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A

Drawing random floating-point numbers from an interval

FRÉDÉRIC GOUALARD, CNRS, LS2N, UMR 6004

Drawing a floating-point number uniformly at random from an interval [a, b) is usually performed by a

location-scale transformation of some floating-point number drawn uniformly from [0, 1). Due to the weak
properties of floating-point arithmetic, such a transformation cannot ensure respect of the bounds, unifor-

mity or spatial equidistributivity. We investigate and quantify precisely these shortcomings while reviewing

the actual implementations of the method in major programming languages and libraries, and we propose
a simple algorithm to avoid these shortcomings without compromising performances.

Categories and Subject Descriptors: G.1.0 [General]: Computer arithmetic; Error analysis

General Terms: Algorithms, Reliability, Experimentation

Additional Key Words and Phrases: floating-point number, IEEE 754 standard, random float

1. INTRODUCTION

To simulate the throw of a fair six-sided die, most people would know better than to take
the modulo of some large random positive integer: as pointed out by Lemire [Lemire 2019],
such a method favors the less random bits of weak Random Number Generators (RNGs);
it destroys even so slightly the uniformity of the process whenever 6 is not a divisor of the
number of different outcomes offered by the RNG; and lastly, it can be quite expensive
as it relies on division. Whatever the knowledge and skills of a software developer, major
programming languages, or their standard libraries, usually offer functions to directly draw
integers from an interval whose implementation is both efficient and correct regarding the
uniformity of the outcome.

When random floating-point numbers (“floats”, for short) are needed, the functions avail-
able in most programming languages start by computing a random1 float x in [0, 1) and
apply the affine transformation y = a + (b − a)x to get a value y in the interval [a, b), as
would be done with real numbers. However, the properties of floats as defined by the ubiq-
uitous IEEE 754 standard [IEEE 2019] lead to several problems, among which are a lack of
uniformity of the outcome and the generation of values outside the requested domain.

In Section 2.1, we present just enough of IEEE 754 binary floating-point arithmetic nec-
essary to understand the consequences of its use on the generation of random floats, shown
in Section 2.2. Readers already familiar with the IEEE 754 standard may skip Section 2.1
and only refer to Table I for the notations used.

We review in Section 3 the documentation and the implementation of fifteen programming
languages and libraries regarding the generation of floating-point numbers in an interval,
pointing out the shortcomings and/or errors in both the documentation and the code.

In Section 4, we perform a detailed error analysis of the methods presented in Section 3.
Lastly, we propose in Section 5 a simple algorithm to compute random floats in an

interval, which tries to avoid the problems plaguing the methods reviewed in Section 3, and
we compare its performances with theirs.

1Or, more accurately, pseudo-random, since the whole process is deterministic.
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A:2 F. Goualard

2. ON FLOATING-POINT ARITHMETIC AND ITS CONSEQUENCES

Computation over the reals is usually approximated by using binary floating-point arith-
metic as specified by the IEEE 754 standard [IEEE 2019]. This standard is supported by
the vast majority of computers nowadays, even though some compatibility may be withheld
from the user at the software level (Python, for example, raises an exception whenever a
division by zero occurs, while the sanctioned IEEE 754 behavior is to return an infinite
value when the dividend is not zero). Though the properties of the reals do not all translate
to the floats, many algorithms are implemented as if it were the case.

The following section presents the bare minimum to understand the rest of this article.
The books by Higham [Higham 2002] and Muller et al. [Muller 2010] are excellent references,
should the reader long for more detailed and less fast-paced presentations.

2.1. IEEE 754 floating-point numbers

Binary floating-point numbers complying with the IEEE 754 standard exist in different
formats with varying precisions and ranges. The format of a set of floats Femax

p can be
completely defined by the pair of integers (p, emax); in the rest of this article, we assume
p > 2. A float x ∈ Femax

p is made of a significand —which is a fractional number m in

the interval [0, 2 − 21−p]—, a sign s, and a scale factor 2E such that x = (−1)s ×m × 2E .
The domain for E is [1 − emax, emax]. Figure 1 shows all the floats from F1

3 on the real
line. Given a float x, γ(x) is the distance between x and its predecessor prev (x) on the real
line; γ(x) is the distance between x and its successor next (x). The two distances are the
same except when x is a power of two (written P2(x)). The set of floats in Femax

p contains
two “infinities”: the operations on Femax

p are defined in such a way that when a result is
too large to be represented by finite floats (overflow), it is replaced by the correctly signed
infinity.
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Fig. 1: The real line with F1
3 floats. Blue values are normal floats; magenta values are

subnormal floats. The value λ is the smallest positive normal float.

Floats with a significand m in the interval [1, 2 − 21−p] are normal floats. The smallest
normal float is named λ(Femax

p )2, and the largest, floatmax(Femax
p ). The floats with a signif-

icand in [0, 1− 21−p] are subnormal floats. Subnormal floats all have the same scale factor
equal to 21−emax. They represent very small floats. An underflow happens when a number
smaller than λ occurs in a computation.

Floats from a format Femax
p are represented in memory by three fields: the sign bit s, the

exponent E (stored in memory as the biased positive value e = E+emax) and the fractional
part f of m (that is, the p − 1 bits to the right of the fractional point). Figure 2 shows
the representation of the binary32 single precision format and the binary64 double precision
format, which are two of the formats explicitly specified by the IEEE 754 standard.

When the result of a computation involving floats is not itself a float, rounding takes
place. The IEEE 754 standard imposes that all arithmetic operations be correctly rounded :
the result must be computed as if infinite precision was available, and then approximated
by the closest float. For example, considering F1

3, adding 1.0 to 1.875 gives 2.875, which is

2Or simply λ, when the set of floats considered can be deduced from the content.
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Fig. 2: Representation of binary32 and binary64 IEEE 754 floating-point numbers in memory.

not representable. That value is therefore rounded to the closest float. The two surrounding
floats are 2.75 and 3.0, which are exactly at the same distance. The rule in that case is to
round to the float x whose internal representation (Figure 2) has its rightmost bit equal to
zero (a property noted fraceven(x)), 3.0 here.

Given some set of floats, the correctly rounded value of a real r ∈ R will be written
fl(r). The rounded result of a computation C will be written fl〈C〉 (note the angled brackets
replacing the parentheses to indicate that rounding takes place recursively at all nodes of
the computation, not solely at the highest level).

Example 2.1. Given (a, b, c) ∈ Femax
p , we have:

fl〈a+ bc〉 = fl(a+ fl(bc))

A property that will be used repeatedly in this article is the monotonicity of rounding :

∀(r1, r2) ∈ R2 : r1 6 r2 =⇒ fl(r1) 6 fl(r2)

Requiring a correct rounding of all arithmetic operations brings important benefits in
that it allows to compute the maximum error for a computation involving more than one
operation. In particular, given an operator > ∈ {+,−,×,÷}, we will use the following:

∀r ∈ R : fl(r) = r(1 + δ), with δ ∈ [−2−p, 2−p]

and

∀(x, y) ∈ Femax
p × Femax

p : fl(x>y) = (x>y)(1 + δ), with δ ∈ [−2−p, 2−p]

provided no underflow occurs. In case of underflow, other rules apply but we will not present
them here as we will always assume the absence of underflow.

Table I summarizes all the notations introduced in this section that will be used in the
rest of the article.

2.2. Drawing floats uniformly at random

Even though it might be more useful to generate floating-point numbers in the open interval
(0, 1), it is often more convenient, from an implementation standpoint, to consider the half-
closed interval [0, 1) and use a rejection procedure to get rid of unwanted values, if necessary.

Consider the set of floats F3
3 ∩ [0, 1] illustrated in Figure 3 and let us note S1

0 the set of
floats that can be drawn at random from [0, 1). Since the distance between a float and the
next doubles for every power of two, a procedure to draw floats uniformly at random cannot
simply return any float from the interval [0, 1). We easily see that the distance between 1.0
and prev (1.0) directly dictates the maximum number of floats we can sample uniformly
in [0, 1): if we draw values in the set S1

0 = {k2−p | 0 6 k < 2p}, they are all perfectly
representable uniformly-spaced floats in [0, 1); considering a set with less than 2p values is
wasteful (we could draw more); on the other hand, allowing more than 2p values destroys
uniformity.

Some authors (e.g., Marsaglia and Tang [Marsaglia and Tsang 2004], or Holian et al. [Ho-
lian et al. 1994]) have proposed algorithms to draw random floating-point numbers from
[0, 1) directly. However, most programming languages and libraries surveyed seem to resort
to one of the two following procedures:

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.
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Table I: Notations introduced in Section 2.1.

.

Notation Meaning

Femax
p Set of floats with p bits significand and log2(emax + 1) + 1 bits

exponent

fraceven(x) True if the rightmost bit of the fractional part of x is 0

fl(r) Real r rounded to the nearest-even float

fl〈e〉 Floating-point evaluation with the expression e rounded to
nearest-even

floatmax(T ) Largest finite float of type T

γ(x) Distance between the float x and prev (x)

γ(x) Distance between the float x and next (x)

γ(x, y) max(γ(x), γ(y)), for x < y

λ, λ(Femax
p ) Smallest positive normal float in Femax

p
†

next (x) Float to the immediate right of the float x on the real line

p Number of bits in the significand of a float

P2(x) True if the float x is a power of two

prev (x) Float to the immediate left of the float x on the real line

† The indication of the set of floats is dropped when it can be deduced from the context.
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Fig. 3: Set of floats from F3
3 in [0, 1]. Green dots identify the elements of the largest set of

spatially equidistributed floats in [0, 1).

— Generate a random integer in the interval [0, 2k − 1] and divide it by 2k to obtain a
float in [0, 1). As seen above, the best choice for k is p but some languages use other
values [Goualard 2020];

— Generate a fractional part as a p− 1 bits random integer, add the integer “emax” shifted
to the left by p − 1 positions, and reinterpret the resulting integer as the IEEE 754
representation of a floating-point number in the domain [1, 2). It then suffices to subtract
1.0 from it to obtain a float in [0, 1).

The second procedure can only generate 2p−1 different floats, differing all by their p− 1
bits fractional part. We then have: S1

0 = {k21−p | 0 6 k < 2p−1}. That is only half the
number of floats that could legitimately be drawn from [0, 1).

The rest of the paper, and particularly the analysis performed in Section 4, assumes the
existence of a procedure to draw values from S1

0 = {k2−p | 0 6 k < 2p} uniformly at
random.
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Once a float x has been drawn from [0, 1), it can be affinely transformed into a float y in
the interval [a, b) by the formula:

y = fl〈a+ (b− a)x〉 (1)

That transformation poses several problems that are presented without any theoretical
analysis in the following paragraphs. We will quantify them precisely from a theoretical
standpoint in Section 4.

The quantity b− a may overflow if b and a have opposite signs and are large in absolute
value. This is often not taken care of by actual implementations, as we will see in Section 3.
Consider, for example, the following commands in Julia:

julia> using Random, Distributions

julia> rand(Uniform(-1.8f38,1.8f38))
Inf

Trying to draw a binary32 single precision float in the domain [−1.8 · 1038, 1.8 · 1038], we
always get an infinite value since 1.8 · 1038 − (−1.8 · 1038) overflows.3

3.
0

3.
06

25
3.

12
5

3.
18

75
3.

25
3.

31
25

3.
37

5
3.

43
75 3.

5
3.

56
25

3.
62

5
3.

68
75

3.
75

3.
81

25
3.

87
5

3.
93

75 4.
0

4.
12

5

4.
25

4.
37

5

4.
5

4.
62

5

4.
75

4.
87

5

5.
0

1

2

33

1

3

111

5

1

3

2

3333

1

3

4

5

3

1

3

5

(a) Number of occurrences of each float in
[3, 5) using an affine transformation of all
floats from S1

0 with F15
5 .

−
1.

00
0

−
0.

87
5

−
0.

75
0

−
0.

62
5

−
0.

50
0

−
0.

43
8

−
0.

37
5

−
0.

31
2

−
0.

25
0

−
0.

18
8

−
0.

12
5

−
0.

06
2

0.
00

0
0.

06
2

0.
12

5
0.

18
8

0.
25

0
0.

31
2

0.
37

5
0.

43
8

0.
50

0

0.
62

5

0.
75

0

0.
87

5

1.
00

0

11111111

(b) Number of occurrences of each float in
[−1, 1) using an affine transformation of all
floats from S1

0 with F3
2.

Fig. 4: Some examples of problems induced by computing an affine transformation, illus-
trated with small float sets.

By the pigeonhole principle, if [a, b) contains less than 2p floats, the affine transformation
will map —through rounding errors— several floats from [0, 1) to the same float in [a, b),
thereby potentially destroying uniformity. This situation happens very easily, since the
distance between adjacent floats increases at every power of two. Figure 4a shows an example
with F15

5 . The histogram presents the number of floats from S1
0 that are mapped to each

float in [3, 5). Note that even though each float in S1
0 has the same probability to be drawn,

the probability of each float in [3, 5) to be drawn will not be uniform, as some floats are
mapped to five times more than others. In addition, due to rounding errors, the value 5.0
is among the values drawn, while we were expecting values from [3, 5).

Rounding errors may also induce a lack of uniformity, even when [a, b) contains a number
of floats that is equal or greater to the one in S1

0, even more so when the distance between

3Note that, even though the internal computation in Uniform seems to use single precision floats, the result
is the double precision infinite value Inf instead of the single precision Inf32.
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some adjacent floats in [a, b) is smaller than 2−p. Consider, for example the following Julia
program:

p = 24
a = 0.25f0; b = 1.0f0
L = [a+(b-a)*x for x in 0.0f0:2.0f0^-p:(1.0f0-2.0f0^-p)]
Lcount = counter(L)
println("Variance of distances between adjacent values in L: ",

var(diff(sort(collect(keys(Lcount))))))
println("Number of different floats in L: $(length(Lcount))")
println("Number of floats in [a,b): $(nb_fp_numbers(a,b)-1)")

The vector L contains the affine transformation of all values in S1
0 for the binary32 single

precision format; Lcount is a dictionary associating for each unique value in L its number
of occurrences; the function nb_fp_numbers() computes the number of floats between its
two arguments, themselves included. The output of the code is:

Variance of distances between adjacent values in L: 1.4210864e-16
Number of different floats in L: 13981013
Number of floats in [a,b): 16777216

There are exactly 224 values in [0.25, 1) ∩ F127
24 but only 13981013 of them (≈ 83 %) are

mapped to. Hence, some values in L occur necessarily more often than others; in addition,
the variance of the distances between adjacent values mapped to in [0.25, 1) is non-null,
showing that the values that can be drawn in [0.25, 1) are not spatially equidistributed.

When [a, b) contains more values than S1
0, it is wasteful to only map the 2p values from

S1
0. Consider, for example the domain [−1, 1]. There are 2p+1 equidistant values that could

be drawn from the domain. By mapping only 2p values, we consciously waste half of them
(see Figure 4b for an example in F3

2).

Lastly, up to now we have only considered the problem of drawing values in an half-
closed interval [a, b), which is dictated by the fact that most languages and libraries first
draw floats in [0, 1). We have already encountered one problem, viz. that through rounding
errors, we may nevertheless draw the right bound b. We will see in Section 4 some sufficient
conditions for this event not to happen. Rounding errors hinder the devising of procedures
that would draw floats from intervals with specific bounds (left-open/right-closed, . . . ) with
any certainty.

3. DRAWING FLOATS FROM AN INTERVAL: HOW DO THEY DO IT?

All major programming languages provide functions, directly or through standard libraries,
to draw floating-point numbers uniformly at random from the intervals [0, 1) and/or (0, 1).
We review in this section the facilities offered by fifteen programming languages to draw
floats uniformly from a more general interval [a, b) (or, sometimes, (a, b)); we also evaluate
the corresponding implementation, either as mandated by the standard of the language, or
the way it is actually programmed in popular compilers/interpreters.

3.1. C

The C language does not have any function to draw a float from an interval [a, b). On
the other hand, the GNU Scientific Library, which might be considered the closest thing
to a C standard numerical library, offers the gsl_ran_flat() function. According to its
documentation, given a random float x ∈ [0, 1), the function computes a float y ∈ [a, b) with
the formula:

y = a(1− x) + bx (2)

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.
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Over the reals, Equation. (2) is equivalent to y = a + (b − a)x. Over the floating-point
numbers, it has, however, the advantage of avoiding an overflow when a and b are large and
of opposite signs. Unfortunately, as the example below shows, Formula (2) does not protect
against drawing the right bound:

int main(void)
{

gsl_rng *rng = gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(rng,43);
const double a = 3.5;
const double b = 3.5000000004656613;
double y;
unsigned int i = 0;
do {
++i;
y = gsl_ran_flat(rng,a,b);

} while (y != b);
printf("Right bound obtained after %u iterations!\n",i);
gsl_rng_free(rng);

}

The output of the program is:

Right bound obtained after 2751203 iterations!

As we will see in Section 4.3, Formula 2 is also not numerically stable and its evaluation
may incur very large rounding errors, thereby thrashing any hope of uniformity in drawing
floats from [a, b).

3.2. C++

The C++ standard library offers the uniform_real_distribution() function to draw floats
from an interval [a, b). The ISO/IEC 14882:2020 standard for C++ specifies only that the
bounds a and b should be such that a 6 b and b − a 6 floatmax(T ), with T the type of a
and b.

The implementation in GNU C++ v. 11.1.0 uses the formula:

y = x(b− a) + a (3)

where x is a random float drawn from [0, 1). As the example below shows, it is possible to
draw the right bound for some values of a and b, in violation of the definition in the C++
standard:

int main(void)
{
std::mt19937_64 rd(43);
rd.discard(47964057);
double a = 50000000.5;
double b = 50000001.0;
std::uniform_real_distribution<double> dist(a,b);
double y = dist(rd);
std::cout << "Right bound drawn: " << std::boolalpha

<< (y == b) << std::endl;
}

The output of this program is:

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.
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Right bound drawn: true

This is quite ironic since the implementation of the function generate_canonical(), which
draws floats from [0, 1), is carefully designed, in this version of the GNU C++ library, to
never return its right bound (see [Goualard 2020] for an history of past failures to do so).

The web page for uniform_real_distribution() on cppreference.com —a respected
and authoritative website about C++— warns the user that some implementations of the
function may sometimes return the right bound when instantiated for single precision (the
C++ float type). As our example above shows, this is only partially correct and con-
flates two unrelated issues: by interpreting literally the standard, past implementations of
generate_canonical() used to draw single precision floats in [0, 1] instead of [0, 1). This
problem is completely unrelated to the one induced by rounding errors when computing
Equation (3) with either single or double precision floats.

The same web page also suggests to call the constructor uniform_real_distribution()
with the parameters a and next (b) to get floats in the interval [a, b]. As we will see in
Section 4, rounding errors make such an expedient a misguided approach that will not work
in general.

3.3. C#

The C# RandomNextDouble() function returns a random float in [0, 1). There is no dedicated
function to draw a float in an interval [a, b) but the Microsoft official documentation for the
Random class helpfully suggests four ways to do so, depending on the values of a and b:

(1) If b = a+ 1, compute y = a+ Random.NextDouble()
(2) If a = 0, compute y = Random.NextDouble()× b
(3) If b = 0, compute y = Random.NextDouble()× a
(4) For all other cases, compute y = Random.NextDouble()× (b− a) + a

We will see in Section 4.1 that none of these formulas is without its flaws.

3.4. Fortran

In Fortran 90, the RANDOM_NUMBER function returns a float in [0, 1) but there is no standard
way to draw a float in an interval [a, b). The RANLIB library, available on NetLib, has the
genunf() function, which simply implements the usual affine transformation:

y = a+ (b− a)x

with x ∈ [0, 1), without checking for possible overflows.

3.5. Go

Go offers only the functions Float32() and Float64() in the rand package to draw single
precision and double precision floats from [0, 1). It is up to the user to write the code to
draw from [a, b).

3.6. Java

The ThreadLocalRandom package offers the method nextDouble() to draw a random float
from [a, b). In OpenJDK, it is implemented by first drawing a value x in [0, 1) and applying
the affine transformation y = a + (b − a)x. If y is equal to b, the method returns prev (b),
which breaks uniformity: if (b − a)/2p = γ(a, b), then prev (b) may be returned more often
than it should, and if (b − a)/2p 6= γ(a, b), the floats returned by nextDouble() are no
longer spatially equidistributed.
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https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/Random.java#l916
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3.7. JavaScript

JavaScript offers a Math.random() function to draw floats from [0, 1) but no function to
draw from [a, b).

The Mozilla SpiderMonkey implementation of Math.random() divides a random integer
drawn from [0, 253 − 1] by 253 to obtain a double precision float in [0, 1). To obtain a float
in [a, b) from a float x in [0, 1), the official Mozilla documentation proposes the code for a
function getRandomArbitrary() that implements the affine transformation y = x(b−a)+a.
A note warns the user that, due to rounding, the function may return the right bound “[i]f
extremely large bounds are chosen (253 or higher) [. . . ]”. This is an incorrect statement,
since it is easy to check that the situation may happen with small bounds too. For example,
with x = 1− 2−53, a = 3.5 and b = 4.5, we have: fl〈x(b− a) + a〉 = b.

3.8. Julia

The Random standard package draws floats uniformly at random from [0, 1) by first gen-
erating a float in [1, 2) and then subtracting 1.0. As a consequence, S1

0 = {k21−p | 0 6 k <
2p−1 − 1}.

The Distributions package defines the Uniform distribution to draw floats from an
interval [a, b]. However, its implementation simply applies the affine transformation y =
a+ (b− a)x with x ∈ [0, 1). We would therefore expect the definition to consider [a, b) only.
It looks like the developers of the package wanted to take into account the possibility to
obtain the right bound through rounding errors, even though it introduces an unwarranted
expectation from the user since some values for a and b will never allow to reach the bound
b.

3.9. MATLAB

Matlab allows to draw a float x uniformly in (0, 1) with the rand() function. The official
documentation suggests to use the affine transform y = (b − a)x + a to obtain a float in
(a, b). A note warns the user that both bounds may occasionally be returned even though
“this is extremely unlikely to happen”. No suggestion of being wary of overflows when a and
b are large floats of opposite signs is made, though.

3.10. GNU Octave

Octave is a free open-source clone of Matlab. Its rand() function returns a single or double
precision float in (0, 1). The unifrnd() function from the statistics package returns floats
drawn from [a, b]. Since its implementation computes a value x with rand() and performs
the affine transformation y = a+(b−a)x, it is quite surprising to read in the documentation
that y will belong to [a, b], as being able to draw the bounds a and b themselves is entirely
dependent on their actual values.

3.11. Python

The random standard library for Python 3 computes a double precision float x in [0, 1) by
using a Mersenne Twister [Matsumoto and Nishimura 1998] to obtain a 53 bits random
integer that is multiplied by 2−53. The uniform() function applies the affine transformation
y = a+ (b− a)x to obtain a number in [a, b). However, the documentation explicitly states
that b may or may not be returned depending on the rounding.

The Numpy numerical library offers the Random.uniform() function to generate a float
in [a, b). Its implementation uses the usual affine transformation: y = a+ (b− a)x. A note
in the documentation states that “[T]he high limit may be included in the returned array of
floats due to floating-point rounding in the equation low + (high− low) ∗ random sample()”.
The documentation is inconsistent in that it first declares that the intended domain is [a, b),
then proceeds to state that the value returned is lower or equal to b.
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https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random#getting_a_random_number_between_two_values
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https://www.mathworks.com/help/matlab/ref/rand.html
https://www.mathworks.com/help/matlab/math/floating-point-numbers-within-specific-range.html
https://www.mathworks.com/help/matlab/math/floating-point-numbers-within-specific-range.html
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https://numpy.org/
https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html?highlight=uniform#numpy.random.uniform
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New code in Numpy uses the concept of generators. The uniform generator uses the same
function as Random.uniform(), which relies on the affine transformation seen previously.
However, it first checks that b−a does not overflow and returns an error if it does. Contrary to
the documentation for Random.uniform(), the documentation for the generator erroneously
claims throughout that b will never be returned, and does not warn the user about rounding
errors, even though the code used is the same.

3.12. R

R provides the function runif() to compute values in a domain (a, b). It first checks that
neither a nor b are infinite; it then draws a float x in (0, 1) using rejection to ensure that
none of the bounds is ever drawn, and computes y = a + (b − a)x. The formula does not
preclude y to be b and allows b− a to be infinite without check.

The documentation explicitly states that neither a nor b are returned except in some
conditions:

“runif will not generate either of the extreme values unless max = min or
max−min is small compared to min, and in particular not for the default ar-
guments.”

In all generality, the remark would be incorrect. Take for example a = 2.0 and b = 4.0.
We have b − a = a, which means that b − a is not small compared to a and still,
fl
〈
a+ (b− a)(1− 2−53)

〉
= b, which means that the bound b can be attained. However,

since the RNGs provided with R all generate double precision floats by dividing a 31 bits
or 32 bits integer by 231 or 232, the objection may not hold for the standard generators
provided by R but it will hold for packages providing better RNGs, such as dqRNG.

3.13. Rust

Rust offers the function gen_range() to draw floats from a closed interval [a, b] or a half-
closed interval [a, b). It first generates a float in [0, 1) with the function sample_single()
using the same algorithm as Julia (Section 3.8). It checks that b−a does not overflow. When
generating a float in [a, b), it tests that the number obtained by the affine transformation
(b − a)x + a is strictly smaller than b. If the value generated is greater or equal to b, the
procedure is iterated to get another value.

If s = fl(b− a) is not finite, prev (s) is used instead (with prev (s) = floatmax(T ), where
T is the floating-point type used), a new random float x in [0, 1) is drawn and the affine
transformation floatmax(T )x + a is performed. As a consequence, requesting values in a
domain [a, b) when b− a overflows will always return negative values if a = −floatmax(T ),
as the following example shows:

use rand::Rng;
fn main() {
let mut rng = rand::thread_rng();
let mut i = 0;
for _n in 1..2000000 {

let y : f64 = rng.gen_range(-f64::MAX..=f64::MAX);
if y >= 0.0 {

i = i + 1;
println!("Float: {: >+9e}", x);

}
}
println!("Positive values: {}",i)

}

The output of the program is:
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Positive values: 0

3.14. Scilab

Scilab provides the function grand() to draw double precision floats from [a, b). The
implementation first computes a float x in [0, 1) and applies the affine transformation
y = a + (b − a)x. The documentation for the uniform distribution explicitly states that
the right bound b is never returned. This is incorrect, as the following Scilab commands
demonstrate:

// We initialize the RNG to use the Mersenne Twister with a unique seed
// of 43. We then draw 3000000 random values from [a,b)
// and request the indices of the values equal to b. There are two.
--> grand(’setgen’,’mt’); grand(’setsd’,43); a=3.5; b=3.5000000004656613;

--> Y=grand(3000000,1,"unf",a,b); found=find(Y==b)
found =

2751203. 2811196.

3.15. Swift

Swift offers the function random() to generate a float in [a, b) or [a, b]. The implementation
computes first a float x in [0, 1) and then applies the affine transformation y = (b−a)x+a.
A comment in the code acknowledges the possibility of overflow for b− a and imposes the
precondition that b − a be finite. When drawing values in the half-closed interval [a, b),
the function random() is called recursively if y equals b. For the closed interval [a, b], a bit
drawn at random is used to decide whether to return b or a + (b − a)(1 − 2−p) when the
significand of x is 2p−1 − 1. The documentation for random() recognizes the failure of the
affine transformation to ensure uniformity by stating that “[d]epending on the size and span
of range, some concrete values may be represented more frequently than others.”.

Table II summarizes our findings concerning the languages and libraries surveyed. Column
“F./A.” is “F” when a function is provided to draw a float in [a, b) (or, sometimes, (a, b))
and “A” if only an algorithm is suggested; Column “Transf.” presents the transformation
used; Column “Ov.” is equal to “UA” if the method used never overflows, to “UH” if no
provision is made to handle overflows, to “PH” if a test is made for an overflow but no steps
are taken to return a value, to “H” if an overflow is detected and correctly taken care of,
and to “P” if only a precondition on b − a is stated to avoid overflows; Column “Bds.” is
equal to “Yes” if the bounds are respected —e.g., not returning b for the interval [a, b)—,
and to “No” otherwise; Column “Un.” is equal to “Yes” if both spatial equidistributivity
and uniformity are respected in drawing floats, and to “No” otherwise.

As can be seen at a glance from the table, no language or library ensures all the desirable
properties, and many fail to ensure at least one of them.

4. ANALYZING THE IMPLEMENTATIONS

Let us now analyze theoretically the formulas we have encountered previously. In Section 3,
we have seen three different algorithms to draw a float y uniformly at random in [a, b). They
all start with a float x drawn uniformly from [0, 1) (or (0, 1), for some languages). For the
sake of simplicity, we will consider that S1

0 is the set {k2−p | 0 6 k < 2p}, which it is for
most languages and libraries. The only exceptions are those languages and libraries that
consider an open interval (0, 1), or that compute a random value by constructing a float in
[1, 2) and subtracting 1 (in that case, S1

0 would be {k21−p | 0 6 k < 2p−1}). We also assume
that uniformity in drawing values from S1

0 is ensured.
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Table II: Summarizing the characteristics of the various implementations.

Lang./Lib. F./A. Transf. Ov. Bds. Un.

GNU C / GSL 2.7 F y = a(1− x) + bx UA No No
GNU C++ 11.1.0 F y = x(b− a) + a UH No No

C# A y =


a+ x if b = a+ 1
ax if b = 0
bx if a = 0
x(b− a) + a otherwise

UH No No

F90/Ranlib F y = a+ (b− a)x UH No No
Go — — — — —

Java
F y = a+ (b− a)x UH Yes No

OpenJDK
JavaScript

SpiderMonkey
A y = x(b− a) + a UH No No

Julia 1.6.1 F y = a+ (b− a)x UH No No
Matlab A y = (b− a)x+ a UH No No
Octave/

F y = a+ (b− a)x UH No No
statistics
Python 3 F y = a+ (b− a)x UH No No
Python 3/

F y = a+ (b− a)x PH No No
Numpy 1.21

R 4.1.0 F y = a+ (b− a)x UH No No
Rust 1.52.1 F y = (b− a)x+ a H Yes No
Scilab 6.1.0 F y = a+ (b− a)x UH No No

Swift 5.4 F y = (b− a)x+ a P Yes No

Legend: “F” Function, “A” Algorithm, “UA” Unaffected, “UH” Unhandled, “PH” Partially Handled,
“H” Handled, “P” Precondition.

We have the formulas:

y = a+ (b− a)x (4)

y = a(1− x) + bx (5)

y = a+ x if b = a+ 1 (6a)

y = bx if a = 0 (6b)

y = ax if b = 0 (6c)

y = x(b− a) + a otherwise. (6d)

Floating-point arithmetic is commutative. We therefore conflate the expressions x(b −
a) + a, (b− a)x+ a, a+ (b− a)x, and a+ x(b− a) into the one expression a+ (b− a)x.

4.1. Analyzing Formulas (6a), (6b), and (6c)

At first glance, the expression y = a+x for x ∈ [0, 1) when b = a+1 seems a reasonable way
to compute a float y in [a, b). However, we will really compute y = fl(a+ x) with x ∈ S1

0.
If γ(b)/2 is strictly greater than —or greater or equal to, if fraceven(b)— the expression

b − (a + (1 − 2−p)), then a + (1 − 2−p) rounds to b, and the right bound of the interval
can therefore be drawn (see Figure 5). When b is positive, this will happen as soon as the
distance between b and prev (b) is greater than 21−p.
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𝑎 𝑏prev (𝑏)

𝛾 (𝑏)/2
𝑎 +

2−𝑝
𝑎 +

2 ×
2−𝑝

𝑎 +
3 ×

2−𝑝

𝑎 +
𝑘 ×

2−𝑝

𝑎 +
(1 −

2−𝑝
)𝛾 (𝑏)

Fig. 5: When fl(a+ x) = b, for b = a+ 1.

It would seem that the expressions y = bx or y = ax would be subject to the same
problem. As the following lemma will help to prove, the first expression respects bounds
while the second does not.

Lemma 4.1. For any normal floating-point number c in Femax
p , we have:{

fl〈|c| (1− 2−p)〉 = |c| (1− 2−p) if P2(c),

fl〈|c| (1− 2−p)〉 < |c| (1− 2−p) otherwise,
(7)

provided no underflow occurs.

Proof. For clarity, we use c′ = |c|. Let us first note that c′(1 − 2−p) = c′ − c′ × 2−p

and that fl〈c′(1− 2−p)〉 = fl〈c′ − c′ × 2−p〉 because there is only one operation that may need
being (correctly) rounded on both sides (provided no underflow occurs while multiplying by
2−p). We can therefore consider fl〈c′ − c′ × 2−p〉 instead of fl〈c′(1− 2−p)〉.

Assume first that c′ is a power of 2. We then have: c′ = 1.0× 2ec and:

c′ − c′ × 2−p =

p bits

1. 0 0 · · · 0 0 0 0 0 · · · 0 0 ×2ec

− 0. 0 0 · · · 0 0 1 0 0 · · · 0 0 ×2ec

1 1 1 · · · 1 1 (borrows)

0. 1 1 · · · 1 1 1 0 0 · · · 0 0 ×2ec

After renormalization, we get: fl〈c′ − c′ × 2−p〉 =

p bits︷ ︸︸ ︷
1.11 · · · 11×2ec−1, which means that c′ −

c′ × 2−p = fl〈c′ − c′ × 2−p〉 The first part of the result ensues.

Considering now c′ = 1.bp−2bp−3 · · · b0 × 2ec with at least one bi non-null, we have:

c′ − c′ × 2−p =

1. bp−2 bp−3 · · · b1 b0 0 0 0 · · · 0 0 ×2ec

− 0. 0 0 · · · 0 0 1 bp−2 bp−3 · · · b1 b0 ×2ec

0 βp−2 βp−3 · · · β1 1 1 wp−3 wp−4 · · · w0 (borrows)

1. b′2p−1 b′2p−2 · · · b′p+1 b′p 0 b′p−2 b′p−3 · · · b′1 b′0 ×2ec

Since one of the bis is non-null, the borrow in bold red italic must be equal to 1. Consequently,
the first non-storable bit of the result is a zero, which means that c′−c′×2−p must be rounded
by default and not by excess. The result ensues.

If a = 0, we can now assert that the left bound of [a, b) can be attained —when x = 0—
and that the right bound cannot, by monotonicity of rounding and thanks to Lemma 4.1.
By symmetry, if b = 0, we cannot obtain a while we can obtain b, which betrays the user’s
expectation.

Besides the problem of reaching the bounds, there is also the problem of uniformity, or
lack thereof. For the formulas (6a), (6b), and (6c), if the distance between adjacent floats
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varies in [a, b), the number of floats from S1
0 being projected after rounding to each float of

[a, b) will also vary.

4.2. Analyzing Formula (4)

We have already pointed out in Section 2 that Formula (4), the most often implemented
formula, overflows when a and b are large floats with opposite signs.

Before investigating further, we will state two lemmas that will prove useful later on.

Lemma 4.2. Given (x1, x2) ∈ S1
0 × S1

0 and a pair of normal floats (a, b), with a < b, we
have:

x1 < x2 =⇒ fl〈a+ (b− a)x1〉 6 fl〈a+ (b− a)x2〉 (8)

So, the order of the values in S1
0 is not changed by the affine transformation, despite rounding

errors.

Proof. We have:

fl(b− a)x1 < fl(b− a)x2

since fl〈b− a〉 is equal to 0 only if a = b, which violates the hypothesis.
By monotonicity of rounding, we get:

fl(fl(b− a)x1) 6 fl(fl(b− a)x2)

Then:

a+ fl(fl(b− a)x1) 6 a+ fl(fl(b− a)x2)

And finally, by monotonicity of rounding again:

fl(a+ fl(fl(b− a)x1)) 6 fl(a+ fl(fl(b− a)x2))

Lemma 4.3. Given a pair of normal floats (a, b), with a < b, we have:

fl〈a+ (b− a)x〉 6 b, ∀x ∈ S1
0.

Proof. Thanks to Lemma 4.2, we just have to prove fl〈a+ (b− a)(1− 2−p)〉 6 b.
We have:

fl(b− a) (1− 2−p) = (b− a)(1 + δ)(1− 2−p), δ ∈ [−2−p, 2−p].

Since (1 + δ)(1− 2−p) < 1, we get:

fl(b− a) (1− 2−p) < (b− a)

If b − a is not a power of two, we have fl〈(b− a)(1− 2−p)〉 < fl(b− a) (1 − 2−p) by
Lemma 4.1. Then:

a+ fl
〈
(b− a)(1− 2−p)

〉
< a+ fl(b− a) (1− 2−p) < a+ (b− a)

Therefore:

fl
〈
a+ fl

〈
(b− a)(1− 2−p)

〉〉
6 b

by monotonicity of rounding.
The proof when b− a is a power of two can be done analogously and will be omitted.

We can prove a sufficient condition on a and b for fl〈a+ (b− a)x〉 to be different from b
for all values x in S1

0:
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Proposition 4.4. Given a normal float a, and b a normal float or zero, with a < 0
and a < b, we have:

a 6 b× (1− 2−p)3

(1− 2−p)3 − 1/2
∧ a 6 b× 2−2p − 1

1 + 2−2p
=⇒ fl〈a+ (b− a)x〉 6= b, ∀x ∈ S1

0,

(9)

provided b 6= 0 and no underflow occurs.
If b = 0, we have:

∀x ∈ S1
0 : fl〈a+ (b− a)x〉 6= b

Proof. As said previously, thanks to Lemma 4.2 we just have to give a proof for x =
(1 − 2−p). For b = 0, we can use Lemma 4.1 to prove that fl〈a− a(1− 2−p)〉 can never be
equal to b.

The gist of the proof for b 6= 0 is to show that, under the conditions of Equation (9), the
final addition is errorless:

fl
〈
a+ (b− a)(1− 2−p)

〉
= a+ fl

〈
(b− a)(1− 2−p)

〉
(10)

because, as we have:

fl
〈
(b− a)(1− 2−p)

〉
= (b− a)(1 + δ1)(1− 2−p)(1 + δ2),

with δ1 ∈ [−2−p, 2−p], δ2 ∈ [−2−p, 0], (11)

the largest possible value for fl〈(b− a)(1− 2−p)〉 is (b− a)(1 + 2−p)(1− 2−p)(1 + 0), that is
(b− a)(1− 2−2p), which is strictly smaller than b− a. As a consequence, with the errorless
addition from Equation (10), fl〈a+ (b− a)(1− 2−p)〉 must be strictly smaller than b.

To prove Equation (10), we can use the inequality just given:

fl
〈
(b− a)(1− 2−p)

〉
6 (b− a)(1− 2−2p)

Through simple algebraic manipulations, it comes: a 6 b× (1−2−p)3

(1−2−p)3−1/2 =⇒ fl〈(b−a)(1−2−p)〉
−a > 1

2

a 6 b× 2−2p−1
1+2−2p =⇒ fl〈(b−a)(1−2−p)〉

−a 6 2

Using Sterbenz’s lemma [Sterbenz 1973], we deduce that the subtraction
fl〈(b− a)(1− 2−p)〉 − (−a) is errorless, which proves Equation (10) and concludes
our proof.

For the IEEE 754 binary64 double precision format (“Float64” in Julia, “double” in C,
C++, and Java), Proposition 4.4 translates to the following result:

a < 0 ∧ a
b
< 2 ∧ a < −b =⇒ fl〈a+ (b− a)x〉 6= b, ∀x ∈ S1

0

Figure 6a presents an exhaustive search of all pairs (a, b) in F15
5 verifying fl〈a+ (b− a)x〉 =

b for x in S1
0. Note that, due to overflows, there is a whole set of pairs in the upper part of

the leftmost topmost quadrant that cannot be tested.

4.3. Analyzing Formula (5)

We now investigate the expression from the GSL C library:

y = a(1− x) + bx
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(a) Exhaustive search for pairs (a, b) in F15
5

such that fl〈a+ (b− a)x〉 = b for x in
S1
0. Blue dots are all pairs (a, b) such that

fl〈a+ (b− a)x〉 = b; red dots are pairs verify-
ing Condition (9). All eligible pairs (a, b) are
between the two black slanted lines: above
the higher line, the expression overflows; be-
low the lower line, a is greater than b.

(b) Exhaustive search for pairs (a, b) in F15
5

such that fl〈a(1− x) + bx〉 = b for x in
S1
0. Blue dots are all pairs (a, b) such that

fl〈a(1− x) + bx〉 = b; red dots are pairs (a, b)
verifying Condition (13), for which we have
proved that a(1− x) + bx < b.

Fig. 6: Sufficient conditions for fl〈a+ (b− a)x〉 < b and fl〈a(1− x) + bx〉 < b, for a and b in
F15

5 .

As already said, that expression has the advantage of avoiding overflows for large bounds
a and b with opposite signs. It is, however, prone to catastrophic cancellation [Muller 2010,
p. 124] when fl〈a(1− x)〉 ≈ −fl(bx).

Contrary to Formula (4), monotonicity is not preserved and we do not have a lemma
equivalent to Lemma 4.2. We can nevertheless prove a limited version:

Lemma 4.5. Given (x1, x2) ∈ S1
0 × S1

0, and a and b two normal floats with a < 0 and
b > 0, we have:

x1 < x2 =⇒ fl〈a+ (b− a)x1〉 6 fl〈a+ (b− a)x2〉 (12)

So, provided a < 0 and b > 0, the order of the values in S1
0 is not changed by the affine

transformation.

Proof. Given x1 < x2, a < 0 and b > 0, we have:

bx1 < bx2 and a(1− x1) < a(1− x2)

By monotonicity of rounding, we get:

fl(bx1) 6 fl(bx2) and fl〈a(1− x1)〉 6 fl〈a(1− x2)〉
Therefore:

fl〈a(1− x1)〉+ fl(bx1) 6 fl〈a(1− x2)〉+ fl(bx2)

And, by monotonicity of rounding again:

fl〈a(1− x1) + bx1〉 6 fl〈a(1− x2) + bx2〉
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𝑎 𝑏prev (𝑏)

𝛾 (𝑏)/2

fl⟨𝑎(1 − 𝑥)⟩ + fl(𝑏𝑥)

𝛾 (𝑏)

Fig. 7: Conditions for fl〈a(1− x)〉+ fl(bx) to round to b.

Under the conditions of Lemma 4.5, we may now easily analyze Formula (5) as we did
for Formula (4) to find sufficient conditions for fl〈a(1− x) + bx〉 to be strictly smaller than
b for any value in S1

0.

Proposition 4.6. Given two normal floats a and b, we have:

a < 0 ∧ b > 0 =⇒ fl〈a(1− x) + bx〉 < b ∀x ∈ S1
0 (13)

Proof. Thanks to Lemma 4.5, we can consider x = 1 − 2−p only. Given two normal
floats a < 0 and b > 0, the condition fl〈a(1− x) + bx〉 < b requires:

b−
(
fl〈a(1− x)〉+ fl(bx)

)
> γ(b)/2, for x = 1− 2−p

since it means that fl〈a(1− x)〉 + fl(bx) cannot round to b (Figure 7). In truth, the strict
inequality is only necessary when fraceven(b), but we consider this stronger constraint for
the sake of simplicity.

We have:

b−
(
fl〈a(1− x)〉+ fl(bx)

)
= b−

(
a2−p + b(1− 2−p)(1 + δ1)

)
with δ1 ∈ [−2−p, 0] by Lemma 4.1. Expanding the equation, we get:

b−
(
fl〈a(1− x)〉+ fl(bx)

)
= (b− a)2−p + bδ1(2−p − 1)

From the bounds on δ1, we deduce:

b−
(
fl〈a(1− x)〉+ fl(bx)

)
> (b− a)2−p

Since we want:

b−
(
fl〈a(1− x)〉+ fl(bx)

)
> γ(b)/2

we must have:

(b− a)2−p > γ(b)/2

Then:

(b− a)2−p

b
>

2−p2eb

b
, if ¬P2(b)

(b− a)2−p

b
>

2−p2eb−1

b
, if P2(b)

As b is a normal float, it is of the form m×2eb with 1 6 m 6 2−21−p. We can then deduce:

a < b× 1− 21−p

2− 21−p

The intersection of the set of pairs of floats (a, b) verifying both this equation and a < 0∧b >
0 is the set of pairs (a, b) with a < 0 and b > 0.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 F. Goualard

Figure 6b shows graphically the set of pairs (a, b) for which we can prove
fl〈a(1− x) + bx〉 < b and the set of pairs (a, b) for which fl〈a(1− x) + bx〉 = b. Comparing
Figures 6a and 6b, Formula (5) seems to have the advantage over Formula (4), even though
it is less often used4, as it is not subject to overflows and the set of pairs (a, b) for which we
can prove that the bounds are respected is larger.

5. A NEW PROCEDURE

We have seen in Section 2.2 some of the problems that plague all the formulas studied:

— The formulas generate exactly 2p equidistributed values from [0, 1) and apply a transfor-
mation to some interval that may contain more or less than 2p equidistributed values.
Factoring in the inevitable rounding errors, it is difficult to ensure a generation of equidis-
tributed values from an interval [a, b) in a uniform manner;

— Rounding errors make it difficult to ensure that bounds are respected;
— Some formulas are limited by the possibility of overflows for some arguments.

Formula 4 could easily be modified to avoid overflows by writing:

y = 2

(
a

2
+
( b

2
− a

2

)
x

)
(14)

instead of y = a+ (b− a)x. Provided no underflow occurs, the two formulas are equivalent
and we also have:

fl〈a+ (b− a)x〉 = fl

〈
2

(
a

2
+
( b

2
− a

2

)
x

)〉
Formula (14) requires a bit more computation but its performances are not much worse
(See Table VII) as the division by two is very cheap. Despite its advantage, we have not
observed the use of that method in the languages and libraries we surveyed.

Formula (14) only cures the problem of overflows, however. To solve all the other problems,
we need a new procedure. In order to ensure spatial equidistribution, it should not use
floating-point arithmetic, except where operations are guaranteed to be errorless.

When a and b have the same sign and the same exponent, we can consider their fractional
parts fa and fb as integers, draw an integer fc in the interval [fa, fb) and create a float with
the same exponent and sign as a and b, and the fractional part fc. Since floats with the
same exponent are uniformly distributed, the procedure is sound, provided fc is computed
uniformly at random. This is a generalization of the second method described on Page 4. It
is also easy to respect the bounds of the interval [a, b) (and even to consider other bounds
such as (a, b), . . . ) as no floating-point computation is involved. For example, to draw a
float in (a, b), we would draw an integer fc in [fa + 1, fb − 1) for b > 0. Technically, the
procedure could be extended to [a, b] ⊆ [−2λ, 2λ], as all floats are spatially equidistributed
in that interval, but the handling of the sign and exponent makes the method messier to
implement.

If a and b do not have the same sign or the same exponent, we have to take into account
the largest gap γ(a, b) between floats in [a, b] (See Figure 8).
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Fig. 8: Computing spatially equidistributed floats in F7
4 ∩ [0.5, 4.75].

4More accurately, it seems that only the GSL C library uses Formula (5).
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A simple procedure to draw floats from an interval [a, b) when |a| 6 |b| is then to draw
an integer k in [1, d(b− a)/γ(b)e] and to return b− kγ(b). If b− a is not a multiple of γ(b),
we have to take care of returning a whenever k is equal to d(b − a)/γ(b)e. In that case,
the spatial equidistributivity is not perfect since the distance between the left bound and
the next drawable value is smaller than between that last one and the next. Consider for
example the interval [3.625, 4.75) in Figure 8: one can draw the values 3.625, 3.75, 3.875,
4.0, 4.25, and 4.5, which are not perfectly equidistributed. For that interval, there is no way
to ensure perfect equidistributivity. In any case, the method ensures at least that all values
are equidistributed, except for —possibly— the leftmost or rightmost one.

When |a| > |b|, the procedure is reversed: draw an integer k in [0, d(b− a)/γ(a)e− 1] and
return a+ kγ(a).

Given g as either γ(b) or γ(a), depending on what is applicable, the division of (b−a) by g
should be implemented as b/g−a/g to avoid an overflow. Since g is always a power of 2, the
two divisions are both errorless, provided no underflow occurs. However, the final subtraction
is not. In the very rare occurrences in which fl〈b/g − a/g〉 is rounded to an integer, the values
d(b− a)/γ(b)e and d(b− a)/γ(a)e may be off by 1 by default. To correct that problem, we
can use Dekker’s exact summation algorithm [Dekker 1971] to compute fl〈b/g − a/g〉 along
with an error term ε such that fl〈b/g − a/g〉 + ε = b/g − a/g. If fl〈b/g − a/g〉 is not an
integer, we can directly return dfl〈b/g − a/g〉e. Otherwise, we examine ε: if it is positive,
that means that fl〈b/g − a/g〉 was rounded downward to an integer and that db/g − a/ge
should be computed as dfl〈b/g − a/g〉e + 1; if ε is negative or null, we can directly return
dfl〈b/g − a/g〉e. Table III presents a Julia implementation of this algorithm.

Table III: Julia code to correctly compute d(b − a)/γ(b)e or d(b − a)/γ(a)e using Dekker’s
exact summation algorithm.

"""
ceilint(a,b,g)

Compute db/g-a/ge correctly using Dekker’s algorithm for an exact summation.
"""
function ceilint(a,b,g)

s = b/g - a/g
if abs(a) <= abs(b)

ε = -a/g - (s - b/g)
else

ε = b/g - (s + a/g)
end
si = ceil(Int, s)
return (s != si) ? si : si + Int(ε > 0)

end

The algorithm to draw floats from an interval [a, b) can easily be adapted to intervals
with others bounds ((a, b), . . . ) by changing the integer bounds of the interval we draw the
value k from, in the same way as the same exponent/same sign algorithm above. Table IV
gives naive Julia implementations for the various instances of the algorithm.

Table V compares the properties of the various algorithms presented henceforth. The
equations need no explanation; AT1PC corresponds to the formula a+(b−a)x to which we
have added a test for overflow (in that case, the formula 2

(
a
2 +( b

2− a
2 )x
)

is used instead) and
a test for a violation of the open bound b (in which case we redraw); AT2PC corresponds to
the formula a(1−x)+bx to which we have added the same test and correction for a violation
of the open bound b than AT1PC; γ-section is the new method we have just shown; lastly,
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Table IV: Naive Julia code to draw floats uniformly from intervals [a, b], [a, b), (a, b], and
(a, b).

"""
γsectionCC(a,b)

Draw a float from an interval [a,b]
uniformly at random.
"""
function γsectionCC(a,b)

g = γ(a,b)
hi = ceilint(a,b,g)
k = rand(DiscreteUniform(0,hi))
if abs(a) <= abs(b)

return (k == hi) ? a : b-k*g
else

return (k == hi) ? b : a+k*g
end

end

"""
γsectionCO(a,b)

Draw a float from an interval [a,b)
uniformly at random.
"""
function γsectionCO(a,b)

g = γ(a,b)
hi = ceilint(a,b,g)
k = rand(DiscreteUniform(1,hi))
if abs(a) <= abs(b)

return (k == hi) ? a : b-k*g
else

return a+(k-1)*g
end

end

"""
γsectionOC(a,b)

Draw a float from an interval (a,b]
uniformly at random.
"""
function γsectionOC(a,b)

g = γ(a,b)
hi = ceilint(a,b,g)
k = rand(DiscreteUniform(0,hi-1))
if abs(a) <= abs(b)

return b-k*g
else

return (k == hi-1) ? b : a+(k+1)*g
end

end

"""
γsectionOO(a,b)

Draw a float from an interval (a,b)
uniformly at random.
"""
function γsectionOO(a,b)

g = γ(a,b)
hi = ceilint(a,b,g)
k = rand(DiscreteUniform(1, hi-1))
if abs(a) <= abs(b)

return b-k*g
else

return a+k*g
end

end

SESS is the method presented at the beginning of this section when a and b have the same
exponent and sign.

“Bound respect” is “Yes” when the method always respects the open right bound and
never returns b; “Spatial equidistribution” is “Yes” when the set of floats Sba in [a, b) that can
be returned is spatially equidistributed; “Uniformity” is “Yes” when each float of Sba has
the same probability to be returned; “No overflow” is “Yes” if the computation required
by the method never overflows.

Note that only the new γ-section method is of general applicability and has a “Yes” in
all columns. A caveat is that spatial equidistribution is guaranteed only when it is feasibly
possible: if b− a is not a multiple of γ(a, b), one float of Sba will be closer to its neighbor in
Sba than all other consecutive floats in Sba.

Table VI compares the number of instructions needed to implement each method. Since
all methods ultimately require the computation of an integer drawn from some interval,
the cost of generating that integer is not presented. As can be seen in Table VII, the
superscalar features of modern processors ensure that the methods requiring the largest
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Table V: Properties of various methods for drawing floats in [a, b)

Method Bound respect
Spatial

Uniformity
No

equidistribution Overflow

a+ (b− a)x No No No No
2
(
a
2 + ( b

2 − a
2 )x
)

No No No Yes
AT1PC Yes No No Yes
a(1− x) + bx No No No Yes
AT2PC Yes No No Yes
γ-section Yes Yes† Yes Yes
SESS‡ Yes Yes Yes Yes

† Spatial equidistribution guaranteed up to what is possible.
‡ Same Exponent Same Sign. Method limited in its applicability.

number of instructions are not necessarily at a significant disadvantage compared with the
more thrifty ones.

Table VII compares the performances of the methods presented when calling them to
compute many random floats from the same interval [a, b), including the time to generate
a random integer. To be able to test the SESS method, the interval chosen is such that a
and b share the same exponent.

Table VI: Number of instructions required by each method, aside from the computation of
a random integer in some interval.

Method logical OR Float add/sub Float mul

a+ (b− a)x — 1 2
2
(
a
2 + ( b

2 − a
2 )x
)

— 1 4
AT1PC† — 1 4
a(1− x) + bx — 2 3
AT2PC† — 2 3
γ-section — 1 1
SESS‡ 1 — —

†Affine Transformation Partially Corrected.
‡ Same Exponent Same Sign.

All methods were implemented in C++, compiled using the GNU C++ compiler version
11.1.0, and run on an Intel i7-6700HQ@2.6 GHz with 16 GiB of RAM under Linux 5.4.0-
87. Each method was used to draw 200 000 000 random values from the interval [16, 31).
The number of reference clock cycles per random value was computed with the rdtsc in-
struction; Timings in nanoseconds were obtained with the C++11 Chrono standard library.
The same set of programs was launched ten times in succession; the values reported in
Table VII are the minimum ones. The difference between the minimum number of reference
clock cycles per value and the maximum was almost always null and never larger than 1.
All methods use a std::uniform_int_distribution<> object to compute uniformly dis-
tributed integers in some domain from a source of randomness from an std::mt19937_64
object that uses a 64 bits Mersenne Twister engine. The methods based on a floating-point
random number generator that computes a value in [0, 1) use the implementation provided
by the standard C++11 library with std::uniform_real_distribution<>. As it is, the
time required to generate a random value in [a, b) is essentially spent in the procedure that
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Table VII: Comparing the performances of various implementations to draw 200 000 000
floats uniformly at random from the interval [16, 31). Times in nanoseconds per random
value; Reference clock cycles per random value. Minimum values from 10 runs.

Time per value (ns.) Cycles per value
Method binary32 binary64 binary32 binary64

a+ (b− a)x 15 15 38 38
2
(
a
2 + ( b

2 − a
2 )x
)

14 15 37 39
AT1PC† 16 15 40 39
a(1− x) + bx 15 15 39 39
AT2PC† 16 15 41 40
γ-section 12 11 30 29
SESS‡ 10 10 25 25

Times on an Intel i7-6700HQ @ 2.6 GHz for a C++ implementation.
†Affine Transformation Partially Corrected.
‡ Same Exponent Same Sign.

computes an integer in a domain with the Mersenne Twister (almost 25 reference clock
cycles per value).

Figure 9 illustrates the benefits of using the γ-section method when using a Monte Carlo
algorithm to compute an approximation of π: the γ-section method allows to draw four
times more unique points uniformly distributed in [−1, 1] × [−1, 1] than the location-scale
transformation a+ (b− a)x (cf. Figure 4b), which leads to a better approximation of π for
the same number of draws.
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Using the location-scale transformation a+ (b− a)x: π ≈ 3.012
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Using γ-section: π ≈ 3.1435

Fig. 9: Computing an approximation of π with a Monte Carlo algorithm on F15
5 (8 000

draws).

6. CONCLUSION

It seems ironic that so much care is taken by languages and their libraries to ensure that
a float can be drawn uniformly at random from the interval [0, 1) without ever returning 1
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to fail at ensuring the same for other intervals by disregarding the properties of floating-
point arithmetic. As Table II shows, none of the languages surveyed implements correctly
the drawing of a float in an interval [a, b). We have also found that the documentation
accompanying the functions offered is sometimes misleading in asserting the properties
guaranteed.

Regarding the respect of the bounds, Propositions 4.4 and 4.6 give sufficient conditions
on a and b, should a programmer elect to use the method currently implemented in ones
language. All our results hold in the absence of underflow. For most applications, it is
standard practice to discount the possibility of underflow in error analysis. In addition, we
did not consider it worthwhile to investigate further in the event of underflows as their
occurrence would require the computation of very small floats for all practical formats
(values of the order of 10−38 for single precision and 10−308 for double precision).

With the double precision format, the probability of returning the value of an open bound
with one of the flawed implementations we analyzed is very low (for fixed a and b, of the
order of one in 1016 with p = 53). The risk is still there, and other problems plague the
methods currently used, such as a lack of spatial equidistributivity and uniformity.

Perfect spatial equidistributivity may not be achievable by any means for some intervals,
as shown in Section 5. We could define a simple measure of equidistributivity for a sequence
of floats S in an interval [a, b], [a, b), (a, b], or (a, b) as the pair (k, d) where k is the cardinal-
ity of S and d is the sum of discrepancies from the expected distance between two adjacent
floats. As an example, we may draw the values in S1 = (3.625, 3.75, 4.0, 4.25) from the in-
terval [3.625, 4.25] ⊂ F7

4 with an expected distance of γ(3.625, 4.25) = 0.25. The measure of
S1 is (4, 0.125). Armed with our measure, we may define a sequence of floats as having an
optimal equidistributivity for an interval I if there is no other sequence of floats from I with
a higher value for k and a value for d that is less or equal. Even though the γ-section method
presented in this article ensures that equidistributivity is violated for at most only one float,
it does not ensure optimal equidistributivity, however. As a counter-example, consider again
the interval [3.625, 4.25] ⊂ F7

4: the sequence S2 = (3.625, 3.75, 3.875, 4.0, 4.25) has the mea-
sure (5, 0.125) for the expected distance of 0.125, which is better than what γ-section would
compute. Unfortunately, devising a fast procedure to ensure optimal equidistributivity in
the general case is still an elusive goal.

Failure to respect the bounds seems to be the more serious sin since it could lead to
catastrophic errors, say when performing some Monte Carlo quadrature for a function with
singularities at the bounds of the interval [Beebe 2017, p. 202]. I do not have any direct
knowledge of occurrences of serious problems due to a failure of current methods to ensure
spatial equidistributivity and uniformity. I suspect that, given the large number of random
floats required by most stochastic methods, a measurable impact could only be detected if
uniformity or equidistributivity were severely violated, which will depend on the bounds of
the interval [a, b) considered.

However, Table VII shows that it is possible to get a reasonable approximation of spatial
equidistributivity, uniformity, flexibility in the choice of the bounds, and respect of said
bounds at an affordable price. In addition, since the γ-section algorithm can be viewed as a
generalization of the method often used to draw floats in [0, 1), it becomes possible to have
only one procedure to draw floats from any interval.
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