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Abstract 33 

Urban expansion and associated habitat transformation drives shifts in biodiversity, with declines 34 

in taxonomic and functional diversity. Forests fragments within urban landscapes offer a number 35 

of ecosystem services, and help to maintain biodiversity and ecosystem functions. Here, we 36 

focus on a tropical forest environment, and on the soil biota. Using eDNA metabarcoding, we 37 

compare forest fragments within the city of Cayenne, French Guiana, with a neighbouring 38 

continuous undisturbed forest. We wished to determine if urban forest fragments conserve high 39 

levels of alpha and beta diversity as well as similar functional composition for plants, soil 40 

animals, fungi and bacteria. We found that alpha diversity is similar across habitats for plants 41 

and fungi, lower in urban forests for metazoans and higher for bacteria. We also found that urban 42 
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forests communities differ from undisturbed forests in their taxonomic composition, with urban 43 

forests exhibiting greater turnover between fragments potentially caused by ecological drift and 44 

limited dispersal. However, their functional composition exhibited limited differences, with an 45 

enrichment of palms, arbuscular mycorrhizal fungi and bacteria and a depletion of climber plants 46 

and termites. Thus, although urban forest fragments do shelter soil biodiversity that differs from 47 

native forests, the losses of soil functions may be relatively limited. This study demonstrates the 48 

strong potential of a multi-taxa eDNA approach for rapid inventories across taxonomic 49 

kingdoms, in particular for cryptic soil diversity. It also demonstrates the key role of urban forest 50 

fragments in conserving biodiversity and ecosystem function, and points to a need for more 51 

systematic monitoring of these areas in urban management plans.  52 
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1. Introduction 57 

Over the course of the next decade, the rate of natural habitat conversion as a result of 58 

urbanisation may double, owing to the continued increase in human populations and the global 59 

expansion of urban sprawl (DeFries et al. 2010; Seto et al. 2012; McDonald et al. 2020). 60 

Dependant on the scale of habitat disturbance, fragments of natural habitat found within the 61 

expanding urban matrix can shelter species, either native, thus serving as local refuges, or 62 

adapted to novel conditions created by human modification. Whilst ecological studies of 63 

urbanization effects have revealed declines in the density and/or diversity of birds, plants and 64 

fungi (Aronson et al. 2014; Abrego et al. 2020), a broad range of taxa inhabit urban or suburban 65 

areas, and their response to urbanization remains unknown, thus biasing environmental impact 66 

assessments but also the potential role of urban habitat fragments for conservation. The biota 67 

inhabiting soils provide numerous ecosystem processes (Bardgett & Van Der Putten, 2014), and 68 

have previously been shown to persist in temperate urban forests (Ramirez et al. 2014). Whether 69 

urban forests can conserve the soil biota in tropical regions is not known, in spite of well 70 

documented evidence that biodiversity is under threat in these regions, including that of soils 71 

(McDonald et al. 2008; Barnes et al. 2017; Barlow et al. 2018; Franco et al. 2019).  72 
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The reduced connectivity and isolation of forest fragments from undisturbed, continuous 73 

forests is expected to modify the ability of species to disperse, colonise and persist (Simberloff & 74 

Abele 1982; Saunders et al. 1991; Tscharntke et al. 2012). It is often thought that the high forest 75 

fragmentation in urban spaces likely reduces the survival of populations and thus, should change 76 

the composition of species found in fragments, as is sometimes observed (Ewers & Didham 77 

2006). However, the biotic response to fragmentation varies among species (Fahrig et al., 2019). 78 

Urban environments experience modified abiotic conditions relative to undisturbed forests, 79 

exposed to increased air pollution, air temperature, and soil structural modification, with higher 80 

compaction, soil pollution such as heavy metal content and acidity, and reduced organic matter 81 

content (Jim 1998; McKinney, 2002; Arnfield, 2003). Such modifications impact on soil 82 

dwelling species, from the short-lived microscopic fungi and bacteria through to long-lived trees 83 

(Newbound et al. 2010; Sinsabaugh 2010; Rodrigues et al. 2013; Hendriksen et al. 2016; de 84 

Carvalho et al. 2016; Vieira et al. 2018; Abrego et al. 2020). The heterogeneity of abiotic 85 

conditions within forest fragments is also known to increase as a result of edge effects, resulting 86 

in smaller fragments becoming uninhabitable for inner-forest adapted species (Laurance et al. 87 

2002; Canale et al. 2012; Aerts et al. 2016). All these different aspects may lead to reduced 88 

diversity and biotic homogenisation through the proliferation of species that are either urban-89 

specific/tolerant or native pioneers in urban forests (McKinney et al. 2002; Lôbo et al. 2011).  90 

Such effects remain to date unknown for the soil biota in Amazonia. Only a few studies 91 

have assessed the drivers of soil communities in Amazonian native forests (e.g. Ritter et al. 2019; 92 

Vleminckx et al. 2019, Zinger et al. 2019). Some reports also suggest that agricultural conversion 93 

of forests reduces macrofauna biomass and diversity (Decaens et al. 2018), a tendency that seems 94 

to hold true for both soil meso- or micro- fauna in the few studies published thus far (Franco et 95 

al. 2019, Paula et al. 2014). One study reported increased bacterial diversity in agricultural sites 96 

at local scales, although these were more homogenous at larger scales due to the loss of forest 97 

taxa with restricted ranges (Rodrigues et al. 2013). However, urban forest fragments do not 98 

experience the drastic land-use changes of agricultural conversion, and may respond differently. 99 

The position of a forest fragment within an urban landscape could also promote local diversity, 100 

by providing a broader range of resources and habitats as was found for pollinators 101 

(Sritongchuay et al. 2019). 102 
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Regardless of whether local diversity is above or below a baseline in urban forest 103 

fragments, changes in community composition may impact whole functional groups, and hence 104 

potentially lead to altered ecosystem functioning. Increased fragmentation and habitat 105 

disturbance promote fast-growing plants such as lianas (Laurance et al. 2001; Martin, Sherman 106 

& Fahey 2004; Magrach et al. 2016; Campbell et al. 2018), which reduce the capacity of the 107 

forest to store carbon (van der Heijden et al. 2015; de Lima et al. 2020). Such changes lead to 108 

reduced organic matter availability in urban forest soils (Shen et al. 2019), which should reduce 109 

the abundance of detritivore organisms such as blattodea and collembola (Fountain & Hopkin 110 

2004; Jones et al. 2003; Santorufo et al. 2012) and increase organisms able to tolerate nutrient-111 

poor soils such as arbuscular mycorrhizal (AM) fungi (McGee et al. 2019), oligotrophic bacteria 112 

and nitrogen fixing bacteria (Rodrigues et al. 2013; Mendes et al. 2015; McGee et al. 2019). 113 

Functional changes may thus operate across the whole soil biota through biotic interactions, 114 

requiring simultaneous assessment which can be particularly challenging.  115 

Environmental DNA (eDNA) metabarcoding on soil samples offers a method to assess 116 

the effects of habitat modification in tropical regions and beyond across soil trophic and 117 

functional groups (Taberlet et al. 2012; 2018; Geisen et al. 2019; Zinger et al. 2020a). The 118 

community assembly processes of meso-fauna and microbial communities in tropical forests can 119 

be explored by means of eDNA (Ritter et al. 2019, Zinger et al. 2019), where the gaps in our 120 

taxonomic knowledge otherwise remain large. eDNA hence holds great potential for quantifying 121 

ecosystem health and perform long-term monitoring even in places where baseline biodiversity is 122 

poorly quantified (Cordier et al. 2021). 123 

We used DNA metabarcoding on soil samples to ask whether tropical urban forest 124 

fragments harbour levels of taxonomic and functional diversity across the whole soil biota that 125 

are comparable with those of nearby continuous forest. More specifically, we compared 126 

communities of plants, soil meso-fauna, fungi and bacteria in forest fragments within the mid-127 

sized tropical city of Cayenne, French Guiana, referred to as urban forests, with nearby lowland 128 

tropical forest sites that have experienced low levels of disturbance in recent history, referred to 129 

as control forests. We hypothesised that: 130 

H1) plants and meso-fauna show a lower alpha diversity at the forest fragment scale in 131 

urban compared to control sites, due to habitat degradation and dispersal limitation, causing local 132 

extirpations. As dispersal is expected to be less limited for microbes, urban forests and control 133 



5 

forests should exhibit similar levels of diversity, or even higher diversity in the former due to 134 

local environmental heterogeneity of the surrounding forest patches and higher sensitivity of 135 

microbes to changes in environmental conditions.  136 

H2) At the scale of the city (i.e. including all forests patches), we expected lower gamma 137 

diversity for all groups due to biotic homogenization. 138 

H3) Turnover in community taxonomic composition between control and urban forests is 139 

high for all clades, with increased turnover within urban forests compared to within control ones, 140 

as a result of urban sites experiencing increased fragmentation and more varied soil chemistry. 141 

H4) differences in the functional composition of soil biota should be observed between 142 

urban and control forests, with greater abundance of lianas, fewer detritivores due to declines in 143 

available organic matter, higher levels of AM fungi and bacteria adapted to reduced soil 144 

nutrients. 145 

 146 

2. Methods 147 

2.1 Sample sites 148 

This study was conducted in French Guiana, an overseas territory of France of 84500 km
2
 149 

mostly covered by Amazonian tropical forest. Urbanisation of natural habitats in French Guiana 150 

is low, with a population size of 250,000, but is quickly increasing (INSEE 2016). The urban 151 

area of Cayenne (4°560 N, 52°200 W), the regional capital city of French Guiana, accounts for 152 

about half of the total population. The city is positioned on a peninsula with the Atlantic to the 153 

north, and the Cayenne and Mahury rivers to the east and west respectively. Within the city lie 154 

four substantial forest fragments (Rorota, Montravel, Montabo, Mont Bourda) positioned on 155 

outcrops with underlying metamorphic granite/diorite, which benefit from a protection status of 156 

‘zones of natural interest for the ecology of flora & fauna’ (ZNIEFF). All these sites are 157 

documented as having been cleared of forest cover at some stage over the past 400 years since 158 

the first European settlement. Since that time, forest patches have recovered and include some 159 

mature trees, indicative of advanced forest recovery. The urban forest fragments vary in their 160 

overall surface area, as follows: Montabo (CAY1): 19.4ha; Mont Bourda (CAY2): 29.9ha, Mont 161 

Ravel (CAY3): 3.5ha, and Rorota (CAY4) 762.2ha. 162 

In order to compare these with undisturbed forest, four control sites were selected near 163 

the main urban centre of Cayenne (“FOR1”: Balata; “FOR2”: Cambior; “FOR3”: Coralie & 164 
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“FOR4”: Guyakaw; Supplementary 1). These sites were selected due to their proximity to 165 

Cayenne, in order to reduce climatic variation effects. Geology varies across all study sites. Soil 166 

Chemistry for the sites was determined as outlined in Supplementary 2. Analysis determined 167 

sample pH, granulometry, total Carbon and Nitrogen and the derived C:N ratio, available 168 

Phosphorus, and five major elements (Aluminium, Iron, Magnesium, Potassium, Manganese, 169 

Calcium). 170 

 171 

2.2 Field sampling and bioinformatic processing of samples 172 

A detailed description of sample collection, molecular and bioinformatics procedures are 173 

provided in Supplementary 3. Briefly, sampling of soils was conducted within 1 ha plots at each 174 

sample site, whereby 16 sample points were arranged on a 20 x 20 m grid. The arrangement of 175 

sites allowed for the subdivision of the grid into 4 subplots each containing four sample points (n 176 

=32), in order to account for variation in both soil chemistry and biotic communities at the plot 177 

level.  178 

Extracellular DNA was extracted from 15 g of soil per sample, following a method 179 

shown to retrieve a similar signal to more expensive total DNA extraction protocols at a fraction 180 

of the cost (detailed in Taberlet et al. 2012; Zinger et al. 2016; 2019). PCR amplifications were 181 

then conducted for four DNA molecular markers, with primers targeting either viridiplantae 182 

(subsequently referred to as plants), eukaryotes, fungi or bacteria. Negative extraction and PCR 183 

controls were simultaneously amplified, with two replicates per PCR, and a use of a double 184 

indexing strategy of tags to enable retrieval of sequences and reassignment to their samples, 185 

including non-used combinations as sequencing controls. 186 

Sequencing was conducted on different Illumina platforms (San Diego, CA, USA) 187 

depending on the marker considered, using paired-end technology. Bioinformatic analyses of 188 

generated sequences were performed on the GenoToul bioinformatics platform (Toulouse, 189 

France), with the OBITOOLS package (Boyer et al. 2016). After basic sequencing data 190 

manipulation and curation, we built OTUs (Operational Taxonomic Units) using the ‘sumaclust’ 191 

clustering algorithm (Mercier et al. 2013) at a set threshold of 97% for eukaryotes, fungi and 192 

bacteria, and lowered to 95% for plants to account for sequence length.  193 

Taxonomy was assigned to each OTU using either a local database of sequences from 194 

French Guiana, or global databases derived from EMBL 195 
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(https://www.ebi.ac.uk/ena/browser/home; release 141) using OBITOOL’s ecotag programme 196 

(Boyer et al. 2016). For bacteria and eukaryotes, the SILVA taxonomic database was used 197 

(version 1.3; Quast et al., 2012). 198 

Datasets were subsequently filtered to remove contaminants as well as artefacts such as 199 

PCR chimeras and remaining sequencing errors, following Zinger et al. (2019) and using the 200 

metabaR R package (Zinger et al 2021), in R version 3.6.1 (R Development Core Team, 2013). 201 

Upon filtering completion, the sequencing read counts of remaining PCRs were summed across 202 

technical replicates, before this total was normalized in line with all samples. This step was done 203 

to reduce potential bias caused by PCR stochasticity and differential sequencing efforts. 204 

Standardization consisted in randomly resampling (with replacement) a number of reads that 205 

corresponded to the first quartile of the total read number for reads per samples. This returns 206 

samples with a read count equal across all samples, whilst maintaining sample specific OTU 207 

relative abundances. Finally, we sought to reduce stochastic variation of taxa across soil samples, 208 

we aggregated the four replicate samples within each subplot by summing reads (after 209 

normalisation). Soil chemistry data were also provided for bulk samples of four replicate samples 210 

within each subplot. 211 

 212 

2.3 Assigning Functional Groups 213 

Each dataset was processed to assign OTUs a functional group based on their taxonomy, when 214 

possible (see Supplementary 4 for a comparison between forest types). Plant OTUs were 215 

assigned a life form following Cardoso et al. (2017). Since life form information is only 216 

available at the species level, we considered the life form of a genus or a family to be the one 217 

that is the most common amongst its associated species.  For metazoans, we used broad 218 

taxonomic clades as proxies of key functional groups in the soil. We focused on annelids for 219 

their role in soil bioturbation, on Blattodea, Nematoda, Acari, Collembola, Millipede as 220 

detritivores, on Araneae as predators (see Supplementary 5). Fungal OTUs were assigned a 221 

function by using FunGuild (Nguyen et al. 2016). OTUs assigned to multiple guilds were 222 

removed. For OTUs without a FunGuild annotation but assigned to a species, we searched for 223 

their putative host and ecology in the literature. Some FunGuild functional groups were 224 

aggregated into the following group: Saprotroph, Parasite, AM fungi, Plant Pathogen, 225 

Ectomycorrhizal fungi. Bacterial OTUs were assigned a functional group mainly from 226 
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FAPROTAX (Louca et al. 2016), but also by using other resources (i.e. Burns et al. 2013; Madin 227 

et al. 2020; Stein & Klotz 2016; Strous et al.1999; De Boer & Kowalchuk 2001; Wardeh et al. 228 

2015). We also assigned bacterial OTUs a growth strategy following Ho et al. (2017) in order to 229 

see whether control forests, which we expect to be richer in organic matter, are enriched in 230 

copiotrophic clades. We finally also assigned bacterial OTUs N-cycling pathways using 231 

FAPROTAX and Nelson et al. (2016). Further details on the functional classification and 232 

number of assigned OTUs for each clades/kingdom are given in Supplementary 5.  233 

 234 

2.4 Statistical analyses 235 

All statistical analyses were conducted with R version 3.6.1. 236 

2.4.1 Removal of outliers 237 

A visual inspection of soil physiochemistry and of eDNA derived taxonomic data 238 

revealed urban forest Mont Ravel (CAY3) to be a significant outlier, displaying soil properties 239 

and communities of organisms distinct from the other urban sites. To avoid confounding the 240 

effects extreme soil chemistry variation at one site with more broader effects of urban 241 

fragmentation, this site was removed from subsequent analysis (Supplementary 2.2, 2.3, 2.4).  242 

2.4.2 Alpha diversity / abundance patterns 243 

We measured the alpha diversity of each clade/functional group in each subplot with the 244 

Shannon index. Calculations were performed using the vegan package (Oksanen et al., 2013). 245 

This index was chosen since it has been shown to best quantify diversity in eDNA 246 

metabarcoding data compared with other indices (Calderón‐ Sanou et al. 2020). For each forest 247 

type and each of the four clades/kingdoms, we ensured that the diversity coverage was adequate 248 

by checking saturation of rarefaction curves using the metabaR package (Supplementary 6). 249 

Gamma diversity was estimated with the iNEXT package, where input data was abundance, and 250 

the output rarefaction curve plotted the exponential Shannon index (Hill number q = 1; Hsieh et 251 

al. 2016). 252 

To determine whether alpha diversity or relative abundance differed between urban and 253 

control forests, we built Linear Mixed Models (LMMs) with forest type (urban vs. control) as a 254 

fixed effect, and sample site as a random effect to account for potential site specificities in the 255 

analysis that would lead to a higher similarity of subplots from a same site. Prior to model fitting, 256 
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residuals were tested for normality. Significance of variation was determined by conducting a 257 

Wald chi-squared test. This was conducted with the lme4 R package (Bates et al. 2019)  258 

For visualization purposes, the influence of forest type on Shannon diversity or functional 259 

group relative abundance was also analysed using a log2-fold change approach, i.e. the log2 260 

transformed ratio of the diversity of each of the 12 urban forest subplots over the average 261 

diversity of the control forest subplots.  262 

2.4.3 Beta diversity patterns 263 

In order to test the effect of forest type on the turnover of species, and its importance 264 

relative to sample sites, we first computed Bray–Curtis dissimilarities for each of the four clades 265 

(plant, metazoa, fungi, and bacteria) using the vegan package. Dissimilarities were computed 266 

from Hellinger-transformed community data to downweigh the effects of rarely occurring OTUs 267 

(Legendre & Legendre, 2012). Principal Coordinates Analysis (PCoA) was used to visualize the 268 

effect of forest type on OTU composition. The effect of forest type, site, their interaction, and of 269 

soil chemistry (summarized by the first two principal components of a PCA, Supplementary 2) 270 

were tested with a permutational multivariate analysis of variance (PERMANOVA, Anderson, 271 

2017), using the adonis function in the vegan package. 272 

 To further determine whether patterns in beta diversity were rather due to the 273 

replacement of some species by others between samples (i.e. turnover; Qian et al., 2005) or a 274 

reduction in richness between samples (i.e. nestedness; Baselga et al. 2007), we used the 275 

beta.pair function of the betapart R package (Baselga & Orme 2012; Baselga 2013) and focused 276 

on the control versus urban samples comparisons (CvU). We also assessed control versus control 277 

samples (CvC), and urban versus urban samples (UvU) to test if urban forests exhibit biotic 278 

homogenization. Differences were tested for using an ANOVA. Because this analysis is based on 279 

presence/absence data, and hence potentially sensitive to remaining false positive OTUs, we 280 

made sure that rare OTUs had no effect in modifying the conclusions drawn from this analysis, 281 

by repeating it on datasets where OTUs representing less than 0.0001 - 0.01% of the total read 282 

count were incrementally removed (Supplementary 7). 283 

In each forest type, the effect of dispersal limitation in influencing community 284 

composition was tested using partial Mantel tests based on Pearson's product-moment correlation 285 

with 999 permutations, where soil chemistry effects were partialled out. The reverse was done 286 

for testing the effect of environmental filtering. Euclidean distance of normalized and scaled soil 287 
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chemistry data (see supplementary 2) was calculated to generate an environmental distance 288 

matrix. Geographic distance between sample plots in km was calculated by converting sample 289 

site GPS coordinates into a sample by sample distance matrix using the rdist.earth function in the 290 

fields package (Nychka et al. 2005).  291 

 292 

3. Results 293 

3.1 Alpha and Gamma Diversity 294 

Sequencing of eDNA from metabarcoding soils revealed that alpha diversity did not significantly 295 

differ between control and urban forests for plants and fungi. However, metazoan communities 296 

were ca. 40% less diverse in urban compared to control forests, whilst bacteria were 10% more 297 

diverse in urban compared to control forests (Figure 1a, Supplementary 8). At the scale of the 298 

study, plant, metazoan and fungal gamma diversity was higher in control forests, whilst for 299 

bacteria was higher in urban forests (Figure 1b,c,d,e). 300 

 301 

Figure 1: Alpha and gamma exponential Shannon diversity of sample sites a) log-2 fold change 302 

in alpha diversity between forest types. Dots represent the mean values and error bars, their 95% 303 

confidence interval. Values tending towards -1 correspond to a diversity twice lower in urban 304 

forests as compared to control forests. Values tending towards +1 represent diversity twice 305 

higher in urban forests. Confidence interval bars indicate whether differences are significant, 306 

assessed by LMM, where asterisks represent significance levels (* indicates a p-value of <0.05, 307 

and ** p<0.01, detailed in Supplementary 7). Gamma diversity estimates rarefied (solid) and 308 
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extrapolated (dashed) in control (green) and urban (purple) forests for b) plants, c) metazoa, d) 309 

fungi and e) bacteria. For all lines, calculated standard errors are <0.1. 310 

 311 

3.2 Beta Diversity 312 

 313 

For all taxa, the interaction between forest type and site was the strongest effect in explaining 314 

turnover in community composition, followed by both forest type, site and soil chemistry 315 

(Supplementary 9; Figure 2). Accordingly, the turnover component of beta diversity in inter-316 

forest type comparisons (i.e. CvU) was higher than intra-forest (i.e. CvC, UvU), while 317 

nestedness was low across all four clades (Figure 3).  318 

 319 

Figure 2: Dissimilarity of a) plants, b) metazoa, c) fungi and d) bacteria across samples. These 320 

are visualized with a Principal Coordinates Analysis (PCoA), with PERMANOVA statistics in 321 

the insets indicating significant differences between forest types (FT) and its interaction with 322 

site. See also Supplementary 9.  323 

 324 
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 325 

Figure 3: Pairwise beta diversity characterised by a) turnover and b) nestedness for communities 326 

in Forest sites (green), in Urban sites (purple) and between Forest and Urban (grey). Significance 327 

(p-value) of Tukey HSD following ANOVA given by *** < 0.001. 328 

 329 

Beta diversity within each forest type, as characterised by variation in composition of a sample 330 

relative the forest type centroid, was significantly higher for fungi in urban forests, with a similar 331 

trend, albeit not significant for plants, metazoans, and bacteria (Figure 2, Supplementary 10). In 332 

contrast, the intra-forest type turnover component of beta diversity was equivalent for urban and 333 

control forests for plants and metazoans, higher in control forests for fungi, and higher in urban 334 

forests for bacteria.  Nestedness was higher for plants and metazoans in urban forests, and higher 335 

in control forests for fungi and bacteria.  336 

 337 

Further analysis revealed that bacterial and metazoan community dissimilarity patterns correlated 338 

more with environmental than geographical distances, while the opposite was found for plants 339 

and fungi. (Supplementary 11).   340 

 341 

3.3 Functional group responses to habitat 342 

The relative abundance of fungal functional groups did not differ between urban and control 343 

forests (Figure 4). However, plants, metazoans and bacteria did demonstrate shifts in certain 344 

groups (Figure 4; Supplementary 12). For plants, palms were 10% more common in urban 345 

***
***

***
***

***
***

*** ***

***

***
***

***

***

***

***
***

***

***
***

***
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forests, whilst climbers were 20% more common in control forests. For metazoans, both 346 

blattodea and acarians were more abundant in control forests.  We found only a small tendency 347 

of higher abundance of copiotrophs in control forests, and of oligotrophic bacteria in urban 348 

forests. Chemilithoautotrophs were significantly more abundant in urban forests while in control 349 

forests, chemioorganoheterotrophs and phytoparasites were more abundant. Within nitrogen 350 

cycle associated bacteria, those involved in nitrification and nitrite reduction were more 351 

abundant in urban forests, whilst nitrate reducing bacteria were more abundant in control forests. 352 
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 353 
Figure 4: Log-2-fold change in the relative abundance of functional groups for a) plants, b) 354 

metazoa, c) fungi, and d-f) bacteria in urban forests relative to undisturbed forests. Legend as in 355 

Figure 1, see Supplementary 12 for statistical significance.  356 
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 357 

4. Discussion 358 

4.1 Alpha and gamma diversity 359 

Our eDNA-based analysis of whole soil diversity reveals several differences between 360 

urban and undisturbed, control forests. First, urban forest fragments harboured lower alpha 361 

diversity of metazoans. Reports on soil arthropod responses to urbanization in the tropics are rare 362 

and contradicting (see review by Jones & Leather 2013), but the reduction of metazoan diversity 363 

observed here could be explained by reductions in resources (Santorufo et al. 2012). Indeed, the 364 

urban forests studied here were characterised by soils of lower clay and organic matter content, 365 

as observed elsewhere (Lorenz & Lal 2009; Cusack 2013). Plants only tended to exhibit a loss of 366 

diversity in urban fragments, as observed elsewhere with traditional survey methods (Aronson et 367 

al. 2014). We explain the lack of significance to be due to (i) the fact that soil eDNA does not 368 

sample all plants (especially epiphytes, Zinger et al. 2020), and (ii) that the sampling extent for 369 

plants was too small (plots of 1ha, with only 3 or 4 sites per forest type).  By contrast, we found 370 

higher bacterial diversity in urban forests, in agreement with other reports in fragmented or 371 

disturbed tropical environments (Rodrigues et al. 2013; Mendes et al. 2015; Navarette et al. 372 

2015). Bacteria are likely to respond to higher soil chemical heterogeneity and labile nutrient 373 

availability (Vos et al. 2013), whilst macro organisms may instead respond more to declines in 374 

soil organic matter as found for termites (e.g. Dahlsjö et al. 2020). Scaling up to the whole study 375 

area, we observed declines of diversity for metazoa, fungi and to a lesser extent plants in urban 376 

forests. This loss could result from increasing forest fragmentation, dispersal limitation and thus 377 

higher local community drift and species extirpation risks (Orrock & Watling 2010). Such a 378 

hypothesis is supported by the fact that by contrast, diversity was also higher for bacteria, which 379 

have greater dispersal availability and are more sensitivity to small environmental changes. This 380 

demonstrates the power of eDNA to reveal both local and more regional scale patterns of habitat 381 

dynamics and its relevance for helping establishing conservation priorities.  382 

4.2 Beta diversity 383 

In addition to differing in alpha and gamma diversity, urban and control forests contained 384 

communities distinct from one another across all four taxonomic clades. The response of 385 

communities to forest type differed across clades, with bacteria in particular demonstrating the 386 

strongest levels of dissimilarity across forest types, likely matching the observed differences in 387 
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alpha diversity, and their sensitivity to soil chemistry. Urban forest fragments are likely to 388 

experience long lasting legacy effects of their previous occupation and management, with greater 389 

variation of input and historic disturbance with soil conditions determining community variation 390 

across sites, as reported for plant and soil biota community composition in Amazonia and 391 

elsewhere (Heckenberger et al. 2007; de Oliveira et al. 2020; Mennicken et al. 2020; Borges et 392 

al. 2020).   393 

Our study also demonstrates that urban forests communities are not a subset of 394 

undisturbed forest, but rather are composed of specific communities. Such a high level of 395 

turnover in diversity between control and urban forests demonstrates vulnerability of local native 396 

species to extinction, and their replacement by new arrivals of urban-adapted species (McKinney 397 

2002), with potential pervasive effects on remaining biodiversity as invasive species (Cadotte et 398 

al. 2016). Within forest types, the pairwise comparison of sites demonstrated that turnover 399 

contributed a much larger proportion to community dissimilarity than nestedness. The range in 400 

pairwise turnover between urban sites was greater for all four taxonomic clades, with this 401 

dissimilarity significantly correlating with differences in soil chemistry and geographic distance 402 

between sites. This was particularly the case for urban sites, in spite of the smaller distances 403 

separating them, again pointing to the effects of fragmentation potentially driving dispersal 404 

limitation between sites and promoting community drift and species extirpation risks. 405 

Furthermore, we did not observe the expected patterns of homogenization in urban forest 406 

fragments relative to controls as found in previous studies of plants and birds (Aronson et al. 407 

2014). Instead, the soil biota responded differently, with fungi in fact demonstrating significantly 408 

greater heterogeneity in urban forest soils. Fungal diversity and abundance have been shown to 409 

decline in an eDNA study of both soil and air along temperate urbanization gradients (Abrego et 410 

al. 2020), suggesting potential dispersal limitation in more heavily fragmented urban habitats 411 

which could contribute to the increased heterogeneity detected here. Bacteria were similarly 412 

homogeneous between forest types in spite of local increases in alpha diversity, contrary to what 413 

was observed in Amazonian forest soils converted to agriculture (Rodrigues et al. 2013). Instead, 414 

these forest fragments may exhibit more variation in soil physicochemical properties between 415 

sites relative to agricultural studies due to more heterogeneous inputs within a city (Byrne 2007). 416 

This demonstrates the distinct response of soil biota in urban forest fragments to those in 417 

potentially more disturbed agricultural sites, highlighting the need to consider their conservation 418 
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status differently. In particular, it demonstrates that urban forest fragments under continuous tree 419 

cover during extended periods, such as those in Cayenne, contain a soil biota which is unique in 420 

composition, with unique forces shaping it. 421 

4.3 Functional Groups 422 

 Replacement in species between urban and control forests may result in a loss of 423 

ecosystem function, except if urban-related species are functionally similar. Here, we found that 424 

whilst plant communities differ strikingly in diversity and composition between control and 425 

urban fragments, their life forms are largely consistent in their relative abundance for both forest 426 

types. However, palms were found to be greater in their relative abundance in urban sites, which 427 

could correspond to either their cultivation as crops in the past, or their preference for nutrient 428 

poor, sand rich soils (de Castilho et al. 2006). By contrast, we found greater numbers of climbers 429 

in control forests, contradicting our initial hypothesis and current global trends (Laurance et al. 430 

2001; DeWalt et al. 2010). In a study of a lowland tropical forest national park adjacent to a city 431 

in Malaysia, liana abundance and species richness declined in areas of secondary forest which 432 

displayed increased human disturbance (Addo-Forjour et al. 2012). This could explain our 433 

results, since human disturbance in Cayenne’s forest fragments is more likely, with these sites 434 

providing a much-frequented recreational space for city residents.  435 

Within the Metazoa, only blattodea were less abundant in urban forests. The majority of 436 

OTUs in this group were identified as termites, a group known to be sensitive to forest 437 

disturbance and resulting desiccation (Woon et al. 2019). They also rely on the availability of 438 

organic matter as  detritivores (Eggleton et al. 2002; Davis 2002; Jones et al. 2003; Dahlsjö et al. 439 

2020), likely to be lower in urban forest fragments which exhibited lower total C and N. Acarian 440 

mites, which represent a range of ecological strategies from fungal feeding to predation (Orgiazzi 441 

et al. 2016), were also found to be lower in urban soils, which may again reflect reductions in 442 

organic matter and leaf litter availability (Erdman et al. 2012).    443 

For fungi, functional groups were largely equivalent between forest types due to a high 444 

intra-forest type variability. Nevertheless, we found that AM fungi tended towards being more 445 

abundant in urban forest soils, in agreement with previous reports in undisturbed and disturbed 446 

forests in Brazil, where AM fungi were more abundant in disturbed habitats (Carrenho et al., 447 

2011). In urban or disturbed forests, host tree plants are likely to depend to a greater extent on 448 

AM associations to survive under reduced nutrient conditions. The compositional shifts in plant 449 
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taxa detected between forest types may support this hypothesis, since palms, found to be more 450 

abundant in urban forests, are reported as being associated with AM fungi (Núñez-Castillo & 451 

Álvarez-Sánchez 2003; Dreyer et al. 2009). Still, the lack of strong shifts in functional groups 452 

between urban and control forests is surprising given the substantial shifts in fungal taxonomic 453 

turnover observed here and elsewhere (Abrego et al. 2020). This indicates that in spite of their 454 

isolation within the urban environment, and the high levels of species turnover experienced, that 455 

urban fragments are able to maintain a fungal community which functions in an equivalent 456 

manner. 457 

Unlike fungi, bacterial functional groups differed between forest types, with greater 458 

abundance of chemolithoautotrophs in urban forests, and a greater abundance of 459 

chemoorganoheterotrophs in control forests. This is consistent with differences in C and N 460 

availability and potentially that of organic matter between forest types. Likewise, nitrifying and 461 

nitrite reducing bacteria were more abundant in urban forests, consistent with previous 462 

observations of higher nitrifying enzyme activity in these conditions (Reisinger et al. 2016).  463 

This may be caused by greater fertilizer use in the urban surroundings or in the past, or 464 

alternatively, to the higher oxygenation of the soils (Enloe et al. 2015), supported by our 465 

detection of a higher abundance of earthworms in urban forests. In control forests, we detected a 466 

greater relative abundance of phytoparasites, counter to a recent finding showing greater 467 

pathogen richness in disturbed forests (Makiola et al. 2019). Instead, our result may reflect a 468 

wider niche space for plant pathogens in undisturbed rainforest where plant species 469 

alpha‐diversity is higher.  470 

4.4 Limitations 471 

Although this study identifies several broad patterns, some caveats must be 472 

acknowledged. First, our study relies on a limited number of replicate sites, and we therefore 473 

lack statistical power to detect differences. Second, the DNA markers we used to identify soil 474 

organisms provide limited taxonomic resolution or may lack of records in taxonomic reference 475 

databases, preventing taxonomic assignment of certain OTUs. Markers can also bias detection 476 

towards certain taxa, although such biases should be limited with the primers selected here 477 

(Taberlet et al. 2018). Third, our approach of classifying functional groups depends on functional 478 

databases, where tropical soil organisms, and microorganisms in particular, are likely to be 479 

under-represented (Truong et al. 2014; Orgiazzi et al. 2015). In addition, our definition of 480 
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functional groups was coarse scale and may not detect fine differences between urban and 481 

control forests.  482 

4.5 Conclusion 483 

Isolated forest fragments within an urban matrix contain assemblages of soil organisms 484 

distinct from those of undisturbed continuous forest, a finding hitherto unobtainable using more 485 

common ecological inventory approaches. From a conservation perspective, this suggests that 486 

forest fragments play a limited role in sheltering native soil organism diversity in the face of 487 

urbanization. However, from a functional point of view, urban forest remnants harbour 488 

assemblages that do not deeply differ from those of pristine forests. Although we document 489 

differences, urban forest fragments may maintain a baseline level of functional diversity, a 490 

conservation argument that adds to the other services these ecosystems provide for human 491 

wellbeing (FAO 2016). Ultimately, eDNA metabarcoding is confirmed as a powerful method for 492 

determining multi-taxa patterns in soil biodiversity, with justified potential for future deployment 493 

in biodiversity monitoring.  494 
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