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Abstract

This work focuses on constructing functional representations of quantities of interest (QoIs) of an uncertain
system in high dimension. Attention is focused on the ignition delay time of an iso-octane air mixture,
using a detailed chemical mechanism with 3,811 elementary reactions. Uncertainty in all reaction rates is
directly accounted for using associated uncertainty factors, assuming independent log-uniform priors. A
Latin hypercube sample (LHS) of the ignition delay times was first generated, and the resulting database
was then exploited to assess the possibility of constructing polynomial chaos (PC) representations in terms
of the canonical random variables parametrizing the uncertain rates. We explored two avenues, namely
sparse regression (SR) using LASSO, and a coordinate transform (CT) approach. Preconditioned variants
of both approaches were also considered, namely using the logarithm of the ignition delay time as QoI.

Both approaches resulted in representations of the ignition delay with similar representation errors.
However, the CT approach was able to reproduce better the empirical distribution of the underlying LHS
ensemble, and also preserved the positivity of the ignition delay time. When preconditioned representations
were considered, however, similar performances were obtained using CT and SR representations. The results
also revealed that both the CT and SR representations yield consistent global sensitivity estimates. The
results were finally used to test a reduced dimension representation, and to outline potential extensions of
the work.

Keywords: Polynomial chaos, regularized regression, basis adaptation, preconditioned representation,
reduction, global sensitivity analysis

1. Introduction

The analysis of chemical ignition phenomena plays a key role in the design, characterization, and per-
formance assessment of engines and fuels. Different experimental setups have been specifically designed to
measure fuel oxidation properties, including shock tubes (e.g. [1, 2, 3, 4]) and rapid compression machines
(e.g. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]). In most of these setups, experimental observables include
the pressure trace, as well as the time histories of temperature and key radicals.

A fundamental approach to modeling fuel oxidation properties in the above systems relies on homoge-
neous oxidation models under adiabatic, constant-volume conditions. To adequately describe the reacting
mixture’s behavior, comprehensive chemical mechanisms have been developed which, for heavier fuels, may
involve hundreds to thousands of reacting species, and thousands to tens of thousands of elementary re-
actions. One of the fundamental challenges in developing and applying such detailed models concerns
quantifying uncertainties in the rate parameters of elementary reactions and the sensitivity of observables
on these parameters.
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Polynomial chaos (PC) methods [18, 19, 20] have emerged as a popular approach for addressing uncertain-
ties in chemical systems and address problems involving uncertainty propagation and representation, sensi-
tivity analysis, model calibration and experimental design (e.g., [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]).
Despite these and other successes, the application of PC methods was restricted, for far, to simple problems
involving a parametrization of the uncertain rate parameters with stochastic germs having low or moderate
dimension. In contrast, the direct application to uncertainties in the rate parameters of detailed hydrocar-
bon mechanisms, involving tens of uncertain reactions, remains exceptionally challenging without a priori
reduction of the germ, for instance, exploiting pathway analysis or rate rule correlations (e.g., [29, 33]).

A notable exception concerns the recent work of Malpica et al. [34], which addressed the problem of model
reduction, under uncertainty, of a detailed n-butane oxidation mechanism with 1,111 uncertain reactions.
The study in [34] relied on a direct Monte-Carlo (MC) sampling of the 1111-dimensional uncertainty germ
used to parametrize the rates of elementary reactions. Their results, in particular, highlighted the possibility
of constructing a family of reduced models based on selected thresholds on the importance of individual
rates and marginal probabilities.

Inspired by the above developments, the present work also addresses an oxidation problem involving a
high-dimensional germ. As further discussed below, we consider a detailed iso-octane mechanism, involving
874 species and 3811 uncertain reactions, and treat the corresponding pre-exponential rate parameters as
independent random variables. However, rather than targeting model reduction, we focus on constructing
suitable polynomial representations of a quantity of interest (QoI) in terms of the high-dimensional germ
parametrizing the uncertain reaction rates and exploiting the resulting representations for global sensitivity
analysis [35, 36, 37, 38, 39]. In other words, we investigate means of a posteriori reduction of the dimen-
sionality of the random germ. To tackle the forward propagation and representation problems, we explore
methods based on a random sampling of the uncertain rates, and that exploit sparsity in the representa-
tion of the QoI. Such methods are necessary because spectral projection and sparse grid techniques (e.g.,
[21, 22, 23, 40, 41, 30, 33]) do not provide the efficiency needed to tackle the curse of dimensionality in the
problem at hand. We specifically focus on two approaches respectively falling in the broad classes of regu-
larized regression (e.g., [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]) and subspace (e.g., [52, 53, 54, 55, 56, 57, 58])
methods. We further restrict ourselves to LASSO and CT [52, 53] approaches as representative members of
the first and second classes, respectively.

As further discussed in section 2, we perform a single experiment of iso-octane combustion in air and
focus on the ignition delay time as our sole QoI. The parametrization of the reaction rates uses independent,
canonical random variables, each uniformly distributed over [−1, 1], with associated uncertainty factors.
Observations of the QoI are generated from deterministic simulations, using values of the canonical random
variables generated using Latin Hypercube Sampling (LHS). The resulting database is then used to assess
LASSO and CT approaches, whose constructions are briefly outlined in section 3. We present the results
of the analysis in section 4, which includes results obtained for direct representation of the QoI, as well as
preconditioned representations [59, 60] based on approximating the logarithm of the ignition delay time.
We exploit the simulations to estimate global sensitivity indices and explore a potential reduction in the
random input vector’s dimensionality. Major conclusions are given in section 5.

2. Setup

2.1. Detailed reaction mechanism

As mentioned in the introduction, we consider propagating uncertainty in the reaction rate parameters of
a detailed iso-octane mechanism. Attention is specifically focused on a single experiment, consisting in the
adiabatic, constant-volume, oxidation of stoichiometric iso-octane (C8H18) air mixture, at initial temperature
T0 = 850 K and pressure p0 = 20 bar. Also, we focus on a single quantity of interest (QoI), namely the
ignition delay time. The evolution of the reaction is described in terms of the detailed mechanism of Mehl et
al. [61, 62, 63]; it involves Ns = 874 species and Nr = 3811 elementary reactions. As further discussed below,
the rates of the individual elementary reactions are assumed to be uncertain and individually parameterized
by independent and identically-distributed (iid) canonical random variables; this immediately leads to a
forward propagation and representation problem in high-dimensional parameter space.
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2.2. Uncertainty model

As is commonly done in recent UQ studies [21, 22, 64, 65, 33], the uncertainty in elementary reaction
rates is modeled in terms of uncertainty factors [66, 67, 68]. Specifically, an elementary reaction rate k is
expressed in terms of the modified Arrhenius expression,

k(T ) = A

(
T

Tref

)n
exp

(
− E

RT

)
, (1)

where A,E, n and Tref are the pre-exponential factor, activation energy, temperature exponent and reference
temperature of the considered reaction, while R is the universal gas constant. Letting A0

j denote the nominal
pre-exponential factor of reaction j, as given in [61], we express the variability in the corresponding reaction
rate by defining uncertain pre-exponential factor, namely according to:

Aj(ξj) = A0
jUF

ξj
j . (2)

In (2), ξj is the canonical random variable associated to the j-th reaction, and UFj ≥ 1 is the corresponding
uncertainty factor. The ξj are uniformly distributed in [−1, 1], i.e., ξj ∼ U [−1, 1], such that Aj(ξj) follows
a log-uniform distribution with bounds Amin

j = A0
j/UFj and Amax

j A0
j × UFj. In the following, we denote

ξ = (ξ1 · · · ξNr
) the collection of canonical random variables. We shall refer to ξ as the uncertainty germ.

Assuming that the uncertainty factors are temperature independent, Eq. (1) shows that the rates kj(T )
are also log-uniformly distributed with uncertainty factors UFj and bounds depending on T , the activa-
tion energies and exponential exponents. For the present study, the uncertainty factors associated with
individual elementary reactions are specified based on a rate rule approach [69, 70, 71, 72, 73, 74], which
groups individual elementary reactions in individual reaction classes. In the present implementation of this
approach, the uncertainty factor UFj of a reaction is set equal to its reaction class’s uncertain factor. Table 1
lists the reaction classes and their associated uncertainty factors for the iso-octane mechanism. Note that,
as indicated in Table 2, a finer granularity is used for H-abstraction reactions. We emphasize that uncertain
elementary reactions remain independent even though they share the same uncertainty factors. In other
words, the uncertainty factors of elementary reactions, inherited from their respective reaction classes, are
not presently used to imply any a priori correlation or dependence between the class member’s reaction
rates.

2.3. Sampled QoI

In order to assess the performance of various forward UQ approaches, we first sampled an ensemble of
realizations of the uncertain rates, using a uniform Latin Hyper-Cube Sampling (LHS), in [−1, 1]Nr , of the
germ. Specifically, the LHS sample comprised M = 38, 110 members. For each LHS realization of the germ,
denoted ξ(i), the ignition process was simulated using the TChem software [75] using the corresponding

pre-exponential factors with ξj = ξ
(i)
j in (2). The simulation results, which include the time history of

the temperature, pressure, and species concentration, were then used to estimate the ignition delay time,
τign, defined as the time coordinate at which the temperature of the mixture first reaches T0 + 400 K. In
other words, T (τign) = T0 + 400 K. The analyses described below thus exploit a database comprising the M
sampled (Nr-dimensional) coordinates of the germ and the corresponding QoI values. The data set may be
freely accessed from [76].

Figure 1 shows the distribution of τign estimated from the LHS sample. The pdf resembles a log-normal
distribution with a long tail toward the larger values. The dashed line in the figure represents the empirical
mean, µ = 0.0203 s. The empirical variance of the distribution is σ2 = 9.17393× 10−5 s2. The coefficient of
variation is large, COV ≡ σ/µ ' 47%. Note that the nominal value of the ignition delay, τ0 = 0.0227 s, is
close to but appreciably larger than the mean.

Remark 1. As can be appreciated from [76], the size of the data set is quite large, requiring approximately
1Gb of storage. In the present context, recording the coordinates of the sampled germ, i.e. the realization

of the canonical random variables ξ
(i)
j , consumes most of the storage. The storage requirement for the
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Table 1: Reaction classes and their uncertainty factors (UF) for iso-octane mechanism.

25 Reaction Classes in iso-octane mechanism UF
1. Unimolecular fuel decomposition 2
2. H atom abstraction from the fuel Table 2

3. Alkyl radical decomposition 2
4. Alkyl radical + O2 to produce olefin + HO2 directly 4

5. Alkyl radical isomerization 3.5
6. Abstraction reactions from Olefin by OH, H, O, CH3 3

7. Addition of radical species O and OH to olefin 3
8. Alkenyl radical decomposition 2

9. Olefin decomposition 5
10. Addition of alkyl radicals to O2 [ R + O2] 2

11. R + RO2 = RO + RO 2
12. Alkyl peroxy radical isomerization [ ROO = QOOH] 4

13. RO2 + HO2 = RO2H +O2 3
14. RO2 + H2O2 = RO2H + HO2 3

15. RO2 + CH3O2 = RO + CH3O +O2 3
16. RO2 + RO2 = RO + RO + O2 3

17. RO2H = RO + OH 3
18. RO decomposition 3

19. QOOH = cyclic ether + OH (cyclic ether formation via cyclisation of diradical) 4
20. QOOH = olefin + HO2 (radical site β to OOH group) 3

21. QOOH = olefin + carbonyl radical (radical site γ to OOH group) 3
22. Addition of QOOH to O2 2

23. Isomerization of O2QOOH and formation of carbonylhydroperoxide and OH 4
24. Decomposition of carbonylhydroperoxide to form oxygenated radical species and OH 3

25. Cyclic ether reactions with OH and HO2 3

Table 2: Uncertainty factors (UF) for H-abstraction reactions.

H atom abstraction from the fuel by UF
1. H, O, OH 2
2. O2, HO2 3

3. CH3, CH3O, CH3O2, O2CHO, C2H5, C2H3, C4H6OH, C8H17O2 2

QoIs τ
(i)
ign is, in contrast, relatively insignificant, in fact, Nr times less. This observation highlights the

coordinate storage challenge in sampling and representing high-dimensional systems. The present study does
not consider this challenge, and focuses instead on propagation and representation challenges.

3. Methodology

In this section, we outline our approach to the construction of PC representations [19, 20, 77, 78, 79, 30,
80] of the ignition delay time, τign(ξ), using the database described in section 2. We briefly outline these PC
expansions in section 3.1 below. In sections 3.2 and 3.3, we respectively describe our implementation of sparse
regression (SR) and Coordinate Transformation (CT) approaches to the construction of the representations.
We then outline a preconditioning of the quantity of interest, consisting in the representation of the logarithm
of the ignition delay time, in section 3.4.
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Figure 1: PDF of the ignition delay time (s). The distribution is estimated from the LHS data using a KDE method. The
dashed line shows the mean value, estimated as the sample’s empirical average.

3.1. PC representation

We will primarily focus on establishing suitable PC expansions (PCEs) [19, 20, 77, 80] of the ignition
delay time, τign, in terms of the canonical random variables parameterizing the uncertain reaction rates.
Specifically, we seek generic representations of the form:

τign(ξ) ≈
∑
α∈Nd

cαΨα(ξ). (3)

In the previous expansion, d = Nr is the dimension of the PC expansion, the Ψα are multi-dimensional
Legendre polynomials in ξ, and the cα are the PC coefficients that need to be determined using the database
of realizations outlined in the previous section. The multi-dimensional polynomials Ψα are constructed by
taking the product of univariate orthogonal polynomials with degree defined by the d-dimensional multi-
index α = (α1, . . . , αd). Specifically, we have [20]:

Ψα(ξ) =

d∏
j=1

ψαj (ξj) (4)

where ψα denotes the univariate Legendre polynomial of order α.
In practice, the PC expansion (3) is truncated by retaining the polynomials whose total order is p or

less. The summation is then restricted to α ∈ Ap, where the set of multi-indices Ap is defined by

Ap =

α ∈ Nd,
d∑
j=1

αj ≤ p

 . (5)

For a d-dimensional expansion, the dimension of the truncated basis, P , is given by the cardinality of Ap,
which is

P = |Ap| =
(p+ d)!

p!d!
. (6)

Remark 2. It is clear from (6) that for the present high-dimensional setting with d = 3, 811, the size of
the basis is quite large unless a first-order (p = 1) truncation is adopted . For instance, with p = 2, the
size of the truncated basis will be P = 7, 267, 578. The dimension of the basis underscores one of the key
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challenges that we faced in the present study, as the number of realizations in our database (M = 38, 110)
will generally be significantly smaller than the size of the truncated basis. As mentioned in the introduction,
we will attempt to address this challenge by relying on SR and CT techniques.

Remark 3. Another challenge arising from the high-dimensionality of the problem concerns the multi-index
storage requirements. Specifically, if full storage of the multi-indices is adopted, one would need to reserve
sufficient memory to store a total of P integer-valued d-dimensional vectors. To illustrate this requirement,
we note that for a second-order basis, storage of all the multi-indices in Ap would translate to over 100Gb
RAM, which is a prohibitive even on a large computer platform.

To overcome this memory challenge, we developed a sparse multi-index storage format, exploiting the
fact that the multi-indices α ∈ Ap have at most p � d non-zero entries. The sparse storage consists in
utilizing two descriptors for each multi-index α ∈ Ap: the number t0(α) ≤ p of non-zero degree (αj 6= 0)
univariate polynomials the definition of Ψα, see (4), and the list of t0(α) couples (j, αj) of the dimensions
j and associated degrees αj which are non-zero. This format effectively reduces the multi-index memory
requirement virtually from O(P × d) to O(P × p).

3.2. Sparse Polynomial Regression

Given the realizations database, i.e., the pairs (ξ(i), τ
(i)
ign) for i = 1, . . . ,M , and a PC basis {Ψα, α ∈ Ap},

one has to determine the coefficients cα of the expansion. Different methodologies have been proposed
for this purpose. We focus on regression-type methods, which aim to minimize the distance between the
Constructed PC approximation and the realizations of the database. For instance, the ordinary least squares
(OLS) regression problem consider the minimization of

LS ({cα, α ∈ Ap}) =

M∑
i=1

∣∣∣∣∣∣τ (i)ign −
∑

α∈Asetp

cαΨα(ξ(i))

∣∣∣∣∣∣
2

. (7)

Introducing c the vector of coefficients cα, τ the vector of ignition time realizations τ
(i)
ign and [Ψ] ∈ RM×P

the regression matrix with entries [Ψ]i,α
.
= Ψα(ξ(i)), the OLS problem can be recast in

ĉ = arg min
c∈RP

‖τ − [Ψ]c‖22 . (8)

Although simple in principle, the OLS regression presents in practice severe challenges related to the
well-posedness of (8) and computational aspects. Starting with the well-posedness, we observe that the

solution of (8) satisfies [Ψ]
T

[Ψ]c = [Ψ]
T
τ , a system that has a unique solution only of [Ψ]

T
[Ψ] is full rank.

A necessary condition to ensure that the problem is not under-determined is then M > P . In our problem,
for p ≥ 2, we have M � P , such that only a first-order model (p = 1) seems accessible to OLS using the
total order truncation strategy. Concerning the computational aspect, the assembly and the storage of the
full regression matrix [Ψ] is clearly challenging and may be impractical for p > 1.

To overcome these issues, one can consider the regularization of the OLS problem to the adaptive
construction of A, particularly to reduce the sizes of the regression basis and regression problem.

3.2.1. Regularized regression

In the present work, we rely on the least absolute shrinkage and selection operator (LASSO), which
mostly consists of an approximate regression inherently comprising regularization and promoting sparsity.
With our notations, the LASSO considers the following minimization problem:

ĉ = arg min
c∈RP

‖τ − [Ψ]c‖22 + λ ‖c‖1 , (9)

where λ > 0 is a regularization parameter. The solution ĉ of problem (9) becomes sparser as λ increases,
because of the L1-penalty on the coefficients norm. The value of λ is determined as part of a validation
procedure [48, 81, 47, 51, 42]. In our numerical implementations, we rely on the MATLAB function lasso

with a 10-fold cross-validation procedure to determine λ minimizing the cross-validation error.
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3.2.2. Basis selection by two-stage sparse regression

As mentioned previously, a critical issue with the polynomial regression in high-dimension is the com-
putational complexity associated with the use of a large basis with dimension P growing exponentially fast
with p. Adaptive strategies have been proposed to mitigate this limitation by sequentially enriching the ba-
sis [51]. Classically, the set of multi-indices Ak of the k-th stage of the adaptation is enriched to Ak+1 ⊃ Ak,
by considering new multi-indices which have predecessors α ∈ Ak with coefficients ĉα 6= 0.

Two-stage LASSO procedures are employed in the present work to select the regression basis and con-
struct the approximation. In this first stage, the sparse regression stage, we solve the LASSO problem (9) us-
ing the first order basis defined by A1st .= Ap=1 (see (5)); therefore, at this stage, P1 = Nr+1 = 3, 812�M .

Let τ1stign (ξ) be the solution of the first stage problem, with coefficients vector c1st. We denote Â1st ⊂ A1st

the subset of active multi-indices associated to non-zero coefficients c1stα . From Â1st we derive the set of
active dimension indices J 1st ⊂ {1, . . . , d}. Indeed, for each α ∈ A1 \ (0, . . . , 0) one can associate a unique
direction index j ∈ {1, . . . , d} such that αj = 1. In our test problem (see details in the next section), the
cross-validation of τ1stign (ξ) yielded a subset of 328 active dimensions: |J 1st| = 328 < d� 3, 812.

In the second stage, we extend the active basis Â1st of the first stage up to prescribed order p > 1,
defining the second set of multi-indices A2nd as

A2nd
p = Â1st

⋃{
α ∈ Nd, |α|1 ≤ p, αi = 0 ∀i /∈ J 1st

}
. (10)

In other words, directions not selected in the first stage are disregarded in the second stage.
We explore two approaches for the second stage. In the first approach, we seek a correction

δ̂τ
2nd

ign (ξ) =
∑

α∈A2nd
p

δ̂c
2nd

α Ψα(ξ),

of the first stage model τ1stign (ξ). The correction is determined solving the second stage LASSO problem

δ̂c
2nd

= arg min

δc∈R|A2nd
p |

∥∥δτ 2nd − [Ψ]δc
∥∥2
2

+ λ ‖δc‖1 , (11)

where the entries of residual vector δτ 2nd are defined by the differences

δτ 2nd
i = τ

(i)
ign − τ

1st(ξ(i)), i = 1, . . . ,M.

The resulting surrogate is finally expressed as

τign(ξ) ≈
∑

α∈A1st

c1stα Ψα(ξ) +
∑

α∈A2nd
p

δ̂c
2nd

α Ψα(ξ). (12)

For the second approach, we directly seek an approximation of τign(ξ) in the basis defined by A2nd
p . This

second approach yields to the second stage LASSO problem,

ĉ2nd = arg min

c∈R|A2nd
p |
‖τ − [Ψ]c‖22 + λ ‖c‖1 , (13)

with resulting surrogate

τign(ξ) ≈
∑

α∈A2nd

ĉ2ndα Ψα(ξ). (14)

In the results section, application of (11,12) is referred to as the SR-C (Sparse Regression-Correction)
method, whereas application of (13,14) is referred to as the SR-D (Sparse Regression-Direct)) method.
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3.3. Coordinate transformation
The two-stage SR methods introduced above rely on an achievable approximation (first-order expansion)

to select relevant directions along which a higher-order sparse expansion is sought during the second stage.
The next method we investigate belongs to the class of active subspace methods designed to address the curse
of dimensionality. The key idea of these methods is the derivation of a new set of coordinates, with much
lower dimensionality, and constructing the approximation in these new coordinates. Classically, the new
coordinates η are defined by linear combinations of original ones through η = [W]

T
ξ, with transformation

matrix [W] such that [W]
T

[W] = I, so the columns Wi of [W] define orthogonal directions. Therefore,
rather than selecting a subset of important dimensions (indices) in the germ ξ, these approaches select few
important directions (combinations of dimensions) in the germ. The choice of [W] is critical to come up with
a good approximation of the QoI in the transformed coordinates η and achieving a significant dimensionality
reduction. A classical approach consists of using the dominant eigenvectors of the correlation matrix of the
gradient of the QoI for the column [W]. Unfortunately, we do not have access to the gradient of the ignition
times, ∇ξτign(ξ), and we need to rely on an alternative to estimate the principal directions of variability.

Our CT method is then adapted from the technique developed for Gaussian germs in [52, 53]. It is a
sequential approach that yields a new direction at each step. The approach uses an initial approximation
of the first direction W1 constructed on the first-order approximations,

τign(ξ) ≈ C0 +
d∑
j=1

Cjξj = C0 +CT ξ, (15)

corresponding to the first stage of the sparse regression in Ap=1. The gradient of the model in (15),

∇ξτign(ξ) ≈ C = (C1 · · ·Cd)T , (16)

is independent of ξ and its correlation matrix has rank one. Setting the first direction to W1 = C the first
CT model is written as the degree-p polynomial expansion, for p > 1,

τign(ξ) ≈ τCT
1 (ξ) ≡

p∑
l=0

c̃lψl(η1), η1 = W T
1 ξ. (17)

The coefficients c̃ of this univariate expansion are computed using, for instance, on the LASSO algorithm.

Remark 4. We observe that using Legendre polynomials for the expansion in (17) is arbitrary; any basis of
polynomials with degree less or equal to p would be suitable. Indeed, η1 = W T

1 ξ is not uniformly distributed
in [−1, 1], in general, so the expansion of τCT

1 (ξ) is not orthogonal in the Legendre basis. The consequence
of losing this orthogonality is further discussed later in section Appendix A.2, when detailing the computation
of the sensitivity indices in the CT method.

Once the first CT approximation has been determined, a second direction W2 can be constructed from
a first order approximation of the residual τign(ξ) − τCT

1 (ξ) and enforcing orthogonality between W1 and
W2. Then, a two dimensional polynomial regression in (η1, η2) can be applied to obtain the degree p > 1
model τCT

2 (ξ). This process can be iterated, as long as the first-order approximation of the residual yields
a direction distinct from the previous ones, leading to higher-dimensional representations.

The greedy CT method just sketched involves two essential stages: the determination of the direction
by first-order residual fit, and the polynomial regression in the resulting transformed coordinates. For the
latter, the LASSO method discussed in section 3.2.1 is suitable as the problem dimension of the regression
space is small. For the first stage, one can also rely on a LASSO regression with the basis induced by A1.
In the present work, we avoided the overhead of solving the associated LASSO problems (and the cross-
validation) and relied on the MC procedure proposed in [52, 53]. This approach estimates the first-order
model’s coefficients by the empirical correlation between the residual and the components of the germ:

Wk+1 =
C

‖C‖
, Cj =

1

M

M∑
i=1

(τ
(i)
ign − τ

CT
k (ξ(i)))ξ

(i)
j , (18)

where τCT
k=0 (ξ(i)) ≡ 0.
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3.4. Preconditioned representations

We also explored the application of SR and CT approaches to construct representations of preconditioned
QoI. The key idea of spectral preconditioning is to apply an invertible transformation to the QoI so that the
transformed version is more easily amenable to the PC expansion, with a tighter spectrum [59, 60]. In the
present work, we expand the logarithm of the ignition delay time, i.e. we consider h(ξ) ≡ ln (τign(ξ)/τref) as
the new QoI, where τref is the ignition delay time corresponding to the nominal rate constants (i.e., ξ = 0).

The motivation behind exploring the present preconditioned representations is that the positivity of the
representation of the ignition delay time is guaranteed by construction [82]. Note that in the applications
below, we analyze representation errors for the ignition delay time itself, exponentiating the SR or CT
expansion of ln(τign/τref). However, for simplicity we conduct global sensitivity analysis and estimate the
Sobol indices of the preconditioned ignition delay time, i.e. h(ξ). Practical techniques to compute Sobol’s
indices from generic preconditioned polynomial expansions in high dimension remain to be investigated.

4. Results

In this section, we first assess the performance of surrogate representations and then exploit these surro-
gates to conduct GSA. In section 4.1, we focus on direct representations based on SR and CT methodologies.
The exercise is repeated in 4.2 using representations based on using log(τign) as QoI; as in section 4.1, the
SR and CT methods are considered, and the resulting surrogates are labeled as pSR and pCT, respectively.
Results of global sensitivity analysis based on both direct and preconditioned representations are presented
in section 4.3. Finally, in section 4.4, we explore the possibility of constructing reduced coordinate transform
surrogates in a suitably defined subspace.

4.1. Direct representations

As discussed in section 3.2, we use a sequential approach to construct SR representations. In the first
stage, the LASSO methodology is applied using a polynomial basis of total order less or equal to 1; for
the present case, the basis has 3812 members. The regression leads to a first-order surrogate (SR1) with
spectrum shown in Figs. 2(a,b). As mentioned in section 3.2.1 and reflected in these plots, SR1 only has
328 non-zero coefficients, which define the set of active dimensions J 1st.

In the second stage, we determine second-order (p = 2) regularized representations using the two ap-
proaches outlined in section 3.2.2. In other words, we consider extended bases corresponding to the multi-
index set A2nd

2 defined according to (10) to determine the regularized (total-order 2) surrogates SR-C and
SR-D. Note that the cardinality of the basis, |A2nd

2 | = 54, 285, is much smaller than that of the full total

second-order basis, |A2| = 7, 263, 766. In Figures 2(c,d) we plots the SR-C correction coefficients δ̂c
2nd

de-
fined in (11), and in Figures 2(e,f) we plot the coefficients of SR-D. The results indicate that, for the present
application, the second stage of the spare regression approach resulted in “selection” of approximately as
many basis elements as in the first stage. This fact can be appreciated from Figs. 2(d,f), which reveal that
about 600 non-zero coefficients are involved in the SR-C correction and about 800 in the SR-D surrogate.
Comparing the results in Figs. 2(b) and (d), one observes that the amplitude of the peak coefficients in the
second-order correction (about 1.5× 10−3) are appreciably smaller than that of the leading first-order coef-
ficients, specifically those lying above the leftmost shoulder in the curve of Fig. 2(b). A similar observation
was made for the SR-D spectrum (not shown).

To assess the respective global quality SR and CT representations, we report the RMS errors at the
LHS points in Table 3. Also reported are the RMS errors normalized by the empirical L2 norm of τign, and
the maximum and minimum values of τign obtained by the SR and CT representations at the LHS points.
The results indicate that the two approaches have comparable RMS error, with CT leading to slightly lower
values. For the present application, however, the RMS errors decrease slightly as the representations are
refined.

To gain additional insight into the quality of the SR and CT representations, we present QQ plots and
PDFs of τign. Figure 3 shows the QQ plots, whereas the PDFs of the SR and CT models are depicted
in Fig. 4. Note that the QQ plots use the LHS points, whereas the PDFs use independently drawn MC
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(a) (b)

(c)
(d)

(e) (f)

Figure 2: (a) Coefficient versus polynomial index of SR1. (b) Absolute value of non-zero coefficients in (a), sorted by decreasing
magnitude. (c) Coefficient versus polynomial index for SR-C. (d) Absolute value of non-zero coefficients in (c), sorted by
decreasing magnitude. (e) Coefficient versus polynomial index of SR-D. (f) Absolute value of the non-zero coefficients in (e)
sorted by decreasing magnitude.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: PC prediction versus computed values of τ at the LH sample points. Shown are results obtained using (a)SR1,
(b)CT1, (c)SR-C, (d)CT2, (e)SR-D, and (f)CT3.
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Table 3: RMS errors and normalized RMS errors for different methods SR1, SR-C, SR-D, CT1, CT2, and CT3. Also reported
are the maximum and minimum values of τign obtained from the different representations evaluated at the LH sample points.

Method RMSE Normalized RMSE max min
SR1 0.0045745 0.0386851 0.056008 −0.010671
SR-C 0.0041585 0.0351674 0.058907 −0.012045
SR-D 0.0041914 0.0354454 0.058275 −0.011722
CT1 0.0046484 0.0393099 0.081163 0.0043985
CT2 0.0039616 0.0335024 0.087131 0.0035425
CT3 0.0038830 0.0328370 0.088310 0.0035298

samples. The QQ plots indicate that whereas the SR and CT representations are in reasonable agreement
with the simulated values of τign, in both cases, appreciable deviations occur that are more pronounced at
the extreme values of the underlying data. However, the QQ plots suggest that the CT representation is
more satisfactory than that corresponding to SR. In particular, several drawbacks can be observed in the
SR case: a substantial underprediction of the peak values of τign and unphysical negative values in all the
SR models; see also Table 3. In contrast, all three CT representations appear to respect the positivity of
the ignition delay time and yield maxima and minima that are in better agreement with those of the LHS
sample.

Figure 4: Left: PDFs of the ignition delay time obtained using SR1, SR-C, and SR-D; right: PDFs of the ignition delay
time obtained using CT1, CT2, and CT3. In both cases, the empirical PDF generated using the LHS sample is shown for
comparison.

The general trends observed in the QQ plots are also reflected in the PDFs plotted in Fig. 4. In particular,
the plots show that both SR and CT reproduce reasonably well the empirical PDF, but in contrast to the
SR representations, all three CT curves respect the positivity of τign. CT also exhibits a better behavior
than SR for the tails of the distribution. We also note that the three curves for SR are nearly identical,
whereas the PDFs of CT tend closer to the empirical PDF as the representation is refined. Besides, one also
observes that the PDFs obtained using SR have a consistent peak location, which differs from the empirical
PDF. In contrast, all the CT representations’ peaks align well with that of the empirical PDF.

In light of the observations above, we conclude that in the present high-dimensional application, the
PC representation based on the CT methodology provides a much more robust approach for the direct
representation of τign compared to the SR approach.
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4.2. Preconditioned representations

In this section, we explore the application of preconditioned representations, based on the construction
of PC expansions of log(τign). As in the previous section, both the SR and CT methodologies applied on
the sampled values of log(τign) as QoIs at the LHS coordinates.

The SR methodologies are applied similarly as in the direct representation, i.e., we first form first-order
approximations of log(τign), which we denote by P-SR1. As shown in Fig. 5(a), 307 coordinates are retained
in P-SR1, a slightly smaller value than in the direct case (328 active coordinates retained in SR1). A
comparison of the active coordinate sets in the direct and preconditioned representations reveals that their
intersection includes 219 coordinates. Although the coordinates belonging to the two active sets of SR1
and P-SR1 represent a substantial fraction of each set, the preconditioning has a significant impact on the
selected coordinates. Also note that the spectra of the non-zero elements in second-order preconditioned
representations (Figs. 5c,e) are slightly broader than their direct representation counterparts in Figs. 2(d,f).

Figures 5b,c,e depict the QQ plots for the preconditioned representations, respectively P-SR1, P-SRC,
and P-SRD. To generate these plots, we evaluate the PC representations of log(τign) at the LHS points
and exponentiate the result to estimate τign. Note that because the preconditioned representation is by
construction guaranteed to be positive, the QQ plots in Fig. 5 are, as expected, confined to the first quadrant.
Besides, contrasting with the results in Fig. 2 reveals that the preconditioning achieves a better representation
across the entire range of ignition times, in particular for the extremes. In contrast, however, the QQ
plots obtained using the preconditioned CT representations (not shown) were found to be quite similar to
those obtained using the direct approach. This similarity leads to the conclusion that, in the present case,
preconditioning offers a significant enhancement of the representation using SR, but has an insignificant
impact when using the CT approach.

To further examine the results, PDFs of τign are generated using the preconditioned SR and CT rep-
resentations and reported in Fig. 6, along with the empirical PDF. Consistent with the observations made
from the QQ plots, one sees that preconditioning leads to a clear improvement in the PDFs obtained using
sparse regression. In particular, the tails of the distribution are better reproduced, and the shift in the
peaks observed for the direct SR approach is removed. In other words, with P-SR the most probable value
of τign appears to be well captured. With the CT approach, on the other hand, the PDFs are similar to
those obtained using the direct representation approach.

Finally, we show in Table 4 the estimated values of the RMS errors estimated for the P-SR and P-CT
representations. Also reported are the normalized values, as well as maximum and minimum values of τign
at the sampled coordinates. Consistent with earlier observations, the results indicate that preconditioning
leads to a reduction of the estimated RMS errors for the SR representations, compared to those obtained
in the direct approach. In particular, the smallest values are obtained for P-SRD, which are close to
those obtained with CT3. On the other hand, a slight deterioration is observed for the preconditioned
CT representations compared to the direct counterparts. One can conclude from the present experiences
that preconditioning can be quite beneficial for direct representations, and should generally be explored
in the associated representation context. Though preconditioning did not result in an improvement in the
quality of the CT representations, due to the modest cost incurred in building the corresponding expansions,
exploring the performance of preconditioned CT may still be desirable.

4.3. Global Sensitivity Analysis

GSA is applied in this section to briefly examine the results obtained using the various representations,
namely to identify coordinates contributing significantly to the variability of the QoI. As outlined in Ap-
pendix A, when direct representations are applied, Sobol indices may be readily and efficiently computed
using the coefficients involved in the representations. On the other hand, when preconditioned represen-
tations are used, the decomposition of the variance of τign presents computational challenges due to the
nonlinear transformation involved in the preconditioning. Rather than tackling these challenges, when using
preconditioned representations we restrict our attention to estimating the Sobol indices of log(τign) but still
assess whether the simplified analysis yields consistent predictions concerning key reactions.

Figures 7 shows the first-order Sobol indices computed using (a) SR1 and (b) P-SR1, total sensitivity
indices estimates using (c) SRD, (d) P-SRD, (e) CT1 and CT2, and (f) P-CT1 and P-CT2. Comparing the
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(a) (b)

(c)
(d)

(e)
(f)

Figure 5: (a) Absolute value of non-zero coefficients in SR1 of log τ , sorted by decreasing magnitude. (b) Predicted values of τ
using P-SR1 versus simulated values at the LH sample. (c) Absolute value of non-zero coefficients in SR-C for log τ , sorted by
decreasing magnitude. (d) Predicted values of τ using P-SR-C versus simulated values at the LH sample. (e) Absolute value of
non-zero coefficients in SR-D representation for log τ , sorted by decreasing magnitude. (f) Predicted values of τ using P-ST-D
versus simulated values at the LH sample.
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Figure 6: PDF of the ignition delay time. Curves are generated based on results obtained using (top) P-SR1, P-SR-C, and P-
SR-D; and (bottom) P-CT1, P-CT2, and P-CT3. The distribution obtained from the LH sample is also shown for comparison.

Table 4: RMS errors and normalized RMS errors for different methods P-SR1, P-SRC, P-SRD, P-CT1, and P-CT2. Also
reported are the maximum and minimum values of τ obtained from the different representations evaluated at the LH sample
points.

Method RMSE Normalized RMSE max min
P-SR1 0.0043597 0.0368684 0.111737 0.003559
P-SRC 0.0038404 0.0324772 0.1061369 0.0030183
P-SRD 0.0038201 0.0323048 0.1053223 0.0030193
P-CT1 0.0048447 0.0409705 0.0813353 0.0034410
P-CT2 0.0041819 0.0353653 0.0848750 0.0024881

first and total order sensitivity indices obtained using the SR representations reveals that, in the present high-
dimensional case, mixed interactions do not appear significant. Further, a substantial number of reactions
contribute to the variance of the QoI. These observations are not surprising because, as noted earlier,
higher-order corrections had moderate amplitudes yet were involved in the order of hundreds of individual
coordinates. The results also illustrate that the various representations yield consistent predictions of the
coordinates contributing significantly to the variance. Specifically, comparable estimates are obtained using
expansions constructed using sparse regression or coordinate transform, and using direct and preconditioned
representations.

Regardless of the approach used to construct the PC surrogate, the GSA analysis reveals nine reactions
that dominate the variability of the ignition delay time. These reactions are listed in Table 5. The results are
consistent with what one would anticipate in fuel oxidation applications, namely concerning the importance
of abstraction reactions involving active radicals.

4.4. Reduced CT representation

In this section, we briefly explore the possibility of constructing CT representations in a reduced subspace.
This idea is motivated by the observation that the inner products between the first eigenvector, W1, used
to construct CT1, and the directions of the individual components of ξ, have a negligibly small value for a
large number of indices; see Fig. 8. Letting I denote the set of indices, i, for which the i-th component of
W1 (direction cosine) is small, and D ≡ {1, 2, . . . , Nr}, this suggests constructing CT representations in the
space spanned by the coordinates ξj , where j ∈ A ≡ D\I. In the experiments presented below, the subset
A consisted of those indices whose direction cosines where located to the right of the shoulder seen in the
curve depicted in Fig. 8. Specifically, in the tests presented below, 328 “active” coordinates ξj , j ∈ A, were
retained.
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(a) (b)

(c)
(d)

(e) (f)

Figure 7: (a) First order sensitivity indices of τign obtained using SR1. (b) First-order sensitivity indices of log(τign) using
P-SR1. (c) Total sensitivity indices of τign obtained using SR-D. (d) Total sensitivity indices of log(τign) obtained using P-SRD.
(e) Total sensitivity indices of τign obtained using CT1 and CT2. (f) Total sensitivity indices of log(τign) obtained using P-CT1
and P-CT2.

We explored a simplified reduction approach based on constructing CT representations in the subspace
spanned by the active coordinates. The methodology consisted in dropping the coordinates whose indices
belong to I, and accordingly restricting the eigenvectors involved in the CT methodology to the subspace
spanned by the active coordinates. With this restriction, the CT algorithm was applied recursively to
construct reduced 1D, 2D, and 3D representations, respectively labeled R-CT1, R-CT2, and R-CT3.

The performance of the CT representations in the reduced space was first examined by contrasting
the reduced subspace models and corresponding full space counterparts using QQ plots. A sample of this
exercise is shown in Fig. 9; it reports the QQ plot of the R-CT3 versus full space CT3 predictions. The
results for R-CT1 and R-CT2 are similar to the case of R-CT3; therefore, we omit them. The QQ plot
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Table 5: The most significant reactions from GSA with their reaction number.

Reaction number Reaction
16 H2O2(+M) ⇐⇒ OH+OH(+M)

1206 IC4H9O2 ⇐⇒ IC4H8O2H-I
1210 TC4H9O2 ⇐⇒ IC4H8+HO2
3373 IC8H18+OH ⇐⇒ AC8H17+H2O
3375 IC8H18+OH ⇐⇒ CC8H17+H2O
3382 IC8H18+HO2 ⇐⇒ BC8H17+H2O2
3543 DC8H17O2 ⇐⇒ DC8H16OOH-C
3550 AC8H16OOH-B ⇐⇒ IC8ETERAB+OH
3563 BC8H16OOH-C ⇐⇒ C8H16+HO2

Figure 8: Absolute value of the coordinates of W1 sorted by decreasing magnitude.

indicates that the reduced R-CT3 is consistent with its full-space counterpart, with discrepancies smaller
than those observed in the QQ plots contrasting the full space CT predictions and the underlying data.

A more informative assessment of the suitability of the reduced CT representations is gained by analyzing
the corresponding PDFs of the ignition delay time. Results are depicted is in Fig. 10. The curves indicate
that the PDFs obtained from the reduced CT representation are in excellent agreement with the empirical
PDF estimated from the LHS sample. In particular, both the peak location and maxima are well captured as
the dimensionality increases, with small underprediction of the tails’ extent, reflecting the loss of variability
in the disregarded dimensions. Further, the positivity of the representation is observed, as in the full-space,
direct CT representation. Remarkably, one also observes that the PDFs obtained using the reduced CT
representations exhibit a closer agreement with the simulation results than is obtained both direct and
preconditioned SR or CT representations. This better agreement suggests that the reduction applied could
mitigate the impact of using a moderate size sample, and consequently, of the statistical noise inherently
present in estimating eigenvectors involved in the CT transforms. Of course, additional investigations would
be needed to understand this phenomenon entirely, but these would be best conducted in a synthetic setting
that affords the efficient generation of large samples.

5. Conclusions

This exploratory work focused on investigating the potential of constructing functional representations
based on SR and CT techniques to represent the output of oxidation simulations in a high-dimensional
context and exploiting these functional representations to perform global sensitivity analysis. Attention
was focused on a detailed iso-octane mechanism comprising 3811 uncertain elementary reactions. With the
ignition delay time used as sole QoI, a moderate size Latin Hypercube sample was generated and used to
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Figure 9: QQ plot of reduced dimensionality CT3 representation versus the original representation.

assess PC surrogates constructed using both direct and preconditioned representations of the QoI.
Assessment of the PC surrogates revealed that both SR and CT lead to representations having com-

parable mean square errors. When using direct representations, however, the SR representations exhibited
drawbacks, including apparent bias in the location of the PDF’s peak and prediction of negative values.
The CT constructions avoided these drawbacks and are deemed more suitable. On the other hand, with
the preconditioned QoI, both the SR and CT constructions yielded representations with comparable mean
square errors and PDFs in good agreement with the empirical PDFs. Consequently, we recommend the
preconditioning to enhance the quality of sparse regression algorithms in high dimension.

The direct and preconditioned representations were exploited to estimate global sensitivity indices of
the QoI to the individual components of the germ (reactions). Computations indicated that the various
functional representations of the QoI yielded consistent results. Finally, we briefly explored the potential
of combining a subspace reduction methodology with the CT construction algorithms. Simulation results
suggested that such methodology may be quite attractive in a high dimensional setting.

The present experiences in sampling and representation highlighted several computational challenges
that are severe when considering high dimensional uncertainty germs. These include memory large or
prohibitive memory requirements to store the coordinates of the sampled germ (LHS), the full storage of
the multi-indices describing the structure of the elements constituting the approximation basis, and, finally,
the assembly and storage of the full regression matrices. At the computational level, the inversion of the
large full matrices associated with the regression problems and the computation of the Sobol indices in CT
constructions called for specific solutions. Concerning the multi-index storage, we implemented a sparse
multi-index methodology, which restricts the multi-index dimension to the order of the PC basis. For the
present application, this effectively mitigated otherwise prohibitive memory requirements. The SR and CT
methodologies were designed to involve regression matrices with manageable sizes, thanks to expansions
limited to first-order or sought in reduced spaces for higher-order. For the estimation of Sobol indices from
a CT approximation, it proved to be especially challenging because of the expansion in a non-orthogonal
basis. We proposed an analytical transform to address this challenge and project the CT functionals onto
an orthogonal basis and account, on-the-fly, for contributions to the Sobol indices associated with individual
reactions.

The mitigation of the storage cost of large samples of a high-dimensional germ fell outside the scope of
the present work and, consequently, is left for future work. In addition to the development of reduced storage
approaches, it would also be worthwhile to explore the possibility of using alternative random variables to
represent the a priori variability of the rate parameters. Specifically, whereas the parametrization of the
pre-exponentials in the form UF ξ is fundamentally attractive, a drawback of using independent random
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Figure 10: PDF of the ignition delay time reduced CT representations. Also shown for comparison is the PDF generated using
LHS simulation results.

variables with uniform densities is that the sampled scaling vectors have norms significantly larger than
1 with high probability; see Fig. 11. As a result, unless an excessively large sample is used, none of the
sampled realizations will lie close to the nominal value (ξ = 0). Thus, it would appear worthwhile to
consider germs with independent components having densities concentrated at the nominal value. Another
avenue that we are currently exploring concerns the development of an efficient methodology to estimate
derivative sensitivities in individual realizations and enable the determination of active subspaces for reduced
dimensionality representations.

Figure 11: PDF of the norm of normalized scaling vector,

(∑d
i=1

(
UF

ξi
i

)2)1/2

/
√
d.

Appendix A. Global sensitivity analysis
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Appendix A.1. Sobol indices from PC expansion

In this work, we consider global sensitivity analyses based on the Sobol decomposition of the variance of
the QoI [36, 35, 38, 37, 83, 39]. When the PC representation is expressed in terms of an orthogonal basis,
as in LASSO constructions outlined above, the PC coefficients can be readily exploited to quantify the
sensitivity of the solution with respect to the uncertain inputs ξ of the expansion. The Sobol decomposition
is used to estimate first-order sensitivity and total order sensitivity of the QoI to individual components ξi
of the germ. Consider a QoI f(ξ) with PC expansion

f(ξ) =
∑
α∈A

cαΨα(ξ).

The variance of f is given by

V(f) =
∑

α∈A\{(0...0)}

c2α‖Ψα‖2.

In addition, the first-order sensitivity indices, S(i), and total sensitivity indices, T(i), of a QoI can be
obtained according to [37]:

Si =

∑
α∈Si

c2α‖Ψα‖2

V(f)
, (A.1)

and

Ti =

∑
α∈Ti

c2α‖Ψα‖2

V(f)
, (A.2)

where i ∈ {1, ..., d}, Si = {α ∈ A | αi > 0 and αj = 0 for j 6= i}, whereas Ti = {α ∈ A |αi > 0}.

Appendix A.2. Sobol indices for CT

The computation of the Sobol indices is much more challenging for the coordinate transformation method
because the polynomial expansion does not involve orthogonal polynomials, and the transformed coordinates
are not independent. We initially explored the possibility of applying Monte-Carlo sampling [84, 38, 37] of the
CT representations; this approach proved unsuitable because of the high dimensionality of the input space.
Specifically, we experienced substantial statistical convergence hurdles that manifested in the generation
of a large number of negative indices with small magnitudes. To overcome this challenge, we developed
an analytical mapping technique that enabled the projection of the CT representations’ directions onto
individual elements of the original orthogonal basis in ξ. Using this projection, one can, on-the-fly, compute
the corresponding contributions to different Sobol indices (with respect to the dimensions of ξ).

We illustrate this procedure for the case of a second-order polynomial expansion (with Legendre polyno-
mials) in a single transformed variable, η ≡W T ξ. We start by recalling that the zero-th, first and second
order Legendre polynomials are ψ0 ≡ 1, ψ1(x) ≡ x, and ψ2(x) = (3x2 − 1)/2 respectively. In this case, the
functional representation of f(ξ) is of the form:

f(ξ) = h(η = W T ξ) = a0ψ0(η) + a1ψ1(η) + a2ψ2(η) = a0 + a1η + a2

(
3

2
η2 − 1

2

)
= a0 −

a2
2

+ a1η +
3a2
2
η2.

Inserting the coordinate transformation, η = W T ξ, it comes

f(ξ) = h(η = W T ξ) = a0 −
a2
2

+ a1

d∑
i=1

Wiξi +
3a2
2

(
d∑
i=1

Wiξj

)2

.
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Similarly, the second-order PC expansion of h(ξ) writes as:

f(ξ) = c0ψ0 +
∑d
i=1 ciψ1(ξi) +

∑d−1
i=1

∑d
j=i+1 cijψ1(ξi)ψ1(ξj) +

∑d
i=1 ciiψ2(ξi)

= c0 +
∑d
i=1 ciξi +

∑d−1
i=1

∑d
j=i+1 cijξiξj + 1

2

∑d
i=1 cii(3ξ

2
i − 1). (A.3)

By identification, and using that ‖W ‖2 = 1, we find that

c0 = a0 (A.4)

ci = a1Wi, i = 1, . . . , d (A.5)

cii = a2W
2
i , i = 1, . . . , d (A.6)

cij = 3a2WiWj , 1 ≤ i, j ≤ d, i 6= j. (A.7)

Note that (A.3) is an orthogonal expansion, and so it is straightforward to estimate the total sensitivities.
In particular, the variance is

V(f) =

d∑
i=1

c2i ‖ψ1‖2 +

d−1∑
i=1

d∑
j=i+1

c2ij‖ψ1‖4 +

d∑
i=1

c2ii‖ψ2‖2, (A.8)

so the first-order sensitivity indices are given by

Si =
a21W

2
i ‖ψ1‖2 + a22W

4
ii‖ψ2‖2

V(f)
(A.9)

and the total order sensitivity indices

Ti =

a1W
2
i ‖ψ1‖2 + 9a2W

2
i

∑
j 6=i

W 2
j ‖ψ1‖4 + a22W

4
i ‖ψ2‖2

V(f)
(A.10)

Note that the coefficients in (A.5–A.7) can be individually evaluated. Consequently, their contributions to
the sensitivity indices may be accounted for without the need to define the multi-indices for the d-dimensional
PCE. Besides, the above analytical transformation mapping the coefficients of the CT representation η to
the PCE in the canonical coordinates ξ may be generalized to higher-order expansions. Further, a similar
identification remains feasible when the CT construction involves several directions Wi with multiple ηi’s.
This procedure enables us to estimate the Sobol indices as soon as the CT representation’s coefficients are
known.
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[22] M. Reagan, H. Najm, B. Debusschere, O. L. Mâıtre, O. Knio, R. Ghanem, Spectral stochastic uncertainty quantification

in chemical systems, Combust. Theory Model. 8 (2004) 607–632.
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[63] M. Mehl, W. Pitz, M. Sjöberg, J. E. Dec, Detailed kinetic modeling of low-temperature heat release for prf fuels in an

hcci engine, in: SAE Technical Paper 2009-01-1806, 2009. doi:10.4271/2009-01-1806.
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