
EURO Journal on Transportation and Logistics 10 (2021) 100039
Contents lists available at ScienceDirect

EURO Journal on Transportation and Logistics

journal homepage: www.journals.elsevier.com/euro-journal-on-transportation-and-logistics
The vehicle routing problem with relaxed priority rules

Thanh Tan Doan a, Nathalie Bostel a, Minh Ho�ang H�a b,*

a Universit�e de Nantes, CNRS, LS2N, F-44000, Nantes, France
b ORLab, Faculty of Computer Science, Phenikaa University, Hanoi, Viet Nam
A R T I C L E I N F O

Keywords:
Vehicle Routing Problem
d-relaxed priority rule
Mixed integer linear programming
Adaptive large neighborhood search
* Corresponding author.
E-mail address: hoang.haminh@phenikaa-uni.ed

https://doi.org/10.1016/j.ejtl.2021.100039
Received 18 October 2020; Received in revised for
2192-4376/© 2021 The Author(s). Published by El
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
A B S T R A C T

The Vehicle Routing Problem (VRP) is one of the most studied topics in Operations Research. Among the
numerous variants of the VRP, this research addresses the VRP with relaxed priority rules (VRP-RPR) in which
customers are assigned to several priority groups and customers with the highest priorities typically need to be
served before lower priority ones. Additional rules are used to control the trade-off between priority and cost
efficiency. We propose a Mixed Integer Linear Programming (MILP) model to formulate the problem and to solve
small-sized instances. A metaheuristic based on the Adaptive Large Neighborhood Search (ALNS) algorithm with
problem-tailored components is then designed to handle the problem at larger scales. The experimental results
demonstrate the performance of our proposed algorithm. Remarkably, it outperforms a metaheuristic recently
proposed to solve the Clustered Traveling Saleman Problem with d-relaxed priority rule (CTSP-d), a special case of
VRP-RPR, in both solution quality and computational time.
1. Introduction

Transportation is one of the key sectors of the logistics industry. It
plays an increasing crucial role in globalization. According to Rodrigue
et al. (2013), the transportation costs account for about 10% of the total
cost of a product. Saving transportation costs becomes a competitive
factor in socio-economic activities. Therefore, since being introduced by
Dantzig and Ramser (1959), the VRP has quickly become one of the most
important optimization problems in transportation. Today, the VRP is a
well-known problem with many variants and applications in both com-
mercial and non-commercial activities. In this study, we focus on a VRP
variant in which customers are classified into different priority groups
and rules are integrated to control service plan. We name this problem
the Vehicle Routing Problemwith Relaxed Priority Rules (VRP-RPR). It is
formally defined as follows. Given an undirected graph G ¼ ðN;EÞ where
N ¼ f0;…; ng is a set of nodes and E ¼ fði; jÞ : i; j2 N; i 6¼ jg is a set of
edges, node 0 represents the depot where a fleet of kmax vehicles is based.
There are several types of vehicle and we denote τðkÞ the type of vehicle
k. Nodes indexed from 1 to n represent customers. Each customer i is
associated with a demand qi and a priority pi in a set P of priorities sorted
from the highest to the lowest values, P ¼ f1;…;pmaxg. Each edge ði; jÞ 2
E represents a possible trip between a node i and a node j with trans-
portation cost lij. The goal is to find up to kmax vehicle routes starting and
ending at the depot, such that:
u.vn (M.H. H�a).

m 16 April 2021; Accepted 22 A
sevier B.V. on behalf of Associat
).
� Each customer is served at most one time,
� The total demand quantity of any route k does not exceed the vehicle
capacity CτðkÞ,

� The length of any route k is never greater than a given value LτðkÞ,
� Two rules, “d-relaxed priority” and “Order of Demand Fulfillment
(ODF)”, defined below, are satisfied,

� A weighted summation of the total demand lost and the total travel
cost is minimized.

We now present two important rules introduced in the study of
Panchamgam (2011) in order to manage the priorities. The first one is the
d-relaxed priority rule, represented by a value d that allows flexible
service control. A route k is considered to satisfy the d-relaxed priority
rule if at any point i of k, the vehicle visits the next location with priority
no greater than pþ d where p is the highest priority group among all
locations visited after i in this route. By setting different values for
d (d 2 N), we can achieve different solutions in which the orders of
customers respect the priorities strictly, partially or not at all. Choosing
an appropriate value for d mainly depends on the emergency level. That
is to say, if the situation is very urgent, a solution should be generated
with a strict priority rule, i.e., d is set to zero, which is generally costly.
Otherwise, if the situation is less urgent, we can increase this value to
save cost and accept a solution in which high priority locations may be
served after lower priority ones. The second rule, called ODF, ensures
pril 2021
ion of European Operational Research Societies (EURO). This is an open access

mailto:hoang.haminh@phenikaa-uni.edu.vn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2021.100039&domain=pdf
www.sciencedirect.com/science/journal/21924376
www.journals.elsevier.com/euro-journal-on-transportation-and-logistics
https://doi.org/10.1016/j.ejtl.2021.100039
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ejtl.2021.100039


T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
that at the end of the day (or time horizon), all higher priority locations
need to be satisfied before the vehicles can satisfy any lower priority one.

We illustrate how these rules work with a graph including 10 cus-
tomers and one depot. The customers are divided into 3 priority groups,
each including three customers except the third which includes four.
Fig. 1 depicts three feasible solutions corresponding to three values of d.
The numbers in the circles represent priorities of customers and letter D
in the square represents the depot. It should be mentioned that Fig. 1
depicts a typical solution produced by our model that Panchamgam
(2011) called “Local Timing”. In this model, the d-relaxed priority rule
needs to be satisfied in each route but not necessarily across routes. For
example, with d ¼ 0, the rule ensures that the highest priority groups are
served before the lowest ones in routes A and B. However, priority 2 in
route A can be served before priority 1 in route B and so on. In other
words, we do not consider service times between priority groups located
in different routes. Contrary to the “Local Timing” model, Panchamgam
(2011) presented another model called “Global Timing” where the
d-relaxed priority rule holds not only in each route but also across routes.
The author claimed that this model helps high priority customers to be
served faster than the “Local Timing” model but solutions are generally
much more costly. Therefore, we leave the “Global Timing” model for
future study.

Back to the example in Fig. 1, when d ¼ 0, the relaxation is not
allowed, then in both routes A and B, the higher priority customers are
visited before the lower priority ones. For d ¼ 1, the solution is partially
relaxed with one level of relaxation for each priority group. As a result,
customers with priority 1 can be served before or after customers with
priority 2 and customers with priority 2 can be served before or after
customers with priority 3 but all customers with priority 1 must be served
before customers with priority 3 (see route B). For d ¼ 2, each priority
group now has two levels of relaxation then priorities from 1 to 3 can be
served in any order. Thus, the solution is completely relaxed and
considering the cases where d � pmax is not necessary.

Due to the ODF rule definition, if in a solution, at least one customer
with p ¼ 3 is served, then all customers with p ¼ f1;2gmust be served. In
Fig. 1, all solutions satisfy this rule. For the case d ¼ 2, all customers are
served. But in cases d ¼ f0; 1g, the priority constraint is less relaxed then
we cannot serve a customer of the lowest priority.

The problem has some applications in practice, especially in situa-
tions where classifying customers into different priority groups is needed.
Panchamgam (2011) addressed this in the context of last-mile distribu-
tion in the humanitarian relief operations. Priorities of locations are
assumed to be assigned in advance by the authorities and relief fleet
needs to deliver essential goods to vulnerable locations with respect to
several rules, including the rules mentioned above. The VRP-RPR can
also model the situation where unmanned aerial vehicles (UAVs) are
used to monitor targets with different priorities, as in a study by Shetty
et al. (2008). In addition, it could be applicable to the distribution of
commercial products if the priority of client delivery is determined by its
storage level. Out-of-stock locations should be considered to be more
important than others and clustered into the highest priority group. More
recently, the routing problems with the d-relaxed priority rule can model
technician scheduling problems faced by internet service providers as
introduced in H�a et al. (2020).

There are several VRP variants in which the customers are also
divided into clusters. The Generalized Vehicle Routing Problem (GVRP)
studied in Ghiani and Improta (2000); H�a et al. (2014) considers disjoint
clusters and requires that only one customer in each cluster is visited. The
Selective Vehicle Routing Problem (SVRP) in Sabo et al. (2020)
Fig. 1. Feasible solutions i

2

generalizes the GVRP in the sense that the customers are divided into
clusters, but they may belong to one or more clusters. For the Clustered
Vehicle Routing Problem (CluVRP) Battarra et al. (2014), and Pop et al.
(2018), a vehicle visiting one customer in a cluster must visit all the
remaining customers therein before leaving it. These problems are
different from our VRP-RPR because they do not consider priorities
associated to the clusters. Therefore, clusters can be visited in any order.

When demand is replaced by profit, the VRP-RPR belongs to the wide
class of the vehicle routing problems with profits. More specifically, the
team orienteering problem (TOP), the profitable VRP (VRPP), the VRP
with private fleet and common carrier (VRPPFCC), and the capacitated
profitable tour problem (CPTP). All correspond to the VRP-RPR instances
with a single group. The standard CVRP corresponds to instances with
one group and identical vehicles with unlimited maximum route length.
The VRP-RPR can also be reduced to the Clustered Traveling Salesman
Problem with d-relaxed priority rule (CTSP-d) defined by H�a et al. (2020)
if we use a single vehicle without capacity and maximum route length
constraints. As a result, it also includes the Clustered Traveling Salesman
Problem with a Prespecified Order on the Clusters (CTSP-PO) in Potvin
and Guertin (1998) because the CTSP-PO is a special case of the CTSP-d
when d ¼ 0. The VRP-RPR is a variant of the Humanitarian Vehicle
Routing Problem (HVRP) of Panchamgam (2011), which is mentioned in
Chapter 14 of the book by Toth and Vigo (2014). It extends the HVRP in
the sense that we allow flexible dispatch, i.e., unnecessary vehicles may
not be mobilized, while in the HVRP, all available vehicles must be used
in the solution. Moreover, we also consider heterogeneous fleet, instead
of homogeneous fleet as in the HVRP. However, we do not consider the
“global timing” constraint as mentioned above.

Our contributions are as follows. First, we generalize the problem
proposed in Panchamgam (2011) by allowing heterogeneous fleets with
flexible dispatch. The generalization is motivated by the fact that in
practical situations, fleets may include different types and sizes. If de-
mand is greater than supply, all vehicles should be dispatched if possible.
Otherwise, unnecessary dispatches should be rejected to save resources.
We propose a MILP model with enhanced constraints that can solve
several small instances to optimality with MILP solvers. We also intro-
duce a meta-heuristic based on the ALNS framework with
problem-tailored components to solve larger instances. In particular, we
propose two new removal operators, a local search, and three accelera-
tion techniques, as well as a procedure to verify feasible insertions with
respect to the d-relaxed priority rule in O ð1Þ to speed up the process. The
experiments carried out on existing CTSP-d instances as well as on new
VRP-RPR instances show the effectiveness of our approaches. Compared
with the work of H�a et al. (2020), we consider a more general problem
with multiple vehicles and optional visits, i.e., several customers can be
unvisited in the solution. The metaheuristic proposed in H�a et al. (2020)
to solve the CTSP-d cannot handle the VRP-RPR without re-designing all
of its main components. In addition, our new algorithmwith removal and
repair operators based on the ALNS framework is totally different from
the method used in H�a et al. (2020), which relies mainly on local
searches. When tested on CTSP-d instances, our ALNS outperfoms the
heuristic method in H�a et al. (2020) in terms of both solution quality and
running time. Specially, 23 best known CTSP-d solutions have been
improved in this study.

The rest of the article is organized as follows. Section 2 provides a
brief review of relevant problems. Section 3 presents a MILP model for
our VRP-RPR. Section 4 describes a metaheuristic based on the ALNS
framework to solve the problem. Section 5 presents and discusses
experimental results. Finally, Section 6 provides our conclusions and
n different values of d.



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
suggestions for future studies.

2. Literature review

As discussed in Section 1, the VRP-RPR can be reduced to four
important problems: TOP, VRPP, VRPPFCC, and CPTP. The state-of-the-
art methods for these problems can be found in Bulh~oes et al. (2018) and
Goeke et al. (2018). The readers can refer to the surveys by Archetti et al.
(2014), Vansteenwegen et al. (2010), and Vidal et al. (2013) for more
information on the wide class of the vehicle routing problems with
profits.

The CTSP-PO problem defined in Potvin and Guertin (1998) is similar
to the VRP-RPR in the sense that priorities are imposed on customer
clusters. However, the priority rule defined in the CTSP-PO requires that
the higher priority clusters must be always visited before the lower pri-
ority ones, which is stricter and less flexible than the d-relaxed priority
rule. This rule can lead to inefficient routes in terms of transportation
cost. As mentioned above, the CTSP-PO can be seen as the VRP-RPR with
d ¼ 0. Also in Potvin and Guertin (1998), the CTSP-PO was solved by a
genetic algorithm. In Ahmed (2014), a hybrid genetic algorithm was
developed using sequential constructive crossover (SCX), 2-opt search,
and a local search.

Several articles in the literature have studied VRPs while taking into
account the priority of each customer. Yang et al. (2015) introduced a
dynamic VRP with time windows and multiple priorities. Each customer
has a priority level represented by a weight, which is multiplied by the
delayed service time at customer position to produce a penalty value. A
weighted sum function aims to minimize both the total travel distance
and the total penalty. With this method, higher priorities tend to be
served before lower ones. Song and Ko (2016) published a real-life
problem in the perishable food transportation sector. In this study, pri-
orities are not assigned to customers beforehand. Instead, during the
search, each unrouted customer i is set a priority that equals to the
number of unrouted customers within a radius R around i divided by
their average demand. The customer with the highest priority will be
selected to be served next. This heuristic method makes it possible to
serve as many customers as possible without conflict with the objective of
maximum demand satisfaction.

In the context of emergency routing, many problems use the priority
assignment as a method to tag the urgency level of the affected locations.
Oran et al. (2012) presented a location-routing problem with a set of
potential sites for emergency facilities and a set of emergency points. The
problem considers multiple types of emergency where each type of
emergency requires a type of vehicle. The authors proposed a facility
location model and a routing model. First, the facility location model
allocates vehicles to the facilities in such a way that as many prioritized
emergency points as possible are covered. Second, after achieving solu-
tion from the first model, the routing model with time windows and
priority consideration is taken into consideration. In this study, each
emergency point i is assigned a priority pik corresponding to vehicle of
type k. This priority is the basis to calculate weight αik of i in the objective
functions of both models. Sheu (2007) developed a three-layer logistic
distribution model that allows fast delivery of relief goods to
disaster-affected areas. These areas are grouped into several clusters by a
fuzzy-based clustering technique where areas in the same cluster have
the same level of urgency. After that, the authors proposed a method to
assess cluster priority (it is also the priority of the areas inside). A
network distribution model is then formulated to solve the problem of
distributing multiple relief goods from distribution centers to prioritized
areas in clusters. Gralla and Goentzel (2018) presented a transport
planning problem for relief supplies. In this study, authorities preassign
priorities to both relief supplies and locations, based on their emergency
levels. The objective is a utility function that considers the total amount
of supplies delivered, the proportion of high priority goods delivered, the
speed of delivery, and the operation cost.
3

Although the priority of customers is an important aspect that should
be taken into account when making delivery schedules, the d-relaxed
priority rule has not been well studied in the literature. To the best of our
knowledge, Panchamgam (2011) initially introduced the HVRP with this
rule. Several MILP models used for different fleet sizes and service types
were proposed and solved to optimality with CPLEX on several small
instances with up to 30 nodes and homogeneous fleets with up to 2 ve-
hicles. Panchamgam et al. (2013) studied a special case of the HVRP
called Hierarchical Traveling Salesman Problem (HTSP). In this research,
the authors derived worst-case bounds with respect to the classical TSP
and were able to show that the bounds are tight. This problem was later
mentioned in Chapter 14 of Toth and Vigo (2014). Kuang (2012) solved
the HTSP with a 2-Opt heuristics on four data sets (up to 64 nodes).
Recently, H�a et al. (2020) presented a new MILP model for the HTSP and
renamed this problem as CTSP-d. The authors also proposed the first
metaheuristic based on the GILS-RVND algorithm of Silva et al. (2012) to
solve this problem. The GILS-RVND combines the features of the Greedy
Randomized Adaptive Search (GRASP), Iterated Local Search (ILS), and
Random Variable Neighborhood Descent (VND). The algorithm was
tested on randomly generated instances with up to 200 nodes.

3. Mathematical formulation

In this section, based on the formulation introduced in Appendix D.3
of Panchamgam (2011), we propose a MILP model for the VRP-RPR. Our
model differs from the original one in three respects. First, as mentioned
in Section 1, we allow heterogeneous fleets. Second, the number of ve-
hicles in our model is also a decision variable in order to possibly save
resources in some cases. Third, we do not use variables representing
starting service time at each customer location. Instead, we introduce
variables that represent the visiting order on a service route. As shown in
H�a et al. (2020), using these variables may improve the performance of
the MILP-based exact method. Additional sets and parameters are
denoted as follows:
Ni Set of nodes excluding node i, Ni ¼ N n fig
Gp
 Group of nodes with priority p 2 P

K
 Set of kmax vehicles available, K ¼ f1;…;kmaxg

А
 Predefined parameter controlling the trade-off between the total demand lost

and the total cost (0 � α � 1)
There are four types of variables in the formulation. For each
customer i 2 N0, we define a binary variable vki , set to 1 if and only if
vehicle k visits node i, as well as a non-negative variable uki representing
the visiting order of node i on the route of vehicle k. We also use a binary
variable xkij equal to 1 if vehicle k travels from i to j. Finally, zp is a binary
variable, defined for each group p 2 P, and set to 1 if the total demand of
nodes in this group is satisfied. The formulation for the VRP-RPR is stated
as:

Objective function:

Minimize α

0
@X

i2N0

qi �
X
k2K

X
i2N0

qivki

1
Aþ ð1�αÞ

X
k2K

X
ði;jÞ2E

lijxkij (1)

Subject to:
X
j2N0

xk0j � 1;
X
i2N0

xki0 � 1 8k 2 K (2)

vki ¼
X
j2N

xkji 8i2N0; k 2 K (3)

X
k2K

vki � 1 8i 2 N0 (4)



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
j2Ni

xkji ¼
j2Ni

xkij; 8i2N0; k 2 K (5)

X X

uk0 ¼ 0 8k 2 K (6)

uki þ 1�B
�
1� xkij

�
� ukj 8i2N; j2N0; k 2 K (7)

uki þ 1 � ukj 8p; q 2 P; i 2 Gp; j 2 Gq; q � pþ d þ 1; k 2 K (8)

X
i2N0

qivki �CτðkÞ 8k 2 K (9)

X
ði;jÞ2E

lijxkij � LτðkÞ 8k 2 K (10)

X
k2K

X
i2Gp

qivki � zp
X
i2Gp

qi 8p 2 P (11)

X
k2K

X
i2Gp

qivki � zp�1

X
i2Gp

qi 8p 2 P� f1g (12)

xkij 2f0; 1g 8i; j2N; k 2 K (13)

vki 2f0; 1g 8i2N0; k 2 K (14)

zp 2f0; 1g 8p 2 P (15)

uki 2Rþ 8i 2 N; k 2 K (16)

The objective function (1) aims to minimize the weighted combina-
tion of the total demand lost and the total travel cost. Constraints (2) state
that if a vehicle leaves the depot, it has to return. Constraints (3) and (4)
guarantee that a customer is served by at most one vehicle. Constraints
(5) ensure the flow conservation for each vehicle. Constraints (6)
initialize variables u at the depot. Constraints (8) restrict u variables at
nodes i and j if vehicle k travels from i to j and also take the role of sub-
tour elimination. Here, B is a sufficiently large number and can be esti-
mated by jNj. Constraints (8) enforce the d-relaxed priority rule on each
route. Constraints (9) require that the total demand delivered does not
exceed the vehicle capacity. Constraints (10) enforce the maximum route
length for each vehicle. Constraints (11) and (12) enforce the ODF rule
for each vehicle. Constraints (13) through (16) define the domain of the
decision variables. The combination of the capacity constraint and the
ODF rule leads to the following constraints, which can be used to
strengthen the model:

X
k2K

X
i2G1

qivki � min

 X
i2G1

qi;
X
k2K

CτðkÞ

!
(17)

X
k2K

X
i2Gp

qivki �max

 
0;
X
k2K

CτðkÞ �
X
r¼1

X
i2Gr

qi

!
8p2P� f1g (18)

Constraints (17) express the upper limit of the vehicle capacity for the
first priority group, while constraints (18) imply the upper limit of the
vehicle capacity for groups with priority p. We adapt constraints from C.9
to C.12 in Panchamgam (2011) to speed up the model with the set of
constraints below:
X
k2K

X
i2Gp

X
j2Gq

xkji ¼ 0 8q � pþ d þ 1 (19)

X
k2K

X
i2Gp

X
j2Gq

xkij � 1 8q � pþ d þ 1 (20)
4

Constraints (19) state that a vehicle never moves from a node with
priority q � pþ dþ 1 to a node with priority p. Constraints (20) ensure
that there is at most one link from a node with priority p to a node with
priority q � pþ dþ 1.

4. An adaptive large neighborhood search algorithm with
integrated local search

ALNS was first introduced by Ropke and Pisinger (2006). The entire
search process is divided into w1 segments, each segment including w2

iterations. The process starts from an initial solution Sinit . After each
iteration, a new solution Snew is generated from the current solution
Scurrent and the best solution Sbest during the search will be updated until
the end of the search. For more detail, Snew is generated after destroying
Scurrent with an operator selected from the set of removal operators R and
repairing it with another operator selected from the set of insertion op-
erators I. The quality of Snew is evaluated via Simulated Annealing (SA).
Operators in R and I are selected and scored by the mechanism of Rou-
lette Wheel Selection (RWS). That is to say, after evaluating Snew quality,
RWS adds an appropriate score to both removal and insertion operators
selected in the current iteration. At the end of the current segment, for
each removal or repair operator, RWS calculates its weight for the next
segment by the weighted summation of accumulated scores and the
current weight. The selection probability of an operator will depend on
its weight.

In recent years, hybrid heuristic methods are often used to combine
advantages of classical algorithms. According to our observation,
applying the local search in ALNS can further improves the solution
quality. Therefore, we proposed an ALNS integrated with local search as
described in Algorithm 1.

4.1. Initial solution

To construct an initial solution, we use a cheapest insertion heuristic.
From an empty solution with kmax empty routes, we insert each candidate
into the solution considering methods to handle the rules described in
Subsection 4.2. The candidate is selected in such a way that its insertion

cost is the cheapest among the unrouted nodes. The insertion costΔðu;vÞ
i of

a node i in edge ðu; vÞ is calculated as follows: Δðu;vÞ
i ¼ lui þ liv � luv where

lui, liv, and luv are the costs of edges ðu; iÞ, ði;vÞ, and ðu;vÞ, respectively.
Algorithm 1. The ALNS algorithm with integrated local search

4.2. Insertion operators

As mentioned above, insertion operations rebuild the partial solution
by adding greedily unrouted nodes one by one to generate a new solu-
tion. Depending on the insertion criteria, different insertion strategies
have been proposed. After testing different insertion operators from the
literature, we decided to use four operators which give the best perfor-
mance for our algorithm.

(1) Regret insertion: This operator is based on the method of Tillman
and Cain (1972) and is used in a number of studies, e.g., Potvin
and Rousseau (1993); Ropke and Pisinger (2006). The regret
value of a node i can be seen as the total opportunity cost of
inserting i into the first best place instead of the second best place,
the third best place, and so on. Let Δk

i denotes the change in the
objective value incurred by inserting node i into its best position in
the kth cheapest route. The regret value of a node i is computed by:

ri ¼
Xkrg
k¼2

�
Δk

i �Δ1
i

�
(21)

In this article, we set krg to 3, i.e., regret-3 heuristic is used as an



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
insertion operator. In each insertion iteration, the regret heuristic selects
a candidate node i* among the unrouted nodes according to this
condition:

i* ¼ arg maxi2Uri (22)

(2) Regret insertion with noise: As proposed in Ropke and Pisinger
(2006), it can be necessary to use noising or randomization in
repair heuristics to enhance the diversity level of the algorithm.
Before selecting the candidate node to insert, a noise amount β is
added to the regret value of each unrouted node to get a new value
r 0 ¼ maxð0; ri þβÞ where β ¼ η:l. Here l is a random number in
½ �lmax; lmax� and η is a noise control parameter.

(3) Cheapest insertion: This operator uses the insertion method
described in Subsection 4.1. Each candidate from the set of
unrouted nodes is successively inserted into the partial solution
with the smallest insertion cost. The cheapest insertion can also be
seen as the regret-1 heuristic.

(4) Cheapest insertionwith noise: Similarly to Regret insertionwith
noise, a noise value is also added to the insertion cost of each
unrouted node before selecting the candidate node. We use the
same method to calculate noise as described above.

Before inserting a node into a route, we need to check if it satisfies the
ODF rule and the d-relaxed priority rule. Because this operation is
repeated a number of times during the search, it must be designed
5

carefully to speed up the algorithm. Here, we propose approaches to
handle these rules efficiently.

� Handling theODF rule: The ODF rule requires all higher priorities to
be satisfied before any lower ones at the end of a day (time horizon).
Thus, before inserting unrouted nodes into a partial solution, we sort
the nodes in descending order of priorities (p; pþ 1; pþ 2;…) and
insert them into the solution according to this order. However, the
partial solution generally contains different priorities. Sometimes, we
cannot satisfy this rule because the solution is full before all higher
priority nodes are inserted. In this case, we continuously remove,
from the solution, the most costly node of the lowest priority and
insert the cheapest unrouted node with the highest priority into the
solution until the ODF rule is satisfied.

� Handling the d-relaxed priority rule: In this rule, the nodes with
priority p are visited before a node with priority q � pþ dþ 1. For the
convenience of indexing, the depot on a route is represented by two
copies. The depot where vehicles leave to serve is called the starting
depot and the depot where vehicles return is called the ending depot.
These depots are identical with the same location in the graph.
Customer nodes are inserted between these depots with an index
system considering 0 as the index of the starting depot. A node i with
priority pi satisfies the d-relaxed rule if it is inserted into the Valid
Insertion Range (VIR) starting from index ιs to index ιe of route:

� Starting index: ιs ¼ ιhighest þ 1, where ιhighest is the highest index of the
nodes with priorities p*1 � pi � d� 1. If such a node does not exist, ιs ¼



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
1. This ensures that node i is always visited after any node with
priority pi � d� 1 or smaller values.

� Ending index: ιe is the lowest index of the nodes with priorities p*2 �
pi þ dþ 1. If this node does not exist, ιe is set to the ending depot
index. This ensures node i is always visited before any node with
priority pi þ dþ 1 or greater values.

We provide a small example to illustrate how to determine the VIRs of
a node iwith pi ¼ 3. Suppose that d ¼ 1, in Fig. 2 we find the two VIRs of
i in routes A and B of a partial solution. Number in circle represents the
node priority, letter D in square represents the depot, and number above
a node represents the node index. In route A, ιs ¼ 4 because ιhighest ¼ 3 is
the highest index of the nodes with p*1 � 1 and ιe ¼ 8 because it is the
lowest index of the nodes with p*2 � 5. In route B, there is no node with
p*1 � 1 and p*2 � 5, then is ¼ 1 and ie ¼ 7.

Finding VIRs is a time-consuming activity. To avoid computing them
repeatedly, we use additional data structures to memorize the lowest and
highest indices for each priority on each route. Initially, these values are
set to 0. The memorized indices of priority p on a route will be updated if
a node with priority p is inserted into the route and the insertion position
is a new starting or/and a new ending. Moreover, we use an acceleration
technique to further reduce the running time of the insertion operation as
follows:

Acceleration procedure 1: Basically, each insertion operator searches
for the best node to insert into the best position of a partial solution. This
process repeats until no more nodes can be added. To avoid doing such a
time-consuming operation whenever a node is added, we find and save
the best insertion position for each unrouted node once, before the
insertion takes place. After the insertion starts, each time a node is
inserted into a route and two new edges are produced, we check the
chances of improvement for the remaining unrouted nodes if they are
inserted into these edges and update if necessary. By experiments, we
observed that this method significantly speeds up the algorithm. We also
note that this procedure does not work for the insertion with noise.
Therefore, it is turned off in this insertion operator.

4.3. Removal operators

Removal operators play an important role in designing an efficient
ALNS. The objective is to destroy a part of the current solution by
removing one or several nodes/edges to create a new large neighbor-
hood. The removal operation is performed without taking into account
the rules. However, after this operation ends and a partial solution is
created, we need to update the starting and ending indices of priorities on
each route to ensure that the d-relaxed priority rule works exactly in the
insertion phase described in Section 4.2.

In this study, after testing different removal operators from the
literature, we adapt 5 operators to our problem, that are Related removal,
Worst removal, Random removal, Route removal, and Graph Cluster
removal. Two new operators specifically designed for the problem are
Group removal and Joint Segment removal. Before removing nodes from
current solution, we need to define a number of nodes to be removed nr .
For Related removal, Worst removal, and Random removal, we first
Fig. 2. Determining the v

6

select a random ratio r1 in default range of ½0:1; 0:4� and define nr ¼
r1:jMj. For the other operators, we calculate nr in the same manner but
their best ratios are determined in preliminary tests. In the operators
below, U and M ¼ N0 n U denote the sets of unrouted and routed
customer nodes, respectively.

1. Related removal: This operator was first proposed by Shaw (1998).
The main principle is to successively remove a node having close
relationship with another node selected from the set of unrouted
nodes until achieving the predefined removal quantity. The rela-
tionship between nodes can be expressed in combinations of cost,
demand, time window, etc. Traditionally, the operator follows the
steps below:

� Step 1: randomly remove a node and put it into set U.
� Step 2: randomly select an unrouted node i in U and calculate the
related values Rij between node i 2 U and each routed node j 2 M in
current solution. We calculate Rij based on the normalized values of
cost ðlijÞ and the difference on the demand between i and j. The for-
mula is expressed as follows:

Rij ¼φ:
lij
lmax

þ ψ :

��qi � qj
��

qmax
: (23)

where lmax is the maximum cost between any two nodes in the graph and
qmax ¼ maxi2Nqi is the maximum demand of nodes.

� Step 3: sort Rij in non-descending order and remove node j* at the
index of byc1 :jMjc, where y is a random number in ½0;1Þ and c1 is a
randomness control parameter.

� Step 4: repeat Step 2 until nr nodes are removed.
1. In addition, to reduce the running time of the algorithm, we perform

an acceleration procedure as follows:

Acceleration procedure 2: For each node in the graph, we pre-calculate
its related values with other nodes. Then for each node i, we sort the
values of Rij in non-descending order and save them in an additional data
structure. When this operator is called, we skip calculating Rij in Step 2
and perform Step 3 by filtering out all Rij values of nodes i and j in the
current solution. Since Rij values are already sorted, we only need to
select node j* as described in Step 3.

2. Worst removal: The basic principle of this operator is to remove a
random number of worst nodes from the solution as described in
Ropke and Pisinger (2006). We assume f ðSÞ and f ðS n figÞ are solution
costs before and after removing node i, respectively. Denote Δi as the
cost value of removing node i from the solution, the worst removal
processes as follows:

� Step 1: calculate Δi for every node i in the set of routed nodes M.

Δi ¼ f ðSÞ � f ðS n figÞ (24)
alid insertion range.



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
� Step 2: sortΔi in non-increasing order, remove node i* at index of byc2 :
jMjc and put i* into U. Here, y is a random number in [0, 1), c2 is a
randomness control parameter.

� Step 3: repeat the process until nr nodes are removed.
2. To speed up this operator, we use the following acceleration

procedure:

Acceleration procedure 3: We calculateΔi values in Step 1 for each node
i in set M before the operator is started. After each iteration, a node is
removed andwe just need to update the valuesΔ for the nodes before and
after i.

3. Random removal: This is the simplest operator. We randomly
remove nr nodes from current solution. This obviously helps to
diversify the search.

4. Route removal: This operator is used in several articles such as
Demir et al. (2012); Mancini (2016). Here we randomly choose a
route and remove all of its nodes. The operator aims to redistribute
customers between routes.

5. Graph Cluster removal: This operator is inspired by removal
methods based on clusters of distance-proximity nodes. We first
choose a random node in the solution as a seed node and remove r2%:

jMj nearest routed nodes. This operator may help the proximity nodes
to exchange their positions in the solution. Based on experiments, we
decide to select r2 ¼ 25% leading to the best performance of the
algorithm.

6. Group removal: This is our new removal operator whose purpose is
to relocate nodes in a priority group among the routes of a solution.
First, a group p is selected randomly, then we continuously remove a
random node in this group (Gp) until nr ¼ r3%:

��Gp
�� nodes were

removed. We set r3 ¼ 20% as the best value after tests. If nr < 10, we
set nr ¼ ��Gp

��.
7. Joint Segment removal: Each priority p in a route has a VIR as stated

in Section 4.2. This operator aims to fix worse linking positions where
VIRs connect and the positions where the depot connects with the
first and the last customer nodes. For instance, reconsider route A in
Subsection 1: 0-2-1-1-2-1-3-3-2-3-3-0 in case d ¼ 1, the joints are 0-2,
1–3, 3–0. After determining the joints, we remove a random number
of successive nodes around both sides of a joint (including two nodes
belonging to the joint). In the case that the depot belongs to a joint,
we remove only the side where customer nodes are located. We
choose the maximum removal ratio in a route, r4 ¼ 30% as the best
value after tests.

4.4. Local search

Local search has been successfully integrated into the ALNS frame-
work to solve several variants of the VRP, such as in studies of François
et al. (2016); Hemmelmayr et al. (2012). Our experiments show that this
integration can significantly improve the solution quality but also in-
crease the running time, especially on large instances. Therefore,
applying local search requires an appropriate strategy. In this study, we
7

adapt three classical local search operators: 2-Opt, 2-Opt*, and CROSS
presented in Chapter 5 of Toth and Vigo (2014) and apply them only in
special conditions to ensure the ALNS performance (see Algorithm 1).
Moreover, a move need to satisfy the constraints and the rules of this
problem. For the d-relaxed priority rule, new location of a node with
priority p needs to be located in a VIR of p. For the ODF rule, it is not
necessary to check because if a move is considered valid, it only changes
the locations of nodes in the solution. The mentioned operators are
briefly described as follows:

� 2-Opt: It is an intraroute operator, removing a pair of edges ði; iþ1Þ
and ðj; jþ1Þ and replacing themwith a new one ði; jÞ and ði þ 1;j þ 1Þ.
A 2-Opt move leads to a reversal in the node sequence from node iþ 1
to node j.

� 2-Opt*: This operator seeks an improvement by selecting a pair of
edges ði; iþ1Þ and ðj; jþ1Þ located in two different routes and
replacing them by the new pair ði; jþ1Þ and ðj; i þ 1Þ. This move does
not change any sub-segment direction in the routes.

� Cross: The operator performs a move by exchanging two segments
between two routes without changing any sub-segment direction in
the routes. In the experiment, the maximum number of nodes in a
segment is set to 4.

In Algorithm 1, we set LS1 ¼ {CROSS, 2-Opt*, 2-Opt}, LS2 ¼ {2-Opt*,
2-Opt}. It should be noted that CROSS is an effective but time-consuming
operator. Hence, in the experiment, CROSS is used only for the new best
solutions found during the search.

4.5. Adaptive selection mechanism

As described at the beginning of Section 4, the adaptive selection
mechanism in ALNS uses the RWS mechanism combined with SA to
assess the solution quality. The entire search process is divided into w1

segments, with w2 iterations in each segment. Given an operator z 2 Z in
the current segment seg (Z can be the set of removal operators R or the set
of insertion operators I), operator z is associated with variables repre-
senting its activity, named TSsegz , wseg

z , nsegz , Psegz to record the aggregated
scores, the weight, the number of times z is used, and the probability of
choosing z, respectively. After each iteration, one of the scores σ1 , σ2,
and σ3 will be aggregated into TSsegz depending on the solution quality
qualified by the SA. Here, σ1 , σ2, and σ3 represent the score associated
with the new best solution, the new better solution, and the new worst
solution, respectively (see Algorithm 1 for more detail). All TSsegz values
are reset to zero at the beginning of a segment. The RWS updates the
weight of z in the next segment as follows:

wsegþ1
z ¼wseg

z :ð1� ρÞ þ ρ:
TSsegz

nsegz

(25)

Parameter ρ ensures the balance between the weight of the current
segment and the average score earned after the current segment. In the
first segment, the probability of choosing z is the same for each operator.
In the next segments, the probability of choosing z is based on the weight



Table 1
Values used for the parameter tuning procedure.

Parameter Tested values

φ {1, 2, 3, 4, 5}
ψ {1, 2, 3, 4, 5}
c1 {1, 3, 5, 7, ∞}
c2 {1, 3, 5, 7, ∞}
η {0.05, 0.1, 0.15, 0.2, 0.25}
ρ {0.6, 0.65, 0.7, 0.75, 0.8}
σ1 {10, 11, 12, 13, 14}
σ2 {5, 6, 7, 8, 9 }
σ3 {1, 2, 3, 4, 5}

Table 3
Comparison between ALNS and GILS-RVND on the CTSP-d instances.

Criterion Type R Type C Both types

Average cost 32/14/12 35/4/19 67/18/31
Best cost 13/3/42 10/1/47 23/4/89
Running time 57/1/0 58/0/0 115/1/0

T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
of z calculated in the current segment, according to equation (26).

P segþ1
z ¼ wseg

zPjZj
z¼1wseg

z

(26)

4.6. Acceptance mechanism and stopping condition

The acceptance mechanism with SA is similar to Ropke and Pisinger
(2006). In the search process, a new best solution replaces the best so-
lution found so far and the current solution, a new better solution re-
places the current solution, and a new worst solution is only accepted

with the probability P ¼ e�
f ðSnew Þ�f ðScurrent Þ

T . Denote by iter the current iter-
ation, the temperature in the next iteration is Titerþ1 ¼ c:Titer . The initial
value of T is selected so that a solution with an objective value 5% worse
than Sinit is accepted with a probability 0.5. So, from the probability
equation, we have the initial temperature as follows:

T0 ¼ � 0:05
ln 0:5

:f ðSinitÞ (27)

ALNS is stopped after a number of iterations, which is determined in
preliminary tests.

4.7. Adaptations to solve CTSP-d

In this study, the ALNS algorithm is also adapted to solve the CTSP-d,
a special case of the VRP-RPR. The Algorithm 1 is kept unchanged, except
that we do not use the three operators that are useful only when there are
multiple vehicles: route removal, regret insertion, and regret insertion
with noise. In addition, we use a new procedure 2, which is activated if
Algorithm 1 cannot find a new best solution after κ consecutive segments.
This procedure helps diversifying the search and often provides better
solutions. However, it is not applied to the VRP-RPR because from our
observation, it is time-consuming while the benefit gained from the so-
lution improvement, especially for large instances, is quite limited.
Finally, we set LS1 ¼ {2-Opt}, LS2 ¼ {2-Opt} because 2-Opt* and CROSS
Table 2
Impact of main operators on the performance of the ALNS algorithm.

Row State VRP-RPR

d¼0 d¼1 d¼2

1 All ON 0% 0% 0%
2 Worst removal OFF 1.36% 0.12% 0.13
3 Related removal OFF �0.50% �0.13% 0.06
4 Group removal OFF 0.16% 0.61% 1.72
5 Joint Segment removal OFF 0.60% 0.44% 0.81
6 Random removal OFF 0.96% 0.20% 1.17
7 Graph Cluster removal OFF 0.09% 0.31% �0.
8 Route removal OFF 0.49% 0.27% �0.
9 Cheapest insertion OFF �0.15% 0.13% �0.
10 Cheapest insertion with noise OFF �0.17% �0.05% 0.09
11 Regret insertion OFF �0.30% 0.55% 0.05
12 Regret insertion with noise OFF 0.53% �0.28% 1.12
13 Local search OFF 0.26% 1.39% 2.41
14 Acceleration OFF 25.20% 31.27% 33.6

8

inter-route operators cannot be used in the CTSP-d.

Algorithm 2. Additional procedure applied for the experiment with
CTSP-dNote.y1 and y2 are the lower and upper bounds on the number of
relocations, respectively; w3 is the number of iterations.
5. Experimental results

5.1. Instances and experimental settings

To evaluate the performance of the proposed approaches, we test
them on two classes of instances as follows:

� CTSP-d instances: The first instance class is proposed by H�a et al.
(2020) for the CTSP-d. From the TSPLIB data of Reinelt (1991), the
authors in H�a et al. (2020) introduce instances of two types: R
(random) and type C (clustered) indicating the distributions of pri-
orities. The instances are labeled X-Y-pmax-d where X is the name of
the original TSPLIB instances, Y represents the instance type (C or R),
pmax is number of priority groups, and d is the relaxed value. Instances
with prefix berlin52 have one more letter (a, b, or c) at the end of their
name. As showed in H�a et al. (2020), each letter denotes a random
instance generated from the original instance berlin52 in TSPLIB.

� VRP-RPR instances: Because there is no available instances for the
VRP-RPR, we generate a data set based on the CTSP-d instances of H�a
et al. (2020). The customer demands are extracted from corre-
sponding instances in Fischetti et al. (1998). We use a heterogeneous
fleet of 3 vehicle types: Type 1 (C1 ¼ 500;L1 ¼ 5000Þ, Type 2 ðC2 ¼
300;L2 ¼ 6000Þ, and Type 3 ðC3 ¼ 200;L3 ¼ 7000Þ. The vehicle fleet
is created so that it cannot always serve all the customers, which
would make the instances more difficult to solve. In this study, we
consider that minimizing lost demand is more important than mini-
mizing the transportation cost. Therefore, the value α is selected so
that the weight of demand lost is sufficiently large compared to that of

transportation cost. If the value of the summation
Pkmax

k¼1Lk has m
digits, we choose α ¼ 1� 1=10ðm�3Þ. For example, considering an
instance with 16 vehicles and

P16
k¼1Lk ¼ 78,000, the number of digits

of the summation is m ¼ 5, leading to α ¼ 0:99.
CTSP-d

Avg d¼0 d¼1 d¼2 Avg

0% 0% 0% 0% 0%
% 0.54% �0.32% �0.64% 0.48% �0.16%
% �0.19% �0.16% 0.43% 0.69% 0.32%
% 0.83% 0.36% 0.88% 0.83% 0.69%
% 0.62% 0.72% 0.91% 1.25% 0.96%
% 0.78% 0.92% 0.73% 0.78% 0.81%
04% 0.12% 0.21% 0.84% 0.90% 0.65%
11% 0.22%
01% �0.01% 0.15% 0.22% 0.08% 0.15%
% �0.04% 0.11% 0.19% 0.39% 0.23%
% 0.10%
% 0.46%
% 1.35% 0.77% 1.93% 2.34% 1.68%
0% 30.02% 35.22% 41.79% 49.98% 42.33%



Table 4
Results for the CTSP-d instances of type R.

Instance MILP GILS-RVND ALNS

Sol Gap Aver Best Time Aver Best Time

berlin52R-1-0-a 7542* 0.00 7542.0 7542* 7.7 7542.0 7542* 7.9
berlin52R-3-0-a 12765* 0.00 12765.0 12765* 6.3 12765.0 12765* 5.2
berlin52R-3-0-b 12668* 0.00 12668.0 12668* 6.5 12668.0 12668* 5.0
berlin52R-3-0-c 12483* 0.00 12483.0 12483* 6.4 12483.0 12483* 5.0
berlin52R-3-1-a 9473* 0.00 9473.0 9473* 8.3 9473.0 9473* 6.0
berlin52R-3-1-b 9442 2.39 9419.0 9419 7.0 9419.0 9419 6.2
berlin52R-3-1-c 9577 3.75 9577.0 9577 8.3 9577.0 9577 6.0
berlin52R-5-0-a 16414* 0.00 16414.0 16414* 5.7 16414.0 16414* 5.0
berlin52R-5-0-b 13759* 0.00 13759.0 13759* 5.8 13759.0 13759* 5.0
berlin52R-5-0-c 14131* 0.00 14131.0 14131* 6.5 14131.0 14131* 5.1
berlin52R-5-1-a 12417 14.53 11651.0 11651 6.9 11704.2 11651 6.3
berlin52R-5-1-b 9982 6.60 9963.5 9957 6.2 9963.7 9957 6.0
berlin52R-5-1-c 11020 9.32 10940.0 10940 6.8 10940.0 10940 6.0
berlin52R-5-3-a 9085 6.97 9020.0 9012 8.5 9028.5 9012 6.9
berlin52R-5-3-b 8036* 0.00 8036.0 8036* 7.3 8045.0 8036* 6.7
berlin52R-5-3-c 8224 2.02 8224.0 8224 7.4 8224.0 8224 6.5
kroA100-R-1-0 21282* 0.00 21365.5 21282* 95.2 21282.0 21282* 23.1
kroA100-R-3-0 38814* 0.00 38877.5 38814* 73.4 38827.9 38814* 19.9
kroA100-R-3-1 30072 16.61 29578.2 29264 92.6 29264.0 29264 23.1
kroA100-R-5-0 50192 2.23 50411.0 50192 63.0 50265.1 50192 18.5
kroA100-R-5-1 39335 21.60 36328.4 35847 73.0 35983.1 35847 22.6
kroA100-R-5-3 28548 22.34 25594.9 25370 91.0 25395.1 25370 25.7
kroB100-R-1-0 22141 1.59 22189.1 22141 83.6 22141.0 22141 23.5
kroB100-R-3-0 37706* 0.00 37770.2 37706* 69.0 37761.8 37706* 19.7
kroB100-R-3-1 31216 17.71 28652.6 28509 85.8 28454.0 28454 23.1
kroB100-R-5-0 50781 0.47 50863.4 50781 57.8 51290.4 50964 19.1
kroB100-R-5-1 39646 21.67 35589.3 35209 81.0 35244.9 35209 22.3
kroB100-R-5-3 28124 18.36 26205.0 26069 85.4 26316.9 26157 25.6
kroC100-R-1-0 20749 0.98 20826.1 20749 94.6 20749.0 20749 23.0
kroC100-R-3-0 37953* 0.00 38083.0 37953* 86.2 38096.8 37953* 19.8
kroC100-R-3-1 28218 12.69 28304.5 28130 86.8 28247.6 28130 23.6
kroC100-R-5-0 50085* 0.00 50099.9 50085* 69.1 50089.0 50085* 18.3
kroC100-R-5-1 39002 24.96 34365.1 33594 73.7 33759.0 33594 23.1
kroC100-R-5-3 28758 20.57 25587.6 25458 94.8 25530.3 25458 27.1
kroD100-R-1-0 21338 2.91 21336.6 21294 101.5 21294.0 21294 22.7
kroD100-R-3-0 38342 2.07 38290.3 38110 72.4 38143.2 38110 20.0
kroD100-R-3-1 28498 15.30 27886.3 27734 89.5 27755.8 27734 23.8
kroD100-R-5-0 49100* 0.00 49222.8 49100* 67.1 49100.0 49100* 20.0
kroD100-R-5-1 45094 34.19 34414.9 34246 71.6 34618.3 34246 23.2
kroD100-R-5-3 27468 18.33 25733.4 25624 86.4 26022.4 25624 30.9
kroE100-R-1-0 22068* 0.00 22129.1 22068* 100.1 22069.1 22068* 26.6
kroE100-R-3-0 37935* 0.00 37996.0 37935* 67.8 37935.0 37935* 21.1
kroE100-R-3-1 29863 10.94 29489.2 29359 90.9 29380.0 29359 26.7
kroE100-R-5-0 54197* 0.00 54285.2 54197* 66.4 54317.4 54197* 19.0
kroE100-R-5-1 52173 35.39 38700.8 38359 76.6 38916.6 38359 25.0
kroE100-R-5-3 30260 20.88 27316.3 27256 109.9 27391.6 27324 29.2
kroA200-R-1-0 30269 5.64 30176.5 29853 656.1 29369.4 29368 178.8
kroA200-R-3-0 52050 2.29 52237.3 51741 473.4 51754.3 51539 123.5
kroA200-R-3-1 43796 23.88 38471.5 38208 574.1 37983.5 37750 154.9
kroA200-R-5-0 67027 1.54 67757.6 67096 435.6 67123.6 67027 111.1
kroA200-R-5-1 – – 48790.1 48020 537.1 48835.9 47912 158.2
kroA200-R-5-3 47773 37.66 34630.4 34195 495.1 34414.9 33994 176.1
kroB200-R-1-0 29902 3.02 30149.7 29849 697.4 29439.9 29438 179.3
kroB200-R-3-0 53771 2.43 54131.3 53739 525.5 53652.7 53597 122.8
kroB200-R-3-1 58382 42.11 39190.5 38943 606.3 38626.2 38522 158.6
kroB200-R-5-0 73666 5.04 73011.3 72786 469.8 72498.0 72390 118.3
kroB200-R-5-1 – – 50821.8 50260 525.9 50880.5 49944 150.3
kroB200-R-5-3 47241 34.40 37145.9 36926 652.3 36971.0 36664 160.4
Average 30001.2 29829.3 158.9 29885.0 29774.4 44.4

T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
The experiments are performed on a computer with CPU of Intel core
(TM) i3-6100 3.7 GHz, 16 GB DDR3, and Microsoft Windows 10. ALNS is
programmed with Java 10 and CPLEX 12.9.1 is used to solve the MILP
model. The instances and the detailed results of our experiments can be
found at http://orlab.com.vn/home/download.

5.2. Parameter settings

5.2.1. Cooling rate and stopping condition
We stop ALNS after 40,000 iterations (w1 ¼ 200, w2 ¼ 200) as a fair

trade-off between solution quality and computational time. For cooling
9

rate c, we do not use the same value for all instances as Ropke and
Pisinger (2006) because preliminary tests show that with a constant
number of iterations, using a fixed value of cmay lead to the fact that on
some instances, acceptance probability P in SA converges to 0 too early
and therefore, the remaining iterations of ALNS are less effective. To deal
with this issue, we pre-set an average acceptance probability for all in-
stances at the last iteration of ALNS and compute the cooling rate c for
each instance such that probability curves decrease towards the
pre-defined value. As a result, the acceptance probability on each
instance is forced to converge around the same point when ALNS ends.
For more details, let denote last the last iteration, the acceptance

http://orlab.com.vn/home/download


Table 5
Results for the CTSP-d instances of type C.

Instance MILP GILS-RVND ALNS

Obj Gap Aver Best Time Aver Best Time

berlin52C-1-0-a 7542* 0.00 7542.0 7542* 7.9 7542.0 7542* 5.1
berlin52C-3-0-a 8144* 0.00 8144.0 8144* 7.6 8144.0 8144* 5.3
berlin52C-3-0-b 8016* 0.00 8016.0 8016* 6.0 8016.0 8016* 5.0
berlin52C-3-0-c 9085* 0.00 9091.4 9085* 6.8 9085.0 9085* 5.0
berlin52C-3-1-a 7952* 0.00 7952.0 7952* 8.6 7952.0 7952* 6.0
berlin52C-3-1-b 7596* 0.00 7596.0 7596* 7.2 7596.0 7596* 6.0
berlin52C-3-1-c 7984* 0.00 7984.0 7984* 8.2 7984.0 7984* 6.0
berlin52C-5-0-a 9430* 0.00 9430.0 9430* 5.9 9430.0 9430* 5.0
berlin52C-5-0-b 8669* 0.00 8669.0 8669* 5.1 8669.0 8669* 5.1
berlin52C-5-0-c 9651 5.97 9651.0 9651 5.7 9651.0 9651 5.1
berlin52C-5-1-a 8811* 0.00 8819.8 8811* 7.2 8811.0 8811* 6.0
berlin52C-5-1-b 7948* 0.00 7948.0 7948* 6.5 7948.0 7948* 6.0
berlin52C-5-1-c 8509* 0.00 8509.0 8509* 7.0 8583.0 8583 6.0
berlin52C-5-3-a 7907 1.08 7945.0 7907 8.8 7929.1 7907 6.9
berlin52C-5-3-b 7614* 0.00 7614.0 7614* 7.1 7614.0 7614* 6.4
berlin52C-5-3-c 7631* 0.00 7631.0 7631* 8.1 7631.0 7631* 7.0
kroA100-C-1-0 21282* 0.00 21338.6 21282* 84.9 21282.0 21282* 23.1
kroA100-C-3-0 24049 1.03 24049.0 24049 67.9 24049.0 24049 20.0
kroA100-C-3-1 23392 5.89 23416.7 23069 80.1 22845.0 22845 22.0
kroA100-C-5-0 24745 7.67 24745.0 24745 58.5 24745.0 24745 18.0
kroA100-C-5-1 22617 4.73 22591.8 22589 84.4 22589.0 22589 21.0
kroA100-C-5-3 21443 0.25 21443.0 21443 82.5 21443.0 21443 27.7
kroB100-C-1-0 22141 1.61 22235.0 22179 83.1 22141.5 22141 23.2
kroB100-C-3-0 24887* 0.00 24971.3 24887* 63.5 24887.0 24887* 20.0
kroB100-C-3-1 22141* 0.00 22155.1 22141* 77.2 22208.2 22141* 22.5
kroB100-C-5-0 24793* 0.00 24794.0 24794 57.9 24794.0 24794 20.3
kroB100-C-5-1 23159* 0.00 23173.1 23159* 73.4 23159.0 23159* 23.3
kroB100-C-5-3 22179 1.85 22180.0 22141 79.7 22141.0 22141 28.1
kroC100-C-1-0 20749 0.99 20786.9 20749 94.9 20749.0 20749 23.0
kroC100-C-3-0 21340* 0.00 21440.6 21340* 58.0 21340.0 21340* 20.0
kroC100-C-3-1 20910* 0.00 20910.0 20910* 92.5 20910.0 20910* 26.1
kroC100-C-5-0 24040* 0.00 24040.0 24040* 58.3 24040.0 24040* 20.6
kroC100-C-5-1 22827 1.52 22827.0 22827 71.8 22827.0 22827 22.0
kroC100-C-5-3 21931 5.53 21344.9 21278 91.3 21292.3 21278 27.5
kroD100-C-1-0 21309 2.54 21298.5 21294 93.4 21294.0 21294 22.8
kroD100-C-3-0 23809 3.16 23833.3 23809 65.3 23809.0 23809 19.0
kroD100-C-3-1 21944* 0.00 22268.9 21944* 87.5 21944.0 21944* 22.0
kroD100-C-5-0 28297 8.33 28234.9 28228 56.3 28228.0 28228 19.0
kroD100-C-5-1 25324 6.96 25250.8 25102 72.7 25131.3 25102 21.1
kroD100-C-5-3 21759 4.18 21747.0 21744 94.9 21746.5 21744 26.9
kroE100-C-1-0 22068* 0.00 22146.9 22068* 89.8 22068.0 22068* 23.0
kroE100-C-3-0 24383* 0.00 24405.4 24383* 66.5 24416.6 24383* 19.9
kroE100-C-3-1 22121* 0.00 22125.0 22121* 76.3 22122.0 22121* 23.0
kroE100-C-5-0 26440 0.98 26443.3 26440 57.5 26440.0 26440 20.0
kroE100-C-5-1 23611* 0.00 23658.1 23611* 62.9 23611.0 23611* 23.6
kroE100-C-5-3 22455 1.61 22560.6 22455 76.5 22504.2 22455 27.0
kroA200-C-1-0 30162 5.26 30042.8 29737 641.0 29368.0 29368 163.0
kroA200-C-3-0 30062 2.14 30090.0 29913 607.2 29929.4 29913 135.2
kroA200-C-3-1 29481 2.13 29862.4 29435 612.4 29372.4 29368 148.4
kroA200-C-5-0 32382 2.46 32273.3 32224 404.4 32226.4 32224 128.8
kroA200-C-5-1 32342 6.70 31221.3 31069 467.6 31060.9 31057 134.6
kroA200-C-5-3 30039 2.25 30964.0 30686 565.1 30258.6 30023 152.8
kroB200-C-1-0 29945 3.17 30064.7 29790 628.3 29442.7 29438 161.3
kroB200-C-3-0 31285 2.25 31276.1 30989 565.5 31023.4 30989 120.5
kroB200-C-3-1 30585 1.81 30830.7 30457 539.3 30554.8 30442 131.8
kroB200-C-5-0 41009 17.19 37973.2 37909 401.5 37910.9 37909 121.1
kroB200-C-5-1 33775 10.73 33438.3 33276 540.8 33568.7 33218 134.0
kroB200-C-5-3 30302 2.84 30492.0 30270 566.0 30175.8 30028 161.8
Average 20749.8 20673.5 153.7 20659.2 20639.6 42.4

T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
probability at the last iteration is:

P last ¼ e�
fðSlastnewÞ�fðSlastcurrentÞ

Tlast

From this equation, we first find the average difference θ between the
objective value of the new solution f ðSlastnewÞ and that of the current solution
f ðSlastcurrentÞ then we pre-set the average acceptance probability P last ¼
0:05. In SA, Tlast ¼ T0:cðw1 :w2�1Þ, so we can calculate c as follows:
10
c¼
�
� θ

� 1
w1 :w2�1

(28)

T0:ln0:05

To estimate θ, a preliminary experiment on all VRP-RPR instances is
conducted. We perform 5 ALNS runs on each instance to find the average
of f ðSlastnewÞ� f ðSlastcurrentÞ. This average value is collected on every instance
then θ is set to the average of all the values. It should be noted that the
preliminary experiment requires an initial value of c, we set c ¼ 0:99975
as in Ropke and Pisinger (2006).



Fig. 3. Speed comparison between ALNS and GILS-RVND for the CTSP-d.

T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
5.2.2. Other parameters
To tune parameters ðφ; ψ ; c1; c2; η; ρ; σ1; σ2; σ3Þ, we use the strategy

proposed in Ropke and Pisinger (2006) to find the most appropriate
values. Namely, we start from an acceptable vector found by an ad hoc
trial-and-error approach and improve it by allowing one parameter to
take several values while keeping the rest fixed. After a parameter is
tuned, we move on to the next parameter, using the values found so far
and the values from the initial tuning for the parameters that have not
been considered yet. This process continues until all parameters have
been tuned. The procedure is performed on 6 random VRP-RPR instances
(3 of type R and 3 of type C) with 100 nodes: kroA100-R-3-d,
kroC100-R-3-d, kroD100-R-3-d, kroB100-C-3-d, kroD100-C-3-d, and
kroE100-C-3-d (d ¼ 0;1; 2).

In Table 1, we present the parameter values used for the tuning
procedure. The italic values form the initial tuning parameter vector. The
final selected parameters are highlighted in bold ðφ;ψ ;c1;c2;η;ρ;σ1;σ2;σ3Þ
¼ ð2;1;∞;∞;0:1;0:75;12; 7; 4Þ.

5.3. Selecting ALNS components

We use the instances randomly selected in Subsection 5.2.2 to analyse
the impact of the ALNS components to select the appropriate operators
Table 6
Results of MILP and ALNS on the VRP-RPR instances.

Instance Fleet d ¼ 0

Gap(%) CPLEX
kroA21-R-3 1x1000x13000 0 546.30a

kroB21-R-3 2x400x10000 0 347.88a

kroC21-R-3 1x400x8000; 1x300x8000; 1x200x10000 0 261.36a

kroD21-R-3 3x300x8000; 1x200x10000 11.81 330.82
kroE21-R-3 1x300x8000; 2x200x7000; 2x100x6000 0 364.31a

kroA31-R-3 1x1500x16000 0 603.90a

kroB31-R-3 2x500x15000 0 560.41a

kroC31-R-3 1x500x10000; 1x400x8000; 1x300x6000 6.88 458.51
kroD31-R-3 2x500x10000; 2x400x12000 20.72 290.15
kroE31-R-3 3x500x10000; 1x400x12000; 1x300x8000 20.04 274.02

Average 5.95 403.77

kroA21-C-3 1x1000x13000 0 108.91a

kroB21-C-3 2x400x10000 0 319.35a

kroC21-C-3 1x400x8000; 1x300x8000; 1x200x10000 0 248.92a

kroD21-C-3 3x300x8000; 1x200x10000 28.92 327.01
kroE21-C-3 1x300x8000; 2x200x7000; 2x100x6000 0 352.18a

kroA31-C-3 1x1500x16000 0 154.52a

kroB31-C-3 2x500x15000 5.68 547.52
kroC31-C-3 1x500x10000; 1x400x8000; 1x300x6000 15.72 454.01
kroD31-C-3 2x500x10000; 2x400x12000 39.10 259.68
kroE31-C-3 3x500x10000; 1x400x12000; 1x300x8000 42.94 260.02

Average 13.24 303.21

a Optimal valueColumn “Fleet” presents the characteristics of the vehicle fleet, whic
capacity � maximum route length”.

11
for the experiments in next sections. The tested components include the
insertion operators, the removal operators, the acceleration procedures,
and the local search operators. In this experiment, we first allow to use all
the components of the algorithm, then turn off each component one by
one, while keeping the others to investigate its performance. Both
instance classes are selected for the experiment. The idea is to compute
the gap between the average result over 10 runs on each instance with a
reference value, which is the objective value of the best found solution
over 10 runs when all components are used. In Table 2, the first row
shows the average gaps when all components are in “On” state. Each row
from 2 to 13 shows the average gaps when the corresponding component
is “Off”. In the last row, we report the average gap in percentage of
running time when the acceleration procedures are deactivated. From
row 2 to row 14, a positive gap indicates that the performance of the
algorithm becomes worse if the corresponding component is off and vice
versa. In Table 2, the empty rows in column “CTSP-d” mean that the
corresponding components are not applicable. Components with a posi-
tive average gap in column “Avg” will be selected to be used in our
metaheuristic. In more details, on VRP-RPR instances, we decide to turn
off the related removal, cheapest insertion, and cheapest insertion with
noise, while on CTSP-d instances, only the worst removal is not used.

Results from Table 2 demonstrate the good performance of our
d ¼ 1 d ¼ 2

ALNS Gap(%) CPLEX ALNS Gap(%) CPLEX ALNS
546.30a 0 143.44a 143.44a 0 108.91a 108.91a

347.88a 0 323.20a 323.20a 0 322.16a 322.16a

261.36a 11.55 249.96 245.96 10.24 248.33 245.96
330.82 30.77 328.34 327.30 31.31 320.78 320.78
364.31a 0 362.64a 362.64a 10.02 362.64 362.64
603.90a 0 210.09a 210.09a 0 135.02a 135.02a

560.41a 8.89 546.00 543.78 7.99 544.82 544.82
451.31 11.91 432.82 431.30 11.91 431.30 431.30
285.99 48.59 268.49 254.88 57.65 296.00 254.38
272.98 58.80 336.97 252.46 51.91 273.92 242.60

402.53 17.05 320.20 309.51 18.10 304.39 296.86

108.91a 0 108.91a 108.91a 0 108.91a 108.91a

319.35a 12.82 316.62 315.20 11.81 315.86 315.20
248.92a 4.77 247.60 247.60 10.89 247.60 247.60
327.01 38.26 331.22 326.48 40.12 331.14 320.78
352.18a 3.63 352.18 352.18 3.81 352.18 352.18
154.52a 0 149.92a 151.12 0 135.02a 135.02a

547.52 7.91 541.55 538.76 8.02 539.33 538.76
439.46 15.10 444.48 438.87 16.83 456.73 438.87
256.99 51.67 276.63 256.52 52.45 269.84 254.38
246.50 49.73 259.47 242.22 51.48 265.29 242.22

300.14 18.39 302.86 297.79 19.54 302.19 295.39

h includes one or several types, and is showed in the form “number of vehicles �



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
problem-tailored components. The new removal operators (Group
removal and Joint Segment removal) work well on both problems. In
particular, among removal operators, the group removal is the best
operator on the VRP-RPR instances while the joint segment removal is
the best when being used to solve the CTSP-d instances. The local search
operators considerably improve the solution quality, especially when the
value of d is large. This is because when the problems are more relaxed,
the VIRs are wider and it is easier for local searches to find better solu-
tions. Finally, the acceleration procedures are clearly efficient, reducing
up to nearly 50% of computational time on average.

5.4. Results and discussion
In this section, we report the obtained results of the ALNS with the

parameter setting and the corresponding set of components selected in
Subsection 5.3 on both classes of instances: CTSP-d and VRP-RPR. On
each instance, the algorithm is run 10 times. Then, the objective value of
the best solution and the average objective value on the 10 solutions are
recorded.

5.4.1. Tests on the CTSP-d instances
We now investigate the performance of our metaheuristic by

comparing it with the MILP model and the GILS-RVND algorithm re-
ported by H�a et al. (2020) on the existing CTP-d instances. It is worth
mentioning that GILS-RVND is run on a core TM i7-6700 3.40 GHz CPU,
which is 83.2% faster than our CPU presented in Subsection 5.1 (the
benchmark is referenced from http://www.cpuboss.com). Because the
conversion of running times depends on multiple factors and is not easy
to estimate exactly, we decide to present raw running times of both al-
gorithms. For each instance, ALNS is run 10 times and three comparison
criteria (objective value of the best solution, average objective value of
10 solutions found in 10 runs, and average running times in 10 runs) are
recorded for the comparison. A brief comparison between ALNS and
GILS-RVND over 116 test cases is reported in Table 3 while the detailed
results for three approaches are shown in Tables 4 and 5.

In Table 3, the results are represented in the form x= y where x is the
number of instances on which ALNS finds better solutions, y is the
number of instances on which GILS-RVND is better, and z is the number
of instances where both algorithms find equal solutions. The last column
is the summation of the previous two columns. The obtained results show
that on both instance types, ALNS clearly outperforms GILS-RVND on all
comparison criteria. It is more stable and finds more better solutions in
less running time. More remarkably, the ALNS finds 23 new best known
solutions in overall.

In the following Tables 4 and 5, for the MILP model, we show the
objective values of the solutions found (column “Sol”) and gaps in per-
centage (column “Gap”) returned by CPLEX. Because the running times
of the MILP model are not reported for medium and large instances in H�a
et al. (2020), we do not show CPLEX running times in the tables. In
column “Sol”, the optimal solutions are marked with “*“, and
out-of-memory cases are marked with “-“. For GILS-RVND and ALNS, we
report the average objective value of solutions (columns “Aver”), the
objective value of the best solutions (columns “Best”), and the average
running time (in seconds) over 10 runs (columns “Time”). We also
highlight in bold the new best known solutions found by ALNS, and show
the averaged results in the bottom row of each table to facilitate the
comparison. As can be seen from the result tables, the ALNS can reach
35/37 the optimal solutions provided by the MILP model. For open in-
stances, its best solutions are worse than MILP formulation on only two
instances and better on 69 instances. Between ALNS and GILS-RVND, the
ALNS can provide higher quality solutions in terms of both best and
average costs. Especially, ALNS shows its advantage over GILS-RVND on
the large instances of both types since it improves the best known solu-
tions for 20 out of 24 instances with 200 nodes in much less running
times. This demonstrates the ability of the ALNS algorithm to solve
practical-size problems.

Fig. 3 compares more precisely the speed of the two metaheuristics.
12
Letters R or C at the end of algorithm name indicate the instance type on
which the algorithms are performed. Although ALNS operates on the
slower CPU, it is still faster than GILS-RVND, especially on the large in-
stances with 200 nodes.

We also investigate the impact of d on the speed of both algorithms
and see that the average running times increase when the value of d in-
creases. In ALNS, the main reason is that relaxing d leads to the increase
of local search activities. For example, on the instances with 5 priority
groups, compared to d ¼ 0, the average number of 2-Opt moves increases
by about 20.2% when d ¼ 1 and 50.3% when d ¼ 3. The instance type
also has influence on the behavior of the ALNS. We observe that ALNS
can find 25 optimal solutions on type C while on type R, it reaches
optimality only on 18 cases. Moreover, on average, the gap between the
average cost and the best cost of type R is also higher than that of type C.
These results are consistent with the claim of H�a et al. (2020) that type C
tends to be easier to solve than type R.

5.4.2. Tests on the VRP-RPR instances
In this experiment, we aim to test the performance of the MILP

formulation and the ALNS on the VRP-RPR instances. Because the MILP
formulation with CPLEX cannot handle medium and large instances, we
create small-size instances by extracting the 20 and 30 first nodes from
each CTSP-d instance with 100 nodes and 3 priority groups.

In Table 6, we present results for the small instances with different
fleet settings and values of d. The results obtained by CPLEX after the
time limit of 3600 s, the best solutions of ALNS found after 10 runs, and
CPLEX gaps are reported in columns “CPLEX”, “ALNS”, and “Gap(%)”,
respectively for each value of d. α ¼ 0:99 is set for all instances. Because
the speed of ALNS on all instances is quite fast (never exceeding 10 s), we
do not report its running time. The experiment shows that with different
constraints and rules imposed on vehicles, even on small-size instances,
the VRP-RPR is still very hard to solve with CPLEX. Only 22 optimal
values over 60 test cases are found, mostly on the instances with small
fleet sizes and d ¼ 0.

For the CTSP-d, the instances of type R are more difficult to solve to
optimality than those of type C (see H�a et al. (2020)). However, the
behavior is not the same for the VRP-RPR. CPLEX can solve 13 VRP-RPR
instances of type R to optimality, while only 9 VRP-RPR instances of type
C are successfully solved. The gaps returned by CPLEX on instances of
type R are often better than those on type C. We guess additional con-
straints of VRP-RPR are the source of this behavior. Another observation
is that the larger the values of fleet size and d, the more difficult the
VRP-RPR instances. CPLEX gaps tend to be higher as the fleet size or
d increases.

The results from Table 6 clearly show the performance of our ALNS. It
provides solutions at least as good as those of CPLEX on all instances,
except one (instance KroA31-C-3-1) in a much shorter running time.
Moreover, it finds 27 better solutions (numbers highlighted in bold).

Because CPLEX cannot efficiently handle the large instances in an
acceptable running time, we only provide results of the ALNS as reference
for future studies in Tables A1 and A2 of the Appendix. The results show
that on average, the total demand satisfied in the best solutions of type-C
instances is about 1:01% higher than that in the best solutions of type-R
instances while the total cost is about 2:41% lower. This phenomenon is
predictable because in the instances of type C, the distances between two
customers of the same group are closer, possibly leading to shorter routes
which could be easier to satisfy the maximum route length constraints.
Another observation is that, when the value of d increases, the constraints
are more relaxed, and therefore we have more chance to satisfy the de-
mand (see Columns “AvgDm” or “BSolDm”). Our algorithm can solve the
large instances with up to 200 customers in acceptable running time,
never bypassing 2 minutes except kroA200-R-1-0. On the tested in-
stances, the running time averaged on all instances of type R is about
8:9% higher than that of type C. The clustered instances tend to be easier
to solve for the ALNS algorithm. And finally, the results show that in
several cases, not all vehicles are mobilized. Undispatched vehicles are in

http://www.cpuboss.com


T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
the type with smallest capacity because using large-capacity vehicles is in
general cheaper in terms of transportation cost. This is an advantage of
our model when it allows flexible dispatch.

6. Conclusion

In this article, we study the VRP-RPR with applications in situations
where the trade-off between the demand urgency and the operational
cost must be taken into account. We propose a MILP model with
improved constraints that allows heterogeneous fleet and flexible
dispatch. Our model is general and can easily be transformed into other
important VRP variants such as TOP, VRPP, VRPPFCC, and CPTP, etc. We
also develop a metaheuristic based on the ALNS principle with problem-
tailored components: removal operators, local search, and acceleration
procedures. To further reduce the running time of the algorithm, we
13
design repair and local search operators such that verifying the satis-
faction of insertion operations w. r.t the rules (the ODF and the d-relaxed
priority) is done in O ð1Þ. We investigate the performance of our ALNS
algorithm on existing CTSP-d instances and the obtained results show
that ALNS outperforms the GILS-RVND algorithm in the literature in
terms of both criteria: running time and solution quality. For the VRP-
RPR, ALNS can provide better solutions than the MILP-based exact
method on the instances that CPLEX could not solve to optimaliy while
the running time is more reasonable. In addition, the results of ALNS on
large instances are also provided as reference for next metaheuristics.
Future research directions include improving the exact method by adding
efficient valid inequalities in a branch-and-cut framework to solve larger
instances. Developing efficient solution approaches for the problem with
“global timing” rule is also an interesting topic to follow.
APPENDIX

Tables A1 and A2 present results of ALNS on the VRP-RPR instances. The algorithm is run 10 times on each instance. In the tables, column “α” shows
value of α in objective function; column “Fi” (i ¼ 1;2;3) shows the number of vehicles of type i used in the best solution over the total number of vehicles
available in the instance; columns “AvgDm” and “AvgCost” show the average demand and the average transportation cost over 10 runs; columns
“BSolDm” and “BSolCost” report the total demand and the transportation cost of the best solution, respectively. Finally, column “Cust/Total” shows the
total number of customers served in the best solution over the total number of customers in the instance; and column “Running time (s)” shows the
average running times over 10 runs in seconds.
Table A1

Results of ALNS on the large VRP-RPR instances of type R

Instance α F1 F2 F3 AvgDm AvgCost BSolDm BSolCost Cust/Total Running time (s)
kroA100-R-1-0
 0.99
 5/5
 4/4
 7/7
 5,038.0
 65,665.4
 5,038
 63,972
 99/99
 15.9

kroB100-R-1-0
 0.99
 5/5
 4/4
 4/4
 4,274.5
 74,114.3
 4,283
 74,676
 98/99
 15.3

kroC100-R-1-0
 0.99
 6/6
 5/5
 4/4
 5,280.8
 68,802.9
 5,286
 68,513
 94/99
 17.0

kroD100-R-1-0
 0.99
 3/3
 2/2
 8/8
 3,684.4
 62,002.8
 3,691
 62,712
 76/99
 21.4

kroE100-R-1-0
 0.99
 3/3
 6/6
 6/6
 4,159.0
 86,344.0
 4,159
 86,231
 93/99
 23.1

kroA100-R-3-0
 0.99
 5/5
 3/3
 4/4
 4,154.4
 58,956.7
 4,174
 59,059
 87/99
 12.5

kroA100-R-3-1
 0.99
 5/5
 3/3
 4/4
 4,177.9
 54,098.0
 4,188
 55,294
 86/99
 13.5

kroA100-R-3-2
 0.99
 5/5
 3/3
 4/4
 4,177.1
 53,236.0
 4,190
 53,153
 85/99
 12.7

kroB100-R-3-0
 0.99
 4/4
 4/4
 5/5
 3,783.1
 74,492.8
 3,792
 74,011
 91/99
 13.0

kroB100-R-3-1
 0.99
 4/4
 4/4
 5/5
 4,020.4
 74,159.4
 4,048
 75,273
 93/99
 13.3

kroB100-R-3-2
 0.99
 4/4
 4/4
 5/5
 4,154.1
 74,325.8
 4,180
 75,026
 96/99
 12.6

kroC100-R-3-0
 0.99
 6/6
 5/5
 5/5
 5,348.6
 80,398.5
 5,379
 82,062
 98/99
 16.6

kroC100-R-3-1
 0.99
 6/6
 5/5
 5/5
 5,412.0
 74,692.6
 5,412
 73,404
 99/99
 13.9

kroC100-R-3-2
 0.99
 6/6
 5/5
 5/5
 5,412.0
 73,174.6
 5,412
 71,328
 99/99
 12.6

kroD100-R-3-0
 0.99
 4/4
 5/5
 6/6
 4,581.2
 81,020.6
 4,623
 82,610
 90/99
 15.7

kroD100-R-3-1
 0.99
 4/4
 5/5
 6/6
 4,669.1
 79,513.0
 4,686
 81,764
 93/99
 15.2

kroD100-R-3-2
 0.99
 4/4
 5/5
 6/6
 4,675.7
 77,415.0
 4,686
 79,120
 92/99
 13.9

kroE100-R-3-0
 0.99
 2/2
 1/1
 3/3
 1,401.0
 35,926.0
 1,401
 35,926
 32/99
 8.5

kroE100-R-3-1
 0.99
 2/2
 1/1
 3/3
 1,401.0
 35,926.0
 1,401
 35,926
 32/99
 8.8

kroE100-R-3-2
 0.99
 2/2
 1/1
 3/3
 1,401.0
 35,926.0
 1,401
 35,926
 32/99
 9.5

kroA100-R-5-0
 0.999
 5/5
 8/8
 4/6
 5,038.0
 74,278.1
 5,038
 71,687
 99/99
 23.6

kroA100-R-5-1
 0.999
 5/5
 8/8
 3/6
 5,038.0
 68,661.7
 5,038
 67,773
 99/99
 24.8

kroA100-R-5-2
 0.999
 5/5
 8/8
 2/6
 5,038.0
 65,331.6
 5,038
 64,027
 99/99
 25.3

kroA100-R-5-3
 0.999
 5/5
 8/8
 2/6
 5,038.0
 63,521.9
 5,038
 62,672
 99/99
 23.0

kroA100-R-5-4
 0.999
 5/5
 8/8
 2/6
 5,038.0
 62,825.6
 5,038
 62,084
 99/99
 21.6

kroB100-R-5-0
 0.99
 4/4
 4/4
 5/5
 3,447.2
 71,832.1
 3,577
 71,455
 89/99
 11.6

kroB100-R-5-1
 0.99
 4/4
 4/4
 5/5
 3,847.8
 70,996.1
 3,920
 72,518
 94/99
 14.6

kroB100-R-5-2
 0.99
 4/4
 4/4
 5/5
 3,916.7
 70,398.8
 4,005
 70,575
 95/99
 14.9

kroB100-R-5-3
 0.99
 4/4
 4/4
 5/5
 4,057.0
 72,005.4
 4,133
 73,949
 96/99
 18.2

kroB100-R-5-4
 0.99
 4/4
 4/4
 5/5
 4,078.7
 71,880.1
 4,140
 74,485
 96/99
 14.4

kroC100-R-5-0
 0.999
 7/7
 4/4
 7/7
 5,412.0
 86,435.5
 5,412
 84,182
 99/99
 16.8

kroC100-R-5-1
 0.999
 7/7
 4/4
 5/7
 5,412.0
 76,577.3
 5,412
 74,768
 99/99
 21.1

kroC100-R-5-2
 0.999
 7/7
 4/4
 5/7
 5,412.0
 72,648.6
 5,412
 71,473
 99/99
 22.6

kroC100-R-5-3
 0.999
 7/7
 4/4
 4/7
 5,412.0
 71,705.1
 5,412
 70,954
 99/99
 22.9

kroC100-R-5-4
 0.999
 7/7
 4/4
 5/7
 5,412.0
 70,739.5
 5,412
 70,038
 99/99
 23.0

kroD100-R-5-0
 0.99
 5/5
 5/5
 6/6
 4,728.0
 89,174.2
 4,825
 90,017
 94/99
 15.0

kroD100-R-5-1
 0.99
 5/5
 5/5
 6/6
 4,990.5
 86,071.2
 5,081
 86,229
 97/99
 14.8

kroD100-R-5-2
 0.99
 5/5
 5/5
 6/6
 5,038.9
 86,060.6
 5,132
 84,731
 99/99
 13.6

kroD100-R-5-3
 0.99
 5/5
 5/5
 6/6
 5,088.7
 84,361.3
 5,132
 82,268
 99/99
 13.0

kroD100-R-5-4
 0.99
 5/5
 5/5
 6/6
 5,122.8
 84,060.1
 5,132
 82,979
 99/99
 13.0

kroE100-R-5-0
 0.99
 3/3
 1/1
 5/5
 2,050.8
 54,443.8
 2,124
 55,014
 49/99
 11.9

kroE100-R-5-1
 0.99
 3/3
 1/1
 5/5
 2,170.3
 53,989.5
 2,231
 53,191
 51/99
 9.9
(continued on next column)



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
Table A1 (continued )
Instance
 α
 F1
 F2
 F3
 AvgDm
14
AvgCost
 BSolDm
 BSolCost
 Cust/Total
 Running time (s)
kroE100-R-5-2
 0.99
 3/3
 1/1
 5/5
 2,268.3
 53,561.1
 2,296
 54,165
 53/99
 10.8

kroE100-R-5-3
 0.99
 3/3
 1/1
 5/5
 2,269.3
 53,576.3
 2,310
 55,144
 53/99
 13.5

kroE100-R-5-4
 0.99
 3/3
 1/1
 5/5
 2,273.8
 53,930.5
 2,302
 54,851
 53/99
 9.8

kroA200-R-1-0
 0.999
 7/7
 10/10
 8/8
 8,096.9
 128,898.2
 8,100
 130,960
 149/199
 122.7

kroB200-R-1-0
 0.999
 8/8
 12/12
 9/9
 9,268.0
 153,330.0
 9,268
 152,500
 199/199
 66.8

kroA200-R-3-0
 0.999
 9/9
 10/10
 13/13
 10,041.0
 160,529.6
 10,041
 157,776
 199/199
 56.0

kroA200-R-3-1
 0.999
 9/9
 10/10
 13/13
 10,041.0
 143,058.5
 10,041
 141,291
 199/199
 63.8

kroA200-R-3-2
 0.999
 9/9
 10/10
 13/13
 10,041.0
 141,092.2
 10,041
 139,421
 199/199
 53.6

kroB200-R-3-0
 0.999
 8/8
 10/10
 11/11
 8,960.9
 165,981.5
 9,045
 166,494
 194/199
 64.3

kroB200-R-3-1
 0.999
 8/8
 10/10
 11/11
 9,172.4
 164,537.8
 9,177
 164,722
 194/199
 70.0

kroB200-R-3-2
 0.999
 8/8
 10/10
 11/11
 9,176.5
 160,227.7
 9,183
 161,647
 195/199
 63.3

kroA200-R-5-0
 0.999
 10/10
 10/10
 10/10
 9,849.4
 155,444.8
 9,887
 155,737
 196/199
 62.2

kroA200-R-5-1
 0.999
 10/10
 10/10
 10/10
 9,959.0
 150,345.2
 9,980
 151,164
 197/199
 63.9

kroA200-R-5-2
 0.999
 10/10
 10/10
 10/10
 9,970.8
 144,527.8
 9,980
 144,414
 197/199
 54.9

kroA200-R-5-3
 0.999
 10/10
 10/10
 10/10
 9,975.8
 140,581.3
 9,980
 137,922
 197/199
 60.1

kroA200-R-5-4
 0.999
 10/10
 10/10
 10/10
 9,977.0
 137,614.8
 9,982
 140,878
 197/199
 45.5

kroB200-R-5-0
 0.999
 5/5
 12/12
 12/12
 8,330.4
 167,070.1
 8,422
 166,616
 183/199
 45.8

kroB200-R-5-1
 0.999
 5/5
 12/12
 12/12
 8,463.6
 165,332.1
 8,473
 164,583
 185/199
 54.0

kroB200-R-5-2
 0.999
 5/5
 12/12
 12/12
 8,470.5
 162,877.6
 8,483
 163,595
 180/199
 53.7

kroB200-R-5-3
 0.999
 5/5
 12/12
 12/12
 8,476.3
 160,642.4
 8,484
 161,487
 180/199
 52.5

kroB200-R-5-4
 0.999
 5/5
 12/12
 12/12
 8,471.8
 157,909.1
 8,481
 156,510
 179/199
 40.9
Table A2
Results of ALNS on the large VRP-RPR instances of type C

Instance α F1 F2 F3 AvgDm AvgCost BSolDm BSolCost Cust/Total Running time (s)
kroA100-C-1-0
 0.99
 5/5
 4/4
 7/7
 5,038.0
 65,475.9
 5,038
 64,049
 99/99
 16.0

kroB100-C-1-0
 0.99
 5/5
 4/4
 4/4
 4,272.8
 74,058.2
 4,283
 74,660
 98/99
 14.7

kroC100-C-1-0
 0.99
 6/6
 5/5
 4/4
 5,283.6
 68,969.1
 5,291
 69,685
 94/99
 16.3

kroD100-C-1-0
 0.99
 3/3
 2/2
 8/8
 3,685.2
 61,723.5
 3,689
 60,932
 77/99
 21.9

kroE100-C-1-0
 0.99
 3/3
 6/6
 6/6
 4,158.9
 86,416.3
 4,159
 86,231
 93/99
 22.9

kroA100-C-3-0
 0.99
 5/5
 3/3
 4/4
 4,173.1
 54,843.2
 4,184
 55,649
 80/99
 14.0

kroA100-C-3-1
 0.99
 5/5
 3/3
 4/4
 4,170.6
 54,236.2
 4,186
 55,716
 81/99
 13.0

kroA100-C-3-2
 0.99
 5/5
 3/3
 4/4
 4,172.9
 54,320.9
 4,185
 56,074
 81/99
 12.3

kroB100-C-3-0
 0.99
 4/4
 4/4
 5/5
 4,035.0
 72,607.0
 4,099
 74,541
 95/99
 14.2

kroB100-C-3-1
 0.99
 4/4
 4/4
 5/5
 4,106.7
 73,975.3
 4,157
 74,747
 96/99
 14.1

kroB100-C-3-2
 0.99
 4/4
 4/4
 5/5
 4,128.4
 74,081.6
 4,158
 74,895
 96/99
 13.1

kroC100-C-3-0
 0.99
 6/6
 5/5
 5/5
 5,412.0
 73,892.4
 5,412
 73,415
 99/99
 15.0

kroC100-C-3-1
 0.99
 6/6
 5/5
 5/5
 5,412.0
 73,316.9
 5,412
 72,812
 99/99
 14.7

kroC100-C-3-2
 0.99
 6/6
 5/5
 5/5
 5,412.0
 73,677.5
 5,412
 73,525
 99/99
 14.2

kroD100-C-3-0
 0.99
 4/4
 5/5
 6/6
 4,651.4
 78,299.3
 4,677
 78,992
 91/99
 16.3

kroD100-C-3-1
 0.99
 4/4
 5/5
 6/6
 4,603.3
 79,299.1
 4,629
 81,478
 91/99
 16.0

kroD100-C-3-2
 0.99
 4/4
 5/5
 6/6
 4,666.3
 80,054.2
 4,684
 78,490
 91/99
 14.1

kroE100-C-3-0
 0.99
 2/2
 1/1
 3/3
 1,834.2
 33,368.0
 1,842
 32,026
 61/99
 12.5

kroE100-C-3-1
 0.99
 2/2
 1/1
 3/3
 1,887.6
 27,946.1
 1,896
 27,410
 64/99
 12.9

kroE100-C-3-2
 0.99
 2/2
 1/1
 3/3
 1,886.2
 26,561.5
 1,898
 26,817
 65/99
 13.5

kroA100-C-5-0
 0.999
 5/5
 8/8
 2/6
 5,038.0
 64,626.5
 5,038
 63,870
 99/99
 23.3

kroA100-C-5-1
 0.999
 5/5
 8/8
 2/6
 5,038.0
 63,458.2
 5,038
 62,657
 99/99
 22.6

kroA100-C-5-2
 0.999
 5/5
 8/8
 2/6
 5,038.0
 63,656.8
 5,038
 62,557
 99/99
 20.2

kroA100-C-5-3
 0.999
 5/5
 8/8
 2/6
 5,038.0
 63,371.9
 5,038
 62,666
 99/99
 18.4

kroA100-C-5-4
 0.999
 5/5
 8/8
 2/6
 5,038.0
 63,386.2
 5,038
 62,882
 99/99
 18.0

kroB100-C-5-0
 0.99
 4/4
 4/4
 5/5
 3,843.0
 75,177.6
 3,912
 74,578
 84/99
 12.0

kroB100-C-5-1
 0.99
 4/4
 4/4
 5/5
 3,960.8
 74,739.7
 3,991
 75,602
 86/99
 11.5

kroB100-C-5-2
 0.99
 4/4
 4/4
 5/5
 4,038.7
 75,241.2
 4,055
 74,959
 88/99
 11.3

kroB100-C-5-3
 0.99
 4/4
 4/4
 5/5
 4,045.5
 75,443.8
 4,067
 75,675
 88/99
 10.8

kroB100-C-5-4
 0.99
 4/4
 4/4
 5/5
 4,050.0
 75,333.3
 4,067
 75,293
 88/99
 10.3

kroC100-C-5-0
 0.999
 7/7
 4/4
 5/7
 5,412.0
 71,820.1
 5,412
 70,264
 99/99
 18.5

kroC100-C-5-1
 0.999
 7/7
 4/4
 5/7
 5,412.0
 70,741.4
 5,412
 69,763
 99/99
 18.0

kroC100-C-5-2
 0.999
 7/7
 4/4
 4/7
 5,412.0
 70,329.5
 5,412
 69,749
 99/99
 18.0

kroC100-C-5-3
 0.999
 7/7
 4/4
 5/7
 5,412.0
 70,196.3
 5,412
 69,606
 99/99
 17.4

kroC100-C-5-4
 0.999
 7/7
 4/4
 4/7
 5,412.0
 70,093.4
 5,412
 69,388
 99/99
 17.4

kroD100-C-5-0
 0.99
 5/5
 5/5
 6/6
 5,128.7
 86,195.2
 5,132
 83,268
 99/99
 14.1

kroD100-C-5-1
 0.99
 5/5
 5/5
 6/6
 5,105.5
 86,553.0
 5,132
 85,486
 99/99
 14.1

kroD100-C-5-2
 0.99
 5/5
 5/5
 6/6
 5,116.7
 85,684.6
 5,132
 83,695
 99/99
 13.5

kroD100-C-5-3
 0.99
 5/5
 5/5
 6/6
 5,132.0
 86,261.9
 5,132
 83,071
 99/99
 12.7

kroD100-C-5-4
 0.99
 5/5
 5/5
 6/6
 5,113.9
 84,858.9
 5,132
 82,823
 99/99
 11.7

kroE100-C-5-0
 0.99
 3/3
 1/1
 5/5
 2,363.6
 51,872.2
 2,426
 53,422
 68/99
 10.4

kroE100-C-5-1
 0.99
 3/3
 1/1
 5/5
 2,399.6
 51,954.8
 2,426
 52,763
 68/99
 9.8

kroE100-C-5-2
 0.99
 3/3
 1/1
 5/5
 2,400.5
 52,039.4
 2,426
 52,622
 68/99
 10.8

kroE100-C-5-3
 0.99
 3/3
 1/1
 5/5
 2,408.4
 52,126.6
 2,426
 52,622
 68/99
 12.3

kroE100-C-5-4
 0.99
 3/3
 1/1
 5/5
 2,408.4
 51,938.8
 2,426
 52,622
 68/99
 12.1

kroA200-C-1-0
 0.999
 7/7
 10/10
 8/8
 8,096.3
 128,878.9
 8,100
 134,094
 153/199
 104.6

kroB200-C-1-0
 0.999
 8/8
 12/12
 9/9
 9,268.0
 153,006.0
 9,268
 152,165
 199/199
 56.2

kroA200-C-3-0
 0.999
 9/9
 10/10
 13/13
 10,041.0
 141,959.9
 10,041
 140,937
 199/199
 53.1
(continued on next column)



T.T. Doan et al. EURO Journal on Transportation and Logistics 10 (2021) 100039
Table A2 (continued )
Instance
 α
 F1
 F2
 F3
 AvgDm
15
AvgCost
 BSolDm
 BSolCost
 Cust/Total
 Running time (s)
kroA200-C-3-1
 0.999
 9/9
 10/10
 13/13
 10,041.0
 139,657.7
 10,041
 138,585
 199/199
 51.2

kroA200-C-3-2
 0.999
 9/9
 10/10
 13/13
 10,041.0
 139,537.8
 10,041
 138,517
 199/199
 40.0

kroB200-C-3-0
 0.999
 8/8
 10/10
 11/11
 9,187.9
 165,596.7
 9,194
 166,386
 194/199
 68.7

kroB200-C-3-1
 0.999
 8/8
 10/10
 11/11
 9,191.4
 165,361.1
 9,195
 166,418
 194/199
 56.5

kroB200-C-3-2
 0.999
 8/8
 10/10
 11/11
 9,190.1
 164,241.7
 9,192
 164,054
 194/199
 54.9

kroA200-C-5-0
 0.999
 10/10
 10/10
 10/10
 9,945.9
 144,805.4
 9,947
 144,812
 198/199
 50.4

kroA200-C-5-1
 0.999
 10/10
 10/10
 10/10
 9,945.9
 139,810.0
 9,946
 136,513
 197/199
 45.1

kroA200-C-5-2
 0.999
 10/10
 10/10
 10/10
 9,945.0
 138,802.3
 9,946
 136,481
 197/199
 47.0

kroA200-C-5-3
 0.999
 10/10
 10/10
 10/10
 9,943.0
 137,396.9
 9,946
 132,870
 197/199
 38.9

kroA200-C-5-4
 0.999
 10/10
 10/10
 10/10
 9,943.9
 135,448.1
 9,946
 133,141
 197/199
 40.6

kroB200-C-5-0
 0.999
 5/5
 12/12
 12/12
 8,475.1
 161,371.4
 8,484
 161,070
 185/199
 62.2

kroB200-C-5-1
 0.999
 5/5
 12/12
 12/12
 8,481.4
 160,859.6
 8,489
 163,341
 184/199
 60.3

kroB200-C-5-2
 0.999
 5/5
 12/12
 12/12
 8,484.2
 161,218.4
 8,491
 159,499
 184/199
 55.8

kroB200-C-5-3
 0.999
 5/5
 12/12
 12/12
 8,482.8
 160,016.5
 8,492
 161,139
 185/199
 54.9

kroB200-C-5-4
 0.999
 5/5
 12/12
 12/12
 8,481.9
 158,165.2
 8,490
 160,010
 185/199
 43.9
References

Ahmed, Z.H., 2014. The ordered clustered travelling salesman problem: a hybrid genetic
algorithm. Sci. World J. 2014.

Archetti, C., Speranza, M., Vigo, D., 2014. Vehicle routing problems with profits. In:
Toth, P., Vigo, D. (Eds.), Vehicle Routing: Problems, Methods, and Applications.
SIAM, Philadelphia, PA.

Battarra, M., Erdogan, G., Vigo, D., 2014. Exact algorithms for the clustered vehicle
routing problem. Oper. Res. 62 (1), 58–71, 1.

Bulh~oes, T., H�a, M.H., Martinelli, R., Vidal, T., 2018. The vehicle routing problem with
service level constraints. Eur. J. Oper. Res. 265 (2), 544–558, 2.

Dantzig, G.B., Ramser, J.H., 1959. The truck dispatching problem. Manag. Sci. 6 (1),
80–91.

Demir, E., Bektaş, T., Laporte, G., 12, 2012. An adaptive large neighborhood search
heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223 (2), 346–359, 2.

Fischetti, M., Gonzalez, J.J.S., Toth, P., 1998. Solving the orienteering problem through
branch-and-cut. Inf. J. Comput. 10 (2), 121–260.

François, V., Arda, Y., Crama, Y., Laporte, G., 2016. Large neighborhood search for multi-
trip vehicle routing. Eur. J. Oper. Res. 255 (2), 422–441, 2.

Ghiani, G., Improta, G., 2000. An efficient transformation of the generalized vehicle
routing problem. Eur. J. Oper. Res. 122 (1), 11–17.

Goeke, D., Gschwind, T., Schneider, M., 2018. Upper and lower bounds for the vehicle-
routing problem with private fleet and common carrier. Discrete Appl. Math. 264,
43–61.

H�a, M.H., Bostel, N., Langevin, A., Rousseau, L.M., 2014. An exact algorithm and a
metaheuristic for the generalized vehicle routing problem with flexible fleet size.
Comput. Oper. Res. 43, 9–19.

H�a, M.H., Nguyen Phuong, H., Tran Ngoc Nhat, H., Langevin, A., Tr�epanier, M., 2020.
Solving the clustered traveling salesman problem with -relaxed priority rule. Int.
Trans. Oper. Res. (in press).

Gralla, E., Goentzel, J., 2018. Humanitarian transportation planning: evaluation of
practice-based heuristics and recommendations for improvement. Eur. J. Oper. Res.
269 (2), 436–450, 2.

Hemmelmayr, V.C., Cordeau, J.-F., Crainic, T.G., 2012. An adaptive large neighborhood
search heuristic for two-echelon vehicle routing problems arising in city logistics.
Comput. Oper. Res. 39 (12), 3215–3228.

Kuang, E., 2012. A 2-Opt-Based Heuristic for the Hierarchical Traveling Salesman
Problem. Undergraduate thesis, University of Maryland.

Mancini, S., 2016. A real-life multi depot multi period vehicle routing problem with a
heterogeneous fleet: formulation and adaptive large neighborhood search based
matheuristic. Transport. Res. C Emerg. Technol. 70, 100–112.

Oran, A., Tan, K.C., Ooi, B.H., Sim, M., Jaillet, P., 2012. Location and routing models for
emergency response plans with priorities. In: Aschenbruck, N., Martini, P., Meier, M.,
T€olle, J. (Eds.), Future Security. Future Security 2012. Communications in Computer
and Information Science, vol. 318. Springer, Berlin, Heidelberg, pp. 129–140.
Panchamgam, K.V., 2011. Essays in Retail Operations and Humanitarian Logistics. Ph.D.
thesis. Robert H.Smith School of Business, University of Maryland, College Park, Md.

Panchamgam, K.V., Xiong, Y., Golden, B., Dussault, B., Wasil, E., 2013. The hierarchical
traveling salesman problem. Optimization Letters 7 (7), 1517–1524, 7.

Pop, P.C., Fuksz, L., Marc, A.H., Sabo, C., 2018. A novel two-level optimization approach
for clustered vehicle routing problem. Comput. Ind. Eng. 115, 304–318.

Potvin, J.-Y., Guertin, F., 1998. A genetic algorithm for the clustered traveling salesman
problem with a prespecified order on the clusters. In: Woodruff, D.L. (Ed.), Advances
in Computational and Stochastic Optimization, Logic Programming, and Heuristic
Search. Kluwer Academic Publishers, Norwell, MA, USA, pp. 287–299.

Potvin, J.-Y., Rousseau, J.-M., 1993. A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. Eur. J. Oper. Res. 66 (3),
331–440.

Reinelt, G., 1991. TSPLIB—a traveling salesman problem library. ORSA J. Comput.
Rodrigue, J., Comtois, C., Slack, B., 2013. The Geography of Transport Systems. Taylor &

Francis.
Ropke, S., Pisinger, D., 11, 2006. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transport. Sci. 40 (4), 455–472, 4.
Sabo, C., Pop, P.C., Horvat-Marc, A., 2020. On the selective vehicle routing problem.

Mathematics 8 (5).
Shaw, P., 1998. Using constraint programming and local search methods to solve vehicle

routing problems. In: Principles and Practice of Constraint Programming — CP 1998.
Lecture Notes in Computer Science, vol. 1520, pp. 417–431.

Shetty, V.K., Sudit, M., Nagi, R., 6, 2008. Priority-based assignment and routing of a fleet
of unmanned combat aerial vehicles. Comput. Oper. Res. 35 (6), 1813–1828, 6.

Sheu, J.-B., 2007. An emergency logistics distribution approach for quick response to
urgent relief demand in disasters. Transport. Res. E Logist. Transport. Rev. 43 (6),
687–709, 6.

Silva, M.M., Subramanian, A., Vidal, T., Ochi, L.S., 2012. A simple and effective
metaheuristic for the minimum latency problem. Eur. J. Oper. Res. 221 (3), 513–520.

Song, B.D., Ko, Y.D., 2016. A vehicle routing problem of both refrigerated- and general-
type vehicles for perishable food products delivery. J. Food Eng. 169, 61–71.

Tillman, F.A., Cain, T.M., 1972. An upperbound algorithm for the single and multiple
terminal delivery problem. Manag. Sci. 18 (11), 664–682, 11.

Toth, P., Vigo, D., 2014. Vehicle Routing: Problems, Methods and Applications, 2nd
Edition. Series in Optimization. SIAM, Philadelphia, PA.

Vansteenwegen, P., Souffriau, W., Oudheusden, D., 2010. The orienteering problem: a
survey. Eur. J. Oper. Res. 209 (1), 1–10.

Vidal, T., Crainic, T., Gendreau, M., Prins, C., 2013. Heuristics for multi-attribute vehicle
routing problems: a survey and synthesis. Eur. J. Oper. Res. 231 (1), 1–21.

Yang, Z., Emmerich, M., Back, T., 2015. Ant based solver for dynamic vehicle routing
problem with time windows and multiple priorities. In: 2015 IEEE Congress on
Evolutionary Computation (CEC). IEEE, pp. 2813–2819.

http://refhub.elsevier.com/S2192-4376(21)00011-X/sref1
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref1
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref2
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref2
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref2
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref3
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref3
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref3
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref4
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref4
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref4
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref4
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref4
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref5
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref5
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref5
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref6
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref6
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref6
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref6
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref7
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref7
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref7
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref8
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref8
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref8
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref9
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref9
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref9
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref10
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref10
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref10
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref10
http://refhub.elsevier.com/S2192-4376(21)00011-X/opt3SmoJExYj8
http://refhub.elsevier.com/S2192-4376(21)00011-X/opt3SmoJExYj8
http://refhub.elsevier.com/S2192-4376(21)00011-X/opt3SmoJExYj8
http://refhub.elsevier.com/S2192-4376(21)00011-X/opt3SmoJExYj8
http://refhub.elsevier.com/S2192-4376(21)00011-X/opt3SmoJExYj8
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref12
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref12
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref12
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref12
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref12
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref11
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref11
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref11
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref11
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref14
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref14
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref14
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref14
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref15
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref15
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref16
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref16
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref16
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref16
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref17
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref17
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref17
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref17
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref17
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref17
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref18
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref18
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref19
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref19
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref19
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref20
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref20
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref20
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref21
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref21
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref21
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref21
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref21
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref22
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref22
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref22
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref22
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref23
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref23
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref24
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref24
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref25
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref25
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref25
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref26
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref26
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref27
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref27
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref27
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref27
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref27
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref28
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref28
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref28
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref29
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref29
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref29
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref29
http://refhub.elsevier.com/S2192-4376(21)00011-X/optT609KeRPli
http://refhub.elsevier.com/S2192-4376(21)00011-X/optT609KeRPli
http://refhub.elsevier.com/S2192-4376(21)00011-X/optT609KeRPli
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref31
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref31
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref31
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref32
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref32
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref32
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref33
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref33
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref34
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref34
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref34
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref35
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref35
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref35
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref36
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref36
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref36
http://refhub.elsevier.com/S2192-4376(21)00011-X/sref36

	The vehicle routing problem with relaxed priority rules
	1. Introduction
	2. Literature review
	3. Mathematical formulation
	4. An adaptive large neighborhood search algorithm with integrated local search
	4.1. Initial solution
	4.2. Insertion operators
	4.3. Removal operators
	4.4. Local search
	4.5. Adaptive selection mechanism
	4.6. Acceptance mechanism and stopping condition
	4.7. Adaptations to solve CTSP-d

	5. Experimental results
	5.1. Instances and experimental settings
	5.2. Parameter settings
	5.2.1. Cooling rate and stopping condition
	5.2.2. Other parameters

	5.3. Selecting ALNS components
	5.4. Results and discussion
	5.4.1. Tests on the CTSP-d instances
	5.4.2. Tests on the VRP-RPR instances


	6. Conclusion
	APPENDIX6. Conclusion
	References


