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Chiral multifold fermions are quasiparticles described by higher spin generalizations of the Weyl
equation, and are realized as low energy excitations near symmetry protected band crossings in cer-
tain chiral crystals. In this work we calculate the linear optical conductivity of all chiral multifold
fermions. We show that it is enhanced with respect to that of Weyl fermions with the same Fermi
velocity, and features characteristic activation frequencies for each multifold fermion class, provid-
ing an experimental fingerprint to detect them. We calculate the conductivity for realistic chiral
multifold semimetals by using lattice tight-binding Hamiltonians that match the effective models
of multifold fermions at low energies, for space groups 199 and 198. The latter includes RhSi, for
which we give quantitative predictions, and also CoSi and AlPt. Our predictions can be tested in
absorption or penetration depth measurements, and are necessary to extract the recently proposed
quantized photocurrents from experiments.

I. INTRODUCTION

One of the clearest differences between topological
metals and other metals is their electronic response to
light. In TaAs, a prototypical Weyl semimetal, the bands
disperse linearly from a protected twofold band crossing
point, known as the Weyl node1,2. Because of the ab-
sence of an energy scale, the linear optical conductivity
is proportional to the driving frequency ω1,3–13, differing
from that of systems with quadratically dispersing bands.

The absence of inversion symmetry, a common prop-
erty to most known Weyl semimetals, allows a finite non-
linear optical current proportional to even powers of the
electric field. Most notably, second order photocurrents,
that are proportional to the intensity of the electric field,
have been predicted14–16 and measured to be large in
Weyl semimetals17–23. For example, second harmonic
generation, a current oscillating at twice the frequency
of the incident light, has record breaking magnitudes in
the monopnictide TaAs class of topological semimetals20,
resonantly enhanced at low frequencies21. Additionally,
semimetals that not only break inversion symmetry but
also all mirror symmetries24 are expected to generate a
large and quantized non-linear photocurrent induced by
circularly polarized light16.

Less is known about the optical responses of the re-
cent members in the family of topological metals, known
as multifold semimetals25–27. Multifold semimetals are
characterized by protected band crossings of degener-
acy higher than two, and generalize the concept of Weyl
semimetals. The quasiparticles at energies close to these
crossing points, called multifold fermions, are governed
by Weyl-like Hamiltonians: pseudo-relativistic and lin-
ear in momentum and effective spin, of the form H =
~vFk · S. They exist as either three, four, six or eight
fold degeneracies, of which only the first three can be chi-
ral. This means that only the first three types can have
bands characterized by a topological invariant, the Chern
number, defining the multifold crossings as monopoles of
Berry flux.

Multifold fermions are the most promising candidates
to display a quantized circular photogalvanic effect28,29.
Experiments using angle resolved photoemission spec-
troscopy (ARPES) in CoSi30–32, AlPt33 and RhSi32, all
in space group (SG) 198, are consistent with the exis-
tence of chiral multifold fermions at the Fermi energy
in these materials26,27,34. Additionally, a frequency in-
dependent photovoltaic plateau was detected in RhSi35,
consistent with the expected photogalvanic quantiza-
tion16,28,29. However, to faithfully extract the quantized
non-linear conductivity, and to further confirm that mul-
tifold fermions are the low energy quasiparticles in these
materials, a good knowledge of the absorption, deter-
mined by the linear optical conductivity, is needed16,35,
yet currently absent.

In this work we calculate the linear optical conduc-
tivity, defined as the linear response coefficient relating
the applied electric field to the induced current, for all
chiral multifold fermions. We describe how they can be
distinguished by this observable, and provide predictions
for real materials. We find that all types of chiral mul-
tifolds have an optical conductivity larger than a Weyl
semimetal with the same Fermi velocity vF . Moreover,
the frequencies at which different allowed transitions are
activated distinguish each multifold fermion. We there-
fore find that the optical conductivity provides a clear fin-
gerprint of each chiral multifold fermion, similar to their
two dimensional counterparts36. We use this knowledge
to predict the linear optical conductivity of materials in
space group (SG)198 and SG 199. Specifically, we calcu-
late the linear optical conductivity of RhSi, which deter-
mines its reflection and absorption and can be measured
by ellipsometry.

The paper is structured as follows. In Sec. III we pro-
vide the general formulas used and their connection to
experimental measurements, discussing first low energy
models without spin-orbit coupling that we then gener-
alize to include spin-orbit coupling. In Sec. IV we use
realistic tight-binding models to predict the linear op-
tical conductivity of RhSi, as well as for materials in
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SG199. Finally, in Sec. V we summarize and discuss our
results. An explicit calculation of the imaginary part of
the optical conductivity using Kramers-Kronig relations,
the sum rules associated to the longitudinal conductivity
and additional details of our calculation are provided in
the appendices.

II. OPTICAL CONDUCTIVITY

The conductivity σµν of a material is the linear re-
sponse coefficient between an electric field applied in the
ν direction and the current density induced in the µ direc-
tion. If the applied electric field has a wavelength larger
than the lattice constant, the momentum q transferred
by the photon to the electron is negligible and the elec-
tron conserves its momentum k in the process. We refer
to the conductivity in this limit q → 0 as optical con-
ductivity σµν(ω), which depends on the electric field’s
frequency ω. When ω is sufficiently large to overcome
Pauli blocking, an incident photon excites one electron
from an occupied state to an unoccupied state. This
process, known as an interband transition contribution
to the optical conductivity, can be calculated using stan-
dard linear response theory as the real part of37

σµν(ω) =
ie2

ωV

∑

m6=n

〈n| jµ |m〉 〈m| jν |n〉
εn − εm + ~ω + iδ

(nF (εn)− nF (εm)) ,

(1)

where e is the charge of the electron, jµ = 1
~∂kµH is

the current operator associated with the Hamiltonian H
describing the system, V is the volume of the sample,
|n〉 and En are an eigenstate of H and its corresponding
eigenvalue, respectively, εn = En − µ with µ the chemi-
cal potential, and δ is an infinitesimal broadening. The
Fermi function nF depends on εn, µ and the inverse tem-
perature β = 1/kBT measured in units of the Boltzmann
constant kB .

Our goal is to calculate the interband contribution to
the optical conductivity (Eq. 1) of all chiral multifold
fermions. Since these occur in cubic space groups, the
three diagonal elements σxx, σyy, and σzz are equal and
we can focus on a single component, σxx

38. In the main
body of this work we will compute the real part of the
interband optical conductivity, and obtain its imaginary
part using standard Kramers-Kronig relations39 in Ap-
pendix D. There exists an additional Fermi surface con-
tribution to the conductivity, the intraband Drude-like
term, that scales as 1/ω when ω → 0 and will be domi-
nant at small frequencies. Since this contribution is not
different from any other metal we omit it in the discus-
sion that follows.

III. OPTICAL CONDUCTIVITY OF
MULTIFOLD FERMIONS: LOW ENERGY

MODELS

A. Multifold fermions

Multifold fermions are low energy excitations that ex-
ist close to points in momentum space where linearly dis-
persing bands meet. The simplest example is the crossing
of two bands, a Weyl fermion, which is protected against
the opening of a gap so long as it is isolated in the Bril-
louin Zone. If more than two bands meet, the degeneracy
point is not robust against perturbations that lift the de-
generacy unless additional lattice symmetries protect it.
Excitations around these protected crossings are called
multifold fermions and can only exist as three-, four-,
six- or eightfold degeneracies. Due to their importance to
non-linear optics and recent experimental realization we
focus on chiral multifolds25,26: three-, four- and sixfold
crossings. A pedagogical introduction to chiral multifold
fermions, classified by Refs. 25 and 26, can be found in
Ref. 29.

The low-energy degrees of freedom near chiral multi-
fold crossings of degeneracy larger than two can be de-
scribed by a generalization of a Weyl Hamiltonian of the
form H = ~vFk ·Sα, where Sα is a vector of three matri-
ces that depend on a material-specific parameter α. For
particular values α = α0, only achieved without spin-
orbit coupling, the matrices Sα take the rotationally sym-
metric form of a higher-spin representation of SU(2). In
such cases, the multifold fermions have an effective spin
given by Sα0

. In the next subsections we calculate the
optical conductivity for α = α0, generalizing then to ar-
bitrary values of α.

To calculate the optical conductivity of all chiral mul-
tifold fermions it is helpful to note that, at linear or-
der, some high-degeneracy multifolds can be decomposed
into two decoupled Hamiltonians of lower degeneracy29.
This is the case for the sixfold fermion, which can be
expressed as the direct sum of two threefold degenera-
cies: the Hamiltoninan describing a sixfold can always be
brought to a block diagonal from, composed of two de-
coupled threefold Hamiltonians. Additionally, out of the
two types of fourfold fermions that exist, only one can
be written as a Hamiltonian consisting of two decoupled
Weyl fermions of the same chirality26,29. We will refer to
this case as a double spin-1/2 fourfold. The second type,
which we will refer to as spin-3/2 fourfold fermion, can-
not be expressed as the combination of lower degeneracy
multifolds. Hence, it is enough to calculate the optical
conductivity of a Weyl, a threefold, and a spin-3/2 four-
fold fermion, since all chiral multifold fermions are built
out of these three types.
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Symmetric 
Hamiltonian

Twofold  
(spin-1/2)

Threefold  
(spin-1)

Fourfold 
(spin-3/2)

Fourfold  
(2 x spin-1/2)

Sixfold  
(2 x spin-1)
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TABLE I. Effective Hamiltonians (in units of 1/~vF ) and
their corresponding optical conductivities for all symmetric
chiral multifold fermions. The optical conductivity of the ef-
fective models for the twofold, threefold and spin-3/2 fourfold
fermions, discussed Sec. III A, are defined piecewise for each
region delimited by their characteristic frequencies. The ef-
fective Hamiltonian of the double spin-1/2 fourfold is a direct
sum of two Weyl Hamiltonians, and its optical conductivity is
twice that of the Weyl fermion. Similarly, the effective Hamil-
tonian of the sixfold fermion is the direct sum of two threefold
Hamiltonians, and its optical conductivity is two times that
of the threefold fermion.

B. Optical conductivity in fully rotational
symmetric models

The lowest-degeneracy multifold fermion is the
twofold, known as a Weyl fermion. The low-energy de-
grees of freedom near this twofold crossing are described
by the Weyl Hamiltonian H = ~vFk · σ, where σ is a
vector of Pauli matrices and k is the momentum. A
simple dimensional analysis of Eq. (1) using the Weyl
Hamiltonian shows that the optical conductivity of Weyl
fermions must have a linear dependence on the frequency
ω4–6, and its explicit computation gives as a result7

σW (ω) =
ωe2

24π~vF
sinh(~ωβ/2)

cosh(µβ) + cosh(~ωβ/2)
. (2)

In the limit of zero temperature Eq. (2) takes the form4–7

σW (ω) = ωe2

24πvF ~Θ(~ω−2µ), where Θ(x) is the Heaviside
step function.

The double spin-1/2 fourfold fermion consists of two
decoupled copies of the Weyl Hamiltonian, and thus its
optical conductivity is twice the optical conductivity of
the Weyl fermion given by Eq. (2), similar to Ref. 40.

We express it as σ
2×1/2
4f (ω) = 2σW (ω) (see Table I

and Fig. 1 (c)). If the Weyl bands are tilted, the
characteristic frequency ~ωW = 2µ at which the optical
conductivity changes from being zero to being linear in
ω depends on the magnitude of the tilt, but its linear
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FIG. 1. Band structures of the rotationally symmetric multi-
fold fermions considered in Sec. III A in the high-symmetry
direction k111 = k(1, 1, 1)/

√
3. (a) Threefold fermion (spin-

1), (b) spin-3/2 fourfold fermion, (c) double spin-1/2 fourfold
fermion and (d) sixfold fermion (double spin-1). The labels
indicate the effective spin quantum number s of each band.
The vertical arrows indicate the only allowed interband transi-
tions, those that satisfy ∆s = s−s′ = ±1, with characteristic
frequencies ~ω = 2µ/3 (purple), ~ω = µ (green) and ~ω = 2µ
(orange). The dotted lines in the double spin-1/2 and double
spin-1 fermions indicate two degenerate copies of the spin-
1/2 and spin-1 fermions, respectively, with the corresponding
transitions indicated by dotted vertical arrows.

dependence remains unaltered9.

We continue by considering the most general low en-
ergy Hamiltonian for a threefold fermion

H3f (k, φ) = ~vF




0 eiφkx e−iφky
e−iφkx 0 eiφkz
eiφky e−iφkz 0


 , (3)

where vF is the Fermi velocity and φ is a material-
dependent parameter26,29. In the absence of spin-orbit
coupling the value of φ is constrained to be φ0 = π/2
mod (π/3)25. In this case the Hamiltonian takes the

form Hφ0

3f (k) ≡ H3f (k, φ0) = ~vFk · S1, where S1 is a
vector of three spin-1 matrices which form a representa-
tion of SU(2) (see Appendix A). The threefold fermions

described by Hφ0

3f have full rotational invariance and ef-
fective spin S = 1, and we refer to them as symmetric
threefold fermions.

The band energies for the spin-1 symmetric threefold
fermion are Es = s~vF |k| (see Fig. 1 (a)), where s =
−1, 0, 1 corresponds to the three possible values of the
effective spin of the fermion. Because of this effective
quantum number, a photon can excite an electron from a
filled band s to an unoccupied band s′ only if the selection
rule ∆s = s′−s = ±1 is satisfied, as depicted in Fig. 1 (a).

By inserting the analytic energies and the eigenfunc-

tions of Hφ0

3f (see Appendix A, Eq. (A2)) in Eq. (1) we
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obtain the optical conductivity

σφ0

3f (ω, µ, β) =
ωe2

6π~vF
sinh(~ωβ)

cosh(~ωβ) + cosh(µβ)
, (4)

where the super-index φ0 refers to the symmetric case.
Taking the T → 0 (β →∞) limit, the optical conduc-

tivity simplifies to

σφ0

3f (ω, µ, β) =
ωe2

6π~vF
Θ(~ω − µ). (5)

From Eq. (5), the optical conductivity of the threefold
fermion is linear with ω as for the Weyl fermion, yet four
times larger given the same Fermi velocity vF (see Table
I). Also, the characteristic frequency at which the optical
conductivity starts to grow linearly with the frequency
is ~ω3f = µ, which is different from the characteristic
frequency of the Weyl fermion ~ωW = 2µ. At ω = ω3f

the only allowed interband transition is activated (green
arrow in Fig. 1 (a)), connecting a filled and an empty
band with ∆s = s′ − s = ±1.

Since the low-energy Hamiltonian describing the
sixfold fermion can be brought to a block-diagonal form
with two copies of the threefold Hamiltonian in the
diagonal, its optical conductivity is twice that of the
threefold fermion (see Table I and Fig. 1 (d)).

We now carry out a similar analysis to obtain the op-
tical conductivity for the symmetric fourfold fermion. A
fourfold degeneracy is found only with spin-orbit cou-
pling in tetrahedral27,28 or octahedral26 subgroups29. A
general fourfold fermion in the octahedral group has the
Hamiltonian

H4f (k, a, b) =



akz 0 −a+3b
4 k+

√
3(a−b)

4 k−
0 bkz

√
3(a−b)

4 k− − 3a+b
4 k+

−a+3b
4 k−

√
3(a−b)

4 k+ −akz 0√
3(a−b)

4 k+ − 3a+b
4 k− 0 −bkz



,

(6)
where k± = kx±iky, and a, b are two material-dependent
parameters expressed in units of ~vF , whose ratio we
define as χ = arctan(b/a). For tetrahedral groups, an
extra linear term is allowed, that we discuss in Appendix
C.

A fourfold fermion recovers the full rotational sym-
metry when χ = χ0 = arctan(−3) (b = −3a) or χ =
χ0 = arctan(−1/3) (b = −a/3), for which the Hamilto-
nian takes the form Hχ0

4f (k) ≡ H4f (k, χ0) = ~vFk · S3/2,

where S3/2 are three matrices that form a spin-3/2 rep-
resentation of SU(2) (see Appendix A).

In this case, the energies are given by Es = 2s~vF |k|,
with s = − 3

2 ,− 1
2 ,

1
2 ,

3
2 corresponding to the effective spin

of the multifold fermion (see Fig. 1 (b)). Similar to the
threefold case, the selection rules only allow transitions
between a band s and a band s′ such that ∆s = s′− s =
±1.

0 2/3 1 2
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0.05
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0.15

σ
x
x
(e

2
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v F

))

Weyl

Threefold

Fourfold

1/(6π)ω

1/(8π)ω

1/(24π)ω

FIG. 2. Comparison between the optical conductivities of the
symmetric multifold fermions for which all cases in Table I
are built. A single threefold or fourfold fermion has a larger
conductivity than a Weyl fermion, normalized per node and
by their Fermi velocity. Depending on the type of multifold
the activation frequency can occur at ~ω = 2µ/3, µ or 2µ.

Inserting the energies and the eigenfunctions, which
can be obtained analytically, in the expression for the
optical conductivity in Eq. (1) we obtain

σχ0

4f (ω, µ, β) =
ωe2

8π~vF

[
sinh(~ωβ/2)

cosh(~ωβ/2) + cosh((µ− ~ω)β)

+
4

3

sinh(~ωβ/2)

cosh(~ωβ/2) + cosh(µβ)

]
. (7)

Taking the zero temperature limit T → 0 Eq. (7) is sim-
plified considerably to

σχ0

4f (ω, µ) =
~ωe2

8π~vF

[
1

3
Θ(~ω − 2µ) + Θ(~ω − 2

3
µ)

]
.(8)

As in the threefold case, the conductivity is linearly
dependent on the frequency ω of the photon. In this case
we find two characteristic frequencies due to the more
complex band structure, ~ω4f,1 = 2µ/3 and ~ω4f,2 = 2µ
(see Fig. 1 (b)), defining two separated regions in the op-
tical conductivity with different linear dependence on ω.
When ω4f,1 < ω one transition with ∆s = ±1 from the
intermediate-upper band to the upper band is allowed,
until it vanishes at ω = ω4f,2. When ω > ω4f,2 a tran-
sition between the two intermediate bands is activated
(lower orange arrow in Fig. 1 (b)).

In Fig. 2 we compare the optical conductivities of
the twofold (Weyl) fermion and the symmetric three-
fold and fourfold fermions discussed in this section. For
2µ/3 < ~ω < 2µ the optical conductivity of the spin-3/2
fourfold is larger than that of the Weyl for a given vF ,
but smaller than that of the threefold, while in the re-
gion ~ω > 2µ the optical conductivity of the threefold
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FIG. 3. Non-symmetric threefold fermion. (a) Band structure for φ = π/6−π/15 and the corresponding transitions allowed with
their characteristic frequencies (the exact expressions for these are given in the Appendix A, Eq. (A3)). (b) Optical conductivity
for the non-symmetric threefold fermion depicted in (a). The characteristic frequencies are represented by vertical lines with
colors corresponding to the transitions depicted in (a). The frequencies ω3 and ω4 do not affect the optical conductivity
since they correspond to transitions with ∆s 6= ±1, which are forbidden for the symmetric case. (c) Optical conductivities of
non-symmetric threefold fermions for different values of the material dependent parameter φ.
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FIG. 4. Non-symmetric fourfold fermion. (a) Band structure for χ = −0.36 (a = 3.2, b = −1.2) and the corresponding
transitions allowed with their characteristic frequencies (the exact expressions for these are given in the Appendix A, Eq. (A5)).
(b) Optical conductivity for the non-symmetric fourfold fermion depicted in (a). The characteristic frequencies are represented
by vertical lines with colors corresponding to the transitions depicted in (a). The frequencies that do not affect the optical
conductivity correspond to transitions with ∆s 6= ±1, which are forbidden for the symmetric case. (c) Optical conductivities
of non-symmetric fourfold fermions for different values of the material dependent parameter χ = −0.36 (a = 3.2, b = −1.2)
and χ = −0.09 (a = 3.4, b = −0.3).

and the fourfold are equal. The characteristic frequen-
cies that activate the interband transitions identify each
symmetric multifold fermion, and they do not depend on
dimensionality36. Similarly, the ratio between the sym-
metric multifold optical conductivities shown in Fig. 2 is
the same41 as for two-dimensional multifold systems36.

The abruptness of the jump in the optical conductivity
at the characteristic frequencies depends on the temper-
ature. Thermally activated carriers will populate states
above the Fermi level and empty states below it, smooth-
ing the step function in Eq. (5) (see Appendix B, Fig. 8).
Additionally, the presence of disorder introduces a finite
scattering time τ resulting in a finite δ = 1/τ in Eq. (1).
In the simplest approximation, where τ is a constant, the
step function will be broadened42, similar to the finite
temperature case discussed in Appendix B.

C. Optical conductivity in non-symmetric low
energy models

In real materials, φ and χ are pinned to the symmet-
ric values φ0 and χ0 only if spin-orbit coupling is absent.
Including spin-orbit coupling for a particular multifold
splits it into multifolds at the same high-symmetry point
but with different degeneracy. For example, in space
group 198 a threefold at Γ splits into one fourfold fermion
and one Weyl fermion. This is general: multifolds with-
out spin-orbit coupling are spinless and have φ = φ0 or
χ = χ0, while spinful multifolds may have any value of
these parameters and occur in different high symmetry
points compared to the spinless case.

In particular, for a generic threefold fermion occur-
ring in the presence of spin orbit coupling the material-
dependent parameter is no longer restricted to φ = φ0,
and can take values in the range π/3 < φ < 2π/3
mod π/326. A change in φ will tilt the bands, breaking
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the full rotational symmetry. In this case, the selection
rules of the symmetric model no longer apply and more
excitations are allowed, as depicted in Fig. 3 (a), since the
effective spin is no longer a good quantum number. The
characteristic frequencies ωi(φ) associated to each transi-
tion depicted in Fig. 3 (a) can be obtained analytically29

and we reproduce them for completeness in Appendix A.
The activation of new transitions at each ωi results in

a change in the linear dependence on ω of the optical con-
ductivity, as depicted in Fig. 3 (b). Some transitions have
a large effect on the slope, while others barely affect it.
This is consistent with other optical effects in multifold
fermions29 and is rooted in the fact that the matrix ele-
ments for transitions with ∆s 6= ±1 are typically smaller
than those with ∆s = 1. In Fig. 3 (c) we plot the optical
conductivity for different values of φ. Changing this pa-
rameter shifts the characteristic frequencies according to
their analytic expression ωi(φ), given in Eq. A3. As ap-
parent in Fig. 3 (c), the slope of the optical conductivity
also depends on φ, yet we find no closed analytic form.

Combining all the results, we find that it is possible to
identify a generic threefold fermion in an optical experi-
ment, provided φ and vF are known (for example either
from first principles calculations or photemission data).

We find a similar behavior in the fourfold case. For
an arbitrary value of χ 6= χ0 we lose full rotational
symmetry and the spin-3/2 picture breaks down, al-
lowing for new electronic excitations in the system (see
Fig. 4 (a)). The characteristic frequencies for these
excitations can be obtained analytically29 (see Eq. (A5)),
and produce a change in the linear dependence on ω
of the optical conductivity, as we see in Fig. 4 (b) and (c).

The characteristic frequencies at which the optical con-
ductivity changes and the linear dependence on ω are
different for each multifold, which allows us to identify
them by their optical conductivity for both symmetric
and non-symmetric cases.

D. Imaginary part of the optical conductivity and
sum rules

Before discussing realistic tight-binding models we
note that so far we have calculated only the absorp-
tive (real) part of the optical conductivity. Using the
Kramers-Kronig transformations39 we have obtained the
dispersive (imaginary) of the optical conductivity in Ap-
pendix D, where we derive a general expression applica-
ble to all symmetric and non-symmetric cases, and we
compute it explicitly for the symmetric cases.

For completeness, in Appendix E we compute the con-
ductivity sum rule. The sum rule relates the integral over
all frequencies of the real part of the optical conductivity,
〈σ〉, to the total number of particles. Since low energy
linearly dispersing bands, such as those of Weyl or mul-
tifold fermions, are unbounded, the f-sum rule explicitly
depends on the cut-off scale Λ, similar to what is known

for graphene43,44. Leaving the closed form and details
to Appendix E, we simply mention that for symmetric
multifolds the sum rule of the interband part of the con-
ductivity takes the form 〈σ〉 ∝ (Λ2 − cµ2) where c is a
factor that depends on the type of multifold. Specifi-
cally c = 1 and c = 4/3 for the symmetric threefold and
fourfold cases respectively.

IV. OPTICAL CONDUCTIVITY OF
MULTIFOLD FERMIONS: REALISTIC MODELS

The fingerprints of chiral multifold fermions in the
optical conductivity allow us to identify them also in
real materials. To make material-specific predictions we
use tight-binding models with parameters that reproduce
first principle band structures of space groups SG199 and
SG19828,29,34, that realize all types of chiral multifold
fermions.

The tight-binding models that we use capture specific
properties of the material, such as the energy scales, the
band connectivity and multifold crossings, and the or-
bital embedding. The latter describes the spatial position
(or embedding) of the orbitals in real space. A change
in the orbital embedding acts as a momentum dependent
unitary transformation of the tight-binding Hamiltonian:
it does not modify the band structure of the material, but
modifies its eigenfunctions. It is thus necessary to take it
into account to give accurate predictions of observables,
in particular the optical conducitivity. The details of
this transformation depend on the space group, and we
present the explicit form of the Hamiltonians with orbital
embedding for SG199 and SG198 in Appendix F.

A. Space Group 199

The first realistic tight-binding model that we con-
sider describes a material in SG199 without spin-orbit
coupling, which captures the adequate band connectiv-
ity and chirality. Since no material has been found in this
space group with only multifold fermions near the Fermi
level26 we present the results for this model in units of the
characteristic hopping scale t > 0 and the lattice constant
a. If we parametrize the orbital embedding by a scalar
u, a generic value in the range −1/2 < u < 1/2 sets the
model to be in SG199. Choosing u = 1/4 increases the
symmetry from tetrahedral to octahedral, provided the
hoppings do not break this symmetry, describing a ma-
terial in SG214. These requirements are satisfied by our
tight-binding model and thus it can interpolate between
SG199 and 214 depending on the value of u. The explicit
expression for the tight-binding model and its embedding
can be found in Appendix F.

In Fig. 5 (a) we show a representative band structure
of a material in SG199. It features protected threefold
nodes at the Γ point at energy µΓ/t = −1 and at the
H = (−π, π, π) point with µH/t = 1. It also hosts two
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FIG. 5. Tight-binding model for a material in SG199. (a) Band structure of the tight-binding model used in Sec. IV A obtained
from Refs. 28 and 29. (b) Optical conductivity of the tight-binding model calculated with a chemical potential µ/t = −0.93
(solid green line), separating by 0.07 the threefold node at the Γ point and the Fermi level (left inset). In solid orange the
optical conductivity calculated for the tight-binding model with µ/t = −1.7, separating by 0.032 the lower Weyl node at the
P point and the Fermi level (right inset). We present the optical conductivity of the effective models described in IV A for the
Γ point (dashed green) obtained with Eq. (4), and for the P point (dashed orange) obtained with Eq. (2). In the frequency
range 0 < ~ω/t < 0.2 the optical conductivity is well described by the linear effective model, i.e. the solid and dashed lines fall
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Weyl nodes at the P = (π/2, π/2, π/2) point, at energies
µW1

/t = −1.732 and µW2
/t = 1.732.

To focus on the optical conductivity of the threefold
fermion in SG199, we can place the chemical poten-
tial slightly above the threefold node at the Γ point, at
µ/t = −0.93. We present the conductivity for this case in
Fig. 5 (b). It has a linear dependence on the frequency ω
and exhibits a change in the slope at ~ωΓ/t = 0.07. This
result matches exactly the analytic results obtained for a
threefold fermion in Eq. (4) in two ways. First the activa-
tion frequency ~ω3f/t = µ/t = 0.07 exactly matches the
distance from the node to the Fermi surface. Second, the
numerical slope coincides with the slope determined by
the effective Fermi velocity that we obtain by projecting
the tight-binding Hamiltonian on the three eigenstates
corresponding to the Γ point. This projection can be
brought to the form of the threefold model in Eq. (3)
with a unitary transformation25, with an effective Fermi
velocity vF = at/(2~), where a is the lattice constant and
t is the hopping parameter in the tight-binding model.

If we instead place the chemical potential at µ/t =
−1.7, near the lower Weyl node at energy µW2 around
P , we can focus on the optical conductivity of this Weyl
node. We can see in Fig. 5 (c) that it has a linear
dependence on the frequency ω and a change in the slope
at ~ωP /t = 0.064. This energy scale matches that of a
Weyl fermion (see Table I) with an activation frequency
of ~ωW /t = 2µ/t = 0.064, corresponding to twice the
distance from the node to the Fermi surface. The slope
matches that of Eq. (2) using the effective Hamiltonian
around the P point. We obtain this model by projecting

the Hamiltonian on the corresponding eigenstates near
the Weyl node and bringing it to a Weyl Hamiltonian
form H = ~vFk ·σ with a unitary transformation, where
vF = at/(2

√
3~)25.

B. Space Group 198: RhSi

The next model that we consider describes a material
in SG198. A variety of materials in this space group
have been theoretically predicted to be chiral multi-
fold semimetals26–28,34 and these expectations have been
confirmed by angle resolved photoemission in RhSi32,
CoSi30,31 and AlPt33. In this section we calculate the
optical conductivity of RhSi as a representative material
in SG198. In order to do so, we use the model originally
presented in Ref. 28 for RhSi, whose hopping parame-
ters are fitted to first principle band calculations. We
upgrade this model as in Ref. 29: we take into account
the orbital embedding by conjugating the tight-binding
Hamiltonian with a unitary matrix parametrized by x,
with x = 0.3959 for RhSi. Further details of this model
can be found in Appendix F.

In Fig. 6 (a) we present the band structure of RhSi
without spin-orbit coupling, where we chose the zero of
energies to coincide with the predicted Fermi level of
RhSi. It exhibits a protected threefold crossing at the
Γ point at µ3f = −0.07 eV and a protected fourfold
crossing (double spin-1/2) at the R = (π, π, π) point at
µ4f = −0.48 eV.

Before studying the realistic optical conductivity of
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degeneracy and µ = 65 meV. The latter sets an energy difference of 5 meV between the threefold node at the Γ point and the
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obtained for the tight-binding model (dashed lines) are similar to the optical conductivity of the effective model at Γ (green
line) discussed in Sec. IV B for ω . 12 meV, and exhibit a jump at ω = 5 meV, a characteristic of the threefold fermion.
For higher frequencies the linear effective model fails to capture the curvature of the bands where higher-order terms become
important, causing the optical conductivity to deviate from that of the tight-binding model.

RhSi it is instructive to place the chemical potential
close to the threefold at Γ (µ = 0.065 eV) to compare
it with the optical conductivity of the linear low en-
ergy model. In Fig. 6 (b) we present the results ob-
tained numerically choosing the orbital embedding for
RhSi (x = 0.3959), the results without orbital embed-
ding (x = 0) and the analytic results for the effective
model obtained following the projection procedure de-
scribed for SG199 in the previous section. As for SG199
the projection around Γ results in the effective Hamilto-
nian Eq. (3) with vF = at/(2~), where a = 4.6 Å for RhSi
and with t = 0.76 eV chosen to match the multifold low
energy bands28. Fig. 6 (b) shows that the numerical re-
sults match the optical conductivity of the effective model
for ω . 12 meV, they grow linearly with ω and have a
step at ωΓ = 5 meV, which is the energy separation from
the node to the Fermi surface. For ω & 12 meV the
quadratic corrections become important, and the opti-
cal conductivity calculated with the tight-binding model
departs from the linear dependence obtained for the ef-
fective model. At the same scale, the results obtained for
x = 0 and x = 0.3959 do not match exactly, which in-
dicates that the higher-order corrections are sensitive to
the orbital embedding unlike the linear approximation.

We now consider the actual values of the chemical po-
tential and the orbital embedding that describe RhSi,
which are µ = 0 and x = 0.3959 respectively. We recall
that µ = 0, as set by ab-initio calcualtions28, lies 0.07 eV
above the threefold fermion at Γ, and 0.48 eV above the
fourfold node at the R point.

For these material parameters, and in the 0 < ~ω <
200 meV frequency range, the interband optical conduc-
tivity has contributions from transitions close to the Γ
and R points, that we present separately in Fig. 7. The
contribution to the conductivity near the Γ point exhibits
a jump at a frequency ~ωΓ = µ3f = 74 meV, which is
slightly larger than the corresponding characteristic fre-
quency of a threefold fermion ~ω3f = 70 meV (see Ta-
ble I). This is due to the curvature of the intermediate
band, which results in a higher activation frequency for
the allowed transition near the Γ point (see left inset in
Fig. 7).

Near the R point, the only transitions that contribute
below ~ω < 4µf ∼ 1 eV are the interband transitions
from the intermediate-upper band (green) to the upper
band (red), that we depict in Fig. 7, right inset. Their
contribution to the conductivity is two orders of magni-
tude smaller compared to that associated to the Γ point
(see Fig. 7). This small magnitude is to be expected once
we recall that at low energies, near the node at R, these
two bands correspond to two decoupled Weyl fermions
(see Fig. 6 (a)), and the transitions between them are
forbidden. As we increase the energy, the matrix ele-
ments grow as the bands separate. Since the separation
is small, the matrix elements are small. The two ex-
tremal energies, depicted by the arrows in the right inset
of Fig. 7, correspond to the frequencies ~ω = 96 meV
and ~ω = 154 meV, which match the scales where the
R point conductivity reaches its maximum and vanishes
respectively (see Fig. 7).
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FIG. 7. Optical conductivity of RhSi obtained using the tight-
binding model of SG198 described in Refs. 28 and 29 includ-
ing the spin degeneracy, with µ = 0 eV and 1/β = 0.5 meV
(T = 5.8 K). The contribution of the Γ point (blue line)
is activated by excitations between the intermediate band
(left inset, blue line) to the upper band (left inset, green
line), and exhibits a jump near ω = 74 meV, which is larger
than |µ3f | = 70 meV, set by the concavity of the interme-
diate band. The contribution due to excitations near the R
point (orange line) is magnified by a factor 10 for compari-
son. This contribution is activated by transitions between the
intermediate-upper (green) and upper band (red), depicted in
the right inset. The characteristic frequencies, represented by
vertical arrows in the right inset, correspond to the maximum
value of σR at ω = 96 meV and its vanishing at frequency
~ω = 154 meV.

In summary, the interband optical conductivity of
RhSi in the frequency range ~ω < 200 meV is deter-
mined by that of the threefold fermion at the Γ point,
since the contribution of the fourfold at the R point is
two orders of magnitude lower.

V. CONCLUSIONS

In this work we have shown that, per node, multifold
semimetals have larger optical conductivity than Weyl
semimetals. They also feature characteristic activation
frequencies that are specific to each class of multifold de-
generacy. These activation frequencies, as well as the
slope of the conductivity as a function of frequency, can
be used as a fingerprint to distinguish each chiral multi-
fold crossing. We have considered multifold fermions in
rotationally symmetric and non symmetric cases and re-
alistic hamiltonians in space groups 199 and 198. RhSi,
CoSi and AlPt30–33 belong to the latter space group and
thus our predictions can be readily tested in experiment.
Our results complement known results for other topolog-
ical semimetallic systems9,40,45,46.

Partially motivated by recent optical experiments35 we
have focused our material discussion on RhSi. In this ma-

terial, without spin-orbit coupling, the interband optical
conductivity is dominated by the electronic excitations of
the threefold band crossing at the Γ point, activated for
frequencies above 74 meV. The interband contribution of
the R point is negligible compared to that of the Γ point.

In experiments, the intraband Fermi surface contribu-
tion can mask some characteristics of the contribution
of Γ at low frequencies. In the presence of weak disorder
the Drude peak is broadened by a scale set by the inverse
scattering time 1/τ , estimated to be τ ∼ ps (~/τ ∼ 10
meV) for typical topological semimetals. Nevertheless,
the Drude-like intraband contribution can be fitted with
a Lorentzian distribution and subtracted in the experi-
mental data analysis, revealing the characteristic features
of the multifold fermions. Additionally, the tight-binding
model we have used can underestimate the importance of
the trivial pocket at M at the Fermi level for some ma-
terials in SG198, such as AlPt but most likely not RhSi.
Therefore we expect that for sufficiently clean samples of
RhSi at low temperatures the Drude peak can be narrow
enough to observe all the features described in this work.

When considering realistic tight-binding models, we
have not included spin-orbit coupling. In SG 198, for
example, spin-orbit coupling splits the threefold fermion
at the Γ point into a fourfold (spin-3/2) fermion and a
Weyl fermion. The fourfold at R splits into a sixfold
fermion and a Weyl fermion. The splitting scale is deter-
mined by the spin-orbit coupling energy scale. However,
this splitting is too small (∼ meV) to be observed in
ARPES measurements in CoSi, RhSi and AlPt30–33 and
in recent optical conductivity data in RhSi35. These ob-
servations justify our approximation and motivate future
optical experiments with meV resolution.

From Fig. 7 we predict that RhSi has an optical con-
ductivity at ~ω = 0.1 eV of σ ∼ 120 Ω−1cm−1 deter-
mined by the threefold fermion at Γ. Unfortunately,
a dedicated optical conductivity experiment for any of
the above multifold materials is still lacking. How-
ever, Ref. 35 recently reported that in the range 0.5 eV
. ~ω . 0.8 eV the conductivity of RhSi falls in the
interval 350 Ω−1cm−1 . σ . 500 Ω−1cm−1. To com-
pare with these measurements we have calculated the
optical conductivity in this range of frequencies and at
~ω = 0.5 eV we find σ ∼ 650 Ω−1cm−1. At such high
energies, there are several factors that can lead to this
discrepancy. These include inaccuracies of the estimated
value of the embedding x or the tight-binding hopping
parameters, as well as active transitions in other pockets
such as those at M . At low energies, tight-binding mod-
els become more accurate and the effect of the orbital
embedding is less relevant. Therefore, we expect that
experiments carried out at lower frequencies would agree
better with the expectations of our calculations.

Our predictions are of special relevance to interpret
the recent optical measurements of non-linear circular
photocurrents in RhSi35, and in particular to determine
the topological monopole node charge from this measure-
ment. This is because in practice, a good knowledge of
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the linear optical conductivity is important to interpret
non-linear optical experiments21,35. First, the absorp-
tion of the material determines the total non-linear cur-
rent that can be measured through the glass coefficient,
which is the ratio between non-linear current density and
the absorption. Second, dissipative non-linear effects de-
pend on the optical scattering time τ . The linear optical
conductivity can be used to estimate the magnitude of
τ , for example by quantifying a finite conductivity in the
Pauli blocked region47. This estimate can then be used
to assess the accuracy of the expected quantization of
injection currents in mirror free semimetals16,29,35.

Our results show that the optical conductivity distin-
guishes the type of chiral multifold fermions in real ma-
terials and that it can be larger, per node, than a sin-
gle Weyl fermion. We expect that our analysis of real-
istic models helps to interpret upcoming optical exper-
iments in different multifold candidate materials, espe-
cially those in SG198, such as RhSi, CoSi and AlPt.
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Appendix A: Eigenfunctions and characteristic
frequencies for the symmetric threefold and fourfold

fermions

1. Threefold fermion

For φ = φ0 = π/2 we can write the Hamiltonian for a

threefold fermion (see Eq. (3)) as Hφ0

3f (k) = ~vFk · S1,

where S1 = (S1,x, S1,y, S1,z) are the spin-1 matrices

S1,x =




0 i 0
−i 0 0
0 0 0


 ,

S1,y =




0 0 −i
0 0 0
i 0 0


 ,

S1,z =




0 0 0
0 0 i
0 −i 0


 , (A1)

with commutation relations [S1,i, S1,j ] = −iεijkS1,k.

The eigenstates of the threefold low energy model in
Eq. (3) were previously obtained analytically for any
value of φ (see for instance Refs. 26 and 29),

ψs =
1√

(3E2
s − k2)(E2

s − k2
z)




E2
s − k2

z

Eskxe
−iφ + kykze

2iφ

Eskye
iφ + kxkze

−2iφ


 ,

(A2)

where Es = s~vF |k| is the energy associated to each
eigenfunction.

We reproduce also the characteristic frequencies for the
model in Eq. (3) that determine the changes in the linear
dependence of the optical conductivity, obtained previ-
ously in Ref. 29,

~ω1

µ
=

√
3 cos(φ+ π/6)

cos(φ)
,

~ω2

µ
=

√
3 cos(φ+ π/6)

cos(φ− 2π/3)
,

~ω3

µ
=

√
3 cos(−φ+ π/2)

cos(−φ+ π/3)
,

~ω4

µ
=

√
3 cos(φ− π/6)

cos(φ)
,

~ω5

µ
=

√
3 cos(−φ+ π/6)

cos(−φ+ π/3)
,

~ω6

µ
=

√
3 sinφ

cos(φ− 2π/3)
.

(A3)

2. Fourfold fermion

For a = 3, b = −1 (χ = χ0 = arctan(−1/3))
we can write the Hamiltonian describing the fourfold
fermion in Eq. (6) as Hχ0

4f (k) = ~vFk · S3/2, where

S3/2 = (S3/2,x, S3/2,y, S3/2,z) are three spin-3/2 matri-
ces

S3/2,x =




0 0 0
√

3

0 0
√

3 −2

0
√

3 0 0√
3 −2 0 0


 ,

S3/2,y =




0 0 0 −i
√

3

0 0 −i
√

3 −2i

0 i
√

3 0 0

i
√

3 2i 0 0


 ,

S3/2,y =




3 0 0 0
0 −1 0 0
0 0 −3 0
0 0 0 1


 , (A4)

with commutation relations
[
S3/2,i, S3/2,j

]
=

2iεijkS3/2,k.

For any value of χ, the characteristic frequencies where
the linear conductivity of the fourfold fermion changes
slope were obtained in Ref. 29. Defining the momen-
tum high symmetry directions k100 = k(1, 0, 0) and

k111 = k(1, 1, 1)/
√

3, the fourfold optical conductivity
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is determined by the following activation frequencies:

~ω1

µ
=
E1(k111)− E2(k111)

E1(k111)
,

~ω2

µ
=
E1(k100)− E2(k100)

E1(k100)
,

~ω3

µ
=
E1(k100)− E2(k100)

E2(k100)
,

~ω4

µ
=
E1(k111)− E2(k111)

E2(k111)
,

~ω5

µ
=
E1(k100)− E3(k100)

E1(k100)
,

~ω6

µ
=
E1(k111)− E3(k111)

E1(k111)
,

~ω7

µ
=
E1(k111)− E4(k111)

E1(k111)
,

~ω8

µ
=
E2(k111)− E4(k111)

E2(k111)
,

~ω9

µ
=
E2(k100)− E4(k100)

E2(k100)
. (A5)

Appendix B: Temperature and smoothing of the
step function
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FIG. 8. Optical conductivity of symmetric models with finite
temperature. The solid lines correspond to that of Fig. 2 and
the dashed lines (with the same color coding) are calculated
with the exact analytic expressions Eqs. (2), (4) and (7) for
finite temperature with 1/β = 10−1µ.

In Sec. III we have derived analytic expressions for the
optical conductivity of the symmetric threefold and sym-
metric fourfold fermions, Eqs. (4) and (7) respectively,
for any temperature T = 1/(kBβ). In Fig. 8 we plot the
optical conductivities for the twofold, symmetric three-
fold and symmetric fourfold fermions at zero temperature
and at a finite (unrealistic) temperature 1/β = 10−1µ to
illustrate the smoothing of the step functions at the char-
acteristic frequencies. In units of µ the broadening, set
by µβ, is larger for the step function at 2µ than at µ or
2/3µ, which is clearly visible in Fig. 8.

The smoothing due to a finite temperature is visible as
well in our calculations for realistic models in Sec. IV.

Appendix C: Tetrahedral fourfold

The tetrahedral spin-3/2 fermions in space groups 195–
198 arise upon breaking the fourfold rotational symmetry
in space groups 207–214. At linear order, the Hamilto-
nian admits an extra term compared to the octahedral
fourfold in space groups 195–198 and takes the form

H4f,T = H4f+~vT




0 kz −
√

3kx iky
kz

2kz√
3

iky
kx−2iky√

3

−
√

3kx −iky 0 −kz
−iky kx+2iky√

3
−kz − 2kz√

3


 ,

(C1)
where H4f is the octahedral fourfold Hamiltonian given
in Eq. (6). The parameter vT is proportional to the
strength of the fourfold rotational symmetry breaking.

By changing vT we introduce a tilt in the bands (see
Fig. (9) (a)), breaking the full rotational symmetry and
leading to a different optical conductivity compared to
Eq. (7). The optical conductivity obtained for the tetra-
hedral fourfold fermion is shown in Fig. 9 (b).

Appendix D: Imaginary part of the optical
conductivity σ= from Kramers-Kronig relations

The optical conductivity is a complex quantity with
real and imaginary parts σ = σ<+ iσ= which are related
by the Kramers-Kronig relations39. In section III we have
calculated the absorptive (real) part of the optical con-
ductivity. Using the Kramers-Kronig relations we can
obtain the dispersive (imaginary) part of the optical con-
ductivity. The Kramers-Kronig relations are commonly
written as

σ<(ω) =
1

π
P
∫ ∞

−∞
dx
σ=(x)

x− ω , (D1)

σ=(ω) =− 1

π
P
∫ ∞

−∞
dx
σ<(x)

x− ω , (D2)

where P denotes the Cauchy principal value. To calculate
it we follow the procedure in Ref. 39 and subtract the
singularity at ω

σ<(ω) + iσ=(ω) =
1

iπ

∫ ∞

−∞
dx

(
σ(x)− σ(ω)

x− ω

)(
x+ ω

x+ ω

)
.

(D3)

Using now that the real part is even and the imaginary
part is odd in frequencies we obtain

σ<(ω) =
2

π

∫ ∞

0

dx
xσ=(x)− ωσ=(ω)

x2 − ω2
, (D4)

σ=(ω) =− 2ω

π

∫ ∞

0

dx
σ<(x)− σ<(ω)

x2 − ω2
. (D5)

Since the low-energy models that we used in section III
to calculate the real part of the optical conductivity have



12

0 1 2 3 4
h̄!/µ

0

5

10

15

�
x
x
(e

2
/(

10
�

3
e2

/h̄
v F

))

vT/vF =0.3

vT/vF =0.7

(a) (b)

�4 �2 0 2 4
k

�6

�4

�2

0

2

4

6
E

/(
h̄
v F

)

vT/vF = 0.7

vT/vF = 0.3

[100]← k        Γ                                 k → [111]

FIG. 9. Optical conductivity of a tetrahedral fourfold fermion. (a) Band structure and (b) optical conductivity corresponding
to the tetrahedral fourfold fermion with two different values of the ratio vT /vF (see Eq. (C1)).

unbounded linearly dispersing bands, we regularize the
upper limit in the integrals in Eqs. (D4) and (D5) using
a cutoff frequency Λ. As discussed in the main text, the
real part of the optical conductivity of all chiral multifold
fermions is a piecewise function of the form σ<(ω) =∑N−1
i=0 σi(ω) =

∑N−1
i=0 SiωΘ(ωi+1 − ωi). The subindex i

is associated to each characteristic frequency ωi where the

slope of the optical conductivity changes (see Appendix
A), where ω0 = 0 and ωN = Λ/~ is the cutoff frequency,
and N is the number of different frequency regions. In
particular, N = 7 and N = 10 for threefold and fourfold
fermions as dictated by Eq. (A3) and (A5) respectively.
Using this partition for the optical conductivity we can
rewrite now Eq. (D5) as

σ= (ω,Λ) = −2ω

π

[
N−1∑

i=0

∫ ωi+1

ωi

σi(x)

x2 − ω2
dx−

∫ ∞

0

σ<(ω)

x2 − ω2
dx

]
(D6)

= − 1

π

[
σ<(ω) log

∣∣∣∣
Λ + ~ω
Λ− ~ω

∣∣∣∣+ ω

N−1∑

i=0

Si log

∣∣∣∣
ω2
i+1 − ω2

ω2
i − ω2

∣∣∣∣

]
, (D7)

This expression can be evaluated analytically for the cases of the twofold (Weyl), the symmetric threefold and the
symmetric fourfold fermions presented in Table I in Eq. (D7). For the Weyl fermion we obtain

σ=,W (ω) = − ωe2

24π2~vF

[
log

∣∣∣∣
Λ2 − (~ω)2

4µ2 − (~ω)2

∣∣∣∣+ Θ(~ω − 2µ) log

∣∣∣∣
Λ + ~ω
Λ− ~ω

∣∣∣∣
]
. (D8)

We take the result obtained for the symmetric threefold in Eq. (5), and we obtain the corresponding imaginary part

σφ0

=,3f (ω) = − ωe2

6π2~vF

[
log

∣∣∣∣
Λ2 − (~ω)2

µ2 − (~ω)2

∣∣∣∣+ Θ(~ω − µ) log

∣∣∣∣
Λ + ~ω
Λ− ~ω

∣∣∣∣
]
. (D9)

For the symmetric fourfold fermion

σχ0

=,4f (ω) = − ωe2

24π2~vF

[
4 log

∣∣∣∣
Λ2 − (~ω)2

4µ2 − (~ω)2

∣∣∣∣+ 3 log

∣∣∣∣
36µ2 − 9(~ω)2

4µ2 − 9(~ω)2

∣∣∣∣+

(
3Θ

(
~ω − 2µ

3

)
+ Θ(~ω − 2µ)

)
log

∣∣∣∣
Λ + ~ω
Λ− ~ω

∣∣∣∣
]
.

(D10)
For the non-symmetric multifold fermions, the characteristic frequencies can be calculated analytically for each φ, χ

using Eqs. (A3) and (A5). The slopes for each piece Si can be calculated numerically and introduced in Eq. (D7).

Appendix E: Sum rules

Optical sum rules relate the real part of the optical
conductivity with the total number of particles in the

system, and are obtained as the integral of the optical
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conductivity to all frequencies,

〈σ〉 = ~2

∫ ∞

0

dωσ<(ω). (E1)

As for the Kramers-Kronig relations, the unbounded lin-
ear dispersion of the effective low energy models requires
us to insert a cutoff frequency Λ in Eq. (E1) to regular-
ize the integral. As discussed in the previous section, we
will use that the optical conductivity of these models is

of the form σ<(ω) =
∑N−1
i=0 σi =

∑N−1
i=0 SiωΘ(ωi+1−ωi)

for both symmetric and non symmetric cases. Introduc-
ing this general form in Eq. (E1) as well as the cut-off
Λ we obtain a general expression for the sum rule for all
multifold fermions:

~2

∫ Λ/~

0

dωσ<(ω) = ~2
N−1∑

i=0

∫ Λ/~

0

dωSiωΘ(ωi+1 − ωi)

= ~2 e2

2~vF

N−1∑

i=0

Si(ω
2
i+1 − ω2

i ). (E2)

To obtain analytic results for the symmetric cases (see
Sec. III A) we can insert the optical conductivities in Ta-
ble I in Eq. (E2). In the twofold (Weyl) case we obtain

〈σ〉2f =
e2

48π~vF

(
Λ2 − 4µ2

)
. (E3)

For the symmetric threefold fermion we obtain that

〈σ〉3f =
e2

12π~vF

(
Λ2 − µ2

)
. (E4)

In the symmetric fourfold case the optical sum rule is

〈σ〉4f =
e2

12π~vF

(
Λ2 − 4

3
µ2

)
. (E5)

For the non symmetric cases the frequencies at which
the linear dependence of the optical conductivity on ω
changes are given by Eqs. (A3) and (A5) for the three-
fold and fourfold fermions, respectively. In this case, the
linear dependence Si in each section ωi < ω < ωi+1 can
be computed numerically and substituted in Eq. (E2) to
obtain the corresponding sum rule.

Finally, note that the Drude peak will contribute to
the sum rule as well. Extending the results of Ref. 43 to
three-dimensions, we expect its contribution to be pro-
portional to µ2.

Appendix F: Tight-binding models and orbital
embedding

In Sec. IV we have calculated the optical conductivity
of materials described by tight-binding models in space
groups 199 and 198. The tight-binding model for SG198
and a detailed discussion on its construction without or-
bital embedding can be found in Ref. 28. The inclusion
of the orbital embedding for SG198, together with the
construction of the tight-binding model for SG199 is dis-
cussed in Ref. 29. For convenience we revisit here how to
include the orbital embedding for the models we used in
the main text.

Materials in space group 199 have body-centered cubic
structures with Bravais lattice vectors

R1 =
a

2
(−x̂ + ŷ + ẑ),

R2 =
a

2
(x̂− ŷ + ẑ),

R3 =
a

2
(x̂ + ŷ − ẑ). (F1)

To construct the tight-binding model considering the
symmetries of SG199 we place spinless s-orbitals in the
positions qi, given by

q1 = (u, u, u),

q2 = (
1

2
− u, 1

2
, 0),

q3 = (0,
1

2
− u, 1

2
),

q4 = (
1

2
, 0,

1

2
− u), (F2)

where |u| < 1/2, and qi is expressed in reduced coordi-
nates, i.e., in units of Ri.

Then, we can write the tight-binding Hamiltonian used
in Sec. IV A for a material in SG199 as H199(u,k) =
V †(u,k)H0(k)V (u,k), where

H0(k) =




0 1 1 1
1 0 e−ik·R3 eik·R2

1 eik·R3 0 e−ik·R1

1 e−ik·R2 eik·R1 0


 , (F3)

and
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V (u,k) =




eik·q1 0 0 0
0 eik·q2 0 0
0 0 eik·q3 0
0 0 0 eik·q4


 . (F4)

For SG198 the tight-binding Hamiltonian presented in Ref. 28 was modified in Ref. 29 to take into account the
orbital embedding. In the original tight-binding Hamiltonian28 H(k) the atoms are located in the positions

qA = (0, 0, 0) , qB =

(
1

2
,

1

2
, 0

)
, qC =

(
1

2
, 0,

1

2

)
, qD =

(
0,

1

2
,

1

2

)
, (F5)

given in reduced coordinates. To take into account the orbital embedding, the new atomic positions

qA = (x, x, x) , qB =

(
1

2
+ x,

1

2
− x,−x

)
, qC =

(
1

2
− x,−x, 1

2
+ x

)
, qD =

(
−x, 1

2
+ x,

1

2
− x
)
, (F6)

were introduced in Ref. 29 with x = 0.3959 for RhSi, according to their ab-initio calculations. In Sec. IV B we have
calculated the optical conductivity of RhSi using the tight-binding Hamiltonian H198(x,k) = Ux(k)†H(k)Ux(k) with

Ux(k) = exp






ix(k1 + k2 + k3) 0 0 0

0 ix(k1 − k2 − k3) 0 0
0 0 ix(k3 − k2 − k1) 0
0 0 0 ix(k2 − k1 − k3)





 , (F7)

and H(k) the tight-binding Hamiltonian without spin-orbit coupling presented in Ref. 28, which reads

H(k) = v1

[
τxµ0 cos

(
kx
2

)
cos

(
ky
2

)
+ τxµx cos

(
ky
2

)
cos

(
kz
2

)
+ τ0µx cos

(
kz
2

)
cos

(
kx
2

)]

+ vp

[
τyµz cos

(
kx
2

)
sin

(
ky
2

)
+ τyµx cos

(
ky
2

)
sin

(
kz
2

)
+ τ0µy cos

(
kz
2

)
sin

(
kx
2

)]

+ v2

[
cos (kx) + cos (ky) + cos (kz)

]
τ0µ0, (F8)

where τ i and µi, i = x, y, z, are the three Pauli matrices for spin-1/2, τ0 = µ0 = 1 is the 2 × 2 identity matrix,
and τ iµj ≡ τ i ⊗ µj is a short-hand notation for the Kronecker product. For RhSi the values of the tight-binding
parameters are v1 = 0.55, v2 = 0.16, and vp = −0.76, obtained in Ref. 28 by fitting the bands of the tight-binding
Hamiltonian in Eq. (F8) to their first-principles calculations.
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