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Abstract: Importance measures have been widely used as meaningful decision-aiding indicators in

reliability engineering, risk management and maintenance optimization. However, few importance

measures integrates the actual condition (working states or degradation levels) of components that

dynamically evolves with time. This work develops a novel time-dependent importance measure de-

fined as the capacity of a component (or group of components) to improve, when it is replaced, the

system residual life. The proposed IMMRL measure can help to better prioritize a component or

group of components regarding to its improvement ability in the system life time while considering

the actual conditions of all components of the system. The originality and complementarity of the

proposed measure when compared to existing importance measures is also investigated. The proposed

importance measure is then extended to integrate the economic dimension of the maintenance decision,

through the maintenance costs, the benefit gained by the maintenance operations and as well as the

economic dependence between components. It is finally shown how the proposed IMMRL measure and

its extension can “optimally” suggest a component or a group of several components for preventive

maintenance decision-making, based on both the technical criterion (residual life of the system) and

the economic aspects (benefit and costs). The use and the advantages of the proposed importance

measure and its extension are illustrated on a 4-component system.

Keywords: Reliability, maintenance decision-making, importance measure, mean residual life, multi-

component system, economic dependence

1 Introduction

Within the framework of system engineering, importance measures are used to quantify the importance

of a component or a group of components on the key performances of interest of a system, such

as its reliability, its availability, its residual life, its productivity or its safety. These importance

metrics can support decision-making to choose between several system upgrade options or design
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modifications for correcting identified weaknesses, to select the most relevant maintenance actions

or to identify and avoid operation bottlenecks. Different importance measures have been proposed

in the field of reliability, risk and maintenance and they have been successfully used to solve many

real-world problems, see [14] for a comprehensive overview of the classical importance measures and

their applications. In risk analyses and reliability engineering, importance measures have been used

for risk-informed decision-making [5, 7] or for ranking components within a system for reliability

improvement purposes [1, 2, 4, 10]. Recently, several applications of importance measures have been

developed aiming at maintenance optimization and spare parts management [17, 21, 24]. For example,

for complex multi-component systems, a maintenance optimization approach based on the Birnbaum

structural importance measure has been developed in [16, 21]. [3] has proposed to resort to a differential

importance measure for inventory management. More recent works have addressed the issue of basing

the preventive maintenance decisions on importance metrics of the maintained system’s components

[10, 24, 26].

With the aim of optimizing condition-based or predictive maintenance decisions on a system, the

available information on the actual condition of components (states or degradation levels) is obviously

a critical input to the decision process and should be considered in the synthesis of decision-aiding

indicators. Following this idea, a data-driven framework integrating the deterioration monitoring

information has been recently introduced to identify the critical components of a complex technical

infrastructure in [15] and a new importance measure, called condition-based importance measure, has

been recently proposed in [10]. It relies on the quantification of the reliability improvement for a given

finite horizon (t, t+u) brought by a component replacement and it integrates the available information

on the actual condition of all the system components at decision time point t. This importance measure

proved to be relevant for ranking the system components with respect to a reliability metric on a finite

horizon. However, it cannot be directly applied for an infinite horizon reliability metric such as the

system residual life (or the remaining useful life) that is nevertheless considered as an important

reliability metric for various decision-making, see for instance [12, 19, 22]. To answer this gap, this

work proposes a novel importance measure based on the system residual life, namely IMMRL measure,

that can be used to rank components/groups of components with respect to their ability to improve the

system residual life considering all the available information of the actual conditions of all components

at the decision time point. To highlight the originality and complementarity of the proposed IMMRL

measure when compared to existing ones, some direct links between these already existing measures

and the proposed one are also highlighted and investigated.

Moreover, when implementing maintenance operations in practice, an economic dependence often

arises : in this case, the joint maintenance of several components turns out to be cheaper than

maintaining separately the components. Such an economic dependence in maintenance should be

integrated appropriately in the maintenance decision-making. However, to the best of our knowledge,
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very few existing importance measures designed to support maintenance decisions actually integrate

this kind of economic dependence between components. To fill this second gap, an extension of the

proposed IMMRL measure is thus proposed in this work to take into account the economic aspects

related to maintenance, i.e. costs incurred by maintenance actions, with the economic dependence, and

benefit gained from maintained system operation. The proposed IMMRL measure and its extension

allow ranking and selecting the best candidate component or group of components for maintenance

according to both a technical criterion (residual life of the system) and/or economic considerations

(benefit and cost).

In summary, the contribution of the work presented in this paper is twofold : (i) it first proposes

a component importance measure elaborated from the estimated improvement in the mean system

residual life brought by the as-good-as new replacement of the component, given the available infor-

mation on the actual condition of all the system components ; (ii) the proposed importance measure

is then extended to integrate economic aspects related to maintenance costs and system profit. This

paper develops an extended version of the work presented in [11].

The remainder of this paper is organized as follows. Section 2 is devoted to the presentation

of the main modelling assumptions of this work. The different considered levels for the monitoring

information and the mean residual life are presented and discussed. In addition, the impact of the

information levels on the estimated system residual life is also highlighted. The proposed IMMRL

measure is introduced in Section 3. The link with two existing importance measures in different

contexts related to given components’ information levels is discussed. In Section 4, an extension

of IMMRL measure integrating economic aspects is developed. The economic dependence between

components is also studied. To illustrate the use and the advantages of IMMRL measure and its

extension, Section 5 presents a numerical example of a 4-component system. In addition, various

numerical studies are herein analyzed and discussed. Finally, the conclusions drawn from this work

and some perspectives are presented in the last section.
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Notation

a, b economic dependence factors

Ci maintenance cost of component i

di duration of a replacement for component i

(Xi
t)t≥0 stochastic degradation process component i over time t

xit degradation level of component i at time t

Li failure threshold of component i

Zit,St type of available information on the condition of component i and the system at t respectively

Zt = (Z1
t ,Z

2
t ), ...Z

n
t ) information about all components of the system at time t

ri(t+ u|Zit) conditional reliability of component i

R(t) reliability of the system

R(t+ u|Zt) reliability of the system given the condition/information Zt

fτi(u) probability density function for the failure time of component i

fτi(u) probability density function for the failure time of component i

fXi
t
(u) probability density function for the degradation level of component i at time t

MRL(t|Zt) Mean residual life of the system at time t given the information Zt

2 Modelling framework

2.1 System modelling assumptions

We consider a coherent structured system consisting of n non-identical components that are organised

according to a structure assumed to be known (e.g., series, parallels or mix, etc.). Each component

may fail because of an underlying random ageing phenomenon or a stochastic degradation process.

The failures of the components are assumed to be independent.

Only perfect maintenance actions or replacements are assumed to be implementable on the system,

i.e., performing a maintenance action on a component brings the maintained component into an “as-

good-as new” state. In addition, each maintenance action incurs a maintenance cost.

2.2 Component failure modelling and system reliability assessment

Component failure modelling In reliability engineering, the reliability of an entity (component or

system) is defined as the probability that the entity performs its mission without any failure until time

t. To assess the reliability of a component, two main approaches are classically used: lifetime models or

degradation-based failure models [17, 19]. The use of either model depends on the level of information

available on the state of the considered component. Lifetime models are suitable to describe the

situation where the information on the component degradation levels is not available for technical

and/or economical reasons (e.g., it is not allowed or impossible to inspect in-depth the component
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to reveal its degradation level; its inspection operation is too expensive or the component is highly

reliable and its inspection is not considered to be worthwhile). In this situation, the component is only

known to be working or failed. On the contrary, when the degradation level of the component can be

monitored more closely and finely, a degradation-based failure model based on a stochastic process is

more informative and is often preferable. Accordingly, the two following cases can be considered:

• Components whose failure behavior is described by a lifetime model are referred to as “ageing

components”. The reliability of the ageing component i can be written

ri(t) = P(τi > t) = 1−
t∫

0

fτi(x) dx (1)

where τi is the time to failure of component i and follows a probability distribution with prob-

ability density function fτi(x). As an example, the Weibull distribution which has been widely

used in the literature for reliability modeling at component level [19], is used for reliability as-

sessment of certain components in this work. Of course, other probability laws could be used in

a similar manner. A detailed description of the Weibull distribution is given in Appendix A.

• Components that gradually degrades with wear and tear, and whose degradation can be mon-

itored are referred to as ‘degrading components”. Assuming that the degradation evolution of

the degrading component i is described by a stochastic process Xi
t , its reliability can be then

written as:

ri(t) = P(Xi
t < Li) =

Li∫
0

fXi
t
(x)dx, (2)

where Li is the degradation failure threshold above which the component i is considered as failed

(i.e., when Xi
t ≥ Li, the component i is failed) and fXi

t
(u) is the probability density function of

the degradation level of component i at time t. In the literature, different degradation stochastic

processes are available such as gamma, Wiener, etc [19, 20]. In this work, a gamma stochastic

process is used as an example for reliability assessment of degrading components. A detailed

description is given in Appendix B.

System reliability Because the components failures are assumed to be statistically independent,

the system reliability can be computed from the components’ reliabilities using the system reliabil-

ity structure function. More precisely, let R(t) be the system reliability. R(t) is a function of the

reliabilities of all the system components ri(t) with i = 1, 2, ...n :

R(t) = ϕ(r1(t), r2(t), ..., rn(t)). (3)

The structure function ϕ(.) can be obtained from the minimal path sets or the minimal cut sets of the

system [19]. As an example, the reliability of a series structure of two component is given by Eq.(11)

and the reliability of four-component system with a mixed structure is provided in Section 5.
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2.3 Level of information and mean residual life

2.3.1 Level of information and conditional reliability assessment

Let St be the state of the system at time t. As only binary states are considered at the system level,

St can be expressed as follows

St =

 1 if the system is functioning at time t;

0 otherwise.

It is assumed that at initial time, t = 0, the system is new S0 = 1. At time t, two cases can be

distinguished:

• if the system is in a failed state, St = 0: R(t+ u|St = 0) = 0.

• if the system is functioning at time t, St = 1, the predicted conditional reliability of the system

at time t+u (with u > 0) can be computed using the available information at time t from Eq.(3)

by replacing the components reliability ri(t), with i = 1, 2, ..., n, by the components conditional

reliability ri(t+u|Zit) where Zit represents the available information about the state of component

i at time t.

It should be noticed that the available information about the state of components is crucial for pre-

dicting the components’ reliability. For degrading components, four levels of information can be

considered:

Zit =



0 if component i is known to be in a failed state at time t;

1 if component i is known to be functioning at time t but its degradation level is not available;

2 if component i is known to be functioning and its degradation level is measured at time t;

3 if component i is known to be replaced by a new component at time t.

Accordingly, given the information level available at time t on a component state, the conditional

reliability of the component can be calculated by distinguishing the following 4 cases :

• If component i is failed at time t, Zit = 0, its conditional reliability at t+ u is equal to zero (no

replacement is assumed between t and t+ u): ri(t+ u|Zit = 0) = 0;

• If component i is still working at time t but no information on its degradation level is available

(because of a technical or economical reason), Zit = 1, its conditional reliability at t+ u writes

ri(t+ u|Zit = 1) =
ri(t+ u)

ri(t)
. (4)

It is worth noting that in the case of an exponential lifetime law for component i, i.e. its failure

rate is time-independent, its conditional reliability can be calculated by ri(t+u|Zit = 1) = ri(u),

which means that component i can be considered as new if it is known that it has survived time

t, and thus no preventive maintenance is required.
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• If component i is still working and its monitored degradation level is available at time t, Zit = 2,

its conditional reliability at t+ u is then given by

ri(t+ u|Zit = 2) = P(Xi
t+u < Zi|Xi

t = xit)

=

∫ Zi

xit

fXi
t+u

(x)dx, (5)

where Xi
t = xit denotes the degradation level of component i at time t.

• If component i is replaced by a new one at time t, Zit = 3, its conditional reliability writes simply

ri(t+ u|Zit = 3) = ri(u). (6)

The conditional reliability assessment of an ageing component remains similar to that of a degrading

component, noting however that for an ageing component i, according to the definition used in this

work, only three levels of information on the component state are considered, i.e., Zit can be 0, 1 or 3

(no degradation level information is ever available for degrading components).

It must be noticed that for industrial systems, the replacement of component i may require disas-

sembling other components, this phenomenon is called structural dependence [18]. The disassembly

operations may affect the failure/degradation processes of certain disassembled components. Such a

structural dependence is not considered in this work, but for further discussion on the disassembly

impacts, the interested reader can consult [8].

2.3.2 Mean residual life

The residual life (or remaining useful life) of a system is an important reliability metric of the system

since it provides the information about the duration left before the system fails given the condition

of its components at time t [6, 19, 25]. Even though the full probabilistic characterization of the

random resiudal life contains more information, the mean residual life (MRL) can still be used as an

appropriate reliability metric for various decision-making [12, 19, 22]. Indeed, the mean residual life

of a system at time t is defined as the mean time left before the system failure.

Let Zt = (Z1
t ,Z

2
t ), ...Z

n
t ) be the vector representing the information about all components of the

system at time t. The mean residual life of a system at time t is mathematically expressed as follows:

MRL(t|Zt) =

∫ ∞
0

R(t+ u|Zt)du. (7)

Obviously MRL(t|Zt) depends not only on the time t but also on level of the available information

on the components’ state at time t. In addition, MRL(t|Zt) has the following properties:

• MRL(t|Zt) ≥ 0 and MRL(t|Zt) = 0 if the system fails at time t, i.e., St = 0;

7



• At the initial time point t = 0, all the components are new ( Zit = 3 with i = 1, ..., n), we get:

MRL(0|Z1
0 = 3,Z2

0 = 3, ...,Zn0 = 3) =

∫ ∞
0

R(u)du = MTTF, (8)

where MTTF represents the mean time to failure of the system [19];

• For a coherent system, without any maintenance intervention MRL(t|Zt) is a decreasing function

over time, i.e., MTTF ≥MRL(t1|Zt1) ≥MRL(t2|Zt2) with t1 ≤ t2;

• If all the components of the system are replaced simultaneously at time t, i.e. the system is

renewed at time t, we get:

MRL(t|Z1
t = 3,Z2

t = 3, ...,Znt = 3) = MTTF. (9)

Assume that at time t, only component i is replaced, the mean residual life of a system is then:

MRL(t|Zt,Zit = 3) =

∫ ∞
0

R(t+ u|Zt,Zit = 3)du. (10)

Example 1 For illustration purposes, consider the simple example of a 2-component series system.

Both components of the system, C1 and C2, are assumed to undergo a degradation process that

can be described by a gamma process with a shape and a scale parameter (αi, βi) with i = 1, 2 (see

Appendix B for a detailed description of the gamma process). Both components fail as soon as their

degradation level reach their failure threshold, resp L1 = L2 = 100. The system reliability block

diagram and the values of the parameters are given in Figure 1.

C1 C2

a1

b1

a2

b2

Figure 1: A 2-component system.

The reliability of the system is obtained readily as:

R(t) = r1(t).r2(t). (11)

To illustrate the impact on the estimated mean residual life of the level of the available information

on the components states, we consider the three following cases:

• Both components are monitored and their degradation state is measured and available at each

time unit, i.e. Z1
t = Z2

t = 2;

• Component C2 is monitored and its degradation state is measured and available at each time

unit, however no inspection operation is ever realised on component C1 due to a technical or

economical reason, i.e. Z1
t = 1,Z2

t = 2;
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• Neither of the two components C1 and C2 is monitored and their state of degradation remains

unknown, i.e. Z1
t = Z2

t = 1.

Figure 2 shows an example of the degradation paths of each component and the estimated mean

residual life MRL(t|Zt) of the system according to the three mentioned cases of information level.

This example illustrates the fact that the estimated mean residual life MRL(t|Zt) depends on the

information levels of both components C1 and C2. Ignoring the degradation levels of one or two

components may lead to a significant error in the evaluation of MRL(t|Zt).
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Both C1 and C2 a

C
2
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The system fails

L1,L2

Figure 2: Components’ degradation paths of a two-component system and the evolution of the esti-

mated system mean residual life for different levels of information.

As the mean residual life is an important reliability metric of the system and as it allows to embed

in its estimation process different levels of information, in this study it is used to define a novel

importance measures. The detailed discussion is given in the following section.
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3 Importance measures based on the mean residual life

3.1 Definition of IMMRL measure

An importance measure based on the mean residual life can be defined as follows for component i:

IM i
MRL(t) = MRL(t|Zt,Zit = 3)−MRL(t|Zt). (12)

IM i
MRL(t) quantifies the improvement in the system mean residual life time brought by the replace-

ment of component i at time t, given the available information of the actual condition of all the other

system components. The IMMRL measure is characterized by the following properties:

• For a coherent system MRL(t|Zt,Zit = 3) ≥ MRL(t|Zt), and IM i
MRL(t) is thus non negative

and IM i
MRL(t) ≤MTTF :

– IM i
MRL(0) = 0;

– IM i
MRL(t) = 0 if component i is known to be still working at time t and its failure rate

is time-independent. This means that the replacement of component i does not have any

impact on the residual life time of the system, which leads to the well-known result that it

is not necessary to replace component i with a constant failure rate if it is kown to be still

working at time t;

– IM i
MRL(t) = MTTF if the system is composed of a single component (n = 1) and the

component is in a failed state at time t.

• IM i
MRL(t) depends on the available information on the actual state or degradation level of all

the components at time t;

• Finally, IM i
MRL(t) is time-dependent if the failure/degradation process of one or several com-

ponents is time-dependent.

From Eq.(7) and Eq.(10), IM i
MRL(t) can be written as:

IM i
MRL(t) =

∫ ∞
0

R(t+ u|Zt,Zit = 3)du−
∫ ∞
0

R(t+ u|Zt)du

=

∫ ∞
0

[R(t+ u|Zt,Zit = 3)−R(t+ u|Zt)]du (13)

In the purpose of condition-based maintenance decision-making, as IMMRL measure allows inte-

grating the available information on the current actual condition (state or degradation level) of all

components, it can be a relevant indicator to identify the most important component that should be

replaced, at given time t, to improve the system residual life.
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Example 1 (continued) Reconsider now the example of 2-component system shown in Figure 1

and assume that the system is still functioning at time t, i.e. both components have survived t, Zit 6= 0

with i = 1, 2. The system mean residual life in the absence of any maintenance action at time t is

given by:

MLR(t|Z1
t 6=,Z2

t 6= 0) =

∫ ∞
0

r1(t + u|Z1
t 6= 0).r2(t + u|Z2

t 6= 0)du.

The IMMRL measure of component i (i = 1, 2) writes as:

IM i
MRL(t) =

∫ ∞
0

r3−i(t+ u|Z3−i
t 6= 0).[ri(u)− ri(t+ u|Zit 6= 0)]du. (14)

Two different cases can be distinguished depending on the level of the available information on

both components at time t:

Case 1 Both components are functioning at time t but their degradation levels are not available, i.e.

Z1
t = Z2

t = 1. In this case, Table 1 shows the value of the IMMRL measure for each component

obtained using Eq.(14) and Eq.(4) : component C2 turns out to be more important than C1,

which leads to conclude that the replacement of C2 is more effective than the replacement of C1

to improve the system mean residual life.

Case 2 Both components C1 and C2 are monitored and the information on their degradation level is

available, i.e. Z1
t = Z2

t = 2. Both components being subject to a stochastic degradation process,

the degradation level of each component at time can be random and two different degradation

path realizations are considered in this example, refered to as respectively Case 2a and 2b. The

different degradation levels of both components at time t = 10 in each case (2a and 2b) are

reported in Table 1 and are used to compute in each case the value of IMMRL measure for both

components at time t = 10, using Eq.(14) and Eq.(5). For the first realization of the degradation

path (Case 2a), IM1
MRL(t) is greater than IM2

MRL(t) and component C1 is thus more important

than component C2 in improving the system mean residual life. It should be noticed that this

importance ranking is not the same as the one observed when the components’ degradation

levels are unknown. On the contrary, for the second realization of the degradation path (case

2b), IM1
MRL(t) < IM2

MRL(t), i.e. C2 turns out to be more important than C1.

Information at t = 10 IMMRL measure at t = 10 Ranking

Z1
t X1

t Z2
t X2

t IM1
MRL(t) IM2

MRL(t) C1 C2

Case 1 1 - 1 - 2.69 3.06 2 1

Case 2a 2 21.76 2 12.82 3.42 1.35 1 2

Case 2b 2 15.91 2 22.16 1.33 4.19 2 1

Table 1: Example of IMMRL measure and components ranking.
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The evolution of the IMMRL measure for both components as a function of time t in both consid-

ered cases (1 and 2a) are sketched in Figure 3. Because IMMRL measures depend on the information

levels available for both components and because the actual degradation paths of each component

evolves stochastically with time, IMMRL measures change stochastically with time in Case 2a (degra-

dation levels of both components are measured). It should be noticed that IMMRL measure of each

individual component is evaluated based on the degradation paths of both components that are shown

in Figure 2. In Case 1 (degradation levels of both components are unknown), IMMRL measures evolve

deterministically with respect to the average evolution of each component degradation process.

0 5 10 15 20 25 30 35 40 45 50 55
Time

0

1

2

3

4

5

6

7

8

9

10

L
IM

(t
)

LIM1 with degradation levels

LIM2 with degradation levels

LIM1 without degradation levels

LIM2 without degradation levels

Figure 3: IMMRL measure of individual components with respect to time t in two cases (Case 1 and

Case 2a).

These experimental results show that IMMRL is time-dependent and both the information level

of the components and their degradation levels are crucial for the IMMRL’s values and the associated

components importance ranking.

3.2 Link with existing importance measures

In this section, the link between the proposed importance measure IMMRL with two existing impor-

tance measures, Birnbaum importance measure [2] and conditional reliability-based importance mea-

sure [10], is discussed to highlight the originality and the complementarity of the proposed IMMRL

measure with respect to existing ones. In addition, constructing these links allows also evaluating one
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measure when other ones are known.

3.2.1 Birnbaum importance measure

It is shown [19] that the reliability of the system can be expressed as a linear function of the reliability

of component i as follows:

R(t) = ri(t).[R(t|Zit = 1)−R(t|Zit = 0)] +R(t|Zit = 0), (15)

where,

• R(t|Zit = 1) is the probability that the system is still surviving at time t when component i is

functioning at time t. For a parallel structure system, R(t|Zit = 1) = 1;

• R(t|Zit = 0) is the probability that the system is functioning at time t given that component i

is in a failed state. R(t|Zit = 0) = 0 if component i is a critical one i.e., a failure of component i

leads to a failure of the whole system [19].

The Birnbaum’ importance measure, that is defined as the partial differentiation of the system re-

liability with respect to the reliability of a component, is the most popular importance measure in

ranking components for various decision-making purposes [2, 14, 19].

From Eq.(15), Birnbaum’s importance measure for component i is mathematically defined as:

IBi(t) =
∂R(t)

∂ri(t)
= R(t|Zit = 1)−R(t|Zit = 0). (16)

By definition, IB measure is bounded, i.e., 0 ≤ IBi(t) ≤ 1 with i = 1, .., n. The larger IBi(t),

the bigger is the impact in the reliability of the system when the reliability of component i changes.

Therefore, IB measure can be seen as a sensitivity importance measure [19].

Note also that IB measure is time-dependent. If the system information is available at time t, IB

measure can be extended as follows:

IBi(t+ u|Zt) =
∂R(t+ u|Zt)
∂ri(t+ u|Zit)

= R(t+ u|Zit+u = 1,Zt)−R(t+ u|Zit+u = 0,Zt). (17)

An illustration of the evolution of IB measure for a two-component system is shown in Figures 4

and 5.

By using Eq.(15) and Eq.(17), the conditional reliability of the system at time t + u given the

condition/information of system components at time t, Zt, can be written as:

R(t+ u|Zt) = ri(t+ u|Zt).IBi(t+ u|Zt) +R(t|Zit = 0). (18)

From Eq.(13) and Eq.(18), we obtain a relationship between the proposed IMMRL measure and

Birnbaum’s measure as follows:

IM i
MRL(t) =

∫ ∞
0

IBi(t+ u|Zt).(ri(u)− ri(t+ u|Zit)du (19)

This allows evaluating IMMRL measure from Birnbaum’s measure.
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3.2.2 Conditional reliability-based importance measure

Recently, an importance measure, namely conditional reliability-based importance measure, has been

proposed for ranking components and preventive maintenance decision-making for a given mission

[10]. Indeed, the condition reliability-based importance measure for a component i is mathematically

defined as follows:

RIM i(u, t) = R(t+ u|Zt,Zit = 3)−R(t+ u|Zt). (20)

By definition, RIM measure quantifies the potential improvement in the system reliability within the

horizon (t, t+u) if component i is replaced at time t [10] considering the available information related

to the current states of all components at time t. Furthermore, RIM measure is time-dependent and

bounded, i.e., 0 ≤ RIM i(u, t) ≤ 1 with i = 1, .., n. RIM i(u, t) = 0 means that the replacement of

component i at time t does not lead to any change in the system reliability at time t+u. RIM i(0, t) = 1

if component i is critical and it is in a failed state at time t.

It is also pointed out in [10], RIM measure is an adequate measure for ranking components and

preventive maintenance decision-making at time t regarding to a given reliability level of the system

at t+ u. For further discussions, the interested reader can refer to [10].

From Eq.(13) and Eq.(20), we get a direct link between the proposed importance measure IMMRL

and RIM measure as follows:

IM i
MRL(t) =

∫ ∞
0

RIM i(u, t)du (21)

This relationship shows that RIM i(u, t) quantifies the impact on the system reliability at time t+ u

when component i is replaced at time t while IM i
MRL(t) measures the impact of this replacement

on the whole residual life time of the system, infinite horizon. This means that RIM and IMMRL

measures are complementary in ranking components and/or maintenance decision-making since both

reliability and residual life time are two important reliability metrics of industrial systems [19].

Example 1 (continued) As an example, we reconsider the system of two components shown in

Figure 1. The mathematical formulation of IB, RIM and IMMRL measures for each component and

the relationships between the three measures are reported in Table 2.

Component IBi(t|Zt) RIM i(u, t) IM i
MRL(t)

C1 r2(t+ u|Z2
t ) IB1(t|Zt).(r1(u)− r1(t+ u|Z1

t ))
∫∞
0 RIM1(u, t)du

C2 r1(t+ u|Z1
t ) IB2(t|Zt).(r2(u)− r2(t+ u|Z2

t ))
∫∞
0 RIM2(u, t)du

Table 2: IB, RIM and IMMRL measures for a series structure system of two components.

Figure 4 sketches IB and RIM measures for each component at time t+u given that two compo-

nents are functioning at time t = 10 but their degradation levels are unknown. The results show that,
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according to IB measure or RIM measure, When 30 ≤ u ≤ 50, both IB and RIM measures lead to

the same importance ranking, C2 > C1. However, However, it should be pointed out that RIM mea-

sure leads to a more contrasted decision for the ranking of both components. This can be explained

by the fact that RIM of a component allows considering the current condition of the component while

IB does not. However, when u < 30 or u > 50, both IB and RIM do not allow ranking the two

components while the proposed IMMRL measure provides only one importance ranking, C2 > C1,

see again Table 1 (Case 1).
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Figure 4: IB and RIM measures at time t+u when the degradation levels at time t = 10 are unknown.

In the same manner, we assume now the degradation levels of two components at time t = 10 are

measured. Figure 5 shows IB and RIM measures for each component at time t+u given degradation

levels of two components at time t = 10: X1
t = 21.76, X2

t = 12.82 (see again Case 2a of Table 1).

Similar results are herein obtained. Note however that, according to IB or RIM measure, when

25 ≤ u ≤ 55, component C1 is more important than C2 (C1 > C2). In addition, when u < 25 or

u > 55 both IB and RIM do not allow clearly ranking the two components. When compared to

the result given in Table 1 for this case, the proposed IMMRL measure provides only one importance

ranking, C1 > C2.
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Figure 5: IB and RIM measures at time t+ u given the degradation levels at time t = 10.

According the obtained results, it is pointed out that, in this example, IMMRL measure seems

to be better than IB and RIM measures in ranking components since IMMRL leads to an unique

components ranking for any value of u while IB and RIM measures may lead to different components

ranking with different values of u.

3.3 IMMRL of a group of components

The proposed IMMRL measure can also applied to a group of several components. Indeed, without

loss of generality, we consider a group Gk including k components, denoted {j1, ..jk} with k = 2, 3, ...,

IMMRL measure of group Gk at time t can be mathematically defined as follows:

IM
{j1,..jk}
MRL (t) = MRL(t+ u|Zt, {Zj1t = 3, ...,Zjkt = 3})−MRL(t|Zt), (22)

where MRL(t + u|Zt, {Zj1t = 3, ...,Zjkt = 3}) is the system mean residual life when k components

{j1, ..jk} are jointly replaced at time t considering the actual condition of the other components of the

system.

According to the definition, IM
{j1,..jk}
MRL (t) quantifies the residual life improvement of the system

thanks to the joint replacement of group Gk at time t. Note that if all components of the system are

jointly replaced at time t, i.e., the system is renewed, the maximum improvement in the system life

time is reached.

It should be noticed that that if components are structurally dependent, the joint replacement of

several component can reduce the disassembly impacts on the failure/degradation processes of other

components [8].
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Due to joint effects in the system residual life time when group of components are replaced together,

IMMRL is not additive, i.e.,

IM
{j1,..jk}
MRL (t) 6=

k∑
l=1

IM
{j1}
MRL(t).

It is pointed out in [10] that, RIM measure can also be applied to a group of several components.

Therefore, the direct link between the proposed IMMRL measure and RIM can be extended as follows:

IM
{j1,..jk}
MRL (t) =

∫ ∞
0

RIM{j1,..jk}(u, t)du (23)

The use and the advantages of IMMRL measure in ranking a component/group of components will

be discussed in more detail in Section 5.

4 An extension of IMMRL measure for maintenance decision-making

Maintenance cost and benefit from maintenance interventions are strongly interrelated and often

plays a significant role in maintenance decision-making. Therefore, they should be considered in the

components ranking process. To this aim, IMMRL measure is herein extended to incorporate both

the benefit gained by the replacement of a component and its replacement cost. Indeed, the extension

of IMMRL measure for a component i at time t is mathematically defined as follows:

IM i
MRL−c(t) =

h(IM i
MRL(t))

Ci
, (24)

where:

• h(IM i
MRL(t)) is the benefit associated to the replacement of component i, which is considered as

a function of the residual life improvement of the system thanks to the replacement of component

i at time t, IM i
MRL(t);

• Ci is the replacement cost of component i and can be divided into two parts: Ci = ci + cd · di

where cd ·di is the downtime cost due to production loss during replacement of component i, that

takes di time units. Note that ci includes all other costs related to spare part, labour, set-up,

etc.

The benefit function h(IM i
MRL(t)) may have different forms, i.e., a linear or non-linear function

with respect to IM i
MRL(t). As an example, in this work a linear form is considered as follows:

h(IM i
MRL(t)) = Q.IM i

MRL(t), (25)

with Q is positive number and can be seen as the benefit resulting in each operating time unit of the

system. The two following cases can be specified for Q:

• Q = 1, i.e., h(IM i
MRL(t)) = IM i

MRL(t); in this case, IM i
MRL−C(t) represents the ratio between

the improvement in the system life time, gained from the replacement of component i at time t,

and the replacement cost of component i;
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• Q > 1, h(IM i
MRL(t)) can be expressed as a benefit gained from the improvement in the system

residual life that is provided by the replacement of component i at time t. In such a way,

IMMRL−C measure can assist in selecting the most cost-effective component for preventive

maintenance regarding to a specific threshold O (O ≥ 1) for the benefit-cost. More precisely:

– if IM i
MRL−C(t) ≥ O, component i is considered as cost-effective one at time t, i.e., compo-

nent i could be admissible for the preventive maintenance selection;

– 0 ≤ IM i
MRL−C(t) < O means that the cost benefit given by the replacement of component

i is not enough. Consequently, component i is not cost-effective at time t, i.e., it should

not be preventively replaced at time t at least from a financial point of view.

It is worth noting that the value of O may be determined from a technical or economical issue, e.g.,

maintenance optimisation phase.

Just like IMMRL measure, IMMRL−C can be applied for a group of several components as follows:

IM
{j1,..jk}
MRL−C(t, u) =

h(IM
{j1,..jk}
MRL (t, u))

C{j1,..jk}
, (26)

where C{j1,..jk} is the total maintenance cost for the replacement of the group components (j1, ..jk). It

must be noticed that in a multi-component system, economic dependence, whereby the joint mainte-

nance of several components is cheaper than when these components are separately maintained, often

exists between components [13, 18]. Indeed, it is pointed out in [9] that when several components

are simultaneously replaced, the maintenance cost saving arises from the sharing of the replacement

set-up cost and the reduction of replacement duration.

Therefore, when k components {j1, ..jk} are jointly replaced, the total cost saving can be defined

as follows:

CS{j1,..jk} = a ·
k∑
i=1

ci + b · cd ·
k∑
i=1

di, (27)

where:

• a (0 ≤ a) is the cost-saving factor for the joint replacement of k components {j1, ..jk}. As it is

pointed out in [23], the cost saving is commonly equal to 5% of the total maintenance cost of

the components (a = 0.05);

• b (0 ≤ b) is the duration-saving factor for the joint replacement of k components.

By definition, a, b represent the economic dependence degree between components. The bigger are a

and b, the stronger is the economic dependence between the components. When a = 0 and b = 0, the

components are economically independent. A detailed investigation on the impact of the economic

dependence between components in condition maintenance decision-making process is discussed in

[9, 23].
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The total maintenance cost when k components are jointly replaced can be finally evaluated by:

C{j1,..jk} =

k∑
i=1

Ci − CS{j1,..jk}. (28)

From an economical point of view, the IMMRL−C measure seems to be an adequate indicator

for the preventive maintenance selection because it considers not only the benefit resulting from the

system life time improvement given by the replacement of a group of components, the corresponding

replacement cost but also the economic dependence between components. An illustration on the use of

IMMRL−C measure for ranking components and preventive maintenance decision-making is discussed

in the following section.

5 Numerical example

In this section, we show how the proposed IMMRL measure and its extension IMMRL−C can be used

for ranking components/groups of components and preventive maintenance decision-making. For this

purpose, a 4-non repairable component system whose reliability block diagram is given in Figure 6,

is considered. It is important to note that proposed importance measure IMMRL and its extension

IMMRL−C can be applied for any kind of systems for which a reliability structure function is available.

Figure 6: Example of a 4-component system.

From the system’s reliability block diagram and the underlying structure function, the reliability

of the system can be calculated from the system components’ reliability as follows:

R(t) = r1(t).r2(t) + r1(t).r3(t).r4(t)− r1(t).r2(t).r3(t).r4(t).

For components reliability modelling, both failure time laws and degradation process are consid-

ered. It is assumed that the failure behaviors of components C3 and C4 are described by Weibull

ditribution with shape and scale parameters γi, ηi (i = 3, 4), see Appendix A. For components C1 and

C2, their reliability behaviors are assumed to be described by a degradation-threshold failure model

with homogeneous gamma stochastic processes with shape and scale parameters αi, βi (i = 1, 2), see

Appendix B. Component C1 or C2 fails when its degradation level searches a failure threshold L1 or

L2 respectively. Table 3 reports the numerical values of αi, βi, Li (with i = 1, 2) and γi, ηi (with

i = 3, 4). Based on the failure/degradation process’ parameters, the MTTF (mean time to failure)

of each component is evaluated (see Table 3). Note that these parameters are in arbitrary time unit

(atu).
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Unit αi βi γi ηi Li MTTF

C1 1.3 1.6 - - 100 48.69

C2 1.4 1.5 - - 100 47.96

C3 - - 65 2.2 - 58.33

C4 - - 60 1.5 - 54.03

Table 3: Parameters of a 4-component system.

The residual life time of the system decreases due to the degradation of its components over time.

To improve the system residual life time, one or several components should be preventively maintained

at a certain time t. In that context, a challenging question for maintenance decision-making could

be which component(s) should be chosen for preventive maintenance ? To answer this question,

we propose here an heuristic decision rule based on IMMRL and/or IMMRL−C measure(s), i.e., the

component/group of components having the highest importance ranking, according to IMMRL or/and

IMMRL−C criterion, should be selected for preventive maintenance.

5.1 IMMRL measure and importance ranking

It is considered in this section that the maintenance costs are not available due to whatever reason.

IMMRL measure is applied to rank a component/group of components.

5.1.1 IMMRL of individuals components

At time t = 10, the condition/state of each component is delivered by an inspection. Suppose that

components C3 and C4 are in a working state, i.e., Z3
t = Z4

t = 1. For components C1 and C2, two

cases are considered:

• Case 1: Components C1 and C2 are working at time t but their degradation levels are not mea-

sured due to a technical or economical reason, Z1
t = Z2

t = 1. Based on the available information,

the conditional reliability of each component is predicted. Then, IMMRL of each component

is evaluated, the associated components ranking is then obtained according to IMMRL’s val-

ues. The results reported in Table 4 show that C1 is the most important component and the

importance ranking is C1>C2>C3>C4. Therefore, if only one component can be preventively

replaced at time t, component C1 should be selected.

• Case 2: Components C1 and C2 are working at time t and their degradation levels are measured,

i.e., Z1
t = Z2

t = 2. For the degradation levels at time t = 10, we reuse herein a numerical

result presented in Section 3, i.e., X1
t = 15.91 and X2

t = 22.16. Then, the conditional

reliability of components C1 and C1 are updated. The obtained results on IMMRL measure

of each component and the components ranking are given in Table 4. There is evidence that
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the IMMRL’s value of each component changes when compared to the results in the previous

case. Indeed, component C1 is no longer the most important component and the importance

ranking becomes C2>C1>C3>C4. Consequently, for maintenance decision-making, component

C2 should be, in this case, selected for preventive maintenance at time t. It is noteworthy that

a different result on IMMRL measure could be obtained with different values of X1
t and X2

t .

Case 1: without degradation levels of C1 & C2 Case2 :with degradation levels of C1 & C2

Unit Zit Xi
t IM i

MRL Ranking Zit Xi
t IM i

MRL Ranking

C1 1 - 4.34 1 2 15.91 2.70 2

C2 1 - 2.05 2 2 22.16 2.86 1

C3 1 - 0.23 3 1 - 0.32 3

C4 1 - 0.17 4 1 - 0.23 4

Table 4: IMMRL measure and importance ranking at time t = 10.

The obtained results point out that the information about the components’ states at time t is

crucial on IMMRL measure and, as a consequence, on the components ranking. The absence of the

degradation levels of components may lead to an inaccurate importance ranking.

In all studies presented the remainder of the paper, only the case 2 is considered, i.e., at time

t = 10, Z1
t = Z2

t = 2, X1
t = 15.91, X2

t = 22.16; Z3
t = Z4

t = 1.

As a comparison study, Birnbaum measure and RIM measure are applied for each individual

component. The obtained results are sketched in Figure 7. It can be seen again that both IB and

RIM of each component change with time. Consequently, the components ranking may change. This

is especially true with RIM measure. Furthermore, the importance ranking provided by IB measure

is not the same as those given by RIM measure or the proposed IMMRL one. More precisely, when

u < 44, RIM provides the same the importance ranking given by IMMRL. This is no longer true

when u ≥ 44. These differences can be explained by the fact that IB measure of a given component

does not allow considering the current condition/state of the component while both RIM and IMMRL

do. In addition, RIM is evaluated with an finite horizon while IMMRL is defined with an infinite

horizon.
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Figure 7: IB and RIM measures at time t+ u given information available at time t = 10.

5.1.2 IMMRL of groups of components

To illustrate the use of the proposed IMMRL measure for groups of components, IMMRL measure is

herein applied to two-component groups given the available information on components at time t = 10,

which are presented in the previous section (see case 2). Of course, IMMRL can be implemented to

three-component groups or four-component groups in a similar way.

Table 5 reports the obtained results of IMMRL for two-component groups.

At time t = 10: Z1
t = Z2

t = 2, X1
t = 15.91, X2

t = 22.16; Z3
t = Z4

t = 1

Group IMG
MRL(t) Ranking

(C1,C2) 8.24 1

(C1,C3) 3.37 2

(C1,C4) 3.17 3

(C2,C3) 2.91 4

(C2,C4) 2.89 5

(C3,C4) 0.60 6

Table 5: IMMRL measure and 2-component groups ranking.

The results shows that group (C1,C2) having the highest IMMRL value is the most important

group and the less important one is group (C3,C4).

As RIM measure can be extended for groups of several components, RIM measure is herein

applied to two-component groups. The results in Figure 8 show again that the importance ranking
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associated with RIM measure may change with time. In addition, it is difficult to point out the

groups ranking when u < 26 or u > 60.
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Figure 8: RIM measures at time t+ u given information available at time t = 10.

5.2 IMMRL−C measure for importance ranking and selective maintenance

We suppose now the maintenance costs are known: c1 = 150, c2 = 250, c3 = 50, cp4 = 80 and cd = 20

acu (arbitrary cost unit). The components’ maintenance duration are d1 = 5, d2 = 3, d3 = 5, d4 = 3

atu. The economic dependence factors are a = 5%, b = 10%. The improvement in the system life

time thanks to the replacement of a component i, is herein converted into an economic benefit with

benefit rate B = 500. In order to consider both the economic benefit and the maintenance costs in

ranking a component or a group of components, IMMRL−C measure, is herein used.

5.2.1 IMMRL−C of individual components

Table 6 reports the results of IMMRL−C measure applied for each individual component.

Degradation levels measured at t = 10

Unit Zit Xi
t IM i

MRL−C Ranking

C1 2 15.91 5.39 1

C2 2 22.16 4.62 2

C3 1 - 1.07 3

C4 1 - 0.83 4

Table 6: IMMRL−C measure and components ranking.

It is apparent that the IMMRL−C measure leads to an importance ranking that is not the same
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as the one provided by IMMRL (see again Table 4, case 2). Furthermore, according to IMMRL

criteria, component C2 is the most important one while, regarding to IMMRL−C measure, C1 is the

most important component. This is because IMMRL focuses only on the improvement of the system

residual life, i.e., the maintenance cost is not considered, while IMMRL−C considers both the benefit

associated with the system life time improvement and the related maintenance cost.

5.2.2 IMMRL−C of groups of components

IMMRL−C measure is now applied for all groups of two components and the obtained results are

shown in Table 7.

At time t = 10: Z1
t = Z2

t = 2, X1
t = 15.91, X2

t = 22.16; Z3
t = Z4

t = 1

Group IMG
MRL−C(t) Ranking

(C1,C2) 7.86 1

(C1,C3) 4.56 2

(C1,C4) 4.37 3

(C2,C3) 3.39 5

(C2,C4) 3.44 4

(C3,C4) 1.32 6

Table 7: IMMRL−C measure and 2-component groups ranking with a = 5%, b = 10%.

It is not surprising again that the two-component groups ranking provided by IMMRL−C measure is

not the same as the one given by IMMRL, see again Table 5. More precisely, according to IMMRL mea-

sure, the groups ranking is (C1,C2)>(C1,C3)>(C1,C4)>(C2,C3)>(C2,C4)>(C3,C4) while IMMRL−C

leads to another importance ranking: (C1,C2)>(C1,C3)>(C1,C4)>(C2,C4) >(C2,C3)>(C3,C4).

5.2.3 Impact of economic dependence on ranking groups of components

To study the impact of economic dependence in IMMRL−C and the associated importance ranking,

we change the economic dependence degree between component. More precisely, it is assumed that

the duration-saving factor is equal to 30% (b = 30%). The obtained results are reported in Table 8.

At time t = 10: Z1
t = Z2

t = 2, X1
t = 15.91, X2

t = 22.16; Z3
t = Z4

t = 1

Group IMG
MRL−C(t) Ranking

(C1,C2) 8.37 1

(C1,C3) 5.11 2

(C1,C4) 4.78 3

(C2,C3) 3.67 4

(C2,C4) 3.64 5

(C3,C4) 1.28 6

Table 8: IMMRL−C measure and ranking of 2-component groups with a = 5%, b = 30%.
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It is shown that, when compared to the results reported in Table 7, IMMRL−C values change and

a new groups ranking appears. This means that the economic dependence degree between components

has an important impact on ranking groups of components.

5.3 Joint consideration of IMMRL and IMMRL−C for importance rankings

In this section, both IMMRL and IMMRL−C measures are jointly considered in finding the most

relevant component/group of components for preventive maintenance decision-making.

Figure 9 sketches the IMMRL with respect to IMMRL−C of individual component, evaluated at

time t = 10. Note that the degradation levels of C1 and C2 at time t = 10 are measured, i.e.,

Z1
t = Z2

t = 2, X1
t = 15.91, X2

t = 22.16 and Z3
t = Z4

t = 1.
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Figure 9: Joint consideration of IMMRL and IMMRL−C for individual components ranking.

Note that the less important components are provided in the bottom left corner the figure and the

components in the top right corner are the most important ones. Obviously, each measure leads to a

different importance ranking and it is difficult to identify the most important component in absolute

terms. Nevertheless, if the decision maker considers that the improvement in the system life time is

a priority criterion, component C2 should be selected for preventive maintenance while C1 should be

chosen if an improvement of 2.70 atu in the system residual life is enough.

In a similar way, Figure 10 sketches the IMMRL vs IMMRL−C of two-component groups, evaluated

with a = 5%, b = 30%. The results show that (C1,C2) is the most important group according to both

IMMRL and IMMRL−C measures. This means that group (C1,C2) should be maintained together at

time t = 10.
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Figure 10: Joint consideration of IMMRL and IMMRL−C for ranking two-component groups.

6 Conclusions

In this work, a residual life-based importance measure, namely IMMRL, defined as the improvement

ability in the system life time when replacing a component or a group of several components, is intro-

duced. The proposed IMMRL measure can help to rank a component/group of components according

to its importance in the system residual life improvement by considering not only the available in-

formation related to the current condition (state or/and degradation level) of all components at a

given time point but also the system structure into a singe technical metric. The links with existing

importance measures (Birnbaum’s importance measure and conditional reliability-based importance

measure) are also established and discussed to highlight the originality and complementarity of the

proposed IMMRL measure. Furthermore, to consider economic aspects (e.g., economic dependence be-

tween components, preventive/corrective maintenance costs and the benefit gained from maintenance

operations), an extension of IMMRL measure is then developed. Thereby, IMMRL−C can be used

in finding the most cost-effective component/group of several components. To illustrate the use and

advantages of the proposed measures, a numerical example of a 4-non repairable component system

is investigated. The numerical results reveals that, at a given time point, IMMRL and IMMRL−C

depend strongly on the components degradation/failure process and the available information levels

on the current condition of the components. In addition, the economic dependence degree has also

an important impact on ranking groups of component. Importantly, IMMRL and IMMRL−C may

lead to two different importance rankings. Nevertheless, from a practical point of view, IMMRL

and IMMRL−C measures are complementary and should be jointly considered in finding the most

appropriate component/group of components to be preventively maintained.
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This paper presents the development of our research in the framework of importance measures for

predictive maintenance decision-making presented in part in [11]. Our future research will focus on

the development of the proposed importance measures for joint inspection and maintenance decision-

making with imperfect inspection quality. Another perspective could be a comparison study with

others importance measures for components ranking and maintenance decision-making of complex

systems.

Appendix

Appendix A. Reliability assessment with Weibull lifetime distribution

If the failure behavior of a component is described by a Weibull law, its lifetime follows a Weibull

distribution, fτ i(t), given by

fτ i(t) =
γi

ηi

( t
ηi

)(γi−1)
e
−
(
t

ηi

)γi
,

with parameters γi > 0 (shape or form parameter) and ηi > 0 (scale parameter). The reliability of

the component i is expressed as

ri(t) = e

(
t

ηi

)γi
. (29)

If component i is working at time t, i.e., Zit = 1, the conditional reliability of component i is written

as

ri(t+ u|Zit = 1) = e

[(
t+u

ηi

)γi
−
(

t

ηi

)γi]
. (30)

Appendix B. Reliability assessment with gamma degradation process

It is assumed that the degradation behavior of component i is described by a gamma processes (X̃t)t≥0

with the following characteristics:

• (X̃t)t≥0 has independent increments;

• for all 0 ≤ l < t, the random increment X̃t − X̃l follows a gamma probability density function

(pdf) with shape parameter αi(t− l) and scale parameter βi:

fXi
t
(x) =

1

Γ(αi(t− l))
(βi)α

i(t−l)xα
i(t−l)−1e−β

ixI{x≥0},

where, I{.} is an indicator function. I{x} = 1 if x ≥ 0, I{x} = 0 and otherwise;

The mean degradation speed is αi/ηi and its variance is αi/(βi)2. Noting that various degradation

behaviors can be modeled by changing the couple of parameters αi, βi.

According to the degradation process, the reliability of a component i can be assessed by:

ri(t) = P(Xi
t < Li) =

∫ Li

0

1

Γ(αit)
(βi)α

itxα
it−1e−β

ixdx. (31)
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If component i is working at time t and the degradation level of component i is measured at time t,

Zit = 2, Xi
t = xit (xit < Li), the conditional reliability of component i can be evaluated by:

ri(t+ u|Zit = 2) =

∫ Li

xit

1

Γ(αiu)
(βi)α

iuxα
iu−1e−β

ixdx, (32)
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[10] P. Do and C. Bérenguer. Conditional reliability-based importance measures. Reliability Engi-

neering & System Safety, 193:106633, 2020.
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