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Introduction.

Laser beams may be encoded in a set of beam shape coe¢ cients (BSCs) usually denoted as g m n;T M and g m n;T E , with T M and T E standing for "Transverse Magnetic" and "Transverse Electric" respectively, and n ranging from 1 to in…nity with n < m < +n. These BSCs have been introduced in the framework of generalized Lorenz-Mie theories (GLMTs), e.g. [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] with [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical e¤ects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF], [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF] for recent reviews. These GLMTs describe the interaction between "arbitrarily shaped beams" and scattering particles which possess enough degrees of symmetries for allowing the use of the method of separation of variables. BSCs may also be useful to deal with the extended boundary condition method (EBCM) [START_REF] Waterman | Symmetry, unitarity, and geometry in electromagnetic scattering[END_REF], [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF] which describes scattering phenomena when arbitrary shaped particles are illuminated by structured beams [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF].

An issue of interest is then to investigate the symmetries of BSCs related to symmetries of the …elds. In a scattering problem, symmetries of the illuminating …elds are indeed re ‡ected in symmetries of the scattered …elds, and of the …elds internal to the scatterer, these symmetries being in turn related to BSCs symmetries.

To discuss this issue, we must begin with the introduction of a few notations to describe the con…gurations in hand. As usual in the GLMTs for spherical particles (in particular homogeneous particles described by the GLMT stricto sensu), we consider two parallel Cartesian coordinate systems, one Cartesian coordinate system O Buvw attached to the beam and in which the beam is described, and another Cartesian coordinate system O P xyz attached to the scatterer and in which the scattering …elds and associated quantities are described, with axis O B u parallel to the axis O P x, and similarly for O B v and O P y, and again for O B w and O P z . The coordinates of O B in the system O P xyz are denoted by (x 0 ; y 0 ; z 0 ): It is assumed that the beam propagates along the w-direction with a propagation term of the form exp(ikw), or exp(ikw cos ) for beams exhibiting an axicon angle such as Bessel beams to be considered later in the sequel. It is usually assumed in GLMT that the time-dependence of the beam is of the form exp(i!t), although some authors may have preferred to use a time-dependence of the form exp( i!t). BSC relationships between the …rst convention -named P -convention with P standing for positive -and the second convention -named N -convention with N standing for negative -will be discussed later in the sequel. Conventions concerning associated Legendre functions will be discussed as well later when appropriate.

As an example, let us consider a Gaussian beam in the fundamental mode T EM 00 which possesses an axis of symmetry and let us choose this axis as being the axis O B w. The description of the beam in the coordinate system O P xyz is then generally called an o¤-axis description. However, if x 0 = y 0 = 0, with z 0 still di¤erent from 0, we say that the o¤-axis description has become an onaxis description. From this example, although the introduction of a scatterer has been convenient to introduce the di¤erent coordinate systems O Buvw and O P xyz , the existence of a scatterer is not required to distinguish between o¤-axis and on-axis con…gurations.

A …rst attack on the search for symmetry relations has been published in 1994 in the general framework of o¤-axis con…gurations [START_REF] Ren | Symmetry relations in generalized Lorenz-Mie theory[END_REF], with BSCs evaluated using a technique called quadrature technique [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | On an in…nite number of quadratures to evaluate beam shape coe¢ cients in generalized Lorenz-Mie theory and extended boundary condition method for structured EM …elds[END_REF]. It was stated that symmetry relations may be used to simplify or check some analytical works, or to speed up the numerical evaluations of BSCs by avoiding useless repetitive calculations. For instance, among other relations, it has been demonstrated that: g m n;T M ( x 0 ; y 0 ; z 0 ) = ( 1) m 1 g m n;T M (x 0 ; y 0 ; z 0 )

g m n;T M (x 0 ; y 0 ; z 0 ) = g m n;T M (x 0 ; y 0 ; z 0 )

g m n;T M (x 0 ; y 0 ; z 0 ) = ( 1) m 1 g m n;T M (x 0 ; y 0 ; z 0 )

and that such relationships imply symmetry relationships for quantities associated with a scattering process, such as: C ext (x 0 ; y 0 ; z 0 ) = C ext ( x 0 ; y 0 ; z 0 ) = C ext (x 0 ; y 0 ; z 0 ) = C ext (x 0 ; y 0 ; z 0 ) (4)

C sca (x 0 ; y 0 ; z 0 ) = C sca ( x 0 ; y 0 ; z 0 ) = C sca (x 0 ; y 0 ; z 0 ) = C sca (x 0 ; y 0 ; z 0 ) [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF] in which C ext and C sca are the extinction and scattering cross-sections respectively, then showing that these cross-sections are symmetrical with respect to x 0 , y 0 and z 0 respectively. These symmetries, however, are related to the con…gurations used to describe the beam. They are not related to the beam itself. The search for symmetries of BSCs related to the symmetries of the beam started in 1996 [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF]. This paper introduced what we call axisymmetric beams de…ned as beams for which the component of the Poynting vector in the direction of propagation does not depend on the azimuthal angle in a suitably chosen coordinate system. In practice, the suitably chosen coordinate system is a coordinate system O P xyz in which O P z is the axis of the beam, and the component of the Poynting vector in the direction of propagation is the component S z which does not depend on ', in which (r; ; ') are the usual spherical coordinates attached to the Cartesian coordinates (x; y; z). We then exhibited a class of symmetries of BSCs, characterizing what we shall from now on call an on-axis axisymmetric beam of the …rst kind, reading as:

g m n;T M = g m n;T E = 0, m 6 = 1 (6) 
g n =2 = g 1 n;T M = g 1 n;T M =K = i"g 1 n;T E = i"g 1 n;T E =K (7) 
in which K is related to the polarization of the beam and " = 1 depends on whether the beam propagates toward positive or negative z's. A particular interest of such beams is that the bi-index BSCs g m n;X (with X being T M or T E) reduces to uni-index BSCs g n . Such a reduction occurs in particular for Gaussian beams and the uni-index BSCs g n actually appeared at the very beginning of the development of GLMT [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] and, when it occurs, it allows one to dramatically simplify the description of the beam under consideration as well as the formulation of GLMT, in particular allowing one to easily demonstrate that LMT is indeed a special case of GLMT, e.g. Chapter 6 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. The existence of on-axis axisymmetric beams of the …rst kind has been revisited in 2017 [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] in an enlarged context, including a discussion of vortex and non vortex beams, of dark beams, and of BSCs symmetries in spheroidal and cylindrical coordinates. In particular, dark beams (more speci…cally on-axis dark beams, i.e. dark beams in an on-axis con…guration in the present paper) are beams whose intensity S z is equal to 0 on the axis, i.e. for = 0. According to a darkness theorem [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF], these beams satisfy, whether they are axisymmetric or not [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

g 1 n;T M = g 1 n;T E = 0 (8) 
Therefore, on-axis axisymmetric beams of the …rst kind are not dark. However, non-dark axisymmetric beams of the …rst kind do not exhaust all the kinds of non-dark axisymmetric beams, as it can been seen from a comment between Eqs.( 65) and (66) of [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. Indeed, between the case of non-dark axisymmetric beams of the …rst kind in which all BSCs of the form g 1 n;X are di¤erent from 0, as shown in Eq.7, and the case when all of them are 0 in the case of dark beams, as shown in Eq.8, there is some room for a possible case when some of them, but not all of them, are 0. The aim of the present paper is to study the possibility for such cases, and indeed to exhibit a class of such beams that we shall name axisymmetric beams of the second kind (which are non-dark). As a by-product, Eq.8 which does not tell whether the concerned beams are axisymmetric or not will be completed by two equations which ensure an axisymmetry. Therefore, beside non-dark axisymmetric beams of the second kind, a class of axisymmetric dark beams will be added to the list of axisymmetric beams.

The present study is motivated by a recent work devoted to optical forces in the Rayleigh limit of the generalized Lorenz-Mie theory [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and its relationship with the dipole theory of forces [START_REF] Ambrosio | On longitudinal radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationship with the dipole theory of forces[END_REF], [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF], [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal indenti…cation with the dipole theory of forces. I. The longitudinal case[END_REF], [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identi…cation with the dipole theory of forces. II. The transverse case[END_REF]. Speci…c studies have been devoted to the cases of on-axis Bessel beams [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of the generalized Lorenz-Mie theory[END_REF] and to the more general case of on-axis axisymmetric beams of the …rst kind in a Part I-paper [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF]. As a propaedeutical step toward a follow-up of this Part I-paper, the present paper is therefore devoted to non-dark axisymmetric beams of the second kind and to axisymmetric dark beams.

The paper is organized as follows. Section 2 expounds preliminaries useful in the sequel, recalling basic expressions for the longitudinal component of the Poynting vector and the di¤erent ways to be used to evaluate BSCs. Section 3 demonstrates new expressions for the BSCs of axisymmetric beams. Section 4 deals with examples and Section 5 with counter-examples. Section 6 exempli…es the fact that a class of beams named frozen waves provides laboratories to discover new symmetries in the BSCs. Section 7 is a conclusion.

2 Preliminaries.

2.1

Longitudinal component of the Poynting vector.

The longitudinal component S z of the Poynting vector, with the normalization condition in which E 0 H 0 =2 = 1 (E 0 and H 0 are …eld strengths in a lossless medium in which the beam propagates), reads as [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

S z = 1 r 2 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p ic pw n c pw p e i(m q)' (9) 
(sin S mq np + cos C mq np )

in which: 

S mq np = kr[ g m n;T M g q p;T M p ( n + 00 n )P jmj n jqj p (10 
in which P m n (cos ) are associated Legendre functions de…ned according to Hobson's convention [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P jmj n (cos ) = ( 1) jmj (sin ) jmj d jmj P n (cos ) (d cos ) jmj (14) 
in which P n 's are usual Legendre polynomials and, furthermore, the coe¢cients c pw n (with "pw" standing for "plane waves") are coe¢ cients which originally appeared in the Bromwich approach to the generalized Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] and have been de…ned in such a way that the uni-index BSCs g n are phasefactors (usually taken equal to 1) which do not depend on the value of the index n, in the case of plane waves, propagating along the z-direction, but see [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system[END_REF] for the case of oblique illumination: They read as:

c pw n = 1 ik ( i) n 2n + 1 n(n + 1) (15) 

2.2

Evaluating BSCs.

BSCs may be evaluated using quadrature techniques which have been the …rst ones to be developed, see again [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | On an in…nite number of quadratures to evaluate beam shape coe¢ cients in generalized Lorenz-Mie theory and extended boundary condition method for structured EM …elds[END_REF]. These techniques will not be used in the present paper, except when they allow one to obtain closed form expressions (examples will be provided). Because they are computationally in-e¢ cient when the quadratures, instead of being carried out analytically, have to be carried out numerically, there has been a search for alternative methods, beginning with the …nite series (FS) technique, see original papers in [START_REF] Gouesbet | Expressions to compute the coe¢ cients g m n in the generalized Lorenz-Mie theory, using …nite series[END_REF], [START_REF] Gouesbet | Computations of the g n coe¢cients in the generalized Lorenz-Mie theory using three di¤erent methods[END_REF] and a recent modi…ed FS-method in [START_REF] Ambrosio | Modi…ed …nite series technique for the evaluation of beam shape coe¢ cients in the T-matrix methods for structured beams with application to Bessel beams[END_REF]. Up to recently, the most e¢ cient and famous technique has however been the localized approximation approach, which exists under several variants, in particular the integral localized approximation (ILA) technique [START_REF] Ren | Integral localized approximation in generalized Lorenz-Mie theory[END_REF] which may be viewed as a hybrid method between the quadrature techniques and the original localization technique. Localized approximations have been reviewed in [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF], to be complemented with [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF], [START_REF] Gouesbet | Comments on localized and integral localized approximations in spherical coordinates[END_REF]. These approximation techniques have been widely used because (i) they are formally very easy to implement and (ii) they are more computationally e¢ cient than the quadrature techniques, possibly with a gain of computational times by three or four orders of magnitude.

However, it has recently been demonstrated that the accuracy of these approximation techniques may be in question when used for laser beams whose descriptions exhibit an axicon angle and/or a topological charge (when the axicon angle is large, and/or when the topological charge is not small enough), e.g. [START_REF] Gouesbet | On the validity of localized approximations for Bessel beams: all N-Bessel beams are identically equal to zero[END_REF], [START_REF] Gouesbet | On the validity of the use of a localized approximation for helical beams. I. Formal aspects[END_REF], with applications to Bessel beams [START_REF] Gouesbet | On the validity of localized approximation for an on-axis zeroth-order Bessel beam[END_REF], [START_REF] Ambrosio | On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces[END_REF], frozen waves which are built from discrete or continuous superpositions of Bessel beams [START_REF] Ambrosio | Assessing the validity of the localized approximation for discrete superposition of Bessel beams[END_REF], Mathieu beams [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF], Laguerre-Gauss beams freely propagating or focused by a lens [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF], [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF], and Bessel-Gauss beams [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF]. As a result, the FS-techniques which had been overlooked for a long time was born again, with applications to Laguerre-Gauss beams freely propagating [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF], or focused by a lens [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF], [START_REF] Votto | Finite series algorithm design for lens-focused Laguerre-Gauss beams in the generalized Lorenz-Mie theory[END_REF], and Bessel-Gauss beams [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF].

When the beam is Maxwellian (that is to say when its description satis-…es Maxwell's equations), the quadrature and FS-techniques are mathematically exact and then provide the same values for the BSCs (notwithstanding residual numerical inaccuracies). However, the localization techniques rely on approximations which may be very close (or not, e.g. beams with axicon angles and/or topological charges) to the intended exact values. If the beam is not Maxwellian however, all techniques provide a remodelling of the description, i.e. they change a non-Maxwellian description to a Maxwellian description. The process of remodelling depends however on the method used and, although we may claim that remodelled solutions describe Maxwellian beams in their own right, they may depart more or less from the intended beam. For the sake of completeness, let us mention as well the use of the angular spectrum decomposition (ASD) which is reviewed in Section 2.6 of [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF]. The interest of this subsection will be made obvious when we deal with examples and counter-examples.

3 New families demonstrated.

Without pretending to exhaustivity, we are going to look for a class of nondark axisymmetric beams in which all BSCs are zero but those associated with values of m = M or Q: To begin with, let us proceed without specifying any value of M and Q except that M 6 = Q: We then look for a class of beams in which all BSCs are zero except those which read g M n and g Q n . We then consider Eq.9, restrict the values of m and q to M and Q and force the result denoted as S M Q z to be independent of '. Therefore, we demand that:

S M Q z = 1 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p ( 16 
)
fe i(M Q)' (sin S M Q np + cos C M Q np ) + e i(Q M )' (sin S QM np + cos C QM np )g = 0
This equation shows that, if M = Q, then the beam is axisymmetric. This is a somewhat trivial special case which is therefore excluded from the present paper. Using Re(z) = Re(z ), Eq.16 may be rewritten as:

S M Q z = 1 r 2 Refie i(M Q)' 1 X n=1 1 X p=1 (17) [c pw n c pw p (sin S M Q np + cos C M Q np ) c pw n c pw p (sin S QM np + cos C QM np )]g = 0
Invoking Eq.15, Eq.17 may be rewritten as:

S M Q z = 1 k 2 r 2 1 X n=1 1 X p=1 A np Refie i(M Q)' (18) 
[( i) n i p (sin S M Q np + cos C M Q np ) i n ( i) p (sin S QM np + cos C QM np )]g = 0
in which:

A np = A pn = 2n + 1 n(n + 1) 2p + 1 p(p + 1) (19) 
In Eq.18, the sin -and cos -terms must be separately equal to 0, leading to:

S M Q;sin z = sin k 2 r 2 1 X n=1 1 X p=1 A np Refie i(M Q)' [( i) n i p S M Q np i n ( i) p S QM np ]g = 0 (20) 
S M Q;cos z = cos k 2 r 2 1 X n=1 1 X p=1 A np Refie i(M Q)' [( i) n i p C M Q np i n ( i) p C QM np ]g = 0 (21) 
Let us consider Eq.20. Examining the functional dependences in Eq.10, we notice that terms with subscripts np may have the same functional dependences than terms with subscripts np interchanged. For instance, let us consider the two …rst lines of Eq.10. The …rst line contains p ( n + 

Refie i(M Q)' [( i) n i p S M Q np i n ( i) p S QM np + ( i) p i n S M Q pn i p ( i) n S QM pn ]g = 0 (22) 
This equation has to be worked out (i) for the case when n and p have the same parity and (ii) for the case when they have di¤erent parities. Both cases leading to the same results, let us be content with the …rst case. Then Eq.22 becomes:

Refie i(M Q)' [S M Q np S QM np + S M Q pn S QM pn ]g = 0 (23) 
Using Re(z 1 z 2 ) = Re(z 1 ) Re(z 2 ) Im(z 1 ) Im(z 2 ), we then obtain:

Re ie i(M Q)' Re(z 2 ) Im ie i(M Q)' Im(z 2 ) = 0 (24) 
in which:

z 2 = S M Q np S QM np + S M Q pn S QM pn ( 25 
)
implying that both Re(z 2 ) and Im(z 2 ) = 0, that is to say:

(S M Q np S QM np + S M Q pn S QM pn )=(kr) = 0 (26) 
Similarly, we may start from Eq.11 instead of from Eq.10, and consider again separately the case when n and p have the same parities, and the case when they have di¤erent parities. Both cases leading again to the same results, we shall only consider the …rst case, leading to:

C M Q np C QM np + C M Q pn C QM pn = 0 (27) 
From Eq.10, the coe¢ cients occurring in Eq.26 read as:

S M Q np =kr = g M n;T M g Q p;T M p ( n + 00 n )P jM j n jQj p (28) 
+g M n;T E g Q p;T E n ( p + 00 p )P jQj p jM j n +Qg M n;T M g Q p;T E 0 p ( n + 00 n )P jM j n jQj p +M g M n;T M g Q p;T E 0 n ( p + 00 p )P jQj p jM j n S QM np =kr = +g Q n;T M g M p;T M p ( n + 00 n )P jQj n jM j p (29) g Q n;T E g M p;T E n ( p + 00 p )P jM j p jQj n M g Q n;T M g M p;T E 0 p ( n + 00 n )P jQj n jM j p Qg Q n;T M g M p;T E 0 n ( p + 00 p )P jM j p jQj n S M Q pn =kr = g M p;T M g Q n;T M n ( p + 00 p )P jM j p jQj n (30) +g M p;T E g Q n;T E p ( n + 00 n )P jQj n jM j p +Qg M p;T M g Q n;T E 0 n ( p + 00 p )P jM j n jQj p +M g M p;T M g Q n;T E 0 p ( n + 00 n )P jQj n jM j p S QM pn =kr = +g Q p;T M g M n;T M n ( p + 00 p )P jQj p jM j n (31) 
g Q p;T E g M n;T E p ( n + 00 n )P jM j n jQj p M g Q p;T M g M n;T E 0 n ( p + 00 p )P jQj p jM j n Qg Q p;T M g M n;T E 0 p ( n + 00 n )P jM j n jQj p
Eq.26 then leads to eight equations reading as:

p ( n + 00 n )P jM j n jQj p [g M n;T M g Q p;T M + g Q p;T E g M n;T E ] = 0 (32) n ( p + 00 p )P jQj q jM j n [g M n;T E g Q p;T E + g Q p;T M g M n;T M ] = 0 (33) 0 p ( n + 00 n )P jM j n jQj p [g M n;T M g Q p;T E g Q p;T M g M n;T E ] = 0 (34) 0 n ( p + 00 p )P jQj p jM j n [g M n;T M g Q p;T E g Q p;T M g M n;T E ] = 0 (35) p ( n + 00 n )P jQj n jM j p [g Q n;T M g M p;T M + g M p;T E g Q n;T E ] = 0 (36) n ( p + 00 p )P jM j p jQj n [g Q n;T E g M p;T E + g M p;T M g Q n;T M ] = 0 (37) 0 p ( n + 00 n )P jQj n jM j p [g Q n;T M g M p;T E g M p;T M g Q n;T E ] = 0 (38) 0 n ( p + 00 p )P jM j p jQj n [g Q n;T M g M p;T E g M p;T M g Q n;T E ] = 0 (39) 
After elimination of redundancies, these eight equations lead to two equations reading as:

g M n;T M g Q p;T M + g Q p;T E g M n;T E = 0 (40) g M n;T M g Q p;T E g Q p;T M g M n;T E = 0 (41) 
With a similar procedure, it is then found that Eq.27 leads again to these Eqs.40 and 41. We then must distinguish between two cases as follows. First, M and Q are di¤erent from 1. Then, according to the darkness theorem, we are facing a dark beam, e.g. Eq.8, which however is now axisymmetric (recall that Eq.8 alone does not tell whether the beam is axisymmetric or not). Second, one of the indices M or Q is equal to 1. Then the beam is non-dark and axisymmetric. This class of non-dark beams, complementing the non-dark beams of Eqs.6 and 7 which were speci…ed as being of the …rst kind, then encompasses what we shall from now on call (non-dark) axisymmetric beams of the second kind.

It is furthermore worthwhile to remark that there is no confusion or orverlap between axisymmetric beams of the …rst kind (all g 1 n;X are di¤erent from 0) and axisymmetric beams of the second kind (not all g 1 n;X are di¤erent from 0). To illustrate this fact, let us rewrite Eqs.40-41 for M = Q = 1, leading to:

g 1 n;T M g 1 p;T M + g 1 p;T E g 1 n;T E = 0 (42) 
g 1 n;T M g 1 p;T E g 1 p;T M g 1 n;T E = 0 (43) 
But, from Eq.7, we have g 1 n;T E = i"g 1 n;T M . Recalling that " 2 = 1, Eqs.42 and 43 become:

g 1 n;T M g 1 p;T M + g 1 p;T E g 1 n;T E = 2g 1 n;T M g 1 p;T M = 0 (44) g 1 n;T M g 1 p;T E g 1 p;T M g 1 n;T E = 2i"g 1 n;T M g 1 p;T M = 0 (45) 
The …rst kind conditions imply that these equations cannot be satis…ed, illustrating the fact that axisymmetric beams of the …rst kind and of the second kind are indeed of a di¤erent "nature".

4 Examples.

4.1

(1,0) x-polarized circularly symmetric Bessel beams

The introduction of Bessel beams is due to Durnin and co-workers [START_REF] Durnin | Di¤raction-free beams[END_REF], [START_REF] Durnin | Exact solutions for nondi¤racting beams. I. The scalar theory[END_REF]. They are praised due their appealing property of being self-healing and nondi¤racting, meaning that they possess an invariance property, namely the fact that the intensity of the beam is constant along the direction of propagation. They also possess a not often mentioned property that the speed of propagation of these beams may be much smaller than the speed of light, being equal to c cos 0 [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Gouesbet | Consequences of the angular spectrum decomposition of a focused beam including slower than c beam propagation[END_REF], in which c is the speed of light and 0 an angle, named axicon angle, or half-cone angle, which occurs in the propagation term reading exp( ikz cos 0 ) instead of being of the form exp( ikz) which is somehow more usual. There actually exists an in…nity of kinds of Bessel beams (i) with di¤erent polarizations and (ii) depending on the form given to a certain function g( 0 ), see [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]. In particular, when g( 0 ) = (1 + cos 0 )=4, the beam reduces to a Davis circularly symmetric beam, e.g. [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Mishra | A vector wave analysis of a Bessel beam[END_REF] while, when g( 0 ) = 1=2 it reduces to another kind of beams discussed in [START_REF] Cizmar | Sub-micron particle organization by self-imaging of non-di¤racting beams[END_REF], [START_REF] Taylor | Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF].

Also, to avoid any confusion, it is now important to comment on the de…nitions of axisymmetric beams and of circularly symmetric Bessel beams. In the present paper, we follow a de…nition which is about 25 years old according to which axisymmetric light beams are beams for which the component S z of the Poynting vector does not depend on the azimuthal angle ' (at least in a suitably chosen coordinate system), e.g. [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF]. With this de…nition, circularly symmetric beams are axisymmetric beams for which, in the same suitably chosen coordinate system, the transverse component S t = (S 2

x + S 2 y ) 1=2 of the Poynting vector as well does not depend on '. Outside of the context of the present paper, in order to avoid any confusion, axisymmetric beams might better be called longitudinal axisymmetric beams. The relationship in terms of symmetries of BSCs between the BSCs of axisymmetric beams and the BSCs of circularly symmetric beams has not been worked out, but it is su¢ cient in this paper to have in mind that circularly symmetric beams are (longitudinal) axisymmetric beams, although the converse is not (necessarily) true.

Using a quadrature technique and solving quadratures analytically, BSCs of circularly symmetric beams have been obtained in closed forms in an o¤-axis con…guration in [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF] and conveniently rewritten in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. In the case of on-axis con…gurations, they simplify to [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of the generalized Lorenz-Mie theory[END_REF]:

g l+1 n;T M = g( 0 ) exp(ik z z 0 )A l+1 n ( 46 
)
g l 1 n;T M = g( 0 ) exp(ik z z 0 )B l 1 n ( 47 
)
g l+1 n;T E = ig( 0 ) exp(ik z z 0 )A l+1 n ( 48 
)
g l 1 n;T E = ig( 0 ) exp(ik z z 0 )B l 1 n ( 49 
)
in which l denotes the order of the beam, k z = k cos 0 is the longitudinal wave number, and:

A l+1 n = ( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! [ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )] (50) 
B l 1 n = ( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! [ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )] (51) 
We then observe that the only nonzero BSCs are those for which m = l 1. For l = 0 (m = 1), we readily …nd that Eqs.6-7 are satis…ed with K = B 1 n =A 1 n and " = 1, so that we are facing non-dark axisymmetric beams of the …rst kind. For l = +2 (m = 1 and 3) and l = 2 (m = 1 and 3), it is readily found that Eqs.40-41 are satis…ed, so that we are facing non-dark axisymmetric beams of the second kind. Next, let us assume l di¤erent from 0, +2, and ( 2) already considered just above, i.e. m di¤erent from 1, so that we are facing dark beams. We readily …nd:

g l+1 n;T M g l 1 p;T M + g l 1 p;T E g l+1 n;T E = 0 (52) 
g l+1 n;T M g l 1 p;T E g l 1 p;T M g l+1 n;T E = 0 (53) 
showing that Eqs.40-41 are satis…ed, i.e. these dark beams are axisymmetric. The fact that all these Bessel beams considered in this section are axisymmetric are however not surprising insofar as they are already circularly symmetric.

4.2

Bessel beams. Other polarizations.

Other polarizations, which are circularly symmetric as well [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], have been discussed in [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF]. BSCs for an o¤-axis con…guration are given in [START_REF] Wang | Characteristics of photonic jets generated by a spherical particle excited by a Bessel beam[END_REF]. For on-axis con…gurations, they read as:

g m n;T M = ig( 0 )( 1) (m jmj)=2 (n m)! (n + jmj)! exp(ik z z 0 )f (54) 
[ip x m n (cos 0 ) + p y m m n (cos 0 )] [i l m+1 e i(l m+1) 0 J l m+1 (0) + i l m 1 e i(l m 1) 0 J l m 1 (0)] +[ip y m n (cos 0 ) p x m m n (cos 0 )] [ i:i l m+1 e i(l m+1) 0 J l m+1 (0) + i:i l m 1 e i(l m 1) 0 J l m 1 (0)]g g m n;T E = g( 0 )( 1) (m jmj)=2 (n m)! (n + jmj)! exp(ik z z 0 )f (55) 
[ip x m m n (cos 0 ) + p y m n (cos 0 )] [i l m+1 e i(l m+1) 0 J l m+1 (0) + i l m 1 e i(l m 1) 0 J l m 1 (0)] +[ p x m n (cos 0 ) + ip y m m
n (cos 0 )] [ i:i l m+1 e i(l m+1) 0 J l m+1 (0) + i:i l m 1 e i(l m 1) 0 J l m 1 (0)]g in which 0 is an angle used to specify the rotational location of the o¤-axis coordinate system, J k (:) are cylindrical Bessel function of the …rst kind of order k, and p x , p y de…ne the polarization of the beam in the framework of an ASD according to (p x ; p y ) = (1; 0) for x-polarization, (0; 1) for y-polarization, (1; i) for left circular polarization, (1; i) for right circular polarization, (cos ; sin ) for radial polarization, and ( sin ; cos ) for azimuthal polarization in which is an azimuthal angle [START_REF] Chen | Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding: erratum[END_REF].

Because J k (0) = k0 , Eqs.54-55 show that the only nonzero BSCs are those for which m = l 1, according to:

g l+1 n;T M = ig( 0 )( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! exp(ik z z 0 ) (56) 
(ip x + p y )[ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )] g l 1 n;T M = ig( 0 )( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! exp(ik z z 0 ) (57) 
(ip x p y )[ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )] g l+1 n;T E = g( 0 )( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! exp(ik z z 0 ) (58) 
(ip x + p y )[ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )]

g l 1 n;T E = g( 0 )( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! exp(ik z z 0 ) (59) 
(ip x p y )[ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )]
which satis…es g l+1 nT M = ig l+1 n;T E and g l 1 nT M = ig l+1 n;T E . For l = 0, we then …nd again that Eqs.6-7 are satis…ed with " = 1, and:

K = (n + 1)! (n 1)! (p y ip x )[ 1 n (cos 0 ) + 1 n (cos 0 )] (ip x + p y )[ 1 n (cos 0 ) + 1 n (cos 0 )] (60) 
This equation can be simpli…ed by complementing Eq. 14 with another equation useful to deal with negative superscripts according to [START_REF] Wang | Special functions[END_REF]:

P m n (cos 0 ) = ( 1) m (n m)! (n + m)! P m n (cos 0 ) (61) 
leading to:

K = ip x p y ip x + p y (62) 
We are then facing again non-dark axisymmetric beams of the …rst kind. For l = +2 (m = 1 and 3) and l = 2 (m = 1 and 3), it is readily found again that Eqs.40-41 are satis…ed, so that we are facing non-dark axisymmetric beams of the second kind. For dark beams, i.e. for l 6 = 0, 2, we …nd as well that Eqs.40-41 are satis…ed, i.e. these dark beams are axisymmetric.

Lommel beams.

Lommel beams are constituted by a combination of Bessel beams of various orders (i.e. topological charges) as exempli…ed by the expression of the basic electric modes in cylindrical coordinates (r; '; z) reading as, e.g. Eq.( 1) in [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF]:

E l = exp(ik z z 1 X p=0 ( 1) p c 2p exp[i(l + 2p)']J +2p (k t r) (63) 
in which E l is the x-or y-component of the electric …eld which is obtained from a solution of the scalar wave equation (meaning that the beam is not Maxwellian), k z = k cos 0 and k t = k sin 0 are the longitudinal and transverse wavenumbers respectively. The beam being not Maxwellian, its expression in terms of BSCs will therefore provide a remodelling of the beam, turning it from a non-Maxwellian beam to a Maxwellian beam. In [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF], these BSCs are evaluated using the ILA which is fairly satisfactory for small enough axicon angles, as discussed in subsection 2.2 (although it is likely that quadratures of the quadrature techniques could be performed analytically), leading to localized BSCs for localized Lommel beams. These BSCs for x-and y-polarizations in an o¤-axis con…guration are provided in Eqs.( 7) and [START_REF] Ren | Symmetry relations in generalized Lorenz-Mie theory[END_REF]. Relying on Fig. 1 in [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF] and remembering that we are currently providing examples of axisymmetric beams, we set c = 0 and specify Eqs.( 7) and ( 9) for on-axis con…gurations. Once more, it is then found that the nonzero BSCs are for m = l 1.

For l = 0, and for x-and y-polarizations, the BSCs then read as:

g 1 n;T M x y = 1 i Z 1 n 2 J 0 (w n ) exp(ik z z 0 ) (64) 
g 1 n;T M x y = 1 i Z 1 n 2 J 0 (w n ) exp(ik z z 0 ) (65) 
g 1 n;T E x y = i 1 Z 1 n 2 J 0 (w n ) exp(ik z z 0 ) (66) 
g 1 n;T E x y = i 1 Z 1 n 2 J 0 (w n ) exp(ik z z 0 ) (67) 
in which:

w n = (n + 1 2 ) sin 0 (68) 
and [START_REF] Ren | Integral localized approximation in generalized Lorenz-Mie theory[END_REF]:

Z m n = ( 2i 2n + 1
) jmj 1 for m 6 = 0 (69)

Z 0 n = 2n(n + 1) (2n + 1) (70) 
and, in particular, for m = 1, we have

Z 1 n = Z 1 n = 1.
Eqs.64-67 then satisfy Eqs.6-7 for both polarizations, with K = 1 and " = 1, so that we are facing non-dark axisymmetric beams of the …rst kind. The BSCs for = +2 (m = 1 and 3), and x-and y-polarizations, are found to read as:

g 1 n;T M x y = 1 i Z 1 n 2 J 2 (w n ) exp(ik z z 0 ) (71) 
g 3 n;T M x y = 1 i Z 3 n 2 J 2 (w n ) exp(ik z z 0 ) (72) g 1 n;T E x y = i 1 Z 1 n 2 J 2 (w n ) exp(ik z z 0 ) ( 73 
)
g 3 n;T E x y = i 1 Z 3 n 2 J 2 (w n ) exp(ik z z 0 ) (74) 
while, for = 2 (m = 1 and 3), we have:

g 1 n;T M x y = 1 i Z 1 n 2 J 2 (w n ) exp(ik z z 0 ) ( 75 
)
g 3 n;T M x y = 1 i Z 3 n 2 J 2 (w n ) exp(ik z z 0 ) (76) g 1 n;T E x y = i 1 Z 1 n 2 J 2 (w n ) exp(ik z z 0 ) ( 77 
)
g 3 n;T E x y = i 1 Z 3 n 2 J 2 (w n ) exp(ik z z 0 ) (78) 
It is then readily checked that these BSCs satisfy Eqs.40-41 so that we are facing non-dark axisymmetric beams of the second kind. As a last example of Lommel beams, we shall consider the case v = 4 (m = 3 and 5), because it is displayed (for the x polarization) in Fig. 1a (with the parameter c = 0). This …gure vividly suggests that we are facing an axisymmetric dark beam. Indeed, the BSCs are found to be:

g 3 n;T M x y = 1 i Z 3 n 2 J 4 (w n ) exp(ik z z 0 ) ( 79 
)
g 5 n;T M x y = 1 i Z 5 n 2 J 4 (w n ) exp(ik z z 0 ) ( 80 
)
g 3 n;T E x y = i 1 Z 3 n 2 J 4 (w n ) exp(ik z z 0 ) (81) 
g 5 n;T E x y = i 1 Z 5 n 2 J 4 (w n ) exp(ik z z 0 ) (82) 
which satisfy Eqs.40-41.

4.4

Bessel-Gauss beams using …nite series.

Bessel beams possess the defect of carrying an in…nite amount of energy so that they are not physical. Bessel-Gauss beams result from an apodization of Bessel beams by a Gaussian beam which truncates them in order to obtain a …nite energy, physically feasible, beam [START_REF] Gori | Bessel-Gauss beams[END_REF], [START_REF] Ambrosio | Analytical descriptions of …nite-energy Bessel beams in the generalized Lorenz-Mie theory[END_REF]. The beam description is based on a paraxial approximation in which the x-component of the electric …eld is given in cylindrical coordinates ( ; '; z) by the scalar …eld of Eq.( 1) in [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF], according to:

E x = E 0 exp( q 2 2 )J l ( k t ) exp( ik 2 t z 2k
)e il' e ikz [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF] in which k t = k sin 0 is the transverse wave number, q is a parameter which regulates the transverse intensity width of the Gaussian apodization, and = 1 2iks 2 z, where s is the beam con…nement factor of the beam, according to a usual de…nition for Gaussian beams, namely s = 1=(kw 0 ) in which w 0 is the beam waist radius, and, as usual in this paper, l denotes the order of the beam. It is worthwhile to insist on the fact that the term exp(ikz) in Eq.83 is correct although the reader might have expected to read exp( ik cos 0 z) = exp( ik z z). Actually the longitudinal wavenumber k z is embedded in the exponential factor whose exponent is proportional to k 2 t . This fact may be retrieved from Eqs.( 15) and ( 20) in [START_REF] Zamboni-Rached | Shaping …nite-energy di¤ractionand attenuation-resistant beams through Bessel-Gauss-beam superposition[END_REF] in which k t and k z are denoted n and n respectively, from which we may establish that k 2 t =(2k) = (k k z ). Faraday's law is afterward used to determine the y-component of the magnetic …eld according to (5 E) y =@ z E x @ x E z @ z E x = i! 0 H y in which we assumed a highly paraxial situation and neglected the x-derivative of E z : The z-derivative is lengthy to perform but it is su¢ cient to remark that it does not alter the topological term e il' of Eq.83, so that H y is proportional to it. As a result, the Poynting vector, reduced to its z-component, does not depend on '. Therefore, we are facing a non-Maxwellian (paraxial) beam which is axisymmetric. This implies that the ILA-and the FS-technique will proceed by changing a non-Maxwellian beam to a Maxwellian beam. Furthermore, when s ! 0, the Gaussian envelope used for apodization becomes larger and larger, and the Bessel-Gauss beams returns to a Bessel beam. For 0 = 0, it returns to a paraxial Gaussian beam. For s = 0 = 0, it becomes a plane wave.

This subsection is devoted to the FS-technique. The use of the ILA-technique will provide an interesting counter-example in subsection 5.1. BSCs obtained by using the FS-technique are given by Eqs.( 19)-( 20) and ( 30)- [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF] in [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF] for the T M -coe¢ cients. These BSCs may be conveniently rewritten as:

g l+1 n;T M = i n+1 2 l+1 ( n l+1 2 ) ( n+l+2 
2

)
A l n , (n m) even ( 84)

g l 1 n;T M = i n+1 2 l 1 ( n l+3 2 ) ( n+l 2 ) A l n , (n m) even ( 85 
)
g l+1 n;T M = i n 2 l+1 ( n l 2 ) ( n+l+3 2 ) B l n , (n m) odd (86) g l 1 n;T M = i n 2 l 1 ( n l+2 2 ) ( n+l+1 2 ) B l n , (n m) odd ( 87 
)
which shows that the nonzero BSCs are those for which m = l 1. The fact that we have to distinguish between the cases (n m) even and (n m) odd is typical of the FS-technique. Furthermore, A l n and B l n are …nite series whose expressions are fairly complicated but that we do not need to provide explicitly. Furthermore, in [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF], rather than applying the FS-technique to obtain TE-coe¢ cients (i.e. by working on the magnetic …eld rather than working on the electric …eld), it has been preferred to force them by using:

g l 1 n;T M = ig l 1 n;T E (88) 
It is then an exercise, using Eqs.84-88, to check that, for l = 0 (i.e. m = 1), Eqs.6-7 are satis…ed with " = 1 and, for both (n m) even and (n m) odd:

K = 4 ( n+2 2 ) ( n+3 2 ) ( n+1 2 ( n 2 ) = n(n + 1) (89) 
so that we are facing non-dark axisymmetric beams of the …rst kind. For l 6 = 0, we afterward may simply check, using only Eq.88 that Eqs.40-41 are satis…ed. Therefore, for l = 2, we are facing non-dark axisymmetric beams of the second kind while, otherwise, for l 6 = 0; 2, we are facing axisymmetric dark beams. Hence, the FS-technique, as used above, remodelled non-Maxwellian axisymmetric beams to Maxwellian axisymmetric beams. We shall see in subsection 5.1 that the situation will be di¤erent for the ILA-remodelling.

4.5

Laguerre-Gauss beams freely propagating.

As a last example, we now consider Laguerre-Gauss beams freely propagating which provide again a case of paraxial non-Maxwellian beams. The electric …eld is obtained from the following expression [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF]:

E = (E x ; E y ; E z ) = (E 0 Ee ikz ; 0; 0) (90) 
in which E is extracted from the radial component E r of the electric …eld given by Siegman [START_REF] Siegman | An introduction to lasers and masers[END_REF], [START_REF] Siegman | Lasers[END_REF], and reads as:

E(r; ; ') = 1 kw(r cos ) r sin p 2 w(r cos ) ! l L l ( 2r 2 sin 2 w 2 (r cos ) ) (91) exp[ ikr 2 sin 2 2e q(r cos ) ] exp[i(2 + l + 1) (r cos )] exp(il')
in which:

w(r cos ) = w 0 s 1 + 2r cos kw 2 0 2 (92) e q(r cos ) = r cos + ikw 2 0 2 (93) 
(r cos ) = tan 1 2r cos kw 2 0 ( 94 
)
in which w 0 is the beam waist radius of the beam, while and l de…ne the type of Laguerre-Gauss beam under study. Also, L l denotes associated Laguerre polynomials de…ned as follows [START_REF] Arfken | Mathematical methods for physicists[END_REF], [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]:

L l (x) = 1 ! X i=0 ! i! l + i ( x) i (95) 
in which () denotes a binomial coe¢ cient. The "usual" Laguerre polynomials L (x) are L 0 (x): The associated Laguerre polynomials can be evaluated recursively from the …rst two polynomials as follows:

L 0 (x) = 1 (96) L 1 (x) = 1 + x (97) L k+1 (x) = (2k + 1 + x)L k (x) (k + )L k 1 (x) k + 1 (98) 
Faraday's law may then be used to evaluate the magnetic …eld according to:

H = 1 i! curl E = 1 i! (0; @E x @z ; 0) ( 99 
)
in which is the permeability. From Eqs.90, 91 and 99, and removing artefacts which include @E/@z, we obtain:

H = (0; H 0 Ee ikz ; 0) (100)
in which we have used E 0 =H 0 = ! =k. The removal of the artefacts aimed to symmetrize expressions for the electric and magnetic …eld components. Considering that E is proportional to e il' , S z does not depend on ', and we therefore are facing a non-Maxwellian axisymmetric beam. The remodelling will therefore turns a non-Maxwellian axisymmetric beam to a Maxwellian beam whose axisymmetry is to be tested.

The remodelling is carried out using the FS-technique and it is found, as usual, that the only nonzero BSCs are those for which m = l 1. For the sake of conciseness, we shall not consider dark beams in this section. We then begin with the case when the order l = 0 (m = 1). We recall that the FS-technique distinguishes the case when (n m) is even and the one when it is odd. For (n m) even, the expressions for the BSCs g 1 n;T M are given in Eqs.( 68) and ( 70) of [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF] while they are given by Eqs.( 101) and (103) for the case (n m) odd. In all cases, we readily obtain g +1 n;T M = g 1 n;T M . For the TE-BSCs, as the result of the symmetry forcing explained above, we have, from Eqs.( 104) and ( 106) in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF]: g +1 n;T M = ig +1 n;T E and g 1 n;T M = ig 1 n;T E . These BSCs therefore satisfy Eqs.6-7. Hence Laguerre-Gauss beams freely propagating of order 0 remodeled by the FS-technique are on-axis axisymmetric beams of the …rst kind.

We now consider the case when the order is equal to 2 (the case when the order is 2 is not considered because [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF] does not deal with negative orders). From Eqs.( 68)-( 69) in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], we may write, with denoting the case of L l -Laguerre-Gauss polynomial in discussion, for (n m) even:

[g 3 n;T M ] even = 1 16 ( 1) n+3 
2 ( n 3 2 )! ( n 2 + 2) S even T M (101) [g 1 n;T M ] even = 1 4
( 1)

n+1 2 ( n 1 2 )! ( n 2 + 1) S even T M (102)
in which n is odd, n 3 in Eq.101 and n 1 in Eq.102, and in which:

S even T M = i n p n=2 X q=0 2 1 2 +n 2q ( 1 2 + n q) q! [b n 2q ] even (103) 
in which [b n 2q ] e even is given by Eqs.( 54), ( 55) and ( 60) in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF]. Conversely, for (n m) odd, we have, from Eqs.(101)-(102):

[g 3 n;T M ] odd = 1 32
( 1)

n 2 +1 ( n 2 
2)! ( n+52 )

S odd T M (104) [g 1 n;T M ] odd = 1 8
( 1)

n 2 ( n 2 
1)! ( n+32 )

S odd T M (105)
in which n is even, n 3 in Eq.104 and n 1 in Eq.105, and in which:

S even T M = i n p n=2 X q=0 2 1 2 +n 2q ( 1 2 + n q) q! [b n 2q ] odd (106) 
in which [b n 2q ] odd is given by Eqs.( 88), ( 91) and ( 93) in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF].

The TE-BSCs are given by Eqs.( 104)-( 105), whatever the parities of n and m according to:

[g 3 n;T M ] = i[g 3 n;T E ] (107) 
[g 1 n;T M ] = i[g 3 n;T E ] (108) 
These equations then readily imply that, whatever the parities:

T 1 = g 3 n;T M g 1 p;T M + g 1 p;T E g 3 n;T E = 0 (109) 
T 2 = g 3 n;T M g 1 p;T E g 1 p;T M g 3 n;T E = 0 (110) 
implying that we are facing on-axis axisymmetric beams of the second kind. The facts that BSCs are those of axisymmetric beams agree with the fact, already known, that S z does not depend on '. Note that the same kind of beams has been studied using a localized approximation, e.g. [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF], but the T E-coe¢ cients have not been worked out. Therefore, this case is omitted from the present paper.

5 Counter-examples.

5.1

Bessel-Gauss beams with ILA.

For this counter-example, we return to Bessel-Gauss beams of subsection 4.4. which studied the case of an axisymmetric non-Maxwellian beam which has been turned to an axisymmetric Maxwellian beam by using a remodelling with the FS-technique. The choice of the remodelling technique (and the details of the implementation of this technique) is exempli…ed in this section by using the ILA-technique in a way that will turn the original axisymmetric non-Maxwellian beam to a remodelled non-axisymmetric Maxwellian beam [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF].

Remodelling using ILA, the on-axis BSCs read as, from Eq.( 4) in [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF]:

g m n ( T M T E ) = Z m n 2 [ 1 i(1 + cos 0 1 ) ] exp( ik sin 2 0 z 0 2 ) exp( s 2 w n 2 sin 2 0 )e i(m l+1) 0 [e 2i 0 J m 1 (w n )J m 1 l (0) J m+1 (w n )J m+1 l (0)] exp ikz0 (111) 
in which Z m n is given by Eqs.69-70, w n is given by Eq.68 and = 1+2iks 2 z 0 . These BSCs are zero excepted when m = l 1. The nonzero BSCs then read as:

g l+1 n ( T M T E ) = Z l+1 n 2 [ 1 i(1 + cos 0 1 ) ] exp( ik sin 2 0 z 0 2 ) exp( s 2 w n 2 sin 2 0 )J (w n ) exp ikz0 (112) 
g l 1 n ( T M T E ) = Z l 1 n 2 [ 1 i(1 + cos 0 1 ) ] exp( ik sin 2 0 z 0 2 ) exp( s 2 w n 2 sin 2 )J (w n ) exp ikz0 (113) 
For l = 0, the only nonzero BSCs are those of the form g 1 n , reading as:

g +1 n ( T M T E ) = 1 2 [ 1 i(1 + cos 0 1 ) ] exp( ik sin 2 0 z 0 2 ) exp( s 2 w n 2 sin 2 0 )J 0 (w n ) exp ikz0
(114)

g 1 n ( T M T E ) = 1 2 [ 1 i(1 + cos 0 1 ) ] exp( ik sin 2 0 z 0 2 ) exp( s 2 w n 2 sin 2 0 )J 0 (w n ) exp ikz0 (115) 
in which we have used again Z 1 n = 1. For axisymmetric beams of the …rst kind, we should satisfy Eq.7. From Eqs.114-115, we have:

g 1 n;T M = g 1 n;T M and g 1 n;T E = g 1 n;T E (116) 
which indeed implies K = 1. But, from Eq.7, we would expect g 1 n;T M =g 1 n;T E = i", which is in con ‡ict with Eqs.114-115 which indeed implies:

g 1 n;T M g 1 n;T E = 1 i(1 + cos 0 1 ) (117) 
Note however that there is no con ‡ict for 0 = 0, as we should have expected, since Eq.117 then implies g 1 n;T M =g 1 n;T E = i". Therefore, although the non-Maxwellian original beam is axisymmetric, the remodelling has introduced a dependency with respect to '. We may check that the same conclusion holds for other values of the order l, Eqs.40-41 being not satis…ed but for 0 = 0. ILA would have preserved the axisymmetric of the beam if it had been forced by using Eq.88. This exempli…es the fact that not only the choice of the remodelling technique is signi…cant, but the details of its implementation as well.

The lack of axisymmetry is displayed in the set of Figs.1. exhibiting the normalized S 2 z for 0 = 2 , 10 , 30 and 60 . Computations have been made for a wavelength in air equal to 1064 nm, with a beam propagating in water (refractive index equal to 1.33). The order of the beam is l = 0, the beam con…nement factor is s = 0:001 and z 0 = 0. This implies = 1 and g 1 n;T M =g 1 n;T E = i= cos 0 and:

g 1 n;T M = 1 2 exp( s 2 w 2 n sin 2 0 )J 0 (w n ) = g 1 n;T M (118) g 1 n;T E = i 2 exp( s 2 w 2 n sin 2 0 )J 0 (w n ) cos 0 = g 1 n;T E (119) 
We may then state that the loss of axisymmetric is weak insofar as it is not readily perceived for 0 = 2 , 10 and 30 and can only be detected for 0 = 60 .

5.2

Laguerre-Gauss beams focused by a lens.

Relying on [START_REF] Török | The use of Gauss-Laguerre vector beams in STED microscopy[END_REF], [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF], this case has been worked out in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF], [START_REF] Votto | Finite series algorithm design for lens-focused Laguerre-Gauss beams in the generalized Lorenz-Mie theory[END_REF]. The components E x , E y , H x , H y of these beams are given in Eqs.( 25)-( 26), ( 34) and ( 38) of [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF], from which it is found that S z still depends on '. Therefore, we do not expect that the conditions characterizing BSCs of axisymmetric beams would be satis…ed in the present case. It is then su¢ cient to deal with a case as simple as possible. For this, we rely on the BSCs expressed by using the FS-method in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF]. These BSCs are expressed using the N-convention, that is to say assuming that the time-dependence of the …elds is exp( i!t) opposite to the P-convention, which is the usual convention when dealing with GLMT, that is to say assuming that the time-dependence of the …elds is of the form exp(+i!t). The relationship between the BSCs expressed in the N-convention and those expressed in the P-convention is given by [START_REF] Wang | Note on the use of localized beam models for light scattering theories in spherical coordinates[END_REF], [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF]:

g m n;T M (P ) g m n;T E (P ) = ( 1) n+1 g m n;T M (N ) g m n;T E (N ) (120) 
BSCs with the N-convention are di¤erent from 0 only for m = l + 1 and m = l 1 [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF]. Eq.120 then implies that BSCs with the P-convention are di¤erent from 0 only for m = l 1 and m = l + 1. This is indeed what we observed using quadratures and localized approximations with the P-convention, see Eqs.( 47)-( 48) and Table 2 in [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF]. As a simple illustrative example, we consider the case when the order l of the beam is +2, for which m = 3; 1 in the P-convention and m = 1; 3 in the N-convention. We shall be content to test Eq.40, that is to say, in the P-convention, to ask the question:

g 3 n;T M g 1 p;T M + g 1 p;T E g 3 n;T E = 0 ? (121) 
which, using Eq.120, becomes, in the N-convention to be used here:

g 3 n;T M g 1 p;T M + g 1 p;T E g 3 n;T E = 0 ? (122) 
Subsequent equations with FS-technique for Laguerre-Gauss beams focused by a lens will deal with the N-convention, a fact which will be denoted in the notation. Since a simple counter-example to Eq.122 is su¢ cient to our purposes, we shall use trivial Laguerre-Gauss beams of the form L 2 0 (x) = 1, with partial waves of order n = 3 (i.e. BSCs with a subscript n = 3). We recall that the FS-technique distinguishes the BSCs g m n;T M and g m n;T E depending on whether (n m) is even or odd. With n = 3 and m = 1; 3 we have to deal with (n m) even. The expressions for the BSCs are then obtained from Eqs (96), (102), ( 165) and (176) in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF]. After rearranging and simplifying, they read as, with the subscript 0 referring to the order 0 of the Laguerre-Gauss beam L 2 0 (x):

[g 3 3;T M (N )] 0 = i 16 A 3 20 (123) [g 1 3;T M (N )] 0 = + i 8 (5A 3 20 10B 3 20 + 4B 1 20 ) (124) 
[g 3 3;T E (N )] 0 = i(i ) 32 p 2 P 3 20 (125) [g 1 3;T E (N )] 0 = i( + i ) 16 p 2 (5P 3 20 + 10Q 3 20 4Q 1 20 ) (126) 
in which and are complex coe¢ cients which determine the dominant state of polarization [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF], [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], [START_REF] Török | The use of Gauss-Laguerre vector beams in STED microscopy[END_REF], and A , B, P, Q are integrals reading as:

A n l0 = kN A Z 0 jlj+1 q p k 2 2 exp[ c( )][(1 + p k 2 2 k )( k ) n 1 d (127) B n l0 = kN A Z 0 jlj+1 q p k 2 2 exp[ c( )][(1 p k 2 2 k )( k ) n 1 d (128) 
P n l0 = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 exp[ c( )]A( )d (129) 
Q n l0 = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 exp[ c( )]B( )d (130) 
in which:

A( ) = (1 p k 2 2 k ) 2 (1 + p k 2 2 k )(2k 2 2 ) (131) B( ) = (1 + p k 2 2 k ) 2 (1 p k 2 2 k )(2k 2 2 ) (132) 
Furthermore, we have:

c( ) = 2 k 2 S 2k 2 R 2 f ( 133 
)
in which k S = p 2=w 0 (with w 0 being the beam waist radius), R f is the focal length and N A is the numerical aperture of the imaging system. Inserting Eqs.126-127 into the l.h.s. of Eq.122 with n = p = 3, and assuming = 1, = 0, we obtain: which is found to be a real number equal to ' 4:24:10 15 , con…rming that the beam is not axisymmetric. The lack of axisymmetry is well evidenced in Fig. 2 displaying S 2 z in the z = 0 plane. This may seem to be in con ‡ict with Eqs.109-110 which showed that, for l = 2, we were facing a Laguerre-Gauss freely propagating which was axisymmetric, and with this other fact that the focusing lens in the case considered in this subsection is not supposed to alter the axisymmetry of the beam. The explanation is that the axisymmetry of the Laguerre-Gauss beam of subsection 4.5 has been forced by the way used to go from a scalar solution to a vectorial case. In contrast with this freely propagating case which, furthermore, was non-Maxwellian, the case considered in the present section is Maxwellian according to [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], and as con…rmed by the excellent agreement between BSCs obtained either by quadratures or by the FS-technique as displayed in Table 3 of [START_REF] Votto | Finite series algorithm design for lens-focused Laguerre-Gauss beams in the generalized Lorenz-Mie theory[END_REF]. Indeed, in the case of non-Maxwellian beams, quadrature values and FS-values would have been remodelled and, the remodelling processes being di¤erent, the values would have expectedly been di¤erent as well. 

in which we do not need to provide the expressions for h 0 n and h 2 n . We then observe that the beam is not axisymmetry of the …rst kind because Eqs.6-7 are not satis…ed for two reasons (i) there are BSCs with m di¤erent from 1 so that Eq.6 is not satis…ed and (ii) as can be readily checked, the BSCs with m = 1 do not satisfy Eq.7. Indeed, we may determine the coe¢ cient K of this equation by two di¤erent ways as follows. We have: Therefore, adding a …rst kind beam with a second kind beam washes out both symmetries, although the beam, being made from the addition of two on-axis axisymmetric beams (and even of circularly symmetric beams) is supposed to be an on-axis axisymmetric beam (and a circularly axisymmetric beam as well). This result con…rms that frozen waves might constitute formal laboratories relevant to the uncovering of new kinds of BSC-symmetries associated with beam symmetries.

Conclusion.

The uncovering of symmetries involving the expressions of BSCs associated with symmetries of a beam is an useful task insofar as it allows simpli…cations in the framework of scattering theories, such as generalized Lorenz-Mie theories and Extended Boundary Condition Method. An example is the use of symmetries associated with on-axis non-dark axisymmetric beams of the …rst kind, valid for instance in the cases of a plane wave, an on-axis spherical wavefront, Gaussian beams and zeroth-order Bessel beams as discussed in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. This …rst kind symmetry allows one to reduce the double set of bi-index BSCs g m n;T M and g m n;T E to a single set of uni-index BSCs g n , and, as a matter of fact, allows one to deduce the classical Lorenz-Mie theory from its generalized version, e.g. pp.152-155 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF].

In the present paper, symmetries of BSCs are completed by two families, the one of non-dark axisymmetric beams of the second kind and the one of dark axisymmetric beams. These new families are illustrated by several examples and counter-examples. It is also shown, relying on the analysis of a class of discrete frozen waves used as formal laboratories that more symmetries are still to be uncovered.

00 n ) becoming n ( p + 00 p

 00 ) of the second line. The same happens for P jmj n jqj p of the …rst line becoming P jmj p jqj n of the second line if jM j = jQj. Isolating such terms, we then must have:

B 2 A

 2 q2 g( q2 )e ik 2 zq z0 [ 3 n (cos q2 ) + 3 3 n (cos q2 )]

  . The beam furthermore is not any more of the second kind. Let us for instance consider Eq.40 with M = 1, Q = 3. We then have:
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6 Frozen waves laboratories.

Frozen waves are structured light …elds constructed from speci…c superpositions of Bessel beams allowing one to control the longitudinal intensity pattern, a feature which is not possible when dealing with a single nondi¤racting Bessel beam [START_REF] Zamboni-Rached | Stationary optical wave …elds with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen waves[END_REF], [START_REF] Zamboni-Rached | Theory of "frozen waves": modeling the shape of stationary wave …elds[END_REF], [START_REF] Zamboni-Rached | Di¤raction-attenuation resistant beams in absorbing media[END_REF], [START_REF] Zamboni-Rached | Di¤raction-attenuation resistant beams: their higher-order versions and …nite-aperture generations[END_REF]. Extensions to the generation of two-dimensional intensity patterns over predetermined surfaces have also been recently explored [START_REF] André | Millimeter-structured nondi¤racting surface beams[END_REF], [START_REF] De Sarro | Surface beams resistant to di¤raction and attenuation ans structured at the millimeter scale[END_REF], with applications to transverse intensity control vividly illustrated in Fig. 1 of [START_REF] André | Millimeter-structured nondi¤racting surface beams[END_REF]. Vector frozen wave solutions to the Helmholtz equation are easily constructed from superpositions of vector Bessel beams [START_REF] Corato-Zanarella | Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations[END_REF], [START_REF] Zamboni-Rached | Structuring light under di¤erent polarization states within micrometer domains: exact analysis from maxwell equations[END_REF], with several polarization states, and BSCs evaluated either using a localized approximation scheme [START_REF] Ambrosio | Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams[END_REF], [START_REF] Ambrosio | Analytical approach of ordinary frozen waves for optical trapping and micromanipulation[END_REF], [START_REF] Ambrosio | Assessing the validity of the localized approximation for discrete superposition of Bessel beams[END_REF] or using an analytical exact approach derived from quadratures [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF], [START_REF] Ambrosio | Circularly symmetric frozen waves: Vector approach for light scattering calculations[END_REF], [START_REF] Ambrosio | Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz-Mie theory[END_REF].

We are going to exemplify the fact that such frozen waves may provide laboratories to establish new expressions involving BSCs and re ‡ecting symmetry properties of the corresponding beams. To this purpose, let us consider the (1; 0)-polarization of circularly symmetric beams described by Eqs.( 6)-( 7) of [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF]. For l = 0, the BSCs then read as:

in which coe¢ cients B l are attached to the order of the beam and the co-e¢ cients A ql are attached to both the order of the beam and to the q-waves involved in the summation. We then have:

which satisfy Eq.7 with " = 1 and:

so that we are facing an on-axis axisymmetric beam of the …rst kind. For l = 2, we have:

We therefore have:

and we readily check that Eqs.40-41 are satis…ed. Indeed, we have:

so that we are facing an on-axis axisymmetric beam of second kind. Let us now consider the summation of waves of orders 0 and 2. Still from Eqs.( 6)-( 7) of [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF], we now have: