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Abstract

On the one hand, some electromagnetic symmetries of laser beams
are reflected in symmetry properties of the Poynting vector. On the
other hand, these symmetries are in turn embedded in symmetries re-
lating the beam shape coeffi cients which encode the structure of laser
beams. The present paper extends the beam shape coeffi cient symme-
tries of laser beams, already uncovered, to new families. Examples and
counter-examples are furthermore provided to illustrate these symmetries
and formal laboratories are proposed as a way to discover still more sym-
metries.
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1 Introduction.

Laser beams may be encoded in a set of beam shape coeffi cients (BSCs)
usually denoted as gmn,TM and gmn,TE , with TM and TE standing for "Trans-
verse Magnetic" and "Transverse Electric" respectively, and n ranging from 1
to infinity with −n < m < +n. These BSCs have been introduced in the frame-
work of generalized Lorenz-Mie theories (GLMTs), e.g. [1], [2], [3] with [4], [5]
for recent reviews. These GLMTs describe the interaction between "arbitrarily
shaped beams" and scattering particles which possess enough degrees of sym-
metries for allowing the use of the method of separation of variables. BSCs may
also be useful to deal with the extended boundary condition method (EBCM)
[6], [7] which describes scattering phenomena when arbitrary shaped particles
are illuminated by structured beams [8].

An issue of interest is then to investigate the symmetries of BSCs re-
lated to symmetries of the fields. In a scattering problem, symmetries of the
illuminating fields are indeed reflected in symmetries of the scattered fields, and
of the fields internal to the scatterer, these symmetries being in turn related to
BSCs symmetries.

To discuss this issue, we must begin with the introduction of a few
notations to describe the configurations in hand. As usual in the GLMTs
for spherical particles (in particular homogeneous particles described by the
GLMT stricto sensu), we consider two parallel Cartesian coordinate systems,
one Cartesian coordinate system OBuvw attached to the beam and in which the
beam is described, and another Cartesian coordinate system OPxyz attached
to the scatterer and in which the scattering fields and associated quantities are
described, with axis OBu parallel to the axis OPx, and similarly for OBv and
OP y, and again for OBw and OPz. The coordinates of OB in the system OPxyz
are denoted by (x0, y0, z0). It is assumed that the beam propagates along the
w-direction with a propagation term of the form exp(ikw), or exp(ikw cosα)
for beams exhibiting an axicon angle α such as Bessel beams to be considered
later in the sequel. It is usually assumed in GLMT that the time-dependence of
the beam is of the form exp(iωt), although some authors may have preferred to
use a time-dependence of the form exp(−iωt). BSC relationships between the
first convention —named P -convention with P standing for positive —and the
second convention —named N -convention with N standing for negative —will
be discussed later in the sequel. Conventions concerning associated Legendre
functions will be discussed as well later when appropriate.
As an example, let us consider a Gaussian beam in the fundamental mode

TEM00 which possesses an axis of symmetry and let us choose this axis as being
the axis OBw. The description of the beam in the coordinate system OPxyz is
then generally called an off-axis description. However, if x0 = y0 = 0, with z0
still different from 0, we say that the off-axis description has become an on-
axis description. From this example, although the introduction of a scatterer
has been convenient to introduce the different coordinate systems OBuvw and
OPxyz, the existence of a scatterer is not required to distinguish between off-axis
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and on-axis configurations.
A first attack on the search for symmetry relations has been published in

1994 in the general framework of off-axis configurations [9], with BSCs evalu-
ated using a technique called quadrature technique [10], [11]. It was stated that
symmetry relations may be used to simplify or check some analytical works, or
to speed up the numerical evaluations of BSCs by avoiding useless repetitive
calculations. For instance, among other relations, it has been demonstrated
that:

g−mn,TM (−x0, y0, z0) = (−1)m−1gmn,TM (x0, y0, z0) (1)

g−mn,TM (x0,−y0, z0) = gmn,TM (x0, y0, z0) (2)

g−m∗n,TM (x0, y0,−z0) = (−1)m−1gmn,TM (x0, y0, z0) (3)

and that such relationships imply symmetry relationships for quantities as-
sociated with a scattering process, such as:

Cext(x0, y0, z0) = Cext(−x0, y0, z0) = Cext(x0,−y0, z0) = Cext(x0, y0,−z0) (4)

Csca(x0, y0, z0) = Csca(−x0, y0, z0) = Csca(x0,−y0, z0) = Csca(x0, y0,−z0)
(5)

in which Cext and Csca are the extinction and scattering cross-sections re-
spectively, then showing that these cross-sections are symmetrical with respect
to x0, y0 and z0 respectively.

These symmetries, however, are related to the configurations used to
describe the beam. They are not related to the beam itself. The search for
symmetries of BSCs related to the symmetries of the beam started in 1996 [12].
This paper introduced what we call axisymmetric beams defined as beams for
which the component of the Poynting vector in the direction of propagation does
not depend on the azimuthal angle in a suitably chosen coordinate system. In
practice, the suitably chosen coordinate system is a coordinate system OPxyz
in which OP z is the axis of the beam, and the component of the Poynting
vector in the direction of propagation is the component Sz which does not
depend on ϕ, in which (r, θ, ϕ) are the usual spherical coordinates attached to
the Cartesian coordinates (x, y, z). We then exhibited a class of symmetries of
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BSCs, characterizing what we shall from now on call an on-axis axisymmetric
beam of the first kind, reading as:

gmn,TM = gmn,TE = 0, m 6= ±1 (6)

gn/2 = g1n,TM = g−1n,TM/K = −iεg1n,TE = iεg−1n,TE/K (7)

in which K is related to the polarization of the beam and ε = ±1 depends
on whether the beam propagates toward positive or negative z’s. A particular
interest of such beams is that the bi-index BSCs gmn,X (with X being TM or
TE) reduces to uni-index BSCs gn. Such a reduction occurs in particular for
Gaussian beams and the uni-index BSCs gn actually appeared at the very be-
ginning of the development of GLMT [13] and, when it occurs, it allows one to
dramatically simplify the description of the beam under consideration as well as
the formulation of GLMT, in particular allowing one to easily demonstrate that
LMT is indeed a special case of GLMT, e.g. Chapter 6 in [3]. The existence of
on-axis axisymmetric beams of the first kind has been revisited in 2017 [14] in
an enlarged context, including a discussion of vortex and non vortex beams, of
dark beams, and of BSCs symmetries in spheroidal and cylindrical coordinates.
In particular, dark beams (more specifically on-axis dark beams, i.e. dark beams
in an on-axis configuration in the present paper) are beams whose intensity Sz
is equal to 0 on the axis, i.e. for θ = 0. According to a darkness theorem [15],
these beams satisfy, whether they are axisymmetric or not [14]:

g±1n,TM = g±1n,TE = 0 (8)

Therefore, on-axis axisymmetric beams of the first kind are not dark.
However, non-dark axisymmetric beams of the first kind do not exhaust all
the kinds of non-dark axisymmetric beams, as it can been seen from a com-
ment between Eqs.(65) and (66) of [14]. Indeed, between the case of non-dark
axisymmetric beams of the first kind in which all BSCs of the form g±1n,X are
different from 0, as shown in Eq.7, and the case when all of them are 0 in the
case of dark beams, as shown in Eq.8, there is some room for a possible case
when some of them, but not all of them, are 0. The aim of the present paper
is to study the possibility for such cases, and indeed to exhibit a class of such
beams that we shall name axisymmetric beams of the second kind (which are
non-dark). As a by-product, Eq.8 which does not tell whether the concerned
beams are axisymmetric or not will be completed by two equations which en-
sure an axisymmetry. Therefore, beside non-dark axisymmetric beams of the
second kind, a class of axisymmetric dark beams will be added to the list of
axisymmetric beams.
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The present study is motivated by a recent work devoted to optical
forces in the Rayleigh limit of the generalized Lorenz-Mie theory [16], [17] and
its relationship with the dipole theory of forces [18], [19], [20], [21]. Specific
studies have been devoted to the cases of on-axis Bessel beams [22] and to the
more general case of on-axis axisymmetric beams of the first kind in a Part
I-paper [23]. As a propaedeutical step toward a follow-up of this Part I-paper,
the present paper is therefore devoted to non-dark axisymmetric beams of the
second kind and to axisymmetric dark beams.

The paper is organized as follows. Section 2 expounds preliminaries
useful in the sequel, recalling basic expressions for the longitudinal component of
the Poynting vector and the different ways to be used to evaluate BSCs. Section
3 demonstrates new expressions for the BSCs of axisymmetric beams. Section 4
deals with examples and Section 5 with counter-examples. Section 6 exemplifies
the fact that a class of beams named frozen waves provides laboratories to
discover new symmetries in the BSCs. Section 7 is a conclusion.

2 Preliminaries.

2.1 Longitudinal component of the Poynting vector.

The longitudinal component Sz of the Poynting vector, with the normaliza-
tion condition in which E0H∗0/2 = 1 (E0 and H0 are field strengths in a lossless
medium in which the beam propagates), reads as [12], [14]:

Sz =
−1

r2
Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

icpwn cpw∗p ei(m−q)ϕ (9)

(sin θSmqnp + cos θCmqnp )

in which:

Smqnp = kr[−gmn,TMg
q∗
p,TMψp(ψn + ψ

′′

n)P |m|n τ |q|p (10)

+gmn,TEg
q∗
p,TEψn(ψp + ψ

′′

p )P |q|p τ |m|n

+qgmn,TMg
q∗
p,TEψ

′

p(ψn + ψ
′′

n)P |m|n π|q|p

+mgmn,TMg
q∗
p,TEψ

′

n(ψp + ψ
′′

p )P |q|p π|m|n ]
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Cmqnp = −gmn,TMg
q∗
p,TMψpψ

′

n(τ |m|n τ |q|p +mqπ|m|n π|q|p ) (11)

+gmn,TMg
q∗
p,TEψ

′

nψ
′

p(mπ
|m|
n τ |q|p + qπ|q|p τ

|m|
n )

−gmn,TEg
q∗
p,TMψpψn(mπ|m|n τ |q|p + qπ|q|p τ

|m|
n )

+gmn,TEg
q∗
p,TEψnψ

′

p(mqπ
|m|
n π|q|p + τ |m|n τ |q|p )

in which ψn are Riccati-Bessel functions with the argument kr (in which k
is the wave-number) omitted for convenience, a prime (a double prime) denotes
a derivative (a double derivative) with respect to the argument, τmn and πmn
are generalized Legendre functions (with the argument cos θ omitted as well for
convenience), defined according to:

τmn (cos θ) =
dPmn (cos θ)

dθ
(12)

πmn (cos θ) =
Pmn (sin θ)

sin θ
(13)

in which Pmn (cos θ) are associated Legendre functions defined according to
Hobson’s convention [24]:

P |m|n (cos θ) = (−1)|m|(sin θ)|m|
d|m|Pn(cos θ)

(d cos θ)|m|
(14)

in which Pn’s are usual Legendre polynomials and, furthermore, the coeffi -
cients cpwn (with "pw" standing for "plane waves") are coeffi cients which origi-
nally appeared in the Bromwich approach to the generalized Lorenz-Mie theory
[13] and have been defined in such a way that the uni-index BSCs gn are phase-
factors (usually taken equal to 1) which do not depend on the value of the index
n, in the case of plane waves, propagating along the z-direction, but see [25] for
the case of oblique illumination. They read as:

cpwn =
1

ik
(−i)n 2n+ 1

n(n+ 1)
(15)
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2.2 Evaluating BSCs.

BSCs may be evaluated using quadrature techniques which have been the
first ones to be developed, see again [10], [11]. These techniques will not be
used in the present paper, except when they allow one to obtain closed form
expressions (examples will be provided). Because they are computationally in-
effi cient when the quadratures, instead of being carried out analytically, have
to be carried out numerically, there has been a search for alternative methods,
beginning with the finite series (FS) technique, see original papers in [26], [27]
and a recent modified FS-method in [28]. Up to recently, the most effi cient
and famous technique has however been the localized approximation approach,
which exists under several variants, in particular the integral localized approxi-
mation (ILA) technique [29] which may be viewed as a hybrid method between
the quadrature techniques and the original localization technique. Localized
approximations have been reviewed in [30], to be complemented with [31], [32].
These approximation techniques have been widely used because (i) they are for-
mally very easy to implement and (ii) they are more computationally effi cient
than the quadrature techniques, possibly with a gain of computational times by
three or four orders of magnitude.
However, it has recently been demonstrated that the accuracy of these ap-

proximation techniques may be in question when used for laser beams whose
descriptions exhibit an axicon angle and/or a topological charge (when the axi-
con angle is large, and/or when the topological charge is not small enough), e.g.
[33], [34], with applications to Bessel beams [35], [36], frozen waves which are
built from discrete or continuous superpositions of Bessel beams [37], Mathieu
beams [38], Laguerre-Gauss beams freely propagating or focused by a lens [39],
[40], and Bessel-Gauss beams [41]. As a result, the FS-techniques which had
been overlooked for a long time was born again, with applications to Laguerre-
Gauss beams freely propagating [42], [43], or focused by a lens [44], [45], and
Bessel-Gauss beams [41].

When the beam is Maxwellian (that is to say when its description satis-
fies Maxwell’s equations), the quadrature and FS-techniques are mathematically
exact and then provide the same values for the BSCs (notwithstanding residual
numerical inaccuracies). However, the localization techniques rely on approxi-
mations which may be very close (or not, e.g. beams with axicon angles and/or
topological charges) to the intended exact values. If the beam is not Maxwellian
however, all techniques provide a remodelling of the description, i.e. they change
a non-Maxwellian description to a Maxwellian description. The process of re-
modelling depends however on the method used and, although we may claim
that remodelled solutions describe Maxwellian beams in their own right, they
may depart more or less from the intended beam. For the sake of completeness,
let us mention as well the use of the angular spectrum decomposition (ASD)
which is reviewed in Section 2.6 of [5]. The interest of this subsection will be
made obvious when we deal with examples and counter-examples.
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3 New families demonstrated.

Without pretending to exhaustivity, we are going to look for a class of non-
dark axisymmetric beams in which all BSCs are zero but those associated with
values of m = M or Q. To begin with, let us proceed without specifying any
value of M and Q except that M 6= Q. We then look for a class of beams in
which all BSCs are zero except those which read gMn and gQn . We then consider
Eq.9, restrict the values of m and q to M and Q and force the result denoted
as SMQ

z to be independent of ϕ. Therefore, we demand that:

SMQ
z =

−1

r2
Re

∞∑
n=1

∞∑
p=1

icpwn cpw∗p (16)

{ei(M−Q)ϕ(sin θSMQ
np + cos θCMQ

np ) + ei(Q−M)ϕ(sin θSQMnp + cos θCQMnp )}
= 0

This equation shows that, if M = Q, then the beam is axisymmetric.
This is a somewhat trivial special case which is therefore excluded from the
present paper. Using Re(z) = Re(z∗), Eq.16 may be rewritten as:

SMQ
z =

−1

r2
Re{iei(M−Q)ϕ

∞∑
n=1

∞∑
p=1

(17)

[cpwn cpw∗p (sin θSMQ
np + cos θCMQ

np )

−cpw∗n cpwp (sin θSQM∗np + cos θCQM∗np )]}
= 0

Invoking Eq.15, Eq.17 may be rewritten as:

SMQ
z =

−1

k2r2

∞∑
n=1

∞∑
p=1

Anp Re{iei(M−Q)ϕ (18)

[(−i)nip(sin θSMQ
np + cos θCMQ

np )

−in(−i)p(sin θSQM∗np + cos θCQM∗np )]}
= 0

in which:
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Anp = Apn =
2n+ 1

n(n+ 1)

2p+ 1

p(p+ 1)
(19)

In Eq.18, the sin θ- and cos θ-terms must be separately equal to 0, lead-
ing to:

SMQ,sin
z =

− sin θ

k2r2

∞∑
n=1

∞∑
p=1

Anp Re{iei(M−Q)ϕ[(−i)nipSMQ
np − in(−i)pSQM∗np ]} = 0

(20)

SMQ,cos
z =

− cos θ

k2r2

∞∑
n=1

∞∑
p=1

Anp Re{iei(M−Q)ϕ[(−i)nipCMQ
np −in(−i)pCQM∗np ]} = 0

(21)

Let us consider Eq.20. Examining the functional dependences in Eq.10,
we notice that terms with subscripts np may have the same functional depen-
dences than terms with subscripts np interchanged. For instance, let us con-
sider the two first lines of Eq.10. The first line contains ψp(ψn +ψ

′′

n) becoming

ψn(ψp + ψ
′′

p ) of the second line. The same happens for P |m|n τ
|q|
p of the first line

becoming P |m|p τ
|q|
n of the second line if |M | = |Q|. Isolating such terms, we then

must have:

Re{iei(M−Q)ϕ[(−i)nipSMQ
np − in(−i)pSQM∗np +(−i)pinSMQ

pn − ip(−i)nSQM∗pn ]} = 0
(22)

This equation has to be worked out (i) for the case when n and p have
the same parity and (ii) for the case when they have different parities. Both
cases leading to the same results, let us be content with the first case. Then
Eq.22 becomes:

Re{iei(M−Q)ϕ[SMQ
np − SQM∗np + SMQ

pn − SQM∗pn ]} = 0 (23)

Using Re(z1z2) = Re(z1) Re(z2)− Im(z1) Im(z2), we then obtain:

Re iei(M−Q)ϕ Re(z2)− Im iei(M−Q)ϕ Im(z2) = 0 (24)
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in which:

z2 = SMQ
np − SQM∗np + SMQ

pn − SQM∗pn (25)

implying that both Re(z2) and Im(z2) = 0, that is to say:

(SMQ
np − SQM∗np + SMQ

pn − SQM∗pn )/(kr) = 0 (26)

Similarly, we may start from Eq.11 instead of from Eq.10, and consider
again separately the case when n and p have the same parities, and the case
when they have different parities. Both cases leading again to the same results,
we shall only consider the first case, leading to:

CMQ
np − CQM∗np + CMQ

pn − CQM∗pn = 0 (27)

From Eq.10, the coeffi cients occurring in Eq.26 read as:

SMQ
np /kr = −gMn,TMg

Q∗
p,TMψp(ψn + ψ

′′

n)P |M |n τ |Q|p (28)

+gMn,TEg
Q∗
p,TEψn(ψp + ψ

′′

p )P |Q|p τ |M |n

+QgMn,TMg
Q∗
p,TEψ

′

p(ψn + ψ
′′

n)P |M |n π|Q|p

+MgMn,TMg
Q∗
p,TEψ

′

n(ψp + ψ
′′

p )P |Q|p π|M |n

−SQM∗np /kr = +gQ∗n,TMg
M
p,TMψp(ψn + ψ

′′

n)P |Q|n τ |M |p (29)

−gQ∗n,TEg
M
p,TEψn(ψp + ψ

′′

p )P |M |p τ |Q|n

−MgQ∗n,TMg
M
p,TEψ

′

p(ψn + ψ
′′

n)P |Q|n π|M |p

−QgQ∗n,TMg
M
p,TEψ

′

n(ψp + ψ
′′

p )P |M |p π|Q|n

SMQ
pn /kr = −gMp,TMg

Q∗
n,TMψn(ψp + ψ

′′

p )P |M |p τ |Q|n (30)

+gMp,TEg
Q∗
n,TEψp(ψn + ψ

′′

n)P |Q|n τ |M |p

+QgMp,TMg
Q∗
n,TEψ

′

n(ψp + ψ
′′

p )P |M |n π|Q|p

+MgMp,TMg
Q∗
n,TEψ

′

p(ψn + ψ
′′

n)P |Q|n π|M |p

10



−SQM∗pn /kr = +gQ∗p,TMg
M
n,TMψn(ψp + ψ

′′

p )P |Q|p τ |M |n (31)

−gQ∗p,TEg
M
n,TEψp(ψn + ψ

′′

n)P |M |n τ |Q|p

−MgQ∗p,TMg
M
n,TEψ

′

n(ψp + ψ
′′

p )P |Q|p π|M |n

−QgQ∗p,TMg
M
n,TEψ

′

p(ψn + ψ
′′

n)P |M |n π|Q|p

Eq.26 then leads to eight equations reading as:

ψp(ψn + ψ
′′

n)P |M |n τ |Q|p [gMn,TMg
Q∗
p,TM + gQ∗p,TEg

M
n,TE ] = 0 (32)

ψn(ψp + ψ
′′

p )P |Q|q τ |M |n [gMn,TEg
Q∗
p,TE + gQ∗p,TMg

M
n,TM ] = 0 (33)

ψ′p(ψn + ψ
′′

n)P |M |n π|Q|p [gMn,TMg
Q∗
p,TE − g

Q∗
p,TMg

M
n,TE ] = 0 (34)

ψ′n(ψp + ψ
′′

p )P |Q|p π|M |n [gMn,TMg
Q∗
p,TE − g

Q∗
p,TMg

M
n,TE ] = 0 (35)

ψp(ψn + ψ
′′

n)P |Q|n τ |M |p [gQ∗n,TMg
M
p,TM + gMp,TEg

Q∗
n,TE ] = 0 (36)

ψn(ψp + ψ
′′

p )P |M |p τ |Q|n [gQ∗n,TEg
M
p,TE + gMp,TMg

Q∗
n,TM ] = 0 (37)

ψ′p(ψn + ψ
′′

n)P |Q|n π|M |p [gQ∗n,TMg
M
p,TE − gMp,TMg

Q∗
n,TE ] = 0 (38)

ψ′n(ψp + ψ
′′

p )P |M |p π|Q|n [gQ∗n,TMg
M
p,TE − gMp,TMg

Q∗
n,TE ] = 0 (39)

After elimination of redundancies, these eight equations lead to two
equations reading as:

gMn,TMg
Q∗
p,TM + gQ∗p,TEg

M
n,TE = 0 (40)
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gMn,TMg
Q∗
p,TE − g

Q∗
p,TMg

M
n,TE = 0 (41)

With a similar procedure, it is then found that Eq.27 leads again to these
Eqs.40 and 41. We then must distinguish between two cases as follows. First,
M and Q are different from ±1. Then, according to the darkness theorem,
we are facing a dark beam, e.g. Eq.8, which however is now axisymmetric
(recall that Eq.8 alone does not tell whether the beam is axisymmetric or not).
Second, one of the indices M or Q is equal to ±1. Then the beam is non-dark
and axisymmetric. This class of non-dark beams, complementing the non-dark
beams of Eqs.6 and 7 which were specified as being of the first kind, then
encompasses what we shall from now on call (non-dark) axisymmetric beams of
the second kind.

It is furthermore worthwhile to remark that there is no confusion or
orverlap between axisymmetric beams of the first kind (all g±1n,X are different
from 0) and axisymmetric beams of the second kind (not all g±1n,X are different
from 0). To illustrate this fact, let us rewrite Eqs.40-41 for M = Q = 1, leading
to:

g1n,TMg
1∗
p,TM + g1∗p,TEg

1
n,TE = 0 (42)

g1n,TMg
1∗
p,TE − g1∗p,TMg1n,TE = 0 (43)

But, from Eq.7, we have g1n,TE = iεg1n,TM . Recalling that ε2 = 1,
Eqs.42 and 43 become:

g1n,TMg
1∗
p,TM + g1∗p,TEg

1
n,TE = 2g1n,TMg

1∗
p,TM = 0 (44)

g1n,TMg
1∗
p,TE − g1∗p,TMg1n,TE = −2iεg1n,TMg

1∗
p,TM = 0 (45)

The first kind conditions imply that these equations cannot be satisfied,
illustrating the fact that axisymmetric beams of the first kind and of the second
kind are indeed of a different "nature".
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4 Examples.

4.1 (1,0) x-polarized circularly symmetric Bessel beams

The introduction of Bessel beams is due to Durnin and co-workers [46],
[47]. They are praised due their appealing property of being self-healing and
nondiffracting, meaning that they possess an invariance property, namely the
fact that the intensity of the beam is constant along the direction of propagation.
They also possess a not often mentioned property that the speed of propagation
of these beams may be much smaller than the speed of light, being equal to
c cosα0 [48], [49], in which c is the speed of light and α0 an angle, named
axicon angle, or half-cone angle, which occurs in the propagation term reading
exp(±ikz cosα0) instead of being of the form exp(±ikz) which is somehow more
usual. There actually exists an infinity of kinds of Bessel beams (i) with different
polarizations and (ii) depending on the form given to a certain function g(α0),
see [48], [50], [51], [52]. In particular, when g(α0) = (1 + cosα0)/4, the beam
reduces to a Davis circularly symmetric beam, e.g. [48], [53] while, when g(α0) =
1/2 it reduces to another kind of beams discussed in [54], [55], [56].
Also, to avoid any confusion, it is now important to comment on the defini-

tions of axisymmetric beams and of circularly symmetric Bessel beams. In the
present paper, we follow a definition which is about 25 years old according to
which axisymmetric light beams are beams for which the component Sz of the
Poynting vector does not depend on the azimuthal angle ϕ (at least in a suitably
chosen coordinate system), e.g. [12]. With this definition, circularly symmetric
beams are axisymmetric beams for which, in the same suitably chosen coordi-
nate system, the transverse component St = (S2x+S2y)1/2 of the Poynting vector
as well does not depend on ϕ. Outside of the context of the present paper, in
order to avoid any confusion, axisymmetric beams might better be called longi-
tudinal axisymmetric beams. The relationship in terms of symmetries of BSCs
between the BSCs of axisymmetric beams and the BSCs of circularly symmet-
ric beams has not been worked out, but it is suffi cient in this paper to have in
mind that circularly symmetric beams are (longitudinal) axisymmetric beams,
although the converse is not (necessarily) true.
Using a quadrature technique and solving quadratures analytically, BSCs of

circularly symmetric beams have been obtained in closed forms in an off-axis
configuration in [52] and conveniently rewritten in [16]. In the case of on-axis
configurations, they simplify to [22]:

gl+1n,TM = −g(α0) exp(ikzz0)A
l+1
n (46)

gl−1n,TM = −g(α0) exp(ikzz0)B
l−1
n (47)
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gl+1n,TE = ig(α0) exp(ikzz0)A
l+1
n (48)

gl−1n,TE = −ig(α0) exp(ikzz0)B
l−1
n (49)

in which l denotes the order of the beam, kz = k cosα0 is the longitudinal
wave number, and:

Al+1n = (−1)(l+1−|l+1|)/2
(n− l − 1)!

(n+ |l + 1|)! [τ
l+1
n (cosα0) + (l + 1)πl+1n (cosα0)] (50)

Bl−1n = (−1)(l−1−|l−1|)/2
(n− l + 1)!

(n+ |l − 1|)! [τ
l−1
n (cosα0)− (l − 1)πl−1n (cosα0)] (51)

We then observe that the only nonzero BSCs are those for which m =
l ± 1. For l = 0 (m = ±1), we readily find that Eqs.6-7 are satisfied with
K = B−1n /A1n and ε = −1, so that we are facing non-dark axisymmetric beams
of the first kind. For l = +2 (m = 1 and 3) and l = −2 (m = −1 and −3),
it is readily found that Eqs.40-41 are satisfied, so that we are facing non-dark
axisymmetric beams of the second kind. Next, let us assume l different from 0,
+2, and (−2) already considered just above, i.e. m different from ±1, so that
we are facing dark beams. We readily find:

gl+1n,TMg
l−1∗
p,TM + gl−1∗p,TEg

l+1
n,TE = 0 (52)

gl+1n,TMg
l−1∗
p,TE − g

l−1∗
p,TMg

l+1
n,TE = 0 (53)

showing that Eqs.40-41 are satisfied, i.e. these dark beams are axisymmetric.
The fact that all these Bessel beams considered in this section are axisymmetric
are however not surprising insofar as they are already circularly symmetric.
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4.2 Bessel beams. Other polarizations.

Other polarizations, which are circularly symmetric as well [50], have been
discussed in [51]. BSCs for an off-axis configuration are given in [57]. For on-axis
configurations, they read as:

gmn,TM = ig(α0)(−1)(m−|m|)/2
(n−m)!

(n+ |m|)! exp(ikzz0){ (54)

[ipxτ
m
n (cosα0) + pymπ

m
n (cosα0)]

×[il−m+1ei(l−m+1)φ0Jl−m+1(0) + il−m−1ei(l−m−1)φ0Jl−m−1(0)]

+[ipyτ
m
n (cosα0)− pxmπmn (cosα0)]

×[−i.il−m+1ei(l−m+1)φ0Jl−m+1(0) + i.il−m−1ei(l−m−1)φ0Jl−m−1(0)]}

gmn,TE = g(α0)(−1)(m−|m|)/2
(n−m)!

(n+ |m|)! exp(ikzz0){ (55)

[ipxmπ
m
n (cosα0) + pyτ

m
n (cosα0)]

×[il−m+1ei(l−m+1)φ0Jl−m+1(0) + il−m−1ei(l−m−1)φ0Jl−m−1(0)]

+[−pxτmn (cosα0) + ipymπ
m
n (cosα0)]

×[−i.il−m+1ei(l−m+1)φ0Jl−m+1(0) + i.il−m−1ei(l−m−1)φ0Jl−m−1(0)]}

in which φ0 is an angle used to specify the rotational location of the off-axis
coordinate system, Jk(.) are cylindrical Bessel function of the first kind of order
k, and px, py define the polarization of the beam in the framework of an ASD
according to (px, py) = (1, 0) for x-polarization, (0, 1) for y-polarization, (1, i)
for left circular polarization, (1,−i) for right circular polarization, (cosβ, sinβ)
for radial polarization, and (− sinβ, cosβ) for azimuthal polarization in which
β is an azimuthal angle [58], [59].
Because Jk(0) = δk0, Eqs.54-55 show that the only nonzero BSCs are those

for which m = l ± 1, according to:

gl+1n,TM = ig(α0)(−1)(l+1−|l+1|)/2
(n− l − 1)!

(n+ |l + 1|)! exp(ikzz0) (56)

×(ipx + py)[τ l+1n (cosα0) + (l + 1)πl+1n (cosα0)]

gl−1n,TM = ig(α0)(−1)(l−1−|l−1|)/2
(n− l + 1)!

(n+ |l − 1|)! exp(ikzz0) (57)

×(ipx − py)[τ l−1n (cosα0)− (l − 1)πl−1n (cosα0)]
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gl+1n,TE = g(α0)(−1)(l+1−|l+1|)/2
(n− l − 1)!

(n+ |l + 1|)! exp(ikzz0) (58)

×(ipx + py)[τ l+1n (cosα0) + (l + 1)πl+1n (cosα0)]

gl−1n,TE = −g(α0)(−1)(l−1−|l−1|)/2
(n− l + 1)!

(n+ |l − 1|)! exp(ikzz0) (59)

×(ipx − py)[τ l−1n (cosα0)− (l − 1)πl−1n (cosα0)]

which satisfies gl+1nTM = igl+1n,TE and gl−1nTM = −igl+1n,TE . For l = 0, we
then find again that Eqs.6-7 are satisfied with ε = −1, and:

K =
(n+ 1)!

(n− 1)!

(py − ipx)[τ−1n (cosα0) + π−1n (cosα0)]

(ipx + py)[τ1n(cosα0) + π1n(cosα0)]
(60)

This equation can be simplified by complementing Eq. 14 with another
equation useful to deal with negative superscripts according to [60]:

P−mn (cosα0) = (−1)m
(n−m)!

(n+m)!
Pmn (cosα0) (61)

leading to:

K =
ipx − py
ipx + py

(62)

We are then facing again non-dark axisymmetric beams of the first kind.
For l = +2 (m = 1 and 3) and l = −2 (m = −1 and −3), it is readily found
again that Eqs.40-41 are satisfied, so that we are facing non-dark axisymmetric
beams of the second kind. For dark beams, i.e. for l 6= 0, ±2, we find as well
that Eqs.40-41 are satisfied, i.e. these dark beams are axisymmetric.
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4.3 Lommel beams.

Lommel beams are constituted by a combination of Bessel beams of various
orders (i.e. topological charges) as exemplified by the expression of the basic
electric modes in cylindrical coordinates (r, ϕ, z) reading as, e.g. Eq.(1) in [61]:

El = exp(ikzz

∞∑
p=0

(−1)pc2p exp[i(l + 2p)ϕ]Jν+2p(ktr) (63)

in which El is the x- or y-component of the electric field which is obtained
from a solution of the scalar wave equation (meaning that the beam is not
Maxwellian), kz = k cosα0 and kt = k sinα0 are the longitudinal and transverse
wavenumbers respectively. The beam being not Maxwellian, its expression in
terms of BSCs will therefore provide a remodelling of the beam, turning it
from a non-Maxwellian beam to a Maxwellian beam. In [61], these BSCs are
evaluated using the ILA which is fairly satisfactory for small enough axicon
angles, as discussed in subsection 2.2 (although it is likely that quadratures of
the quadrature techniques could be performed analytically), leading to localized
BSCs for localized Lommel beams. These BSCs for x- and y-polarizations in
an off-axis configuration are provided in Eqs.(7) and (9). Relying on Fig.1 in
[61] and remembering that we are currently providing examples of axisymmetric
beams, we set c = 0 and specify Eqs.(7) and (9) for on-axis configurations. Once
more, it is then found that the nonzero BSCs are for m = l ± 1.
For l = 0, and for x- and y-polarizations, the BSCs then read as:

g1n,TM

(
x
y

)
=

(
1
−i

)
Z1n
2
J0(wn) exp(ikzz0) (64)

g−1n,TM

(
x
y

)
=

(
1
i

)
Z−1n

2
J0(wn) exp(ikzz0) (65)

g1n,TE

(
x
y

)
=

(
−i
−1

)
Z1n
2
J0(wn) exp(ikzz0) (66)

g−1n,TE

(
x
y

)
=

(
i
−1

)
Z−1n

2
J0(wn) exp(ikzz0) (67)

in which:
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wn = (n+
1

2
) sinα0 (68)

and [29]:

Zmn = (
−2i

2n+ 1
)|m|−1 for m 6= 0 (69)

Z0n =
2n(n+ 1)

(2n+ 1)
(70)

and, in particular, for m = ±1, we have Z1n = Z−1n = 1. Eqs.64-67 then
satisfy Eqs.6-7 for both polarizations, with K = ±1 and ε = −1, so that we are
facing non-dark axisymmetric beams of the first kind. The BSCs for ν = +2
(m = 1 and 3), and x- and y-polarizations, are found to read as:

g1n,TM

(
x
y

)
=

(
1
i

)
Z1n
2
J2(wn) exp(ikzz0) (71)

g3n,TM

(
x
y

)
=

(
1
−i

)
Z3n
2
J2(wn) exp(ikzz0) (72)

g1n,TE

(
x
y

)
=

(
i
−1

)
Z1n
2
J2(wn) exp(ikzz0) (73)

g3n,TE

(
x
y

)
=

(
−i
−1

)
Z3n
2
J2(wn) exp(ikzz0) (74)

while, for ν = −2 (m = −1 and −3), we have:

g−1n,TM

(
x
y

)
=

(
1
−i

)
Z−1n

2
J−2(wn) exp(ikzz0) (75)

g−3n,TM

(
x
y

)
=

(
1
i

)
Z−3n

2
J−2(wn) exp(ikzz0) (76)

g−1n,TE

(
x
y

)
=

(
−i
−1

)
Z−1n

2
J−2(wn) exp(ikzz0) (77)
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g−3n,TE

(
x
y

)
=

(
i
−1

)
Z−3n

2
J−2(wn) exp(ikzz0) (78)

It is then readily checked that these BSCs satisfy Eqs.40-41 so that we
are facing non-dark axisymmetric beams of the second kind. As a last example
of Lommel beams, we shall consider the case v = 4 (m = 3 and 5), because it is
displayed (for the x−polarization) in Fig.1a (with the parameter c = 0). This
figure vividly suggests that we are facing an axisymmetric dark beam. Indeed,
the BSCs are found to be:

g3n,TM

(
x
y

)
=

(
1
i

)
Z3n
2
J4(wn) exp(ikzz0) (79)

g5n,TM

(
x
y

)
=

(
1
−i

)
Z5n
2
J4(wn) exp(ikzz0) (80)

g3n,TE

(
x
y

)
=

(
i
−1

)
Z3n
2
J4(wn) exp(ikzz0) (81)

g5n,TE

(
x
y

)
=

(
−i
−1

)
Z5n
2
J4(wn) exp(ikzz0) (82)

which satisfy Eqs.40-41.

4.4 Bessel-Gauss beams using finite series.

Bessel beams possess the defect of carrying an infinite amount of energy so
that they are not physical. Bessel-Gauss beams result from an apodization of
Bessel beams by a Gaussian beam which truncates them in order to obtain a
finite energy, physically feasible, beam [62], [63]. The beam description is based
on a paraxial approximation in which the x-component of the electric field is
given in cylindrical coordinates (ρ, ϕ, z) by the scalar field of Eq.(1) in [41],
according to:

Ex =
E0
µ

exp(
−q2ρ2
µ

)Jl(
ρkt
µ

) exp(
ik2t z

2kµ
)eilϕe−ikz (83)

in which kt = k sinα0 is the transverse wave number, q is a parameter
which regulates the transverse intensity width of the Gaussian apodization, and
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µ = 1− 2iks2z, where s is the beam confinement factor of the beam, according
to a usual definition for Gaussian beams, namely s = 1/(kw0) in which w0 is the
beam waist radius, and, as usual in this paper, l denotes the order of the beam.
It is worthwhile to insist on the fact that the term exp(ikz) in Eq.83 is correct al-
though the reader might have expected to read exp(−ik cosα0z) = exp(−ikzz).
Actually the longitudinal wavenumber kz is embedded in the exponential factor
whose exponent is proportional to k2t . This fact may be retrieved from Eqs.(15)
and (20) in [64] in which kt and kz are denoted ηn and ζn respectively, from
which we may establish that k2t /(2k) = (k − kz).
Faraday’s law is afterward used to determine the y-component of the mag-

netic field according to (5× E)y=∂zEx − ∂xEz ≈ ∂zEx = −iωµ0Hy in which
we assumed a highly paraxial situation and neglected the x-derivative of Ez.
The z-derivative is lengthy to perform but it is suffi cient to remark that it does
not alter the topological term eilϕ of Eq.83, so that Hy is proportional to it.
As a result, the Poynting vector, reduced to its z-component, does not depend
on ϕ. Therefore, we are facing a non-Maxwellian (paraxial) beam which is ax-
isymmetric. This implies that the ILA- and the FS-technique will proceed by
changing a non-Maxwellian beam to a Maxwellian beam. Furthermore, when
s → 0, the Gaussian envelope used for apodization becomes larger and larger,
and the Bessel-Gauss beams returns to a Bessel beam. For α0 = 0, it returns
to a paraxial Gaussian beam. For s = α0 = 0, it becomes a plane wave.

This subsection is devoted to the FS-technique. The use of the ILA-technique
will provide an interesting counter-example in subsection 5.1. BSCs obtained
by using the FS-technique are given by Eqs.(19)-(20) and (30)-(31) in [41] for
the TM -coeffi cients. These BSCs may be conveniently rewritten as:

gl+1n,TM =
in+1

2l+1
Γ(n−l+12 )

Γ(n+l+22 )
Aln, (n−m) even (84)

gl−1n,TM =
−in+1
2l−1

Γ(n−l+32 )

Γ(n+l2 )
Aln, (n−m) even (85)

gl+1n,TM =
in

2l+1
Γ(n−l2 )

Γ(n+l+32 )
Bln, (n−m) odd (86)

gl−1n,TM =
−in
2l−1

Γ(n−l+22 )

Γ(n+l+12 )
Bln, (n−m) odd (87)

which shows that the nonzero BSCs are those for which m = l ± 1. The
fact that we have to distinguish between the cases (n −m) even and (n −m)
odd is typical of the FS-technique. Furthermore, Aln and Bln are finite series
whose expressions are fairly complicated but that we do not need to provide
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explicitly. Furthermore, in [41], rather than applying the FS-technique to obtain
TE-coeffi cients (i.e. by working on the magnetic field rather than working on
the electric field), it has been preferred to force them by using:

gl±1n,TM = ±igl±1n,TE (88)

It is then an exercise, using Eqs.84-88, to check that, for l = 0 (i.e.
m = ±1), Eqs.6-7 are satisfied with ε = −1 and, for both (n − m) even and
(n−m) odd:

K = −4
Γ(n+22 )Γ(n+32 )

Γ(n+12 Γ(n2 )
= −n(n+ 1) (89)

so that we are facing non-dark axisymmetric beams of the first kind. For
l 6= 0, we afterward may simply check, using only Eq.88 that Eqs.40-41 are
satisfied. Therefore, for l = ±2, we are facing non-dark axisymmetric beams of
the second kind while, otherwise, for l 6= 0,±2, we are facing axisymmetric dark
beams. Hence, the FS-technique, as used above, remodelled non-Maxwellian
axisymmetric beams to Maxwellian axisymmetric beams. We shall see in sub-
section 5.1 that the situation will be different for the ILA-remodelling.

4.5 Laguerre-Gauss beams freely propagating.

As a last example, we now consider Laguerre-Gauss beams freely propagat-
ing which provide again a case of paraxial non-Maxwellian beams. The electric
field is obtained from the following expression [42], [43]:

E = (Ex, Ey, Ez) = (E0Ee−ikz, 0, 0) (90)

in which E is extracted from the radial component Er of the electric field
given by Siegman [65], [66], and reads as:

E(r, θ, ϕ) =
1

kw(r cos θ)

(
r sin θ

√
2

w(r cos θ)

)l
Llµ(

2r2 sin2 θ

w2(r cos θ)
) (91)

exp[− ikr
2 sin2 θ

2q̃(r cos θ)
] exp[i(2µ+ l + 1)ψ(r cos θ)] exp(ilϕ)

21



in which:

w(r cos θ) = w0

√
1 +

(
2r cos θ

kw20

)2
(92)

q̃(r cos θ) = r cos θ +
ikw20

2
(93)

ψ(r cos θ) = tan−1
2r cos θ

kw20
(94)

in which w0 is the beam waist radius of the beam, while µ and l define
the type of Laguerre-Gauss beam under study. Also, Llµ denotes associated
Laguerre polynomials defined as follows [67], [68]:

Llµ(x) =
1

µ!

µ∑
i=0

µ!

i!

(
l + µ
µ− i

)
(−x)i (95)

in which () denotes a binomial coeffi cient. The "usual" Laguerre polyno-
mials Lµ(x) are L0µ(x). The associated Laguerre polynomials can be evaluated
recursively from the first two polynomials as follows:

Lα0 (x) = 1 (96)

Lα1 (x) = 1 + α− x (97)

Lαk+1(x) =
(2k + 1 + α− x)Lαk (x)− (k + α)Lαk−1(x)

k + 1
(98)

Faraday’s law may then be used to evaluate the magnetic field according
to:

H =
1

−iωµ curlE =
1

−iωµ (0,
∂Ex
∂z

, 0) (99)

in which µ is the permeability. From Eqs.90, 91 and 99, and removing
artefacts which include ∂E/∂z, we obtain:
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H = (0, H0Ee−ikz, 0) (100)

in which we have used E0/H0 = ωµ/k. The removal of the artefacts aimed to
symmetrize expressions for the electric and magnetic field components. Consid-
ering that E is proportional to eilϕ, Sz does not depend on ϕ, and we therefore
are facing a non-Maxwellian axisymmetric beam. The remodelling will there-
fore turns a non-Maxwellian axisymmetric beam to a Maxwellian beam whose
axisymmetry is to be tested.
The remodelling is carried out using the FS-technique and it is found, as

usual, that the only nonzero BSCs are those for which m = l ± 1. For the sake
of conciseness, we shall not consider dark beams in this section. We then begin
with the case when the order l = 0 (m = ±1). We recall that the FS-technique
distinguishes the case when (n − m) is even and the one when it is odd. For
(n−m) even, the expressions for the BSCs g±1n,TM are given in Eqs.(68) and (70)
of [42] while they are given by Eqs.(101) and (103) for the case (n −m) odd.
In all cases, we readily obtain g+1n,TM = g−1n,TM . For the TE-BSCs, as the result
of the symmetry forcing explained above, we have, from Eqs.(104) and (106)
in [42]: g+1n,TM = ig+1n,TE and g

−1
n,TM = −ig−1n,TE . These BSCs therefore satisfy

Eqs.6-7. Hence Laguerre-Gauss beams freely propagating of order 0 remodeled
by the FS-technique are on-axis axisymmetric beams of the first kind.
We now consider the case when the order is equal to 2 (the case when the

order is −2 is not considered because [42] does not deal with negative orders).
From Eqs.(68)-(69) in [42], we may write, with µ denoting the case of Llµ-
Laguerre-Gauss polynomial in discussion, for (n−m) even:

[g3n,TM ]evenµ =
1

16

(−1)
n+3
2 (n−32 )!

Γ(n2 + 2)
SevenTM (101)

[g1n,TM ]evenµ =
1

4

(−1)
n+1
2 (n−12 )!

Γ(n2 + 1)
SevenTM (102)

in which n is odd, n � 3 in Eq.101 and n � 1 in Eq.102, and in which:

SevenTM = in
√
π

≤n/2∑
q=0

2
1
2+n−2q

Γ( 12 + n− q)
q!

[bn−2q]
even
µ (103)

in which [bn−2q]
eeven

µ is given by Eqs.(54), (55) and (60) in [42]. Conversely,
for (n−m) odd, we have, from Eqs.(101)-(102):
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[g3n,TM ]oddµ =
1

32

(−1)
n
2+1(n2 − 2)!

Γ(n+52 )
SoddTM (104)

[g1n,TM ]oddµ =
1

8

(−1)
n
2 (n2 − 1)!

Γ(n+32 )
SoddTM (105)

in which n is even, n � 3 in Eq.104 and n � 1 in Eq.105, and in which:

SevenTM = in
√
π

≤n/2∑
q=0

2
1
2+n−2q

Γ( 12 + n− q)
q!

[bn−2q]
odd
µ (106)

in which [bn−2q]
odd
µ is given by Eqs.(88), (91) and (93) in [42].

The TE-BSCs are given by Eqs.(104)-(105), whatever the parities of n
and m according to:

[g3n,TM ]µ = i[g3n,TE ]µ (107)

[g1n,TM ]µ = −i[g3n,TE ]µ (108)

These equations then readily imply that, whatever the parities:

T1 = g3n,TMg
1∗
p,TM + g1∗p,TEg

3
n,TE = 0 (109)

T2 = g3n,TMg
1∗
p,TE − g1∗p,TMg3n,TE = 0 (110)

implying that we are facing on-axis axisymmetric beams of the second kind.
The facts that BSCs are those of axisymmetric beams agree with the fact,
already known, that Sz does not depend on ϕ. Note that the same kind of
beams has been studied using a localized approximation, e.g. [39], but the TE-
coeffi cients have not been worked out. Therefore, this case is omitted from the
present paper.
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5 Counter-examples.

5.1 Bessel-Gauss beams with ILA.

For this counter-example, we return to Bessel-Gauss beams of subsection
4.4. which studied the case of an axisymmetric non-Maxwellian beam which has
been turned to an axisymmetric Maxwellian beam by using a remodelling with
the FS-technique. The choice of the remodelling technique (and the details of
the implementation of this technique) is exemplified in this section by using the
ILA-technique in a way that will turn the original axisymmetric non-Maxwellian
beam to a remodelled non-axisymmetric Maxwellian beam [41].
Remodelling using ILA, the on-axis BSCs read as, from Eq.(4) in [41]:

gmn (
TM
TE

) =
Zmn
2µ

[
1

i(1 + cosα0−1
µ )

] exp(
−ik sin2 α0z0

2µ
) exp(

−s2wn2

sin2 α0µ
)e−i(m−l+1)φ0

×[e2iφ0Jm−1(wn)Jm−1−l(0)± Jm+1(wn)Jm+1−l(0)] expikz0 (111)

in which Zmn is given by Eqs.69-70, wn is given by Eq.68 and µ = 1+2iks2z0.
These BSCs are zero excepted when m = l ± 1. The nonzero BSCs then read
as:

gl+1n (
TM
TE

) =
Zl+1n

2µ
[

1
i(1 + cosα0−1

µ )
] exp(

−ik sin2 α0z0
2µ

) exp(
−s2wn2

sin2 α0µ
)Jυ(wn) expikz0

(112)

gl−1n (
TM
TE

) = ±Z
l−1
n

2µ
[

1
i(1 + cosα0−1

µ )
] exp(

−ik sin2 α0z0
2µ

) exp(
−s2wn2

sin2 αµ
)Jυ(wn) expikz0

(113)

For l = 0, the only nonzero BSCs are those of the form g±1n , reading as:

g+1n (
TM
TE

) =
1

2µ
[

1
i(1 + cosα0−1

µ )
] exp(

−ik sin2 α0z0
2µ

) exp(
−s2wn2

sin2 α0µ
)J0(wn) expikz0

(114)
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g−1n (
TM
TE

) = ± 1

2µ
[

1
i(1 + cosα0−1

µ )
] exp(

−ik sin2 α0z0
2µ

) exp(
−s2wn2

sin2 α0µ
)J0(wn) expikz0

(115)

in which we have used again Z±1n = 1. For axisymmetric beams of the first
kind, we should satisfy Eq.7. From Eqs.114-115, we have:

g1n,TM = g−1n,TM and g1n,TE = −g−1n,TE (116)

which indeed impliesK = 1. But, from Eq.7, we would expect g1n,TM/g
−1
n,TE =

iε, which is in conflict with Eqs.114-115 which indeed implies:

g1n,TM

g−1n,TE
=

−1

i(1 + cosα0−1
µ )

(117)

Note however that there is no conflict for α0 = 0, as we should have expected,
since Eq.117 then implies that g1n,TM/g

−1
n,TE = iε. Therefore, although the non-

Maxwellian original beam is axisymmetric, the remodelling has introduced a
dependency with respect to ϕ. We may check that the same conclusion holds
for other values of the order l, Eqs.40-41 being not satisfied but for α0 = 0. ILA
would have preserved the axisymmetric of the beam if it had been forced by
using Eq.88. This exemplifies the fact that not only the choice of the remodelling
technique is significant, but the details of its implementation as well.
The lack of axisymmetry is displayed in the set of Figs.1. exhibiting the nor-

malized S2z for α0 = 2◦, 10◦, 30◦ and 60◦. Computations have been made for a
wavelength in air equal to 1064 nm, with a beam propagating in water (refrac-
tive index equal to 1.33). The order of the beam is l = 0, the beam confinement
factor is s = 0.001 and z0 = 0. This implies µ = 1 and g1n,TM/g

−1
n,TE = i/ cosα0

and:

g1n,TM =
1

2
exp(

−s2w2n
sin2 α0

)J0(wn) = g−1n,TM (118)

g1n,TE =
i

2
exp(

−s2w2n
sin2 α0

)J0(wn) cosα0 = −g−1n,TE (119)

We may then state that the loss of axisymmetric is weak insofar as it is
not readily perceived for α0 = 2◦, 10◦ and 30◦ and can only be detected for
α0 = 60◦.
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5.2 Laguerre-Gauss beams focused by a lens.

Relying on [69], [70], [71], this case has been worked out in [44], [45]. The
components Ex, Ey, Hx, Hy of these beams are given in Eqs.(25)-(26), (34) and
(38) of [44], from which it is found that Sz still depends on ϕ. Therefore, we
do not expect that the conditions characterizing BSCs of axisymmetric beams
would be satisfied in the present case. It is then suffi cient to deal with a case
as simple as possible. For this, we rely on the BSCs expressed by using the
FS-method in [44]. These BSCs are expressed using the N-convention, that is
to say assuming that the time-dependence of the fields is exp(−iωt) opposite
to the P-convention, which is the usual convention when dealing with GLMT,
that is to say assuming that the time-dependence of the fields is of the form
exp(+iωt). The relationship between the BSCs expressed in the N-convention
and those expressed in the P-convention is given by [72], [44]:

(
gmn,TM (P )

gmn,TE(P )

)
= (−1)n+1

(
g−m∗n,TM (N)

g−m∗n,TE(N)

)
(120)

BSCs with the N-convention are different from 0 only for m = l + 1 and
m = l − 1 [44]. Eq.120 then implies that BSCs with the P-convention are
different from 0 only for m = −l − 1 and m = −l + 1. This is indeed what we
observed using quadratures and localized approximations with the P-convention,
see Eqs.(47)-(48) and Table 2 in [40]. As a simple illustrative example, we
consider the case when the order l of the beam is +2, for which m = −3,−1 in
the P-convention and m = 1, 3 in the N-convention. We shall be content to test
Eq.40, that is to say, in the P-convention, to ask the question:

g−3n,TMg
−1∗
p,TM + g−1∗p,TEg

−3
n,TE = 0 ? (121)

which, using Eq.120, becomes, in the N-convention to be used here:

g3n,TMg
1∗
p,TM + g1∗p,TEg

3
n,TE = 0 ? (122)

Subsequent equations with FS-technique for Laguerre-Gauss beams focused
by a lens will deal with the N-convention, a fact which will be denoted in the
notation. Since a simple counter-example to Eq.122 is suffi cient to our purposes,
we shall use trivial Laguerre-Gauss beams of the form L20(x) = 1, with partial
waves of order n = 3 (i.e. BSCs with a subscript n = 3). We recall that the
FS-technique distinguishes the BSCs gmn,TM and gmn,TE depending on whether
(n−m) is even or odd. With n = 3 and m = 1, 3 we have to deal with (n−m)
even. The expressions for the BSCs are then obtained from Eqs (96), (102),
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(165) and (176) in [44]. After rearranging and simplifying, they read as, with
the subscript 0 referring to the order 0 of the Laguerre-Gauss beam L20(x):

[g33,TM (N)]0 =
iβ − α

16
A320 (123)

[g13,TM (N)]0 =
α+ iβ

8
(5A320 − 10B320 + 4B120) (124)

[g33,TE(N)]0 =
i(iβ − α)

32
√

2
P 320 (125)

[g13,TE(N)]0 =
−i(α+ iβ)

16
√

2
(5P 320 + 10Q320 − 4Q120) (126)

in which α and β are complex coeffi cients which determine the dominant
state of polarization [71], [70], [69], and A , B, P, Q are integrals reading as:

Anl0 =

kNA∫
0

η|l|+1√√
k2 − η2

exp[−c(η)][(1 +

√
k2 − η2
k

)(
η

k
)n−1dη (127)

Bnl0 =

kNA∫
0

η|l|+1√√
k2 − η2

exp[−c(η)][(1−
√
k2 − η2
k

)(
η

k
)n−1dη (128)

Pnl0 =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 exp[−c(η)]A(η)dη (129)

Qnl0 =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 exp[−c(η)]B(η)dη (130)

in which:

A(η) = (1−
√
k2 − η2
k

)η2 − (1 +

√
k2 − η2
k

)(2k2 − η2) (131)
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B(η) = (1 +

√
k2 − η2
k

)η2 − (1−
√
k2 − η2
k

)(2k2 − η2) (132)

Furthermore, we have:

c(η) = η2
k2S
2k2

R2f (133)

in which kS =
√

2/w0 (with w0 being the beam waist radius), Rf is the
focal length and NA is the numerical aperture of the imaging system. Inserting
Eqs.126-127 into the l.h.s. of Eq.122 with n = p = 3, and assuming α = 1,
β = 0, we obtain:

g33,TMg
1∗
3,TM + g1∗3,TEg

3
3,TE =

−1

1024
[8A320(5A

3
20 − 10B320 + 4B120) (134)

−P
3
20

8
(5P 320 + 10Q320 − 4Q120)]

which is found to be a real number equal to ' −4.24.1015, confirming that
the beam is not axisymmetric. The lack of axisymmetry is well evidenced in
Fig.2 displaying S2z in the z = 0 plane.
This may seem to be in conflict with Eqs.109-110 which showed that, for

l = 2, we were facing a Laguerre-Gauss freely propagating which was axisym-
metric, and with this other fact that the focusing lens in the case considered
in this subsection is not supposed to alter the axisymmetry of the beam. The
explanation is that the axisymmetry of the Laguerre-Gauss beam of subsection
4.5 has been forced by the way used to go from a scalar solution to a vectorial
case. In contrast with this freely propagating case which, furthermore, was non-
Maxwellian, the case considered in the present section is Maxwellian according
to [70], and as confirmed by the excellent agreement between BSCs obtained
either by quadratures or by the FS-technique as displayed in Table 3 of [45].
Indeed, in the case of non-Maxwellian beams, quadrature values and FS-values
would have been remodelled and, the remodelling processes being different, the
values would have expectedly been different as well.
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6 Frozen waves laboratories.

Frozen waves are structured light fields constructed from specific superposi-
tions of Bessel beams allowing one to control the longitudinal intensity pattern,
a feature which is not possible when dealing with a single nondiffracting Bessel
beam [73], [74], [75], [76]. Extensions to the generation of two-dimensional in-
tensity patterns over predetermined surfaces have also been recently explored
[77], [78], with applications to transverse intensity control vividly illustrated
in Fig. 1 of [77]. Vector frozen wave solutions to the Helmholtz equation are
easily constructed from superpositions of vector Bessel beams [79], [80], with
several polarization states, and BSCs evaluated either using a localized approx-
imation scheme [81], [82], [37] or using an analytical exact approach derived
from quadratures [83], [84], [85].
We are going to exemplify the fact that such frozen waves may provide lab-

oratories to establish new expressions involving BSCs and reflecting symmetry
properties of the corresponding beams. To this purpose, let us consider the
(1, 0)-polarization of circularly symmetric beams described by Eqs.(6)-(7) of
[83]. For l = 0, the BSCs then read as:

g
1(1,0)
n,TM =

−(n− 1)!

(n+ 1)!

+N∑
q=−N

B0Aq0g(αq0)e
ik0zqz0 [τ1n(cosαq0) + π1n(cosαq0)] (135)

g
−1(1,0)
n,TM =

+N∑
q=−N

B0Aq0g(αq0)e
ik0zqz0 [τ−1n (cosαq0) + π−1n (cosαq0)] (136)

g
1(1,0)
n,TE =

i(n− 1)!

(n+ 1)!

+N∑
q=−N

B0Aq0g(αq0)e
ik0zqz0 [τ1n(cosαq0) + π1n(cosαq0)] (137)

g
−1(1,0)
n,TE = i

+N∑
q=−N

B0Aq0g(αq0)e
ik0zqz0 [τ−1n (cosαq0) + π−1n (cosαq0)] (138)

in which coeffi cients Bl are attached to the order of the beam and the co-
effi cients Aql are attached to both the order of the beam and to the q-waves
involved in the summation. We then have:
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g
1(1,0)
n,TM = ig

1(1,0)
n,TE (139)

g
−1(1,0)
n,TM = −ig−1(1,0)n,TE (140)

which satisfy Eq.7 with ε = −1 and:

K =
−(n− 1)!

(n+ 1)!
(141)

so that we are facing an on-axis axisymmetric beam of the first kind. For
l = 2, we have:

g
1(1,0)
n,TM =

(n− 1)!

(n+ 1)!

+N∑
q=−N

B2Aq2g(αq2)e
ik2zqz0 [τ1n(cosαq2)− π1n(cosαq2)] (142)

g
3(1,0)
n,TM =

(n− 3)!

(n+ 3)!

+N∑
q=−N

B2Aq2g(αq2)e
ik2zqz0 [τ3n(cosαq2) + 3π3n(cosαq2)] (143)

g
1(1,0)
n,TE =

i(n− 1)!

(n+ 1)!

+N∑
q=−N

B2Aq2g(αq2)e
ik2zqz0 [τ1n(cosαq2)− π1n(cosαq2)] (144)

g
3(1,0)
n,TE =

−i(n− 3)!

(n+ 3)!

+N∑
q=−N

B2Aq2g(αq2)e
ik2zqz0 [τ3n(cosαq2) + 3π3n(cosαq2)]

(145)

We therefore have:

g
1(1,0)
n,TE = ig

1(1,0)
n,TM (146)

g
3(1,0)
n,TE = −ig3(1,0)n,TM (147)
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and we readily check that Eqs.40-41 are satisfied. Indeed, we have:

g
1(1,0)
n,TMg

3(1,0)∗
p,TM + g

3(1,0)∗
p,TE g

1(1,0)
n,TE = 0 (148)

g
1(1,0)
n,TMg

3(1,0)∗
p,TE − g3(1,0)∗p,TM g

1(1,0)
n,TE = 0 (149)

so that we are facing an on-axis axisymmetric beam of second kind. Let us
now consider the summation of waves of orders 0 and 2. Still from Eqs.(6)-(7)
of [83], we now have:

g
−1(1,0)
n,TM =

+N∑
q=−N

B0Aq0g(αq0)e
ik0zqz0 [τ−1n (cosαq0) + π−1n (cosαq0)] (150)

g
1(1,0)
n,TM =

−(n− 1)!

(n+ 1)!

+N∑
q=−N

{B0Aq0g(αq0)e
ik0zqz0 [τ1n(cosαq0) + π1n(cosαq0)]

−B2Aq2g(αq2)e
ik2zqz0 [τ1n(cosαq2)− π1n(cosαq2)]} (151)

g
3(1,0)
n,TM =

(n− 3)!

(n+ 3)!

+N∑
q=−N

B2Aq2g(αq2)e
ik2zqz0 [τ3n(cosαq2) + 3π3n(cosαq2)] (152)

g
−1(1,0)
n,TE = i

+N∑
q=−N

B0Aq0g(αq0)e
ik0zqz0 [τ−1n (cosαq0) + π−1n (cosαq0)] (153)

g
1(1,0)
n,TE =

i(n− 1)!

(n+ 1)!

+N∑
q=−N

{B0Aq0g(αq0)e
ik0zqz0 [τ1n(cosαq0) + π1n(cosαq0)]

+B2Aq2g(αq2)e
ik2zqz0 [τ1n(cosαq2)− π1n(cosαq2)]} (154)
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g
3(1,0)
n,TM =

−i(n− 3)!

(n+ 3)!

+N∑
q=−N

B2Aq2g(αq2)e
ik2zqz0 [τ3n(cosαq2) + 3π3n(cosαq2)]

(155)

from which we have:

g−1n,TE = ig−1n,TM (156)

g1n,TM = h0n + h2n (157)

g1n,TE = −i(h0n − h2n) (158)

g3n,TE = −ig3n,TM (159)

in which we do not need to provide the expressions for h0n and h
2
n. We then

observe that the beam is not axisymmetry of the first kind because Eqs.6-7 are
not satisfied for two reasons (i) there are BSCs with m different from ±1 so that
Eq.6 is not satisfied and (ii) as can be readily checked, the BSCs with m = ±1
do not satisfy Eq.7. Indeed, we may determine the coeffi cient K of this equation
by two different ways as follows. We have:

g−1n,TM
g1n,TM

= K =
g−1n,TM
h0n + h2n

(160)

−g−1n,TE
g1n,TE

= K =
g−1n,TM
h0n − h2n

(161)

hence a contradiction. The beam furthermore is not any more of the second
kind. Let us for instance consider Eq.40 with M = 1, Q = 3. We then have:

g1n,TMg
3∗
p,TM + g3∗p,TEg

1
n,TE = 2g3∗p,TMh

1
n 6= 0 (162)

Therefore, adding a first kind beam with a second kind beam washes
out both symmetries, although the beam, being made from the addition of two
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on-axis axisymmetric beams (and even of circularly symmetric beams) is sup-
posed to be an on-axis axisymmetric beam (and a circularly axisymmetric beam
as well). This result confirms that frozen waves might constitute formal labo-
ratories relevant to the uncovering of new kinds of BSC-symmetries associated
with beam symmetries.

7 Conclusion.

The uncovering of symmetries involving the expressions of BSCs associated
with symmetries of a beam is an useful task insofar as it allows simplifications
in the framework of scattering theories, such as generalized Lorenz-Mie theories
and Extended Boundary Condition Method. An example is the use of symme-
tries associated with on-axis non-dark axisymmetric beams of the first kind,
valid for instance in the cases of a plane wave, an on-axis spherical wavefront,
Gaussian beams and zeroth-order Bessel beams as discussed in [14]. This first
kind symmetry allows one to reduce the double set of bi-index BSCs gmn,TM and
gmn,TE to a single set of uni-index BSCs gn, and, as a matter of fact, allows
one to deduce the classical Lorenz-Mie theory from its generalized version, e.g.
pp.152-155 in [3].

In the present paper, symmetries of BSCs are completed by two families,
the one of non-dark axisymmetric beams of the second kind and the one of dark
axisymmetric beams. These new families are illustrated by several examples
and counter-examples. It is also shown, relying on the analysis of a class of
discrete frozen waves used as formal laboratories that more symmetries are still
to be uncovered.
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