible to get a reasonable approximation of spatial equidistributivity, uniformity, flexibility in the choice of the bounds, and respect of said bounds at an affordable price. In addition, since the γ-section algorithm can be viewed as a generalization of the method often used to draw floats in [0, 1), it becomes possible to have only one procedure to draw floats from any interval.

Fig. 1 :

 1 Fig. 1: The real line with F 1 4 floats. Blue values are normal floats; magenta values are subnormal floats. The value λ is the smallest positive normal float.

Fig. 2 :

 2 Fig. 2: Representation of binary32 and binary64 IEEE 754 floating-point numbers in memory.

 Example 2.1. Given (a, b, c) ∈ F emax p , we have: fl a + bc = fl(a + fl(bc))

Fig. 3 :

 3 Fig. 3: Set of floats from F 3 4 in [0, 1]. Green dots identify the elements of the largest set of spatially equidistributed floats in [0, 1).

 of occurrences of each float in

 some adjacent floats in [a, b) is smaller than 2 -p . Consider, for example the following Julia program: a+(b-a)*x for x in 0.0f0:2.0f0^-p:(1.0f0-2.0f0^-p)] Lcount = counter(L) println("Variance of distances between adjacent values in L: ", var(diff(sort(collect(keys(Lcount)))))) println("Number of different floats in L: $(length(Lcount))") println("Number of floats in [a,b): $(nb_fp_numbers(a,b)-1)")

 Variance of distances between adjacent values in L: 1.4210864e-16 Number of different floats in L: 13981013 Number of floats in [a,b): 16777216

 (rng,a,b); } while (y != b); printf("Right bound obtained after %u iterations!\n",i); gsl_rng_free(rng); }The output of the program is:

); rd.discard(47964057); double a = 50000000.5; double b = 50000001.0; std::uniform_real_distribution<double> dist(a,b); double y = dist(rd); std::cout << "Right bound drawn: " << std::boolalpha << (y == b) << std::endl; } The output of this program is:

 If y is equal to b, the method returns prev (b), which breaks uniformity: if (ba)/2 p = γ(a, b), then prev (b) may be returned more often than it should, and if (ba)/2 p = γ(a, b), the floats returned by nextDouble() are no longer spatially equidistributed. Drawing random floats from an interval A:9 3.7. JavaScript JavaScript offers a Math.random() function to draw floats from [0, 1) but no function to draw from [a, b).

Fig. 5 :

 5 Fig. 5: When fl(a + x) = b, for b = a + 1.

2)

 2 which violates the hypothesis. By monotonicity of rounding, we get: fl(fl(ba) x 1) fl(fl(ba) x 2) Then: a + fl(fl(ba) x 1) a + fl(fl(ba) x And finally, by monotonicity of rounding again: fl(a + fl(fl(ba) x 1)) fl(a + fl(fl(ba) x 2)) Lemma 4.3. Given a pair of normal floats (a, b), with a < b, we have: fl a + (ba)x b, ∀x ∈ S 1 0 . Proof. Thanks to Lemma 4.2, we just have to prove fl a + (ba)(1 -2 -p)

)

 provided b = 0 and no underflow occurs.If b = 0, we have:∀x ∈ S 1 0 : fl a + (ba)x = b Proof.As said previously, thanks to Lemma 4.2 we just have to give a proof for x = (1 -2 -p). For b = 0, we can use Lemma 4.1 to prove that fl aa(1 -2 -p) can never be equal to b.

 (a) Exhaustive search for pairs (a, b) in F 15 6 such that fl a + (b -a)x = b for x in S 1 0 . Blue dots are all pairs (a, b) such that fl a + (b -a)x = b; red dots are pairs verifying Condition (9). All eligible pairs (a, b) are between the two black slanted lines: above the higher line, the expression overflows; below the lower line, a is greater than b. (b) Exhaustive search for pairs (a, b) in F 15 6 such that fl a(1 -x) + bx = b for x in S 1 0 . Blue dots are all pairs (a, b) such that fl a(1 -x) + bx = b; red dots are pairs (a, b) verifying Condition (13), for which we have proved that a(1 -x) + bx < b.

Fig. 6 :

 6 Fig. 6: Sufficient conditions for fl a + (ba)x < b and fl a(1x) + bx < b, for a and b in F 15 6 .

Fig. 7 :

 7 Fig. 7: Conditions for fl a(1x) + fl(bx) to round to b.

Fig. 8 :

 8 Fig. 8: Computing spatially equidistributed floats in F 7 5 ∩ [0.5, 4.75].

 Using the location-scale transformation a + (ba)x: π ≈ 3

Table I :

 I Notations introduced in Section 2.1.

		Notation												Meaning						
			F emax p			Set of floats with p bits significand and log 2 (emax + 1) + 1 bits exponent	
		fraceven(x) True if the rightmost bit of the fractional part of x is 0			
				fl(r)			Real r rounded to the nearest-even float						
				fl e			Floating-point evaluation with the expression e rounded to	
								nearest-even													
		floatmax(T) Largest finite float of type T								
	.			γ(x)			Distance between the float x and prev (x)					
				γ(x)			Distance between the float x and next (x)					
			γ(x, y)			max(γ(x), γ(y)), for x < y								
		λ, λ(F emax																			
																								2 -𝑝	
	0.0	0.03125	0.0625	0.09375	0.125	0.15625	0.1875	0.21875	0.25	0.28125	0.3125	0.34375	0.375	0.40625	0.4375	0.46875	0.5	0.5625	0.625	0.6875	0.75	0.8125	0.875	0.9375	1.0

p) Smallest positive normal float in F emax p † next (x) Float to the immediate right of the float x on the real line p Number of bits in the significand of a float P 2 (x)

True if the float x is a power of two prev (x)

Float to the immediate left of the float x on the real line † The indication of the set of floats is dropped when it can be deduced from the context.

 • 10 38 , 1.8 • 10 38], we always get an infinite value since 1.8 • 10 38 -(-1.8 • 10 38) overflows. 3

	3.0	3.0625	3.125	3.1875	3.25	3.3125	3.375	3.4375	3.5	3.5625	3.625	3.6875	3.75	3.8125	3.875	3.9375	4.0	4.125	4.25	4.375	4.5	4.625	4.75	4.875	5.0

Table VII :

 VII Comparing the performances of various implementations to draw 200 000 000 floats uniformly at random from the interval[16, 31). Times in nanoseconds per random value; Reference clock cycles per random value. Minimum values from 10 runs.

		Time per value (ns.)	Cycles per value	
	Method	binary32 binary64 binary32 binary64
	a + (b -a)x 2 a 2 + (b 2 -a 2)x AT1PC †	15 14 16	15 15 15	38 37 40	38 39 39
	a(1 -x) + bx AT2PC †	15 16	15 15	39 41	39 40
	γ-section	12	11	30	29
	SESS ‡	10	10	25	25
	Times on an Intel i7-6700HQ @ 2.6 GHz for a C++ implementation.	
	†Affine T ransformation Partially C orrected.			
	‡ Same Exponent Same Sign.			

Or simply λ, when the set of floats considered can be deduced from the content.ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Note that, even though the internal computation in Uniform seems to use single precision floats, the result is the double precision infinite value Inf instead of the single precision Inf32.ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

More accurately, it seems that only the GSL C library uses Formula (5).ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

ACKNOWLEDGMENTS

One associate editor of the journal and the referees gave multiple advices, particularly on the presentation of the experimentations, that helped improve significantly this article.

Raffaello Giuletti pointed out, post-publication, an inconsistency between the precisions of the float sets presented in Figures 1, 3, 4, 6, 8, 9, and the ones declared in the respective captions.

Positive values: 0

Scilab

Scilab provides the function grand() to draw double precision floats from [a, b). The implementation first computes a float x in [0, 1) and applies the affine transformation y = a + (ba)x. The documentation for the uniform distribution explicitly states that the right bound b is never returned. This is incorrect, as the following Scilab commands demonstrate:

// We initialize the RNG to use the Mersenne Twister with a unique seed // of 43. We then draw 3000000 random values from [a,b) // and request the indices of the values equal to b. There are two.

--> grand('setgen','mt'); grand('setsd',43); a=3.5; b=3.5000000004656613; --> Y=grand(3000000,1,"unf",a,b); found=find(Y==b) found = 2751203.

2811196. Table II summarizes our findings concerning the languages and libraries surveyed. Column "F./A." is "F" when a function is provided to draw a float in [a, b) (or, sometimes, (a, b)) and "A" if only an algorithm is suggested; Column "Transf." presents the transformation used; Column "Ov." is equal to "UA" if the method used never overflows, to "UH" if no provision is made to handle overflows, to "PH" if a test is made for an overflow but no steps are taken to return a value, to "H" if an overflow is detected and correctly taken care of, and to "P" if only a precondition on ba is stated to avoid overflows; Column "Bds." is equal to "Yes" if the bounds are respected -e.g., not returning b for the interval [a, b)-, and to "No" otherwise; Column "Un." is equal to "Yes" if both spatial equidistributivity and uniformity are respected in drawing floats, and to "No" otherwise.

As can be seen at a glance from the table, no language or library ensures all the desirable properties, and many fail to ensure at least one of them.

ANALYZING THE IMPLEMENTATIONS

Let us now analyze theoretically the formulas we have encountered previously. In Section 3, we have seen three different algorithms to draw a float y uniformly at random in [a, b). They all start with a float x drawn uniformly from [0, 1) (or (0, 1), for some languages). For the sake of simplicity, we will consider that S 1 0 is the set {k2 -p | 0 k < 2 p }, which it is for most languages and libraries. The only exceptions are those languages and libraries that consider an open interval (0, 1), or that compute a random value by constructing a float in [1, 2) and subtracting 1 (in that case, S 1 0 would be {k2 1-p | 0 k < 2 p-1 }). We also assume that uniformity in drawing values from S 1 0 is ensured.

Table II: Summarizing the characteristics of the various implementations.

Lang./Lib. F./A. Transf. Ov. Bds. Un.

Legend: "F" Function, "A" Algorithm, "UA" Unaffected, "UH" Unhandled, "PH" Partially Handled, "H" Handled, "P" Precondition.

We have the formulas: we have to take care of returning a whenever k is equal to (ba)/γ(b) . In that case, the spatial equidistributivity is not perfect since the distance between the left bound and the next drawable value is smaller than between that last one and the next. Consider for example the interval [3.625, 4.75) in Figure 8: one can draw the values 3.625, 3.75, 3.875, 4.0, 4.25, and 4.5, which are not perfectly equidistributed. For that interval, there is no way to ensure perfect equidistributivity. In any case, the method ensures at least that all values are equidistributed, except for -possibly-the leftmost or rightmost one.

When |a| > |b|, the procedure is reversed: draw an integer k in [0, (ba)/γ(a) -1] and return a + kγ(a).

Given g as either γ(b) or γ(a), depending on what is applicable, the division of (b-a) by g should be implemented as b/ga/g to avoid an overflow. Since g is always a power of 2, the two divisions are both errorless, provided no underflow occurs. However, the final subtraction is not. In the very rare occurrences in which fl b/ga/g is rounded to an integer, the values (ba)/γ(b) and (ba)/γ(a) may be off by 1 by default. To correct that problem, we can use Dekker's exact summation algorithm [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]] to compute fl b/ga/g along with an error term ε such that fl b/ga/g + ε = b/ga/g. If fl b/ga/g is not an integer, we can directly return fl b/ga/g . Otherwise, we examine ε: if it is positive, that means that fl b/ga/g was rounded downward to an integer and that b/ga/g should be computed as fl b/ga/g + 1; if ε is negative or null, we can directly return fl b/ga/g . Table III presents a Julia implementation of this algorithm.

Table III The algorithm to draw floats from an interval [a, b) can easily be adapted to intervals with others bounds ((a, b), . . .) by changing the integer bounds of the interval we draw the value k from, in the same way as the same exponent/same sign algorithm above. Table IV gives naive Julia implementations for the various instances of the algorithm.

Table V compares the properties of the various algorithms presented henceforth. The equations need no explanation; AT1PC corresponds to the formula a + (ba)x to which we have added a test for overflow (in that case, the formula 2

x is used instead) and a test for a violation of the open bound b (in which case we redraw); AT2PC corresponds to the formula a(1-x)+bx to which we have added the same test and correction for a violation of the open bound b than AT1PC; γ-section is the new method we have just shown; lastly, number of instructions are not necessarily at a significant disadvantage compared with the more thrifty ones.

Table VII compares the performances of the methods presented when calling them to compute many random floats from the same interval [a, b), including the time to generate a random integer. To be able to test the SESS method, the interval chosen is such that a and b share the same exponent.

All methods were implemented in C++, compiled using the GNU C++ compiler version 11.1.0, and run on an Intel i7-6700HQ@2.6 GHz with 16 GiB of RAM under Linux 5.4.0-87. Each method was used to draw 200 000 000 random values from the interval [16,31). The number of reference clock cycles per random value was computed with the rdtsc instruction; Timings in nanoseconds were obtained with the C++11 Chrono standard library. The same set of programs was launched ten times in succession; the values reported in Table VII are the minimum ones. The difference between the minimum number of reference clock cycles per value and the maximum was almost always null and never larger than 1. All methods use a std::uniform_int_distribution<> object to compute uniformly distributed integers in some domain from a source of randomness from an std::mt19937_64 object that uses a 64 bits Mersenne Twister engine. The methods based on a floating-point random number generator that computes a value in [0, 1) use the implementation provided by the standard C++11 library with std::uniform_real_distribution<>. As it is, the time required to generate a random value in [a, b) is essentially spent in the procedure that