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The robust quantization of observables in units of universal constants is a hallmark of topological
phases. We show that chiral higher order topological insulators (HOTIs), bulk insulators with chiral
hinge states, present two unusual features related to quantization. First, we show that circular
dichroism is quantized to an integer or zero depending on the orientation of the sample. This probe
locates the hinge states, and can be used to distinguish different types of chiral HOTIs. Second, we
find that the average of the local Chern marker over a single surface, an observable related to the
surface Hall conductivity known to be quantized in the infinite slab geometry, is nonuniversal for a
finite surface. This is due to a nonuniversal contribution of the hinge states, previously unaccounted
for, that distinguishes surfaces of chiral HOTIs from Chern insulators. Our findings are relevant
to establish higher order topology in systems such as the axion insulator candidate EuIn2As2, and
cold atomic realizations.

Introduction.—The quantization of global observables
is a quantum mechanical signature that distinguishes
trivial and topological matter. For example, two-
dimensional (2D) insulators without time-reversal sym-
metry present a Hall conductance that is quantized to
Ce2/h where C is an integer known as the Chern number.
In contrast, experiments that show a quantized observ-
able in three dimensions (3D) remain scarce; the sole ex-
amples are the observation of a quantized optical rotation
in 3D time-reversal invariant topological insulators [1, 2],
and the quantization of a photocurrent in chiral topolog-
ical semimetals [3].

Our first result is that 3D chiral higher order topolog-
ical insulators (HOTIs) have a quantized circular dichro-
ism. HOTIs [4–27] are a subclass of topological insula-
tors [28, 29] for which a d-dimensional bulk topological
invariant protects metallic boundary modes in dimension
d− 2 or lower. More specifically, 3D chiral HOTIs [6, 8–
10, 13, 14, 16, 18–21, 24] are fully gapped with only con-
ducting chiral hinge states. The protection is guaranteed
by combinations of crystalline and discrete symmetries,
but symmetry alone does not necessarily dictate which
hinges have a boundary mode.

Circular dichroism is an optical probe that is sensitive
to topological properties [30–40]. It is the differential ab-
sorption of left and right circularly polarized light and its
frequency integral is determined by the dc Hall conduc-
tivity through a sum rule [32, 41]. For 2D Hall insulators
this integral is quantized to the Chern number for pe-
riodic boundary conditions [37, 39], and vanishes upon
including the edge state contribution [32, 37, 38]. To fil-
ter out the edge contribution, it is possible to use optical
selection rules in Landau levels [38], or, in periodically
driven cold-atomic gases, a trap-release protocol [37] or a
harmonic trap as was demonstrated experimentally [42].
In 3D we show that the circular dichroic absorption of
chiral HOTIs restricted to a frequency range within the

  

 

FIG. 1. The frequency integrated in-gap absorption differ-
ence between left- and right-circularly polarized light (red
and green lines, respectively) is quantized to C depending
on the polarization plane. The cubes depict chiral HOTIs
with hinge modes protected by (a) Cz

4I- or (b) I symme-
tries. The light green and dark blue surfaces signal positive
and negative values of the local Chern marker. Orange hinges
represent gapless chiral states.

energy gap but across the whole sample is determined by
an integer. The integer depends on the orientation of
the sample and thus may be used to distinguish different
types of chiral HOTIs (see Fig. 1).

In addition to bulk properties, the topological charac-
ter of topological insulators can emerge as a quantized
surface property. The surface Hall conductivity of a chi-
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ral HOTI is quantized in units of e2/2h, half of the con-
ductance quantum [19, 43]. This quantization is inher-
ited from the Hall conductivity of a gapped topological
insulator surface state [44, 45] and can be derived in the
infinite slab geometry [19, 46]; each surface Dirac cone
contributes with ±e2/2h to the total surface Hall con-
ductivity.

Our second result revises such quantization of surface
observables; we show that for finite samples, the hinge
states modify the surface quantization of the Hall con-
ductivity by a nonuniversal factor. We use a real space
version of the Berry curvature, known as the local Chern
marker [47]. It measures the local (space resolved) con-
tributions to the Hall conductivity. In 2D insulators, the
bulk average of the local Chern marker is quantized and
equal to the Chern number C of the corresponding peri-
odic system. For open boundary conditions, its average
over the whole sample vanishes. It means that the to-
tal contribution from edge states is equal and opposite
in sign to the bulk contribution [37, 38, 47]. We find
that this does not happen for a finite surface of chiral
HOTIs due to the spatial distribution of the local Chern
marker in the hinge states, which distinguishes surfaces
of HOTIs from purely 2D Chern insulators, despite their
spectral similarities [24].

Models.—We consider a generic tight-binding model of
chiral HOTIs on the cubic lattice [6, 13, 18]

Ĥ0 =
(
M + J

3∑

i=1

cos(kia)
)
τ3σ0 +

3∑

i=1

λi sin(kia) τ1σi+

+ D
(

cos(k1a)− cos(k2a)
)
τ2σ0 + τ0B · σ , (1)

where ki are the cartesian momentum components, a is
the lattice spacing, σi, τi are two sets of Pauli matrices
acting on the spin and orbital degrees of freedom and
σ0, τ0 are 2× 2 identity matrices. At half-filling the first
two terms describe a time-reversal invariant 3D topolog-
ical insulator, with anisotropic Fermi velocities if λi are
chosen to be different. The third term, proportional to
D, breaks Cz4 and time-reversal (T ) symmetries, but pre-
serves their combination. The last term proportional to
B is a Zeeman term that breaks T but preserves inver-
sion symmetry (I). The Hamiltonian Eq. (1) interpolates
between a topological insulator (D = |B| = 0), a chiral
HOTI protected by the rotoinversion symmetry Cz4I [Fig.
1 (a)] and a chiral HOTI protected by I [Fig. 1 (b)]. We
choose the parameters that maximize the bulk gap and
therefore the localization of hinge states. Specifically,
M/J = 2, λi/J = 1 (all three velocities are the same
unless otherwise stated) and |B|/J = 0.5, with D/J = 0
(D/J = 1) and B ‖ (1, 1, 1) (‖ (0, 0, 1)), for I- (Cz4I-)
symmetric HOTIs (see also [48] sec. A).
Quantized circular dichroism of chiral HOTIs.—To first

order in perturbation theory, the absorption rate Γ(ω) of
a circular periodic excitation of intensity E2 polarized in

  

FIG. 2. Distinguishing Cz
4I- and I-symmetric HOTIs with

circular dichroism. (a), (b) In-gap absorption of the circular
signal at frequency ω for left (red) or right (green) polariza-
tion or the difference between the two (blue), for polariza-
tion planes xy and yz. We choose Ntot = N3 sites, with
N = 17, tJ/~ = 200. In the I HOTI, the integral of the
blue curve in (a) is C = −0.73,−0.73 for xy and yz polar-
ization, respectively. In contrast, in the Cz

4I HOTI, (b), we
find C = −0.86, 0. (c) Contributions from edge (e) and bulk
(b) states as a function of system size, illustrating the con-
vergence to a quantized (or vanishing) value. (d) Integrated
dichroic signal, Eq. (3), as a function of integration cutoff.
The position of the gap Eg is indicated by a vertical line.
The absorption Γ was obtained using Eq. (2) [(a),(b)] or its
approximation in the long-time limit [(c),(d)]. See [48] sec. B
for more details.

the xy plane at frequency ω is (see [48] sec. B for details)

Γ±(ω)

2πE2
=
∑

n,m

∣∣ 〈m| (x̂± iŷ) |n〉
∣∣2δ(t)(Em−En−~ω), (2)

where |n〉 (|m〉) are occupied (unoccupied) states with en-
ergy En (Em) and δ(t)(ε) ≡ (2~/πt) sin2(εt/2~)/ε2 (anal-
ogous definitions hold for other cartesian planes). We
assume half-filling and discuss changing the chemical po-
tential in [48] sec B. In the long time limit δ(t)(ε) is the
Dirac delta function, so that Eq. (2) becomes the familiar
Fermi’s Golden Rule. The integrated differential rate of
absorption is defined as

∆Γ(ωmax) ≡
∫ ωmax

0

dω [Γ+(ω)− Γ−(ω)] /2. (3)

In the limit where ωmax →∞ it simplifies to [32, 37]

∆Γ(∞) = −2πiE2 Tr
{[
Q̂x̂, P̂ ŷ

]}
≡ E2

∑

all ri

Cxy(ri).

(4)
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This equality—valid in two and three dimensions—
expresses the dichroic signal as the sum of the local Chern
marker Cxy(ri) defined as a trace of the complete set of

Wannier states {|ri〉}. P̂ (Q̂) projects onto the occupied
(unoccupied) eigenstates, and x̂, ŷ are position operators.
In a 2D insulator with periodic boundary conditions the
average of the local Chern marker is equal to the Chern
number [47, 49]. Generically, for a finite system with
open boundary conditions the average of Cxy(ri) over the
whole sample vanishes due to the trivial character of the
fiber bundle [47], leading to ∆Γ(∞) = 0. To show this
mathematically recall that the trace of the commutator
in Eq. (4) vanishes in a finite vector space.

Our main result is that the integrated in-gap circular
dichroism is finite and quantized; by choosing the fre-
quency cutoff in Eq. (3) to be ~ωmax = Eg, where Eg is
the gap of the infinite slab geometry, ∆Γ(Eg) isolates the
quantized hinge state contribution.

To reach this result, consider first periodic bound-
ary conditions in the polarization plane, in which case
only bulk to bulk transitions contribute and ∆Γ(∞) =
∆Γb→b. From Eq. (4) ∆Γb→b is proportional to the
integral of the Chern marker, which is not an inte-
ger in general [37]. For a 2D insulator with area A,
∆Γb→b = CE2A where C is the Chern number [37]. For
a 3D chiral HOTI slab with surface area A only the two
surfaces parallel to the polarization plane contribute to
∆Γb→b; their surface Dirac cones contribute with ±1/2
each, resulting in a total of

∆Γb→b = CE2A , (5)

where C is the sum of these contributions, and thus an
integer [19]. We have checked this expectation numeri-
cally (see [48] sec. B).

In the more realistic case of open boundary conditions
there are four types of n→ m transitions contributing to
Eq. (4): from bulk to bulk (b→ b), bulk to edge (b→ e),
edge to bulk (e → b) and edge to edge (e → e) states.
The sum of all transitions must satisfy

∆Γ(∞) =
∑

n,m∈{e,b}

∆Γn→m = 0 . (6)

We have evaluated the relative sizes of the different con-
tributions numerically using Eq. (2) in the long time limit
for the I- and C4I-symmetric HOTIs [see Fig. 2 (c)]. In
all cases the edge-bulk and bulk-edge transitions become
negligible as we increase the system size; this is related
to the exponentially small overlap between the surface
and bulk states (see [48] sec. B). In virtue of Eq. (6) the
bulk-bulk and edge-edge transitions are equal and oppo-
site, and due to Eq. (5) their respective thermodynamic
values are ±CE2A. Thus, restricting the integration of
the circular dichroic signal to in-gap absorption singles
out edge-edge transitions, which guarantees the quanti-
zation of ∆Γ(Eg).

In Figs. 2 (a) and (b) we show the circular dichroism
calculated by finite time evolution in the frequency range
ω ∈ (0, Eg) for I- and Cz4I-symmetric HOTIs. By eval-
uating ∆Γ(Eg) for Ntot = N3 sites with N = 17 for xy
polarization we obtain C = −0.73 and −0.86 for the I-
and Cz4I-symmetric HOTIs, respectively. As N grows, C
approaches exact quantization as seen in Fig. 2 (c). For
yz polarization, we obtain C = −0.73 and 0 for the I-
and Cz4I-symmetric HOTIs, respectively.

An experimentally useful property of circular dichro-
ism is that it depends on the type of chiral HOTI and
the polarization plane. This follows from Fig. 2 and is
depicted schematically in Fig. 1. For the I-symmetric
HOTI, the circular dichroic signal is always nonzero, and
quantized in the thermodynamic limit. However, for the
Cz4I-symmetric HOTI, C vanishes for xz and yz polar-
ized light, but it remains finite for xy polarization. In-
deed, in the Cz4I HOTI the projection of the hinge states
onto the xy plane results in an orientable closed path akin
to the edge state of a Chern insulator. This path con-
tributes an integer C 6= 0 to the circular dichroic signal,
in contrast to the xz and yz projections, where no such
path exists. On the contrary, in the I-symmetric HOTI,
all cartesian polarizations lead to orientable closed paths,
and the circular dichroic signal is quantized. In general,
the quantization is determined by the projection of the
3D hinge state onto the polarization plane, which might
be non-Cartesian. In this plane, each orientable closed
path contributes an integer C 6= 0 to the circular dichroic
signal normalized by its area, and with a sign dictated
by the orientation of the path.

Our characterization scheme relies on the in-gap (ω <
Eg) integration of the dichroic signal. Although ab initio
methods may be able to approximate Eg, it is desirable to
determine it experimentally. This is possible by measur-
ing ∆Γ(ωmax) as a function of ωmax, as illustrated Fig. 2
(d). We expect a singularity at ~ωmax = Eg, caused by
the activation of bulk-to-bulk transitions. The additional
singularities at ~ωmax < Eg in Fig. 2 (d) are due to the
discretization of hinge states in finite size, and will not
affect the extraction of the gap in the thermodynamic
limit.

Local Chern marker of chiral HOTIs.—So far we have
taken advantage of the energy resolution of circular
dichroism to predict a quantized dichroic signal. Can
sacrificing energy resolution in favor of a local measure-
ment lead to a universal quantized observable? In infi-
nite slabs the answer is affirmative: the Hall conductivity
of the surface of a chiral HOTI is quantized in units of
±e2/2h [43, 44, 51]. It stems from the quantization to
±1/2 [19, 46] of the local Chern marker Cxy(ri) [47], the
dimensionless operator defined in Eq. (4), see also [48]
sec. B and C. We show next that the situation is dif-
ferent for finite surfaces: the hinge contribution renders
the surface average of the local Chern marker nonuniver-
sal. Our results carry over to other choices of position
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FIG. 3. (a) Local Chern marker Cxy(ri) of the Cz
4I-symmetric HOTI. In the top surface (hinge excluded, highlighted in blue)

it is quantized to −1/2. The enlargement of this surface cut (b) shows the difference with the local Chern marker distribution
in a Chern insulator (c). (d) Local Chern marker integrated over one vertical (Cv) or horizontal (Ch) hinge, or over the
top surface hinge excluded (Cb) or included (Cs = 2Ch + Cb). The Fermi velocities of the HOTI model are either isotropic
(λz/λ = 1) or anisotropic (λz/λ = 0.6, 0.8). For these calculations, we have considered surface and hinges with a two-site depth
and normalized over the area of the blue region. The data in d) have been calculated using the Kwant package [50], with a
broadening of 10−3 (see also [48] sec. C).

operators in Eq. (4).

We have calculated the local Chern marker using a
recent approach [52] based on the kernel polynomial
method [53] implemented using the Kwant package [50].
It allows us to reach sizes beyond exact diagonalization,
and up to Ntot = N3 sites with N = 28. For concrete-
ness, we focus on the distribution of Cxy(ri) for the Cz4I-
symmetric HOTI, shown in Fig. 3 (a). Cxy(ri) is close
to zero deep in the bulk of the cube. The largest contri-
bution to Cxy(ri) comes from the xy surfaces and decays
fast with increasing distance to the surface.

Consider the top xy surface of the HOTI, as repre-
sented in Fig. 3 (b). Far from the hinges, we expect
the local Chern marker to approach −1/2, since the Hall
conductivity is quantized to −e2/2h in the infinite slab
geometry [19, 43, 44, 51] (see also [48] sec. B and C).
Our numerical results indeed show this convergence as a
function of system size at the central points of the sur-
face (see Fig. 3 a) and b). Remarkably, the average of
the local Chern marker over a single surface of the HOTI
does not vanish (see Fig. 3 d)). This is in stark contrast
with 2D Chern insulators (see Fig. 3 c)) and highlights
the 3D character of the HOTI.

The average of the local Chern marker over the surface
of a HOTI is finite, but is it still universal? Note that
the sum of all hinge contributions must exactly compen-
sate the bulk, a fact we have numerically checked. How-
ever, Cz4I symmetry only imposes that hinges related
by this symmetry have equal weight. In Fig. 3 d) we

show that the Chern marker can be distributed inho-
mogeneously over the horizontal and vertical hinges by
choosing λx = λy ≡ λ 6= λz. These parameters introduce
hopping anisotropy but do not break the Cz4I symme-
try that protects the topological state. As N increases,
and up to numerical precision (see also [48] sec. C), dif-
ferent parameters lead to a different distribution of the
local Chern marker along the hinges. This means that
although the total hinge contribution is fixed and equal
to one, it can be unevenly distributed over the horizontal
and vertical hinges. This in turn, implies that the surface
average of the Chern marker is a non-universal number.

Discussion. We have shown that the in-gap cir-
cular dichroism, a spatially averaged, frequency inte-
grated quantity is quantized and can differentiate dif-
ferent types of chiral HOTIs. Although experimen-
talists currently measure polarization rotations [1, 2],
we propose integrated circular dichroism as an advan-
tageous alternative to measure quantized optical re-
sponses; importantly, it does not depend on the sub-
strate’s details as long as it preserves time-reversal sym-
metry. Specifically, it could probe higher-order topology
in EuIn2As2 [54], CrI3/Bi2Se3/MnBi2Se4 heterostruc-
tures [55], and MnBi2Te4 [56–58], all of which are pre-
dicted to host chiral hinge states. In particular, a quan-
tized signal can be expected for a sample of EuIn2As2,
illuminated with light polarized in a plane perpendicular
to any of the crystal axis, and integrated up to the gap
energy (Eg ∼ 10meV from ab-initio calculations [54]).
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These energies are comparable to those already used to
measure quantized optical rotation [1]. Moreover, the
quantization of circular dichroism applies to interacting
systems [39], which suggests the possibility to distinguish
different interacting HOTIs [59]. Lastly, quantized circu-
lar dichroism [37] has been measured in ultra-cold atomic
Chern insulators [42] opening up the possibility to mea-
sure quantization in synthetic chiral HOTIs.

We have also found that the surface average of the
local Chern marker, a spatially resolved quantity inte-
grated over all energies, is non-universal in chiral HOTIs
due to the hinge states, in sharp contrast to the infinite
slab geometry and to a 2D Chern insulator. As a con-
sequence, an experiment aiming to characterize a chiral
HOTI based on its surface properties must distinguish
bulk and hinge contributions. In solid state systems the
local Chern marker is related to the orbital magnetiza-
tion [60]. In cold atom experiments, it could be measured
using a quantum gas microscope [61, 62]. Mechanical [63]
and photonic topological metamaterials [64] may offer ad-
ditional avenues to measure this quantity.

We expect our work to motivate new experiments that
can push the ongoing effort to measure quantization in
3D [1–3, 65], and topology in real space [61, 63]. It calls
to revisit 3D topological markers [66–68] to complete
our understanding of topological matter in real space.

Acknowledgements We are thankful to B. A. Bernevig,
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FIG. 4. Local electronic density of (a) the I symmetric HOTI
and (b) the Cz

4I symmetric HOTI defined in Eq. (1) of the
main text.

B. FURTHER DETAILS ON THE
COMPUTATION OF THE CIRCULAR

DICHROISM

Computation of the absorption rate

In the main text we presented the expression of the
absorption rate, Γ±(ω) (Eq. (2)), to analyze how circular
dichroism is quantized in chiral HOTIs. Here we explain
the necessary steps to determine such expression.

Consider a chiral HOTI subjected to an optical signal
at frequency ω polarized in the xy plane. Then the full
Hamiltonian at time t is given by

Ĥ± = Ĥ0 + 2E [cos(ωt)x̂± sin(ωt)ŷ] , (8)

where Ĥ0 is the HOTI Hamiltonian defined in Eq. (1) of
the main text, E is the amplitude of the electric field, ±
indicates left- or right handed polarization and x̂, ŷ are
position operators. Part of this light is absorbed by the
electrons of the system, bringing them from the initial
ground state |Ψ0〉 to an excited state |Ψ(t)〉. The proba-
bility of excitation is

P±(t) = 1− | 〈Ψ(t)|Ψ0〉 |2 , (9)

If the electric field amplitude is small enough, the wave
function |Ψ(t)〉 can be computed using time-dependent
perturbation theory up to first order. The resulting ab-
sorption rate Γ±(ω) = P±(t)/t is Eq. (2) in the main
text. For long enough times this absorption rate is given
by Fermi’s Golden Rule

Γ±(ω)

2πE2
=
∑

n,m

∣∣ 〈m| (x̂± iŷ) |n〉
∣∣2δ(Em − En − ~ω),

(10)

where |n〉 (|m〉) are occupied (unoccupied) states and
En (Em) their energies. The total circular dichroism is
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FIG. 5. Layer-resolved [(a),(c)] and layer-summed [(b),(d)]
Chern number of the Cz

4I-symmetric HOTI in the zy [(a),(b)]
and xy [(c),(d)] polarization planes, for a finite slab with pe-
riodic boundary conditions in the polarization plane. The
Chern number summed over all layers is proportional to the
circular dichroic signal ∆Γb→b. The curves are calculated fol-
lowing [19] using the open source code PythTB [69] and a slab
thickness of N = 12.

obtained by taking the difference (Γ+ − Γ−)/2 and inte-
grating over all frequencies as defined in the main text.
This difference can be expressed as

∆Γ(∞) = −2iπE2Tr
{[
Q̂x̂, P̂ ŷ

]}
≡ E2

∑

all ri

Cxy(ri) ,

(11)
where P̂ (Q̂) is the projector over occupied (unoc-
cupied) states. Independently of dimensionality, the
total absorption rate is proportional to the total Hall
conductivity σαβ of the sample [37] where αβ is the
polarization plane of the optical signal.

Layer-resolved Chern number

In the case of periodic boundary conditions in the po-
larization plane αβ, let us resolve the right hand side of
Eq. (11) along the direction γ perpendicular to the polar-
ization plane. We show this layer-resolved Chern num-
ber Cαβ(γ) in Fig. 5 (a) and (c) for the Cz4I-symmetric
HOTI. In the infinite slab geometry, the Hall conduc-
tivity can be calculated following [19], by summing the
layer-resolved Chern number over the direction of prop-
agation γ. Fig. 5 (a) and (c) show that the only sizable
contributions are due to the surface states which con-
tribute ±1/2, and extend as much as two layers from the
surface. This justifies our choice in Fig. 3 (a) in the main
text where we chose the two last layers as our surface.
Summing over the whole slab we find that the contribu-
tions of opposite surfaces either cancel, leading to C = 0
[see Fig. 5 (b)], or add up to a quantized value C = −1
[see Fig. 5 (d)].
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FIG. 6. Circular dichroic signal of the 2D Chern insulator
Eq. (13) with Ntot = N × N sites computed using exact di-
agonalization. Edge-bulk and bulk-edge transitions give a
negligible contribution, while we see the convergence of the
bulk-bulk and edge-edge contributions towards their quan-
tized thermodynamic limit value.

The results in Fig. 5, and using Eq. (11) show that
for periodic boundary conditions, where only bulk-bulk
transitions are present, the circular dichroism is quan-
tized to

∆Γb→b = CE2A . (12)

as we use in the main text.

Edge-bulk and bulk-edge contributions in Chern
insulators

The quantization of bulk responses is only ensured in
the thermodynamic limit. It is in such case that bulk
states of a finite system are independent of boundary
conditions and resemble those of periodic boundary con-
ditions. As a consequence, our finite size results do
not show an exact quantization of circular dichroism but
rather a trend as we approach the thermodynamic limit.
Due to the 2D character of Chern insulators, it is possi-
ble to calculate the absorption rate of larger systems with
exact diagonalization [52, 70]. This allows us to show the
quantization of edge-bulk, bulk-bulk and edge-edge con-
tributions in the thermodynamic limit to larger precision
(see Fig. 6). The Chern insulator model we have consid-
ered is

H =

(
M − t

2∑

i=1

cos (kia)

)
σ3 + λ

2∑

i=1

sin(kia)σi , (13)

where M/t = 3/2 and λ/t = −1/2.

Effect of a finite chemical potential

In the main text we have assumed half-filling, and thus
the chemical potential µ sits exactly at the center of the
gap. This assumption made the edge-bulk and bulk-edge
contributions equivalent in Fig. 2 b) of the main text. In
general these two types of transitions can be different.
However, our results remain unchanged so long as the
chemical potential remains in the gap. Out of all possi-
ble transitions, the bulk-bulk transitions are still quan-
tized if the chemical potential is within the gap. The
edge-bulk and bulk-edge contributions vanish, indepen-
dent of the chemical potential. Therefore, the sum of
all edge-edge transitions must exactly compensate the
sum of bulk-bulk transitions with an equal and opposite
Chern number. Summing over all edge-edge transitions
implies integrating ∆Γ(Eg), as for the case where µ = 0.

C. FURTHER DETAILS ON THE
COMPUTATION OF THE LOCAL CHERN

MARKER

In Fig. 3 of the main text, we see that Cxy(ri) reaches
its thermodynamic value much faster in the bulk than
in the hinges. This is related to the contrasting scaling
of correlation functions in these two regions: states are
respectively exponentially and algebraically localized in
the bulk and the hinges. As a result, at a given bulk
point, the main contribution to the local Chern marker
is determined by the nearest points [71–73], while it in-
volves larger non-local contributions for the hinges. A
more formal way to understand this is to consider the
expression of the local Chern marker in terms of the den-
sity correlator

ρn(ri, rj) = 〈ri|n〉 〈n|rj〉 , (14)

which reads [73]

Cxy(ri) = −4π
∑

rj ,rk

∑

El<0
Em>0
En<0

Im [ρl(ri, rj)ρm(rj , rk)ρn(rk, ri)]xjyk . (15)

Since the magnitude of ρn(ri, rj) is proportional to the modulus of the density of the state |n〉 at ri and at
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rj , bulk-edge and edge-bulk contributions are suppressed
here as in the case of circular dichroism. Because of the
long-range density correlations within the hinge, the local
Chern marker at a hinge point ri receives significant con-
tributions from other hinge points (rj , rk), even though
they are not spatially close.

Convergence of the hinge contribution

As shown in Fig. 3 (a) and (b) in the main text at
a point ri in the top and bottom surface of the Cz4I-
symmetric HOTI Cxy(ri) is quantized to 1/2, similar to
how a bulk point in a Chern insulator defined by Eq. (13)
is quantized to ±1 [74]. In contrast, the value of the
local Chern marker at a hinge point need not be quan-
tized. We analyze the non-negligible local Chern marker
contributions, which come from the surface bulk (b), the
horizontal (h) and the vertical (v) hinges (see Fig. 3 of
the main text). Note that, due to the Cz4I-symmetry, the
contribution of all vertices is the same and we can demo-
cratically associate one vertex to each hinge. In an finite

system, these contributions verify the following sum rule

0 =
∑

ri

Cxy(ri) = 2Cb + 4Ch + 4Cv . (16)

Cb is quantized to ±1/2Ns where Ns is the number of
surface area points defined in blue in Fig. 3 (a) of the
main text (in the thermodynamic limit Ns ' N2). The
sum Ch + Cv is thus quantized (in units of Ns), but Ch
and Cv are not forced by Cz4I symmetry to be quantized
independently. We note this is unlike the Chern insulator
Eq. (13), which is invariant under Cz4 , implying that the
Chern marker at each edge is forced to be Cedge = −C/4.

Finally, for Fig. 3 (d) we computed the local Chern
marker using the efficient numerical approximation based
on the Kernel Polynomial Method [75] implemented via
the Kwant Python package [50]. It allows us to reach
larger system sizes than the ones achievable with exact
diagonalization. The projector P̂ is approximated as a
polynomial in powers of Ĥ of degree inversely propor-
tional to the broadening parameter indicated in the main
text (see [52] for details). We have checked convergence
by observing that a broadening of 10−3 reproduces the
local Chern marker results from exact diagonalization for
small N , and that our results change by less than 0.1%
when the broadening is reduced by a factor of 10.
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