Supporting Information

Azide-Coordination in Homometallic Dinuclear Lanthanide(III) Complexes Containing Non-Equivalent Lanthanide Metal Ions: Zero Field SMM Behavior in the Dysprosium

Analogue

Pawan Kumar,^a Sourav Biswas,^b Abinash Swain,^c Joydev Acharya,^a Vierandra Kumar,^a Pankaj Kalita,^d Jessica Flores Gonzalez,^e Olivier Cador,^e Fabrice Pointillart,^{*e} Gopalan Rajaraman^{*c} and Vadapalli Chandrasekhar^{*a,d}

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

^bDepartment of Geo-Chemistry, Keshav Deva Malaviya Institute of Petroleum Exploration, Dehradun-248915, India.

^cDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076.

^dTata Institute of Fundamental Research, Gopanpally, Hyderabad - 500 107, India,

^eInstitut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, 263 Avenue du Genéral Leclerc, 35042, Rennes Cedex, France

AUTHOR EMAIL ADDRESS: vc@iitk.ac.in; vc@tifrh.res.in; fabrice.pointillart@univrennes1.fr; rajaraman@chem.iitb.ac.in

	3
formula	$C_{37}H_{43}Gd_2N_{11}O_9$
g/mol	1100.32
crystal system	Monoclinic
space group	<i>P</i> -2 ₁ /c
a/Å	14.519(5)
b/Å	21.287(7)
$c/\text{\AA}$	15.950(6)
α (°)	90
$\beta(^{\circ})$	116.227(10)
γ(°)	90
<i>V</i> /Å ³	4422.4(3)
Ζ	4
$\rho_{\rm c}/{\rm g}~{\rm cm}^{-3}$	1.653
μ/mm ⁻¹	3.035
F(000)	2168.0
cryst size (mm ³)	0.19 imes 0.17 imes 0.15
2θ range (deg)	5.93 to 56.62
limiting indices	-19<=h<=19
	-28<=k<=28
	-21<=1<=21
reflns collected	69233
ind reflns	10983 [R(int) =0.0447]
Completeness to θ (%)	100
refinement method	Full-matrix least-squares on F^2
data/restraints/params	10983/12/539
goodness-of-fit on F^2	1.045
Final R indices	$R_1 = 0.0269$
$[I > 2\theta(I)]$	$wR_2 = 0.0661$
<i>R</i> indices (all data)	$R_1 = 0.0341$
	$wR_2 = 0.0696$
CCDC no.	2026242

 Table S1. Crystal data and structure refinement parameters of 3

Scheme S1. Synthesis of LH_4 .

Scheme S2. Synthesis of a dinuclear complex, $[Dy_2(LH_2)_2(\mu_2-\eta^1:\eta^1-Piv)]Cl \cdot 2MeOH \cdot 2H_2O^{11d}$

Figure S1. Experimental XRD pattern and simulated XRD from single crystal data for 1 along with experimental pattern of $1_{5\%}$.

Figure S2. Experimental XRD pattern and simulated XRD from single crystal data for 2.

Figure S3. **a)** Full range ESI-MS spectrum of complex 1. **b)** Experimental and **c)** simulated isotopic distribution pattern of the fragment $[Dy_2(LH_2)(LH)H]^{2+}$.

Figure S4. a) ESI-MS spectrum of complex **2**. **b)** Experimental and **c)** simulated mass spectral pattern of the fragment $[Tb_2(LH_2)(LH)H]^{2+}$.

Figure S5. Molecular Structure of compound 2 as thermal ellipsoids at 50% probability level (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Colour codes: N = blue; O = red; C = grey; Tb = yellow and H = black

Bond distances around Tb1		Bond distances around Tb2		Bond angles around Tb	
Tb(1)-O(7) 2 Tb(1)-O(8) 2 Tb(1)-O(3) 2 Tb(1)-O(9) 2 Tb(1)-O(1) 2 Tb(1)-N(11) 2 Tb(1)-N(10) 2 Tb(1)-N(4) 2	2.590(17) 2.334(18) 2.369(18) 2.537(18) 2.547(18) 2.503(18) 2.641(2) 2.536(2) 2.519(2)	Tb(2)-O(7) Tb(2)-O(3) Tb(2)-O(5) Tb(2)-O(4) Tb(2)-O(6) Tb(2)-N(6) Tb(2)-N(8) Tb(2)-N(7) Tb(2)-N(1)	2.356(17) 2.507(17) 2.391(18) 2.425(18) 2.232(18) 2.503(2) 2.522(2) 2.646(2) 2.571(2)	Tb(1)-O(3)-Tb(2) Tb(1)-O(7)-Tb(2)	115.57(7) 114.48(7)

Figure S6. Molecular Structure of compound 3 as thermal ellipsoids at 50% probability level (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Colour codes: N = blue; O = red; C = grey; Gd = pink and H = black

Bond distances around Gd1	Bond distances around Gd2	Bond angles around Gd	
Gd(1)-O(7) 2.526(2) Gd(1)-O(8) 2.383(2) Gd(1)-O(3) 2.367(2) Gd(1)-O(9) 2.531(2) Gd(1)-O(2) 2.293(2) Gd(1)-O(1) 2.489(2) Gd(1)-N(11) 2.669(2) Gd(1)-N(10) 2.625(3) Gd(1)-N(4) 2.553(3)	Gd(2)-O(7) 2.376(2) Gd(2)-O(3) 2.494(2) Gd(2)-O(5) 2.391(2) Gd(2)-O(4) 2.471(2) Gd(2)-O(6) 2.268(2) Gd(2)-N(6) 2.537(2) Gd(2)-N(8) 2.515(3) Gd(2)-N(7) 2.671(3) Gd(2)-N(1) 2.552(3)	Gd(1)-O(3)-Gd(2) 116.11(8) Gd(1)-O(7)-Gd(2) 114.62(8)	

Table S4. Continuous Shape Measures (CShM) calculations for Ln^{III}

Complex	Structure [†]					
Compton	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	MFF-9	
1_Dy1 CShM	3.039	2.261	3.663	3.040	1.432	
1_Dy2 CShM	2.093	1.264	2.139	2.102	0.905	
2_Tb1 CShM	3.033	2.244	3.672	3.040	1.415	
2_Tb2 CShM	2.169	1.304	2.248	2.168	0.908	
3_Gd1 CShM	3.055	2.300	2.970	3.239	1.619	
3_Gd2 CShM	2.741	1.778	2.497	2.403	1.159	

† JCSAPR-9 = Capped square antiprism J10 (C4v); CSAPR-9 = Spherical capped square antiprism (C4v); JTCTPR-9 = Tricapped trigonal prism J51 (D3h); TCTPR-9 = Spherical tricapped trigonal prism (D3h); MFF-9 = Muffin (Cs)

The crystal packing analysis of **1** reveals the presence of intramolecular as well as intermolecular hydrogen bonding interactions. Two sets of intramolecular hydrogen bonding are encountered in **1**: in one set, two strong hydrogen bonding are formed between the – CH_2CH_2OH of a $[LH_2]^{2-}$ and the O of the deprotonated arm of $[LH]^{3-}$ with D–H....A, 1.814 Å while in other set is between methanol (OH) and azide ion (-N1·····H1-O1) with D-H....A, 2.038 Å (Figure S7).

Figure S7: Two set of intramolecular hydrogen bonding of complex 1 (selected hydrogen atoms have been omitted for clarity).

An analysis of the crystal packing **1** reveals that it is possible to hierarchically construct its supramolecular structure. First a 1D chain is generated as a result of a pair of intermolecular hydrogen bonding in two set: in one set each complex is connected to other via a pair of hydrogen bonding between O–H of a diethanolammine arm (–CH₂CH₂OH) to another –O of deprotonated diethanolamine arm (-CH2CH2O-) with D-H...A, 2.008 Å and second set each complex is connected to other via a pair of hydrogen bonding between the OH of diethanol amine arm of $[LH_2]^{2-}$ and imine nitrogen of $[LH]^{3-}$ (O4-H4····N9) with D-H...A, 2.059 Å (Figure S8). Bond parameters involved in this hydrogen bonding are given in Table S5.

Figure S8. 1D supramolecular structure of complex **1** (selected carbon, hydrogen are omitted for clarity)

 Table S5: Hydrogen bond parameter for complex 1.

D-HA	HA	DA	D-HA

(intra)O5-H5O8	1.8138(333)	2.5025(26)	171.364(3792)
(intra)O1-H1N1	2.0384(328)	2.7904(29)	171.219(3400)
(inter)O9-H9O8	2.0076(329)	2.7222(25)	166.722(3510)
(inter)O4-H4N9	2.0593(334)	2.7429(28)	175.684(3708)

Table S4.

Figure S9. Field dependence of the magnetization from 2 to 5 K for 1 (a) and 2 (b).

Figure S10. In-phase component of the ac magnetic susceptibility data for **1**, from 2 to 15 K under 0 Oe.

Extended Debye:

$$\chi_{M}' = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$
$$\chi_{M}'' = (\chi_{T} - \chi_{S}) \frac{(\omega\tau)^{1-\alpha} \cos\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$

With χ_T the isothermal susceptibility, χ_S the adiabatic susceptibility, τ the relaxation time and α an empiric parameter which describe the distribution of the relaxation time. For SMM with only one relaxing object α is close to zero. The extended Debye model was applied to fit simultaneously the experimental variations of χ_M ' and χ_M '' with the frequency ν of the oscillating field ($\omega = 2\pi\nu$). Typically, only the temperatures for which a maximum on the χ_M ''

vs. ν curves, have been considered (see figure here below for an example). The best fitted parameters τ , α , χ_T , χ_S are listed in Tables S5 to S7 with the coefficient of determination R².

Figure S11. Frequency dependence of the in-phase (χ_M ') and out-of-phase (χ_M '') components of the *ac* susceptibility measured on powder at 2 K and 0 Oe with the best fitted curves (red lines) for **1**.

Figure S13. In-phase and out-of-phase components of the *ac* magnetic susceptibility for 1 at 2 K in an applied *dc* magnetic field from 0 to 3000 Oe.

Figure S14. In-phase component of the *ac* magnetic susceptibility data for 1, from 2 to 15 K under 800 Oe.

Figure S15. Normalized Cole-Cole plot at several temperatures between 2 and 15 K for 1 under 800 Oe.

Figure S16. Field dependence of the magnetization for $1_{5\%}$ at 2 K.

Figure S17. In-phase component of the *ac* magnetic susceptibility data for $1_{5\%}$, from 2 to 15 K under 0 Oe.

Figure S18. Normalized Cole-Cole plot at several temperatures between 2 and 11 K for $1_{5\%}$ under zero magnetic field.

Figure S19. In-phase component of the *ac* magnetic susceptibility data for $1_{5\%}$, from 2 to 11 K under 800 Oe..

Figure S20. Normalized Cole-Cole plot at several temperatures between 3 and 12 K for $1_{5\%}$ under 800Oe.

Figure S21. Normalized hysteresis loops of the magnetization for 1 (black lines) and $1_{5\%}$ (grey lines) at 2 K.

Figure S22. In-phase and out-of-phase components of the *ac* magnetic susceptibility for **2** at 2 K in an applied *dc* magnetic field from 0 to 3000 Oe.

Figure S23. In-phase (χ_M) and Out-of-phase (χ_M) components of the *ac* magnetic susceptibility data for **2** in 2800 Oe applied magnetic field in the temperature range of 2-6 K.

Figure S24. Thermal dependence of the magnetic relaxation time for **2** in 2800 Oe applied magnetic field (full black circles) in the 2-5 K temperature range.

Table S6. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound 1 at 0 Oe in the temperature range 2-11 K.

T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	τ/s	α	R ²
2	0.08762	11.33742	0.02675	0.26889	0.99979
2.2	0.0771	10.46142	0.02568	0.2722	0.9998
2.4	0.0817	9.56701	0.02462	0.27313	0.99975
2.6	0.07762	8.73469	0.02319	0.27026	0.99912
2.8	0.07511	8.20648	0.02270	0.2736	0.99979
3	0.07909	7.66048	0.02187	0.27483	0.99982
3.5	0.08531	6.61609	0.01972	0.27867	0.99961
4	0.09105	5.76750	0.01706	0.27509	0.99964
4.5	0.10856	5.09633	0.01410	0.26637	0.9993
5	0.10791	4.58915	0.01151	0.26343	0.99949
5.5	0.13001	4.09939	0.00868	0.24505	0.99872
6	0.12605	3.79210	0.00669	0.24169	0.99942

7	0.14926	3.25215	0.00359	0.22709	0.99960
8	0.18730	2.82320	0.00169	0.20551	0.99970
9	0.21791	2.53317	7.55E-04	0.21268	0.99798
10	0.37513	2.24098	3.44E-04	0.1690	0.99967
11	0.5112	2.04002	1.69E-04	0.15824	0.99982

Table S7. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **1** at 2 K in the H range 0-3000 Oe.

H / Oe	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	τ/s	α	R ²
0	0.07962	11.35553	0.02678	0.2705	0.99979
200	-0.01369	11.03342	0.03619	0.32551	0.99969
400	-0.68729	13.26742	0.13297	0.49548	0.99965
600	-0.02575	12.01932	0.22761	0.41078	0.99907
800	0.04069	11.57401	0.29179	0.38432	0.99965
1000	0.11196	11.19894	0.29220	0.38453	0.99982
1200	0.27158	10.86183	0.24012	0.40229	0.99988
1400	0.53596	11.03043	0.20322	0.45902	0.99983
1600	0.82108	11.3641	0.20231	0.53291	0.99972
1800	1.1579	10.32806	0.15154	0.53908	0.99993
2000	1.18684	9.6930	0.13851	0.54869	0.99993
2200	0.98042	9.3068	0.13960	0.5677	0.99987
2400	0.81932	8.72711	0.13339	0.56946	0.99992
2600	0.71529	8.00415	0.12191	0.55684	0.99983
2800	0.60279	7.60663	1.33E-01	0.55719	0.99985
3000	0.51075	7.22355	1.48E-01	0.55709	0.99983

Table S8. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex 1 at 800 Oe in the temperature range 2-10 K.

T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	χ_T / cm ³ mol ⁻¹	τ/s	α	R ²
2	0.09362	12.44309	0.14673	0.39488	0.99998
2.2	0.09114	11.4835	0.12954	0.39474	0.99998
2.4	0.09157	10.42226	0.11065	0.39394	0.99989
2.6	0.08348	9.96637	0.10504	0.39936	0.99997

2.8	0.09441	9.06148	0.08717	0.39204	0.99996
3	0.10212	8.38759	0.07487	0.38687	0.9999
3.5	0.11309	7.14303	0.05353	0.38412	0.99987
4	0.13687	6.18953	0.03684	0.37323	0.99985
4.5	0.1615	5.48671	0.02505	0.36161	0.99985
5	0.1849	4.86712	0.01626	0.34852	0.99953
5.5	0.21276	4.39645	0.01063	0.33296	0.99951
6	0.23307	3.9973	0.00691	0.32253	0.99942
7	0.2897	3.37769	0.00292	0.30297	0.99932
8	0.36652	2.92882	0.00124	0.28995	0.9994
9	0.48556	2.5849	5.51E-04	0.27069	0.99962
10	0.64236	2.31729	2.76E-04	0.25048	0.99983

Table S9. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound

	$\chi_{\rm S}$ /	χ _T /			
T / K	cm ³ mol ⁻¹	cm ³ mol ⁻¹	τ/s	α	R ²
2	4.60E-17	0.714	0.00103	0.52293	0.99944
2.2	1.20E-15	0.65543	9.95E-04	0.52098	0.99943
2.4	7.41E-16	0.59797	9.93E-04	0.52273	0.99958
2.6	4.27E-17	0.55234	9.97E-04	0.52114	0.99968
2.8	1.22E-15	0.51672	0.001	0.52457	0.99959
3	1.00E-15	0.48543	0.00103	0.52661	0.99946
3.25	1.00E-15	0.45324	0.00105	0.53013	0.99982
3.5	1.00E-16	0.42598	0.00107	0.53483	0.99975
3.75	2.88E-16	0.41001	0.00118	0.5463	0.99959
4	1.83E-16	0.38465	0.00113	0.54101	0.99941
4.25	3.37E-17	0.37023	0.00124	0.539	0.99958
4.5	1.00E-15	0.35245	0.00117	0.53749	0.99962
4.75	0.01008	0.33315	0.0013	0.51022	0.99899
5	0.01636	0.31724	0.00135	0.49896	0.99916
5.5	0.02283	0.28683	0.00132	0.45158	0.99868
6	0.01575	0.26982	0.00116	0.45717	0.99883
6.5	0.02149	0.24569	9.56E-04	0.40327	0.99845
7	0.04421	0.21915	8.93E-04	0.34835	0.9992
8	0.03775	0.19117	5.13E-04	0.30437	0.9992
9	0.0465	0.17153	3.35E-04	0.22194	0.99648
10	0.0485	0.1516	1.72E-04	0.17	0.9995
11	0.06481	0.1381	1.22E-04	0.08646	0.99902

Т/К	$\chi_{\rm S}/$ cm ³ mol ⁻¹	$\chi_{\rm T}/cm^3mol^{-1}$	τ/s	α	R ²
3	5.91E-03	0.61089	2.71983	0.29016	0.99931
3.25	6.28E-03	0.51292	1.27E+00	0.24623	0.99914
3.5	6.96E-03	0.45714	6.92E-01	0.21489	0.99958
3.75	6.37E-03	0.41764	4.06E-01	0.19292	0.99951
4	6.40E-03	0.38735	0.25404	0.18327	0.99971
4.25	5.70E-03	0.36183	0.16349	0.17395	0.9997
4.5	5.66E-03	0.34211	0.11072	0.16992	0.99961
4.75	5.70E-03	0.32128	0.07596	0.16016	0.99956
5	5.69E-03	0.30515	0.05386	0.15659	0.99954
5.5	5.93E-03	0.27723	0.02905	0.15244	0.99936
6	5.31E-03	0.25315	0.01665	0.15084	0.99951
6.5	4.15E-03	0.23715	0.01033	0.16166	0.99911
7	0.00847	0.21844	0.00637	0.15289	0.99907
8	0.00959	0.19584	0.00258	0.1969	0.99888
9	0.02046	0.16914	0.00109	0.17402	0.99883
10	0.03091	0.15266	5.15E-04	0.16948	0.99929
11	0.04655	0.13832	2.93E-04	0.10948	0.99969
12	0.05868	0.12607	1.66E-04	0.04686	0.99967

Table S10. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound $\mathbf{1}_{5\%}$ at 800 Oe in the temperature range 3-12 K.

Table S11. The Basis set used in *ab initio* calculations for complex 1 and 2, model structure 1' and model 1''.

Atoms	Basis Set
Dy	ANO-RCC8s7p4d3f2g1h.
Tb	ANO-RCC8s7p4d3f2g1h.
Lu	ANO-RCC8s7p4d3f2g1h.
C	ANO-RCC3s2p.
0	ANO-RCC4s3p2d.
N	ANO-RCC4s3p2d.
Н	ANO-RCC2s

Figure S25: Model structure for 1' and 1''.

Table S12: Energy distribution	n in low lying 8 KDs for	complexes 1, model 1'	and model 1".
--------------------------------	--------------------------	-----------------------	---------------

KD	Energy of the Complexes							
	1 Dy-1	1 Dy-2	1a Dy-1	1a Dy-2	1b Dy-1	1b Dy-2		
1	0.00	0.00	0.00	0.00	0.00	0.00		
2	176.34	117.65	185.38	137.47	178.54	131.48		
3	339.55	200.53	363.93	202.30	344.86	208.11		
4	449.23	256.10	478.51	289.06	424.59	290.41		
5	519.12	331.06	551.76	377.97	513.13	381.58		
6	584.40	383.67	614.30	441.44	593.67	470.17		
7	709.89	434.20	728.44	525.36	710.24	566.83		
8	820.83	536.04	829.80	630.91	823.47	674.98		

		Table S13: Energy	distribution in	low lying 13	3 Ising doublets f	for complexes 2.
--	--	-------------------	-----------------	--------------	--------------------	------------------

KD	Energy(Tb1)	Energy (Tb2)
1	0.00	0.00
2	0.19	0.15
3	142.22	101.21
4	145.10	104.56
5	261.20	181.63
6	282.62	204.65
7	361.29	256.92
8	430.80	319.70
9	470.07	346.98
10	576.45	416.09
11	588.90	427.59
12	788.15	536.91
13	789.57	538.78

	1	1							
K	q	A(k,q)							
		1-Dy1	1-Dy2	1a-Dy1	1a-Dy2	1b-Dy1	1b-Dy2	2-Tb1	2-Tb2
	1	-							
2	-2	3.59E+00	1.60E+00	-8.75E-01	6.87E-01	-7.90E-01	-1.43E-01	1.12E+00	-1.60E+01
2	-1	-5.30E-01	8.77E-01	-1.76E-01	3.31E-02	-2.05E-02	-4.23E-01	4.19E+00	-1.31E+01
		-							
2	0	8.98E+00	-2.35E+00	-4.01E+00	-2.71E+00	-3.80E+00	-2.94E+00	-2.61E+01	-1.58E+01
2	1	3.67E+00	4.52E-01	2.03E+00	-1.55E+00	2.59E+00	-1.39E+00	3.06E+01	-2.60E+01
2	2	5.82E+00	1.07E+00	2.31E+00	2.89E+00	2.79E+00	3.37E+00	1.88E+01	-6.78E+00
4	-4	-3.91E-02	-5.84E-04	-6.73E-03	5.03E-03	-3.79E-03	4.65E-03	-7.56E-01	-7.84E-01
4	-3	-2.19E-01	3.21E-02	-3.09E-02	-3.54E-02	-2.73E-02	-4.08E-02	2.85E+00	-8.25E-01
4	-2	-8.83E-02	3.18E-03	-1.26E-02	4.19E-03	-9.46E-03	5.09E-03	-3.96E-01	1.73E-01
4	-1	4.81E-02	-1.59E-03	6.08E-03	-3.40E-03	4.36E-03	-5.52E-04	-9.93E-01	-1.01E-01
4	0	-2.67E-02	-1.92E-03	-4.02E-03	-2.00E-03	-4.17E-03	-1.63E-03	9.02E-02	6.40E-02
4	1	-8.18E-02	-4.27E-03	-1.24E-02	1.17E-02	-1.84E-02	1.03E-02	-1.91E+00	6.09E-01
4	2	-1.36E-02	-2.43E-03	-8.86E-04	-1.03E-03	-3.73E-03	-2.48E-03	3.85E-01	9.41E-02
4	3	-5.33E-02	-2.60E-02	-3.09E-03	7.92E-03	-6.44E-03	-1.75E-03	8.54E-01	3.62E+00
4	4	-3.16E-02	-1.10E-02	-4.13E-03	-7.25E-03	-7.39E-03	-7.70E-03	-2.80E-01	4.84E-02
6	-6	1.07E-02	2.39E-04	4.04E-04	8.34E-05	4.05E-04	2.18E-05	-1.67E-01	-7.40E-02
6	-5	-2.32E-02	-1.32E-03	-1.08E-03	1.14E-03	-9.56E-04	9.32E-04	-7.88E-02	1.13E+00
6	-4	2.98E-03	9.93E-05	1.15E-04	1.21E-04	1.53E-04	7.00E-05	9.88E-02	-2.15E-01
6	-3	2.30E-03	-5.14E-04	1.12E-04	5.68E-04	7.32E-05	4.68E-04	-2.64E-01	2.02E-01
6	-2	3.48E-03	3.82E-05	1.49E-04	4.15E-05	1.41E-04	3.74E-05	-4.26E-02	-1.42E-01
6	-1	-2.29E-03	-9.30E-05	-9.49E-05	1.05E-04	-8.13E-05	9.73E-05	1.58E-01	-5.67E-02
6	0	4.75E-04	6.26E-06	2.42E-05	3.20E-06	2.47E-05	6.02E-06	-8.32E-03	1.18E-02
6	1	-4.30E-04	-4.23E-05	-1.48E-05	3.60E-05	2.99E-05	2.41E-05	1.98E-01	-1.53E-01
6	2	6.15E-04	3.53E-05	9.44E-06	1.46E-05	2.58E-05	5.16E-05	3.86E-02	2.01E-01
6	3	4.59E-03	3.97E-05	1.50E-04	8.15E-05	1.20E-04	2.11E-04	2.49E-01	-3.43E-01
6	4	-1.54E-03	3.92E-05	-8.33E-05	3.44E-05	6.47E-05	9.72E-05	2.15E-01	-7.20E-02
6	5	-2.58E-03	1.32E-04	-4.33E-05	5.03E-04	-8.95E-04	9.58E-04	1.09E+00	-3.97E-01
6	6	-3.94E-03	2.44E-05	-2.70E-04	8.06E-05	6.62E-05	1.52E-04	-8.02E-01	-6.77E-02

 Table S14: Crystal field parameters for complex 1, model 1', model 1', model 1'' and complex 2.

The crystal field parameters are calculated using the following Hamiltonian,

 $H_{CF} = \sum_{k,q} B_k^q O_k^q.$ (Equation 1)

Where $O_k^q = extended$ stevens operator

k=rank of ITO=2,4,6

q=component of the ITO = $-k, -k+1, \dots, 0, \dots, k$.

Following Hamiltonian below is used for calculating the dipolar and exchange interaction between the Ln^{III}-Ln^{III} centres.

$$\hat{H}_{ex} = -\sum_{i} J_i S_i S_{i+1}....(Equation 2)$$

Here $J_i = J_{idip} + J_{iexch}$; that is, J_i are the total magnetic interaction Ln-Ln, this describes the interaction between the neighbouring metal centres.

$$\hat{H} = -(-J_{dip}^{Ln^{i}-Ln^{i+1}} + J_{exch}^{Ln^{i}-Ln^{i+1}})\tilde{s}_{Ln_{i}}\tilde{s}_{Ln_{i+1}}.$$
(Equation 3)

Figure S26: Loprop charge distribution for complex 1.

Figure S27: DFT computed spin density on Ln centre using Broken symmetry approach for complex **1-3**.

Figure S28: EDS spectrum for complex $1_{5\%}$. The spectrum was analysed by FESEM model JSM 7200F with FEG source.