#### Supplementary materials to:

### Intra-tumor heterogeneity impacts patient prognosis in localized colorectal cancer

by Marisa et al.

### **Supplementary Methods**

#### **Derivation of pseudo-FFPE profiles:**

There is a gene-level bias between FF and FFPE expression profiles. Given a gene, let's denote Y its FFPEbased expression, and X its FF-based expression. One can fit a linear model (Y = a.X + b) to predict Y from X. Here, we wanted to build a CMS classifier for FFPE samples, however the CIT initial series, used as a training set, is based on FF samples. To overcome this difficulty, we calculated a pseudo-FFPE version of the FF samples. To do so, we selected 23 markers showing a linear systematic bias between FF and FFPE profiles, and derived a linear model for each of these 23 markers using the 90 paired FF/FFPE samples from the CIT extension series. We were thus able to transform the FF profiles from the CIT initial series in pseudo-FFPE profiles, for these 23 markers.

### Calculus of WISP CMS proportions in publicly available transcriptome series:

To calculate WISP-based intratumor CMS proportions in new transcriptome series, one first needs to classify the tumors using the RF CMS classifier [1]. Then the CMS labels can be used to train WISP [2] using the WISP.getPureCentro function; this yields WISP-based CMS centroids. Note that this step will require that each of the four CMS is represented by a sufficient number of samples, this number

depending on the degree of intratumor heterogeneity. Lastly these WISP-based centroids are used to calculate the CMS intratumor proportions, using the WISP.getWeight function.

[1] https://github.com/Sage-Bionetworks/CMSclassifier/blob/master/R/cmsClassifier.R

[2] https://github.com/cit-bioinfo/WISP

### **Supplementary Materials**

Fig. S1. Flow chart of the study

Fig. S2. Characterization of CMS as predicted by a Nanostring-based Random Forest classifier, on 1,779 samples from PETACC8 trial.

Fig. S3. CMS intra-sample heterogeneity (ITH) in 155 CC cell lines (GSE59857).

Fig. S4. Single cell RNA-seq analysis of Lovo and Mdst8 samples.

Fig. S5. Distribution of molecular and immune characteristics according to intra-sample CMS heterogeneity.

Table S1. Description of the 196 genes measured based on Nanostring technology. (excel file)

Table S2. Univariate and multivariate Cox models.

Table S3. P-values of the T-tests comparing tumors with RF CMS attribution > 50% to those with RF CMS attribution <50% for all continuous variables reported in Figure 1c.

Table S4. p-values of the T-tests comparing tumors with low ITH to those with high ITH for all continuous variables reported in Figure 4c.

Table S5. Comparison of ITH score, WISP-based major CMS, and WISP-based CMS1.CMS4 or CMS4.CMS1 combinations between metastatic and non-metastatic colon cancers from the public TCGA, GSE39582, GSE5851 and GSE72970 data.

## Table S2

| Characteristic      | Ν      | Summary<br>Statistics <sup>1</sup>    | HR <sup>2</sup> | 95% Cl <sup>2</sup> | p-<br>value   |
|---------------------|--------|---------------------------------------|-----------------|---------------------|---------------|
| Age                 | 1779   |                                       |                 |                     |               |
| ≤ 70                |        | 1594 (90%)                            |                 |                     |               |
| >70                 |        | 185 (10%)                             | 1.28            | 1.00, 1.64          | 0.047         |
| Gender              | 1779   |                                       |                 |                     |               |
| Female              |        | 760 (43%)                             |                 |                     |               |
| Male                |        | 1019 (57%)                            | 1.22            | 1.03, 1.45          | 0.020         |
| WHO Score           | 1715   |                                       |                 |                     |               |
| 0                   |        | 1403 (82%)                            |                 |                     |               |
| 1-2                 |        | 312 (18%)                             | 1.38            | 1.13, 1.69          | 0.002         |
| Sideness            | 1771   | ( <i>)</i>                            |                 | ,                   |               |
| distal              |        | 1067 (60%)                            |                 |                     |               |
| proximal            |        | 704 (40%)                             | 1.01            | 0.85, 1.19          | >0.9          |
| T stage             | 1778   |                                       |                 | ,                   |               |
| pT1-3               |        | 1401 (79%)                            |                 |                     |               |
| pT4                 |        | 377 (21%)                             | 2.31            | 1.94, 2.75          | <0.001        |
| N stage             | 1779   |                                       |                 |                     |               |
| pN1                 |        | 1115 (63%)                            |                 |                     |               |
| pN2                 |        | 664 (37%)                             | 2.12            | 1.80, 2.50          | <0.001        |
| MMR status          | 1743   | 004 (07 70)                           | 2.12            | 1.00, 2.00          | <b>NO.001</b> |
| dMMR                | 17 - 5 | 174 (10.0%)                           |                 |                     |               |
| pMMR                |        | 1569 (90%)                            | 1.21            | 0.90, 1.63          | 0.2           |
| RAS status          | 1632   | 1309 (3078)                           | 1.21            | 0.30, 1.03          | 0.2           |
| NM                  | 1032   | 846 (52%)                             |                 |                     |               |
| M                   |        | , , , , , , , , , , , , , , , , , , , | <br>1.42        | 1 10 1 60           | <0.001        |
| BRAF status         | 1697   | 786 (48%)                             | 1.42            | 1.19, 1.69          | <0.001        |
|                     | 1097   | 1500 (000/)                           |                 |                     |               |
| NM<br>M             |        | 1508 (89%)                            | 0.00            | <br>0 75 1 20       |               |
|                     | 1770   | 189 (11%)                             | 0.99            | 0.75, 1.30          | >0.9          |
| T-cell infiltration | 1778   |                                       |                 |                     |               |
| High                |        | 592 (33%)                             | 4.00            |                     | 0.005         |
| Low                 |        | 1186 (67%)                            | 1.23            | 1.03, 1.47          | 0.025         |
| Intra tumor         | 1779   |                                       |                 |                     |               |
| heterogeneity Score |        | 750 (400()                            |                 |                     |               |
| 1                   |        | 758 (43%)                             |                 |                     | 0.007         |
| 2<br>3              |        | 932 (52%)                             | 1.34            | 1.12, 1.59          | 0.001         |
|                     |        | 89 (5.0%)                             | 1.75            | 1.24, 2.48          | 0.001         |
| CMS combination     | 1779   |                                       |                 |                     |               |
| CMS2 pure           |        | 326 (18%)                             |                 |                     |               |
| CMS1 pure           |        | 126 (7.1%)                            | 0.99            | 0.65, 1.50          | >0.9          |
| CMS1.CMS2           |        | 38 (2.1%)                             | 0.94            | 0.47, 1.87          | 0.9           |
| CMS1.CMS3           |        |                                       |                 |                     |               |

A.Disease free Survival univariate analysis

| CMS1.CMS4       |                     | 65 (3.7%)   | 2.36 | 1.55, 3.61 | <0.001 |
|-----------------|---------------------|-------------|------|------------|--------|
| CMS2.CMS1       |                     | 47 (2.6%)   | 1.51 | 0.88, 2.58 | 0.13   |
| CMS2.CMS3       |                     | 169 (9.5%)  | 1.19 | 0.83, 1.69 | 0.3    |
| CMS2.CMS4       |                     | 173 (9.7%)  | 1.40 | 1.00, 1.97 | 0.053  |
|                 |                     | · · · ·     |      | ,          |        |
| CMS3 pure       |                     | 131 (7.4%)  | 1.18 | 0.80, 1.73 | 0.4    |
| CMS3.CMS1       |                     | 60 (3.4%)   | 0.78 | 0.42, 1.43 | 0.4    |
| CMS3.CMS2       |                     | 90 (5.1%)   | 1.41 | 0.93, 2.13 | 0.11   |
| CMS3.CMS4       |                     | 55 (3.1%)   | 2.43 | 1.58, 3.74 | <0.001 |
| CMS4 pure       |                     | 175 (9.8%)  | 1.44 | 1.03, 2.01 | 0.034  |
| CMS4.CMS1       |                     | 66 (3.7%)   | 2.34 | 1.56, 3.51 | <0.001 |
| CMS4.CMS2       |                     | 142 (8.0%)  | 1.55 | 1.09, 2.21 | 0.014  |
| CMS4.CMS3       |                     | 53 (3.0%)   | 1.87 | 1.17, 3.00 | 0.009  |
| CMS low vs high | 4770                |             |      |            |        |
| risk*           | 1779                |             |      |            |        |
|                 |                     | 4500 (000)) |      |            |        |
| Low risk CMS    |                     | 1530 (86%)  |      |            |        |
| High risk CMS   |                     | 249 (14%)   | 1.85 | 1.51, 2.27 | <0.001 |
|                 | $\langle 0 \rangle$ |             |      |            |        |

<sup>1</sup>Statistics presented: n (%)  $^{2}$ HR = Hazard Ratio, CI = Confidence Interval

\* high risk CMS groups CMS1-CMS4, CMS4-CMS1, CMS3-CMS4 and CMS1-CMS3

| Characteristic      | Ν    | Summary Statistics <sup>1</sup> | HR <sup>2</sup> | 95% Cl <sup>2</sup> | p-<br>value   |
|---------------------|------|---------------------------------|-----------------|---------------------|---------------|
| Age                 | 1779 |                                 |                 |                     |               |
| ≤ 70<br>70          |      | 1594 (90%)                      |                 |                     | 0.000         |
| >70                 | 4770 | 185 (10%)                       | 1.53            | 1.16, 2.00          | 0.002         |
| Gender              | 1779 | 700 (400/)                      |                 |                     |               |
| Female<br>Male      |      | 760 (43%)                       | <br>1.34        |                     | 0.004         |
| Who Score           | 1715 | 1019 (57%)                      | 1.34            | 1.10, 1.63          | 0.004         |
| 0                   | 1715 | 1403 (82%)                      |                 |                     |               |
| 1-2                 |      | 312 (18%)                       | <br>1.49        | <br>1.18, 1.87      | <0.001        |
| Sideness            | 1771 | 512 (1070)                      | 1.43            | 1.10, 1.07          | <0.001        |
| distal              | 1771 | 1067 (60%)                      |                 |                     |               |
| proximal            |      | 704 (40%)                       | 1.25            | 1.03, 1.51          | 0.026         |
| <b>F</b> stage      | 1778 |                                 | 1.20            | 1.00, 1.01          | 0.020         |
| pT1-3               | 1110 | 1401 (79%)                      |                 |                     |               |
| pT4                 |      | 377 (21%)                       | 2.49            | 2.04, 3.04          | <0.001        |
| N stage             | 1779 | 011 (2170)                      | 2.40            | 2.04, 0.04          | <b>NO.001</b> |
| pN1                 | 1110 | 1115 (63%)                      |                 |                     |               |
| pN2                 |      | 664 (37%)                       | 2.30            | 1.90, 2.79          | <0.001        |
| MMR status          | 1743 |                                 | 2.00            |                     |               |
| dMMR                |      | 174 (10.0%)                     |                 |                     |               |
| pMMR                |      | 1569 (90%)                      | 1.24            | 0.87, 1.76          | 0.2           |
| RAS status          | 1632 |                                 |                 |                     |               |
| NM                  |      | 846 (52%)                       |                 |                     |               |
| Μ                   |      | 786 (48%)                       | 1.37            | 1.12, 1.68          | 0.002         |
| BRAF status         | 1697 |                                 |                 | ·                   |               |
| NM                  |      | 1508 (89%)                      |                 |                     |               |
| Μ                   |      | 189 (11%)                       | 1.21            | 0.90, 1.63          | 0.2           |
| T-cell infiltration | 1778 |                                 |                 |                     |               |
| High                |      | 592 (33%)                       |                 |                     |               |
| Low                 |      | 1186 (67%)                      | 1.10            | 0.89, 1.35          | 0.4           |
| Intra tumor         | 1779 |                                 |                 |                     |               |
| heterogeneity Score | 1779 |                                 |                 |                     |               |
| 1                   |      | 758 (43%)                       |                 |                     |               |
| 2                   |      | 932 (52%)                       | 1.40            | 1.14, 1.71          | 0.001         |
| 3                   |      | 89 (5.0%)                       | 1.48            | 0.96, 2.28          | 0.073         |
| CMS combination     | 1779 |                                 |                 |                     |               |
| CMS2 pure           |      | 326 (18%)                       |                 |                     | _             |
| CMS1 pure           |      | 126 (7.1%)                      | 1.13            | 0.68, 1.88          | 0.6           |
| CMS1.CMS2           |      | 38 (2.1%)                       | 0.78            | 0.31, 1.95          | 0.6           |
| CMS1.CMS3           |      | 63 (3.5%)                       | 2.23            | 1.30, 3.81          | 0.004         |
| CMS1.CMS4           |      | 65 (3.7%)                       | 3.49            | 2.19, 5.56          | <0.001        |
| CMS2.CMS1           |      | 47 (2.6%)                       | 1.33            | 0.66, 2.70          | 0.4           |
| CMS2.CMS3           |      | 169 (9.5%)                      | 1.52            | 1.00, 2.30          | 0.051         |

# B. Overall Survival univariate analysis

| CMS2.CMS4       |                     | 173 (9.7%) | 1.76 | 1.18, 2.63 | 0.006  |
|-----------------|---------------------|------------|------|------------|--------|
|                 |                     | · · /      |      | •          |        |
| CMS3 pure       |                     | 131 (7.4%) | 1.52 | 0.96, 2.40 | 0.072  |
| CMS3.CMS1       |                     | 60 (3.4%)  | 1.07 | 0.54, 2.10 | 0.9    |
| CMS3.CMS2       |                     | 90 (5.1%)  | 1.82 | 1.13, 2.93 | 0.015  |
| CMS3.CMS4       |                     | 55 (3.1%)  | 2.10 | 1.20, 3.69 | 0.010  |
| CMS4 pure       |                     | 175 (9.8%) | 1.85 | 1.24, 2.74 | 0.002  |
| CMS4.CMS1       |                     | 66 (3.7%)  | 3.22 | 2.02, 5.13 | <0.001 |
| CMS4.CMS2       |                     | 142 (8.0%) | 1.59 | 1.03, 2.46 | 0.038  |
| CMS4.CMS3       |                     | 53 (3.0%)  | 2.08 | 1.17, 3.71 | 0.012  |
| CMS low vs high | 4770                |            |      |            |        |
| risk*           | 1779                |            |      |            |        |
| Low risk CMS    |                     | 1530 (86%) |      |            |        |
| High risk CMS   |                     | 249 (14%)  | 1.93 | 1.52, 2.44 | <0.001 |
|                 | $\langle 0 \rangle$ |            |      |            |        |

<sup>1</sup>Statistics presented: n (%)

 $^{2}$ HR = Hazard Ratio, CI = Confidence Interval

\* high risk CMS groups CMS1-CMS4, CMS4-CMS1, CMS3-CMS4 and CMS1-CMS3

| Term                                          | Hazard<br>Ratio | 95%CI       | P-value |
|-----------------------------------------------|-----------------|-------------|---------|
| Age:                                          | 1.19            | 0.91 - 1.55 | 0.21    |
| >70y versus ≤70y                              | 1.19            | 0.91 - 1.55 | 0.21    |
| Gender:                                       | 1.16            | 0.97 - 1.4  | 0.10    |
| male versus female                            | 1.10            | 0.97 - 1.4  | 0.10    |
| WHO* score:                                   | 1.41            | 1.14 - 1.74 | 0.0015  |
| 1-2 versus 0                                  | 1.41            | 1.14 - 1.74 | 0.0015  |
| Bowel obstruction or perforation:             | 1.25            | 1.01 - 1.54 | 0.04    |
| yes versus no                                 | 1.20            | 1.01 - 1.34 | 0.04    |
| T stage:                                      | 2.05            | 1.69 - 2.49 | <0.0001 |
| T4 versus T1-T3                               | 2.05            | 1.09 - 2.49 | <0.0001 |
| N stage:                                      | 1.97            | 1.64 - 2.36 | <0.0001 |
| N2 versus N1                                  | 1.97            | 1.04 - 2.30 | <0.0001 |
| Grade:                                        | 1.19            | 0.95 - 1.48 | 0.12    |
| G1-G2 versus G3-G4                            | 1.19            | 0.95 - 1.40 | 0.12    |
| RAS status:                                   | 1.42            | 1.18 - 1.7  | 0.0002  |
| RAS mutated versus RAS wildtype               | 1.42            | 1.10 - 1.7  | 0.0002  |
| T-cell tumor infiltration:                    |                 |             |         |
| low and intermediate versus high infiltration | 1.33            | 1.09 - 1.62 | 0.005   |

C. Multivariate analysis of DFS including clinical, pathological, mutational and immunological variables (model 0)

\*World Health Organization <sup>†</sup>KRAS or NRAS

 $R^2 = 0.106$ ; Likelihood ratio = 174.4; degree of freedom = 9; Harrell's C-index = 0.678

| Term                                      | Hazard<br>Ratio | 95%CI       | P-value |
|-------------------------------------------|-----------------|-------------|---------|
| Age:                                      | 1.22            | 0.93 - 1.59 | 0.15    |
| >70y versus ≤70y                          | 1.22            | 0.93 - 1.59 | 0.15    |
| Gender:                                   | 1.14            | 0.95 - 1.37 | 0.17    |
| male versus female                        | 1.14            | 0.95 - 1.57 | 0.17    |
| WHO* score:                               | 1.40            | 1.13 - 1.73 | 0.002   |
| 1-2 versus 0                              | 1.40            | 1.13 - 1.73 | 0.002   |
| Bowel obstruction or perforation:         | 1.26            | 1.02 - 1.55 | 0.035   |
| yes versus no                             | 1.20            | 1.02 - 1.00 | 0.035   |
| T stage:                                  | 2.05            | 1.69 - 2.49 | <0.0001 |
| T4 versus T1-T3                           | 2.00            | 1.03 - 2.43 | <0.0001 |
| N stage:                                  | 1.92            | 1.6 - 2.3   | <0.0001 |
| N2 versus N1                              | 1.52            | 1.0 2.0     | <0.0001 |
| Grade:                                    | 1.14            | 0.91 - 1.41 | 0.25    |
| G1-G2 versus G3-G4                        | 1.14            | 0.01 1.41   | 0.20    |
| RAS status:                               | 1.40            | 1.17 - 1.68 | 0.0003  |
| RAS mutated versus RAS wildtype           | 1.40            | 1.17 1.00   | 0.0000  |
| T-cell tumor infiltration:                |                 |             |         |
| low and intermediate versus high          | 1.42            | 1.16 - 1.74 | 0.0006  |
| infiltration                              |                 |             |         |
| CMS combination:                          | 1.74            | 1.38 - 2.19 | <0.0001 |
| high risk versus low risk CMS combination |                 |             |         |

**D.** Multivariate analysis of DFS including clinical, pathological, mutational, immunological variables and CMS combination (model 1)

\* World Health Organization <sup>†</sup>KRAS or NRAS

 $R^2$  = 0.118; Likelihood ratio = 194.7; degree of freedom = 10; Harrell's C-index = 0.685

Model 1 versus Model 0 Likelihood ratio test P<0.0001 (Chi-square test); C-indexes are statistically signicantly different (p<0.03)

| Term                              | Hazard<br>Ratio | 95%CI      | P-value |
|-----------------------------------|-----------------|------------|---------|
| Age:                              |                 | 1.11 -     |         |
| >70y versus ≤ 70y                 | 1.48            | 1.98       | 0.008   |
| Gender:                           |                 | 1.06 -     |         |
| male versus female                | 1.31            | 1.63       | 0.013   |
| WHO* score:                       |                 |            |         |
| 1-2 versus 0                      | 1.52            | 1.2 - 1.93 | 0.0006  |
| Bowel obstruction or perforation: |                 |            |         |
| yes versus no                     | 1.17            | 0.91 - 1.5 | 0.22    |
| T stage:                          |                 | 1.65 -     |         |
| T4 versus T1-T3                   | 2.06            | 2.57       | <0.0001 |
| N stage:                          |                 |            |         |
| N2 versus N1                      | 2.03            | 1.64 - 2.5 | <0.0001 |
| Grade:                            |                 | 1.08 -     |         |
| G1-G2 versus G3-G4                | 1.38            | 1.78       | 0.01    |
| Sidedness:                        |                 | 0.86 -     |         |
| Proximal versus distal            | 1.07            | 1.33       | 0.54    |
| <i>RAS</i> <sup>⁺</sup> status:   |                 | 1.13 -     |         |
| RAS mutated versus RAS wildtype   | 1.39            | 1.72       | 0.002   |

**E.** Multivariate OS analysis including clinical, pathological and mutational variables (model 2)

\* World Health Organization; <sup>†</sup>KRAS or NRAS

 $R^2$  = 0.093; Likelihood ratio test = 150.5; degree of freedom = 9; Harrell's C-index = 0.691

| variables and combination of CIVIS (model 3)          |        |            |         |  |
|-------------------------------------------------------|--------|------------|---------|--|
| Term                                                  | Hazard |            |         |  |
| Telli                                                 | Ratio  | 95%CI      | P-value |  |
| Age:                                                  | -      | 1.15 -     |         |  |
| >70y versus ≤ 70y                                     | 1.54   | 2.06       | <0.004  |  |
| Gender:                                               |        |            |         |  |
| male versus female                                    | 1.29   | 1.04 - 1.6 | 0.021   |  |
| WHO* score:                                           |        | 1.19 -     |         |  |
| 1-2 versus 0                                          | 1.51   | 1.92       | 0.0007  |  |
| Bowel obstruction or perforation:                     |        |            |         |  |
| yes versus no                                         | 1.17   | 0.91 - 1.5 | 0.23    |  |
| T stage:                                              |        | 1.64 -     |         |  |
| T4 versus T1-T3                                       | 2.05   | 2.56       | 0.0000  |  |
| N stage:                                              |        | 1.61 -     |         |  |
| N2 versus N1                                          | 1.99   | 2.46       | 0.0000  |  |
| Grade:                                                |        |            |         |  |
| G1-G2 versus G3-G4                                    | 1.33   | 1.03 - 1.7 | 0.029   |  |
| Sidedness:                                            |        | 0.82 -     |         |  |
| Proximal versus distal                                | 1.02   | 1.27       | 0.88    |  |
| <i>RAS</i> <sup>†</sup> status:                       |        | 1.13 -     |         |  |
| RAS mutated versus RAS wildtype                       | 1.40   | 1.73       | 0.002   |  |
| CMS combination:                                      |        |            |         |  |
| high risk versus low risk CMS                         |        | 1.33 -     |         |  |
| combination                                           | 1.76   | 2.34       | 0.0001  |  |
| * Maria Llasth Organization <sup>†</sup> KDAS ar NDAS |        |            |         |  |

**F.** Multivariate OS analysis including clinical, pathological, mutational variables and combination of CMS (model 3)

\* World Health Organization <sup>†</sup>KRAS or NRAS

 $R^2$  = 0.101; Likelihood ratio = 164.2; degree of freedom = 10; Harrell's C-index = 0.695

Model 3 versus Model 2 Likelihood ratio test P<0.0003(Chi-square test)

## Table S3

p-values of the T-tests comparing tumors with RF CMS attribution > 50% to those with RF CMS attribution <50% for all continuous variables reported in Figure 1c, within each RF predicted CMS:

| RF pred.                | CMS1  | CMS2  | CMS3 | CMS4  |
|-------------------------|-------|-------|------|-------|
| T.cells                 | 0.56  | 5e-03 | 0.06 | 0.80  |
| CD8.T.cells             | 0.17  | 0.39  | 0.39 | 0.10  |
| Cytotoxic.lymphocytes   | 1e-05 | 1e-03 | 0.83 | 0.63  |
| NK.cells                | 0.03  | 0.04  | 0.64 | 0.51  |
| B.lineage               | 0.38  | 0.02  | 0.06 | 0.79  |
| Monocytic.lineage       | 0.31  | 2e-04 | 0.19 | 9e-04 |
| Myeloid.dendritic.cells | 0.23  | 3e-02 | 0.86 | 0.15  |
| Neutrophils             | 8e-03 | 5e-04 | 0.41 | 0.44  |
| Endothelial.cells       | 0.05  | 2e-03 | 0.43 | 9e-03 |
| Fibroblasts             | 0.25  | 4e-03 | 0.04 | 1e-11 |
| ImmunoScore.v2          | 0.13  | 2e-02 | 0.29 | 0.47  |
| EMT                     | 0.04  | 0.19  | 0.71 | 1e-03 |
| TGFB                    | 0.25  | 2e-07 | 0.43 | 7e-04 |
| Angiogenesis            | 0.27  | 7e-03 | 0.23 | 2e-07 |

## Table S4

p-values of the T-tests comparing tumors with low ITH to those with high ITH for all continuous variables reported in Figure 4c, within each WISP-based major CMS:

| ITH             | CMS1  | CMS2  | CMS3  | CMS4  |
|-----------------|-------|-------|-------|-------|
| CD8 T cells     | 0.2   | 0.01  | 0.3   | 0.02  |
| Cytotoxic       | 6e-08 | 8e-04 | 0.07  | 0.02  |
| lymphocytes     |       |       |       |       |
| NK cells        | 9e-04 | 0.008 | 0.3   | 0.2   |
| B lineage       | 0.7   | 7e-08 | 0.3   | 2e-04 |
| Monocytic       | 0.8   | 2e-13 | 0.004 | 2e-07 |
| lineage         |       |       |       |       |
| Myeloid         | 0.01  | 0.05  | 0.2   | 0.9   |
| dendritic cells |       |       |       |       |
| Neutrophils     | 0.3   | 7e-06 | 0.1   | 0.4   |
| Endothelial     | 2e-04 | 5e-08 | 0.01  | 2e-06 |
| cells           |       |       |       |       |
| Fibroblasts     | 6e-05 | 1e-17 | 5e-06 | 2e-17 |
| ImmunoScore-    | 0.03  | 1e-06 | 0.6   | 0.002 |
| like            |       |       |       |       |
| EMT             | 3e-04 | 0.5   | 0.001 | 0.07  |
| TGFB            | 0.001 | 2e-11 | 0.009 | 5e-08 |
| Angiogenesis    | 2e-04 | 2e-07 | 3e-04 | 7e-12 |

## Table S5

A: distribution of ITH scores in metastatic (M+) and non-metastatic (M-) colon cancer

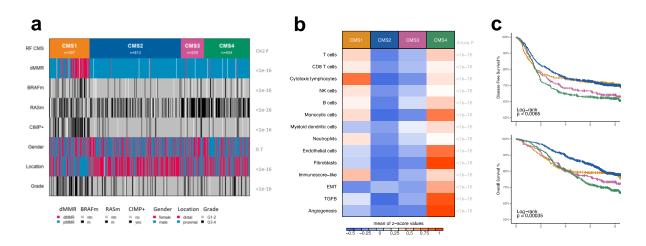
| ITH score | 1   | 2   | 3  |
|-----------|-----|-----|----|
| M+        | 138 | 192 | 18 |
| M-        | 384 | 478 | 40 |

X-squared test, p value ns

B: distribution of WISP-based major CMS in metastatic (M+) and non-metastatic (M-) colon cancer

| CMS | CMS1 | CMS2 | CMS3 | CMS4 |
|-----|------|------|------|------|
| M+  | 128  | 392  | 248  | 134  |
| M-  | 19   | 118  | 58   | 153  |

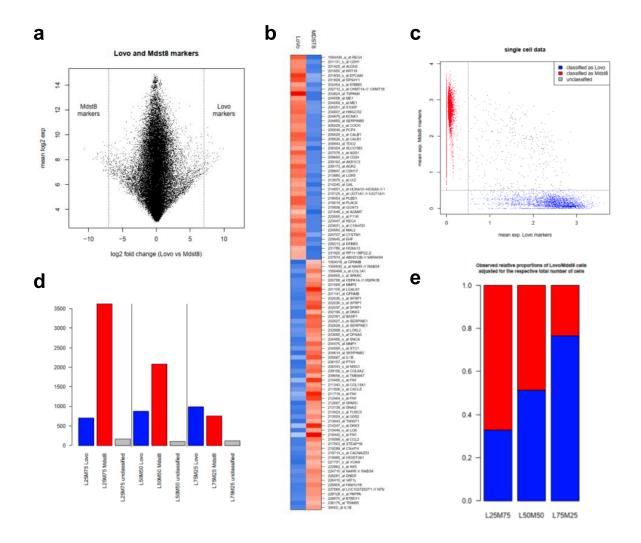
X-squared test, p value < 10-16


C: distribution of WISP-based CMS1.CMS4 or CMS4.CMS1 combinations versus other combinations in metastatic (M+) and non-metastatic (M-) colon cancer

|    | CMS1.CMS4 or CMS4.CMS1 | Other combinations |
|----|------------------------|--------------------|
| M+ | 27                     | 321                |
| M- | 42                     | 870                |

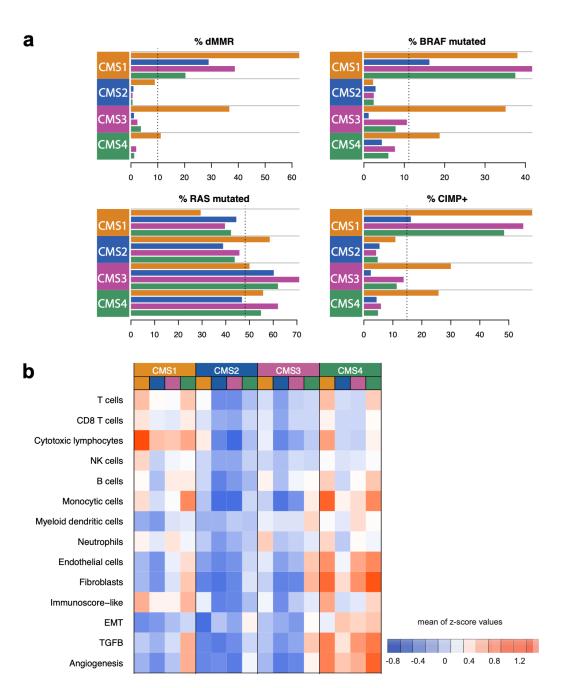
X-squared test p value = 0.039

# Study flow chart


| Step 1: Design of a Nanostring gene panel<br>CIT initial series GSE39582, n=566,                                                                                                                | Affymetrix GEP                                                                                                                                                                                                                     |       | Table S1                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------|
| Step 2: Acquisition of Nanostring GEP<br>CIT initial (sub)series                                                                                                                                | FFPE samples frozen samples n=133                                                                                                                                                                                                  |       |                                |
| CIT extension series<br>Petacc8 series                                                                                                                                                          | n=45 n=45 (paired samples n=1779                                                                                                                                                                                                   | )     |                                |
| <ul> <li>Step 3: Training of a RF CMS classifier using</li> <li>Gene selection: (i) gene-level correlation<br/>(ii) inter-CMS differentiation</li> <li>Training of RF CMS classifier</li> </ul> |                                                                                                                                                                                                                                    |       |                                |
| Step 4: RF CMS classification of PETACC8 c                                                                                                                                                      | ohort                                                                                                                                                                                                                              |       |                                |
| Step 5: MCP-counter analysis of PETACC8                                                                                                                                                         | cohort                                                                                                                                                                                                                             |       |                                |
| Step 6: Molecular and clinical correlates on                                                                                                                                                    | n PETACC8 cohort according to RF predicted CMS                                                                                                                                                                                     |       | Figures 1, S2                  |
| <ul> <li>Step 7: WISP CMS analysis of PETACC8 col</li> <li>WISP calibration using RF CMS labels as</li> <li>WISP estimation of CMS weights, calculute</li> </ul>                                | reference                                                                                                                                                                                                                          |       |                                |
| Step 8: Comparison of RF and WISP CMS a                                                                                                                                                         | nalyses, prognostic value of the ITH score                                                                                                                                                                                         |       | Figures 2, S3                  |
| <ul> <li>with the GSE36133 Affymetrix series</li> <li>WISP calibration using the GSE39852 CIT init</li> <li>WISP estimation of CMS weights in the Affyr</li> </ul>                              | ne GSE59857 series (n=155) using the 55 samples in com<br>tial series restricted to genes found highly variable in GS                                                                                                              |       | Figure 3                       |
| <ul> <li>Analysis of 3 mixtures of LoVo and MDST8 cospecific markers, determination of the (per of specific markers)</li> </ul>                                                                 | eterogeneity using single cell RNA-seq data<br>ell cultures: determination of cell line identity using cell<br>cell) CMS label using SSP predictor from Guinney et al.<br>735 series: the published (per cell) CMS labels was used | line- | Figures 3, S4                  |
| Step 11: Molecular and clinical correlates                                                                                                                                                      | on PETACC8 cohort according to WISP CMS weight                                                                                                                                                                                     | ts    | Figures 4-6, S<br>Tables 1, S2 |



Extended data Fig. S2. Characterization of CMS as predicted by a Nanostring-based Random Forest classifier on 1,779 samples from PETACC8 trial. a. Samples (columns) are grouped according to their predicted CMS, and annotated for the following parameters: dMMR – red: yes, blue: no, white: unknown; BRAFm – black: yes, grey: no, white: unknown; RASm – black: yes, grey: no, white: unknown; CIMP+ – black: yes, grey: no, white: unknown; Gender – pink: female, blue: male; Location – blue: proximal, red: distal; Grade – grey: G1/G2, black: G3/G4, white: unknown. b. Heatmap annotating CMS for 8 immune and 2 stromal cell population infiltration based on MCP-counter estimates and 3 pathways (mean scores per CMS). Kaplan-Meier curves of DFS (c) and OS (d) are shown according to the four CMS.




**Extended data Fig. S3. CMS intra-sample heterogeneity (ITH) in 155 CC cell lines (GSE59857).** a. Heatmap showing the expression profile of the markers of the four CMS across the CMS1..4 centroids (first columns, starting from the left) and the 155 cell lines (remaining columns). b. Histograms representing the proportion of cell lines with low (1), intermediate (2) and high( 3) CMS ITH score.



**Extended data Fig. S4. Single cell RNA-seq analysis of Lovo and Mdst8 samples. a**. Selection of Lovo and Mdst8 markers based on bulk expression profiles of these two cell lines (GSE36133). The x axis represents the log2 fold change of expression between the (bulk) transcriptome profiles; the y axis represents the mean log2 transcriptome profiles; each dot represents a gene. Affymetrix probesets with a log2 fold change above 7 (respectively below-7) were selected as Lovo (respectively Mdst8) specific markers. **b**. Heatmap representing the expression of the selected markers in Lovo and Mdst8 bulk profiles (red: high expression, blue: low expression). **c**. Assignment of single cells to Lovo or Mdst8 based

on their mean expression of Lovo (x-axis) and Mdst8 (y-axis) markers. Cells showing both a mean expression of Lovo (respectively Mdst8) markers above 0.5 and a mean expression of Mdts8 (respectively Lovo) markers below 0.5 were classified as Lovo (respectively Mdst8) cells, represented in blue (respectively red). Other cells were not classified. **d**. Number of cells classified as Lovo or Mdst8, or unclassified, within each of the three mixtures of Lovo and Mdst8. **e**. Observed relative proportion of Lovo (blue) and Mdst8 (red) cells in the three mixtures of Lovo and Mdst8, adjusted for the total number of Lovo and Mdst8 cells.



18

**Extended data Fig. S5. Distribution of molecular and immune characteristics according to intra-sample CMS heterogeneity. a.** Barplots showing the percent of samples with dMMR (deficient Mismatch repair), BRAF mutated, RAS mutated (KRAS/NRAS), CIMP+ (CpG Island Methylator Phenotype), within the 16 subgroups defined by combining WISP major CMS and WISP minor CMS. The dotted line represents the overall mean frequency. **b.** Heatmap annotating the 16 above defined subgroups for 8 immune and 2 stromal cell populations infiltration (based on MCP-counter estimates), a surrogate of the Immunoscore<sup>®</sup> (Immunoscore-like) and 3 pathways. CMS color codes: CMS1 (orange), CMS2 (blue), CMS3 (purple), CMS4 (green).