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ABSTRACT
We measure the galaxy two- and three-point correlation functions at z = [0.5, 0.7] and z = [0.7, 0.9], from the Public Data
Release 2 (PDR2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS). We model the two statistics including a
non-linear one-loop model for the two-point function and a tree-level model for the three-point function, and perform a joint
likelihood analysis. The entire process and non-linear corrections are tested and validated through the use of the 153 highly
realistic VIPERS mock catalogues, showing that they are robust down to scales as small as 10 h−1 Mpc. The mocks are also
adopted to compute the covariance matrix that we use for the joint two- and three-point analysis. Despite the limited statistics
of the two (volume-limited) subsamples analysed, we demonstrate that such a combination successfully breaks the degeneracy
existing at two-point level between clustering amplitude σ 8, linear bias b1, and the linear growth rate of fluctuations f. For the
latter, in particular, we measure f (z = 0.61) = 0.64+0.55

−0.37 and f(z = 0.8) = 1.0 ± 1.0, while the amplitude of clustering is found
to be σ 8(z = 0.61) = 0.50 ± 0.12 and σ8(z = 0.8) = 0.39+0.11

−0.13. These values are in excellent agreement with the extrapolation
of a Planck cosmology.

Key words: galaxies: statistics – large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

Galaxy clustering has emerged over the past three decades as one
main observational pillar supporting the current standard model of
cosmology. Cosmological constraints were so far derived mostly
from two-point statistics of the galaxy distribution, either in con-
figuration or in Fourier space (see e.g. Alam et al. 2021, for a
comprehensive recent review). Two-point statistics will remain a
central probe also for the next generation of redshift surveys, which
have just started or are about to start. This includes in particular the
measurement of specific features, as baryonic acoustic oscillations
(BAO; e.g. Cole et al. 2005; Eisenstein et al. 2005) and redshift-
space distortions (RSDs; e.g. Peacock et al. 2001; Guzzo et al. 2008),

� E-mail: alfonso.veropalumbo@uniroma3.it

which are part of the standard ‘dark energy’ probes in projects like
Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration
2016a,b), the Euclid (Laureijs et al. 2011), and Roman (Akeson et al.
2019) space telescopes or, in the radio, the Square Kilometre Array
(SKA; Maartens et al. 2015).

For a Gaussian random field, this would be enough to fully
characterize the field statistically. However, significant information
exists in the galaxy distribution, beyond the two-point correlation
function (2PCF) or the power spectrum. This is locked in the n-point
correlation functions, or higher moments, of the field. The simplest
of these, the three-point correlation function (3PCF), is sensitive
to non-Gaussian features in the primordial density perturbations,
non-linear effects in their evolution, and galaxy biasing, i.e. the
relationship between galaxy tracers and the underlying distribution
of matter. Since these effects are characterized by a different higher
order signal (see e.g. Fry 1994; Matarrese, Verde & Heavens 1997),
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the measurements of the 3PCF (or equivalently in Fourier space, the
bispectrum) have the potential to separate them and constrain their
relative strength and evolution. In addition, BAO and RSD also leave
an imprint on higher order statistics that can be exploited to remove
parameter degeneracy and improve cosmological constraints.

The advantage of combining two- and three-point statistics to
improve cosmological constraints has been realized in recent years
(Sefusatti et al. 2006; Yankelevich & Porciani 2019). These works
showed that the combination of the 3D power spectrum and bispec-
trum can significantly reduce statistical errors in the determination of
cosmological parameters, while breaking degeneracies among these.
The benefit is remarkable when using clustering data alone. These
considerations have inspired the recent combined two- and three-
point analyses on Sloan Digital Sky Survey (SDSS) data carried out
by Gil-Marı́n et al. (2015, 2017).

In configuration space, the measurement of the 3PCF is com-
putationally more demanding. Examples in the literature include
estimates from the 2dF Galaxy Redshift Survey (2dFGRS; Jing &
Börner 2004), various releases of the SDSS main sample (Kayo
et al. 2004; Nichol et al. 2006; Kulkarni et al. 2007; McBride
et al. 2011a,b; Marı́n 2011; Guo et al. 2014), the Baryon Oscillation
Spectroscopic Survey (BOSS) CMASS (Guo et al. 2015), and the
Public Data Release 1 (PDR1) of the VIMOS Public Extragalactic
Redshift Survey (VIPERS; Moresco et al. 2017). Only recently,
however, thanks to a breakthrough in the efficiency of available
estimators, it has become possible to push measurements of the 3PCF
to scales comparable to those of the BAO peak (Slepian & Eisenstein
2015; Slepian et al. 2017a,b), also using galaxy clusters as tracers
(Moresco et al. 2020). Finally, combined 2PCF and 3PCF analyses
in configuration space were performed by Marı́n et al. (2013) using
the WiggleZ spectroscopic galaxy survey.

In this paper, we perform for the first time a joint two- and three-
point correlation analysis of the Public Data Release 2 (PDR2)
catalogue of the VIPERS (Garilli et al. 2014; Guzzo et al. 2014;
Scodeggio et al. 2018), applying the most advanced estimators and
extracting joint cosmological constraints out to z = 0.9. One main
goal of VIPERS was to constrain the growth rate of structure f out
to z ∼ 1, a result that was successfully achieved through a series of
complementary estimates (de la Torre et al. 2013, 2017; Pezzotta et al.
2017; Mohammad et al. 2018). All these analyses were developed in
configuration space, for which the survey geometry and footprint can
be more easily handled, if compared to the complex window function
convolution one has to deal with in Fourier space (Rota et al. 2017).
The main drawback when working in configuration space is the
large covariance of 2PCF and 3PCF data and their errors. However,
thanks to the availability of efficient clustering estimators and of
the large ensemble of realistic mock catalogues made available by
the VIPERS Collaboration (de la Torre et al. 2017), we can solve
the problem by numerically estimating the covariance matrix of
the data.

We thus build upon previous VIPERS analyses to perform a
joint 2PCF and 3PCF measurement, which allows us to break the
degeneracy that affects some key cosmological parameters when
these are estimated from the 2PCF alone. Specifically, we obtain
separate estimates of the linear growth rate of structure, f, the
clustering amplitude, σ 8, and some of the parameters entering the
galaxy biasing relation. This work, in particular, expands upon the
3PCF analysis performed by Moresco et al. (2017) on the VIPERS
PDR1 by (1) using the final, larger PDR2 release; (2) exploring all
triangle configurations, rather than just a subset; (3) combining two-
and three-point statistics to obtain joint cosmological constraints. It is
also complementary to Cappi et al. (2015) and Di Porto et al. (2016),

where the non-linearity and evolution of galaxy bias in VIPERS were
first studied.

The layout of this paper is as follows. In Section 2, we briefly
describe the VIPERS PDR2 catalogue and the mock data used to
estimate errors. In Section 3, we describe the 2PCF and 3PCF
estimators and perform validation tests using the mock samples.
Covariance matrices and their estimates are discussed in Section 4.
In Section 5, we present the 2PCF and 3PCF models used for the
likelihood analysis of Section 6. The results of the 2PCF, the 3PCF,
and their joint analyses are presented in Section 7. Finally, we discuss
the results and draw our conclusions in Section 8.

Throughout the work, unless otherwise specified, we assume a
flat � cold dark matter (�CDM) cosmological model characterized
by the following parameters: {�M, �b, ns} = (0.3, 0.045, 0.96),
as in similar VIPERS clustering works (de la Torre et al. 2017;
Pezzotta et al. 2017). The Hubble constant is defined as H0 =
100 h km s−1 Mpc−1.

2 DATA SETS

2.1 VIPERS data

The VIMOS Public Extragalactic Redshift Survey (VIPERS) has
been completed as one of the ESO Large Programmes. It was
designed to build a spectroscopic sample of about 100 000 galaxies,
aiming at an optimal combination of depth (reaching beyond z � 1),
volume, and sampling density (Guzzo et al. 2014). This is obtained
covering ∼24 deg2 over the W1 and W4 fields of the Canada–France–
Hawaii Telescope Legacy Survey, which provides accurate photom-
etry in five bands. This area was tiled with a mosaic of 288 pointings
with the VIsible Multi-Object Spectrograph (VIMOS) at the ESO
Very Large Telescope (VLT), measuring moderate-resolution spectra
(R � 220) for galaxies brighter than iAB = 22.5. A colour pre-
selection in the (r − i) versus (u − g) plane was applied prior to
the spectroscopic observations, efficiently and accurately excluding
objects with z < 0.5, and boosting the spectroscopic sampling to
nearly 50 per cent. The root mean square (rms) redshift measurement
error of these data is σ z = 5 × 10−4(1 + z), corresponding to
167 km s−1. For consistency with previous clustering analyses of the
VIPERS data, we only consider objects with a redshift confirmation
rate larger than 96.1 per cent, corresponding to quality flags from
2 to 9. More details on the survey design and the final data release
can be found in Guzzo et al. (2014) and Scodeggio et al. (2018),
respectively.

For the work presented here, we extract from the PDR2 catalogue
four different subsamples, whose characteristics are summarized in
Table 1. The samples P1 and P2 are magnitude-limited samples
corresponding to two redshift bins, z = [0.5, 0.7] and [0.7, 1.2],
following the selection criteria used in Pezzotta et al. (2017). They
will be used to validate our analysis against previous measurements
from the same data. This selection maximizes the number of available
tracers, at the price of a redshift-dependent selection function and
a mean density and bias that vary with redshift, especially in the
outer redshift bin, which reaches z = 1.2 with a rather sparse bright
population.

The samples named G1 and G2 are those used for the specific new
analyses of this paper. They are two volume-limited, non-overlapping
bins at z = [0.5, 0.7] and z = [0.7, 0.9], coinciding with the samples
named L1 and L3 in the subhalo abundance matching (SHAM)
analysis of PDR2 by Granett et al. (2019; see also Davidzon et al.
2016). The absolute magnitude thresholds guarantee completeness
above 90 per cent, while evolution (both in luminosity and bias) is
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Table 1. Definition of the subsamples of the VIPERS PDR2 catalogue that we have considered in this work. P1 and P2
are magnitude-limited samples that match those analysed in Pezzotta et al. (2017) and are used here for validation and
consistency tests. G1 and G2 are instead volume-limited samples, upon which the joint clustering analysis specific of
this work is based.

Name z range Mean z Magnitude cut Number of objects

G1 0.5 ≤ z < 0.7 0.61 MB < −19.3 + (0.7 − z) 23 352
G2 0.7 ≤ z < 0.9 0.8 MB < −20.3 + (0.9 − z) 13 046
P1 0.5 ≤ z < 0.7 0.61 iAB ≤ 22.5 30 764
P2 0.7 ≤ z < 1.2 0.87 iAB ≤ 22.5 35 734

minimized by the limited redshift size of the bins. Galaxies within
G1 and G2 are brighter on average than those in P1 and P2. As
a consequence, the measured clustering amplitude is expected to be
larger due to the higher galaxy bias (Marulli et al. 2013), hence partly
compensating for the larger Poisson noise.

2.2 Weights

The completeness of the spectroscopic sample is quantified in the
PDR2 catalogue by a direction-dependent target sampling rate (TSR)
and a spectroscopic success rate (SSR; Scodeggio et al. 2018). To
account for these, we have used the same weighting scheme as in
Pezzotta et al. (2017). To each object, a statistical weight wi is
assigned as

wi = wTSR
i wSSR

i . (1)

Here, wTSR
i is defined as the ratio of the local surface densities of

target and parent galaxies (i.e. before and after applying the target
selection) within an aperture of 60 × 100 arcsec2. wSSR

i is instead the
local fraction of observed spectra with reliable redshift measurement
with respect to the target sample. We also correct for the small-scale
bias introduced by slit ‘collisions’ by up-weighting each galaxy–
galaxy pair at a given angular separation according to de la Torre et al.
(2013). On the scales of our analysis, this last correction impacts the
estimated 2PCF quadrupole moment, but not the monopole. We refer
the interested reader to section 4 of Pezzotta et al. (2017) for further
details on the weighting scheme.

2.3 Mock VIPERS data

To validate our analysis and quantify statistical errors, we
use the publicly available VIPERS mock catalogues.1 These
were generated from light-cones extracted from the Big
MultiDark N-body simulation (Klypin et al. 2016). The
cosmology of that simulations is a flat �CDM charac-
terized by the set of parameters (�M, ��, �b, h, ns, σ8) =
(0.307, 0.693, 0.0482, 0.678, 0.960, 0.823), which are slightly dif-
ferent from those used in this work. Dark matter haloes were
identified in the parent simulation and populated with synthetic
galaxies down to the faint magnitude limit of the survey, as detailed
in de la Torre et al. (2013, 2017). This resulted in 153 independent
mock VIPERS W1+W4 catalogues, on which the same footprint
and selection function of the real survey were applied. These mocks
were designed to match the luminosity function, number density, and
redshift distribution of VIPERS galaxies. Previous analyses have
shown that they also reproduce the VIPERS 2PCF (Granett et al.
2019). We will see in Section 3.2 that, within the errors, they also
match the 3PCF of VIPERS galaxies.

1The VIPERS mock catalogues are publicly available at http://www.vipers.i
naf.it/rel-pdr2.html#mocks

For each mock catalogue, four subsamples corresponding to the
G1, G2, P1, and P2 selections of Table 1 were created.

3 C LUSTERI NG MEASUREMENTS

The estimators used in this work belong to the class of unbiased,
minimum variance N-point estimators proposed by Szapudi & Szalay
(1998). Their general form is

ξN = (D − R)N

RN
, (2)

where D is the data catalogue, R is the so-called ‘random’ sample,
and N is the order of the correlation statistics. The estimate relies
on counting and binning all N-tuples DqRp formed by q data and p
random objects, with q + p = N.

The ‘random’ catalogue of objects is a synthetic sample with the
same geometry and selection function as the real survey but with
no spatial clustering. We assume that the selection function, i.e. the
probability to observe a galaxy at the spatial position (α, δ, z), can
be factorized as

P (α, δ, z) = f (α, δ)N (z), (3)

where f(α, δ) accounts for the angular footprint of the survey and
N(z) is the redshift distribution of the sources in the catalogue.

All measurements presented here have been performed using the
estimators described below and publicly available in the library
CosmoBolognaLib2 (Marulli, Veropalumbo & Moresco 2016).

3.1 2PCF estimator

To estimate the anisotropic 2PCF we use the Landy & Szalay (1993)
estimator:

ξ (s, μ) = DD(s, μ) − 2DR(s, μ) + RR(s, μ)

RR(s, μ)
, (4)

where DD, DR, and RR are the data–data, data–random, and random–
random pairs of objects, respectively. The separation vector of two
objects has modulus s and forms a cosine angle μ = cos (θ ) with the
line of sight to the pair, measured at the mid-point of the separation
vector itself.

We bin the pair counts using a constant logarithmic bin in s,

log (s) = 0.1, and a linear one for μ, 
μ = 0.05, as in Pezzotta
et al. (2017).

For each s bin we compute the 2PCF multipoles:

ξl(s) = 2l + 1

2

∫ 1

−1
dμP�(μ)ξ (s, μ), (5)

where P�(μ) are the Legendre polynomials. We only consider the
monopole � = 0 and quadrupole � = 2, since odd multipoles are zero

2https://gitlab.com/federicomarulli/CosmoBolognaLib
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Figure 1. Monopole (blue circles) and quadrupole (orange squares) moments of the 2PCF measured from the G1 (left) and G2 (right) VIPERS subsamples.
The corresponding measurements from the 153 VIPERS mock catalogues are also plotted (thin solid lines), together with their average (thick solid line). The
error bars on the data points correspond to the rms dispersion of the mocks. The consistency between the mocks and the real data highlights the very good
fidelity in clustering properties of the mock galaxies.

by design, and the measured hexadecapole turns out to be consistent
with zero within the (large) errors.

To validate our estimator, we measure the 2PCF multipoles for the
subsamples of Table 1 and compare the results with those of previous
VIPERS studies. Fig. 1 shows the 2PCF monopole and quadrupole
moments of the VIPERS G1 and G2 samples (blue circles and the
orange squares, respectively). The solid thin lines correspond to
measurements of each mock catalogue, with the thicker line and
error bars on data points showing the average and rms of the mocks,
respectively. This plot shows how the mock VIPERS samples repro-
duce faithfully the clustering of the real data, suggesting that they are
adequate to estimate their errors and covariance. We have repeated the
test using the P1 and P2 samples and verified that the results match
those of Pezzotta et al. (2017, see fig. 12). We notice a mismatch
between real data and mocks at small separations (<7 h−1 Mpc) in
G2 sample. A similar effect is also seen in the Pezzotta et al. (2017)
analysis (though on a wider redshift range, see bottom panel of their
fig. 8). This mismatch may point to some systematic, small-scale
effects in the procedure that generates the mock galaxies. This effect,
however, does not impact our results, as we will perform the analysis
using larger scales (see discussion in Section 7.1).

The maximum separation considered in our analysis is set by
the signal-to-noise ratio of the 2PCF. The VIPERS footprint is
highly elongated along the (equatorial) longitude, which significantly
reduces the number of distant pairs in the transverse direction. As
a result, the estimated quadrupole moment becomes noisy beyond
∼40 h−1 Mpc. We therefore set smax = 40 h−1 Mpc in our 2PCF
analysis. In Section 7.1, we will also test the sensitivity of the results
to the smallest separation scale considered, showing that the results
are robust down to smin = 15 h−1 Mpc, which we then assume as the
default value. In summary, our baseline range for the 2PCF analysis
is [15, 40] h−1 Mpc.

3.2 3PCF estimator

To measure the 3PCF of the VIPERS first data release catalogue
(PDR1), Moresco et al. (2017) used the estimator of Szapudi &
Szalay (1998) because of its ability to account for complicated
survey geometry (Kayo et al. 2004). This estimator, however, is

computationally demanding since it relies on brute-force galaxy
triplet counting, whose computing time-scales as O(N3). This be-
comes unbearable if applied to 153 mock catalogues with the size of
VIPERS.

A major breakthrough in this respect has been the introduction by
Slepian & Eisenstein (2015), of a more efficient estimator based on
a spherical harmonics decomposition (SHD). For this algorithm, the
computational cost scales as O(N2), making it successfully applicable
to large galaxy samples such as the SDSS Data Release 12 (DR12)
CMASS catalogue (Slepian et al. 2017b). The method relies on
the 3PCF Legendre polynomials expansion proposed by Szapudi
(2004):

ζ (s12, s13, μ) =
lmax∑
l=0

ζl(s12, s13)Pl(μ), (6)

where the 3PCF ζ (s12, s13, μ) is parametrized by two triangle sides
s12, s13 and their cosine angle μ = cos(ŝ12 · ŝ13). This expansion
offers two advantages. The first one is that the multipole moments
ζ l(s12, s13) can be efficiently estimated by locally expanding the
density field at distances s12 and s13 in spherical harmonics and then
by cross-correlating the expansion coefficients using the spherical
harmonics addition theorem. The second advantage is that equation
(6) typically requires a limited number of multipoles to converge.
These properties dramatically reduce the computational cost, allow-
ing us to measure the 3PCF in all VIPERS mocks and consider all
triangle configurations. We refer the reader to Slepian & Eisenstein
(2015) for a detailed description of the SHD estimator.

The main disadvantages of this estimator are that, for a given
configuration, all triangles are mixed together; this is particularly
relevant in all cases where the third side spans a large range of
scales. For example, in the case of isosceles configurations with s12

= s13, the third side s23 varies from 0 to 2 × s12, i.e. well into the
highly non-linear regime, where theoretical predictions cannot be
trusted. For this reason, here we will only consider triangles with all
side lengths above a minimum value smin = 15 h−1 Mpc and up to a
maximum length smax = 40 h−1 Mpc. This matches the scale used in
the 2PCF analysis. In Section 7.2, we shall test the robustness of our
results to such a choice.
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1188 A. Veropalumbo et al.

Figure 2. Top panels: estimates of the three-point correlation function (3PCF) for the G1 sample using both the triplet counting method (black dots) and the SHD
method (solid lines), for different lmax as indicated by the legend (top panels). The left- and right-hand panels correspond to isosceles (s12 = s13 = 15 h−1 Mpc)
and non-isosceles (s12 = 15 h−1 Mpc, s13 = 30 h−1 Mpc) configurations, respectively. The bottom panels show the difference between the two estimators, for
the different choices of lmax (blue solid, orange dashed, and green dot–dashed lines). The dashed black curves correspond to ±10 per cent of the statistical
scatter of the mocks, highlighting the relative importance of the systematic errors introduced by the choice of lmax.

3.2.1 Convergence of the SHD method

We first assess the sensitivity of the SHD method to the choice
of lmax in equation (6). We thus compare the 3PCF of the G1
catalogue measured with the SHD method to that, supposedly exact,
estimated with the same brute-force triplet counting technique used
by Moresco et al. (2017). We show in Fig. 2 the results for two triangle
configurations: isosceles triangles with s12 = s13 = 15 h−1 Mpc (left-
hand panel) and non-isosceles triangles with s12 = 15 h−1 Mpc and
s13 = 30 h−1 Mpc (right-hand panel). In both cases, the same μ bin-
ning is used. We expect similar results for different choices of s12, s13.

In the top panels, we compare the reference 3PCF measured with
the triplet counting technique (black dots), with the one measured
with the SHD method using lmax = 10, 20, and 30 (lines with
different colours). These particular choices of configurations cover
both the cases where highly non-linear scales are included (isosceles,
left-hand panel) or not (non-isosceles, right-hand panel). In the
bottom panels, we show the difference of the 3PCFs estimated
with the two methods. As an indication of the relative value of the
potential systematic error with respect to statistical errors, the black
dashed lines indicate 10 per cent of the rms scatter among the mock
catalogues. For non-isosceles configurations (right-hand panel), the
SHD matches well the expected result, with differences of the order
(or below) 1 per cent of the random errors, almost independently of
the choice of lmax. This implies that a limited number of multipoles
� are sufficient for equation (6) to converge to the correct result,
typically l < 10.

On the contrary, the results of the SHD method for the isosceles
configurations (left-hand panel) depend on the choice of lmax and μ.
For lmax = 30, the results are generally satisfactory (the difference
between SHD and triplet counting is of the order of a few per cent
of the statistical error), except for μ = 1, i.e. when s23 → 0. This is
not surprising, since elongated isosceles triangle shapes are difficult
to reproduce in harmonics space.

Based on these results, we adopt a conservative approach in which
(1) we set lmax = 30 in the 3PCF estimate, and (2) we exclude the case

μ = 1 for isosceles configurations. We also choose to parametrize
the 3PCF in terms of the three side lengths ζ (s12, s13, s23) instead of
two sides and the cosine angle, ζ (s12, s13, μ). Since the SHD method
involves binning in the radial direction, we perform an additional
step, described in Appendix A, to use the same binning along the
three sides s12, s13, and s23.

Finally, we sort the triangles in increasing size s12 ≤ s13 ≤ s23,
to avoid repetitions. This choice also facilitates triangle selection:
for example, we can exclude scales smaller than a chosen value by
setting a threshold for one triangle side only.

3.2.2 Comparison with the 3PCF of mock samples

The second test is analogous to the one performed to validate the
2PCF estimator: we measure the 3PCF in the G1, G2, P1, and P2
VIPERS samples and compare the results with the same quantity
measured in the mocks.

In Fig. 3, we show the results for the G1 and G2 samples (top and
bottom panels, respectively). We detect a non-zero 3PCF signal up
to the largest scales considered in our analysis, in agreement with
Moresco et al. (2017). The VIPERS 3PCF agrees well with that of
the mock samples, demonstrating that the VIPERS mocks are indeed
adequate to estimate the errors for the 3PCF analysis, too. We notice
a mismatch for the sample G1 on large triangles. This may indicate
the presence of observational systematic effects not fully accounted
for. However, we stress that the significance of this mismatch should
not be overemphasized, given the strong covariance among the 3PCF
measurements in nearby bins. For this reason we will still include
these triangles for the analysis.

4 C OVA R I A N T ER RO R S

To estimate the errors, we will not adopt an analytic, Gaussian model
(like in e.g. Slepian & Eisenstein 2017). Instead, supported by the
results of the previous section, we directly estimate errors and their
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Joint 2- and 3-point clustering analysis 1189

Figure 3. Monopole moments (black circles) of the three-point correlation function (3PCF) for the G1 and G2 samples (top and bottom panels, respectively),
measured for some selected sets of triangles of different side lengths, as indicated on the x-axis. The corresponding measurements from the 153 VIPERS mock
catalogues are also shown by the thin grey lines, together with their averages (solid black line). Error bars correspond to the rms scatter among the mocks.

covariance matrix Ci, j from the mock VIPERS catalogues, as

Ci,j = 1

Nm − 1

Nm∑
k=0

(
dk

i − di

) (
dk

j − dj

)
, (7)

where dk
i indicates the data vector in the ith bin and in the kth mock

catalogue. The size of the data vector and of the covariance matrix
depends on the specific clustering analysis being performed. In the
2PCF analysis, performed in the range 15 ≤ s2pt

min ≤ 40 h−1 Mpc, the
size of the data vector is 10 and the corresponding 10 × 10 covariance
matrix is shown in the lower left-hand part of Fig. 4. For the 3PCF
analysis, performed over the same range of scales, the size of the data
vector is 35 and the covariance matrix corresponds to the upper-right-
hand part of the same figure. In the joint 2PCF and 3PCF analysis,
the data vector has 45 elements and the covariance matrix, which
also contains the 2PCF–3PCF cross-terms, corresponds to the full
matrix of Fig. 4.

Both precision and accuracy of our covariance matrix depend
on the number of mock catalogues used for its numerical estimation.
Since this number is limited, a correction for the expected systematic
errors should be considered (see e.g. discussion in Hartlap, Simon &
Schneider 2007; Percival et al. 2014). To this end, we follow Sellentin
& Heavens (2016) in using a modified likelihood function, which we
discuss in detail in Section 6.

5 MO D E L L I N G TH E G A L A X Y 2 - A N D 3 - P O I N T
C O R R E L AT I O N FU N C T I O N S

In this section, we describe our model for the anisotropic galaxy
2PCF,

ξg(s, μ) = 〈
δg(x)δg(x + s)

〉
, (8)

Figure 4. The global correlation matrix used in our joint likelihood analysis
of the 2PCF and 3PCF, estimated from the 153 VIPERS mock catalogues
using equation (7). We show here the one for the G1 sample, as an illustrative
example. The matrix is composed of two subblocks, corresponding to the
2PCF monopole and quadrupole (Cξ , ξ , bottom left), and the 3PCF monopole
(Cζ , ζ , top right), respectively, together with their cross-covariance (Cξ , ζ ).
The subarrays are used for the separate 2PCF and 3PCF analyses, while the
full 45 × 45 matrix is used in the joint likelihood analysis.

and 3PCF,

ζg(s12, s13, s23) = 〈
δg(x)δg(x + s12)δg(x + s13)

〉
. (9)

In these expressions, δg(x) is the galaxy density contrast at the
position x, while 〈· · · 〉 indicates ensemble average.

The model relies on the approach of Scoccimarro, Zaldarriaga &
Hui (1999), Scoccimarro (2004), McDonald & Roy (2009), Saito

MNRAS 507, 1184–1201 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/1/1184/6333362 by C
N

R
S user on 29 April 2023



1190 A. Veropalumbo et al.

et al. (2014), and has already been used to perform 2PCF, 3PCF, and
joint 2PCF+3PCF analyses (Gil-Marı́n et al. 2015; de la Torre et al.
2017; Slepian & Eisenstein 2017).

5.1 Galaxy bias

The first ingredient of the model is the galaxy biasing relation of
McDonald & Roy (2009):

δg = b1δ + b2

2

[
δ2 − 〈δ2〉] + bs2

2

[
s2 − 〈s2〉] + O

(
δ3
)
. (10)

In this expression, the galaxy density contrast δg is a function of the
matter non-linear overdensity δ and of the non-local tidal field s2,
which accounts for dependence of δg on the local potential φ (see
e.g. section II of McDonald & Roy 2009). The terms 〈δ2〉 and 〈s2〉
guarantee that 〈δg〉 = 0. This bias model is then characterized by the
four parameters b1, b2, bs2 , and b3nl.

5.2 Distortion effects

Using the observed spectroscopic redshifts as a distance proxy
introduces spurious distortions in the clustering properties that need
to be accounted for. Three types of distortions need to be considered:
those introduced by the departures from the Hubble flow; those
induced by assuming an incorrect cosmological model in computing
distances from redshifts; and those due to the errors on the measured
redshifts.

5.2.1 Peculiar motions

Peculiar velocities introduce a Doppler shift that modifies the
mapping between spatial positions, x, and the measured positions, s:

s = x + v‖
aH (a)

e‖, (11)

where a is the expansion factor, v‖ is the radial component of the
peculiar velocity vector, e‖ is the unit radial vector, and s is the
redshift-space vector position of the object.

This mapping introduces a relation between the measured
(redshift-space) galaxy overdensity, δg(s), and the true, real-space
one, δg(x):

δg(s) = [
1 + δg(x)

] ∣∣∣∣ d3s

d3x

∣∣∣∣
−1

− 1, (12)

where
∣∣∣ d3s

d3x

∣∣∣−1
is the Jacobian of the map in equation (11).

In this work, we make the plane-parallel hypothesis, i.e. we assume
that the relative separations between galaxy pairs are much smaller
than the distance to the observer. This assumption is fully justified,
since the maximum scale considered in our analyses (40 h−1 Mpc) is
much smaller than any distance to a VIPERS galaxy, which lies at z

≥ 0.5. Under this approximation, equation (12) becomes

δg(s) = δg(x) + f ∂‖u
1 − f ∂‖u

, (13)

where the partial derivative is taken along the radial direction, u
is the peculiar velocity, and f is the linear growth rate of density
fluctuations,

f = d log D

d log a
≈ �0.545

M (z), (14)

where D(z) is the linear growth factor and the second relation is a
good approximation in the flat �CDM model assumed here (see e.g.
Wang & Steinhardt 1998; Huterer & Linder 2007).

5.2.2 Geometrical distortions

Choosing an incorrect fiducial cosmology to estimate distances
from redshifts generates another kind of anisotropy, the well-known
Alcock–Paczynski effect (Alcock & Paczynski 1979). The detection
of this effect on intrinsically isotropic clustering features as the BAO
peak in the 2PCF has been used to trace the expansion history of
the Universe (Eisenstein et al. 2005; Kazin et al. 2013). Here, we
will treat this effect as a nuisance to be marginalized over, since our
analysis is limited to scales well below the BAO peak. As shown
in de la Torre et al. (2017), the impact of this marginalization in
the error budget of the VIPERS clustering analysis is negligible.
Therefore, we will set our fiducial cosmology equal to the flat �CDM
model specified in Section 1 and safely ignore the Alcock–Paczynski
effect.

5.2.3 Redshift measurement errors

Redshift measurement errors introduce a noise in the redshift-to-
distance relation analogous to that of incoherent motions (Marulli
et al. 2012), effectively erasing information on scales below:

σπ = cσz

H (z)
h−1 Mpc, (15)

where σ z is the rms error typical of the adopted instrumental set-
up. For VIPERS, the errors are very well described by a Gaussian
distribution with σ z = 5 × 10−4(1 + z), corresponding to a length
scale σπ ∼ 1.5 h−1 Mpc (Sereno et al. 2015; Scodeggio et al. 2018).

5.3 2PCF model

To model the galaxy 2PCF we start from the matter power spectrum
P(k),〈
δ(k)δ(k′)

〉 = 2π3δD(k − k′)P (|k|). (16)

Using equation (13) to account for RSDs, we obtain an expression
of the redshift-space power spectrum:

P s(k, ν) =
∫

d3re−ik·r 〈e−if kν
u‖

× [
δ(x) + f ∂‖u‖(x)

] [
δ(x′) + f ∂‖u‖(x′)

]〉
, (17)

where ν = k�/k, u� = −v�/(faH(a)), v� and k� are the radial compo-
nents of the peculiar velocity and wavenumber vectors, respectively, δ
is the matter overdensity, u‖ = u‖(x) − u‖(x′), and r = x − x′. The
term in square brackets accounts for the effect of coherent motions
that increase the clustering amplitude, whereas the exponential factor
encodes the ‘Fingers of God’ effect of incoherent motions. For a more
detailed description, see Taruya, Nishimichi & Saito (2010).

Equation (17) is exact but of impractical use. Rather, using the
approximations introduced by Scoccimarro (2004) and Taruya et al.
(2010) for the case of biased mass tracers, we obtain the simpler
expression

P s
g (k, ν) = D(σ12, σz)

[
Pgg(k) + 2ν2f Pgθ (k) + ν4f 2Pθθ (k)

]
, (18)

where
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Pgg(k) = b2
1Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2b1Pbs2,δ(k)

+ b2
2Pb22(k) + 2b2bs2Pb2s2(k) + b2

s2Pbs22(k)

+ 2b1b3nlσ
2
3 (k)Plin(k), (19)

Pgθ (k) = b1Pδθ (k) + b2Pb2,θ (k) + bs2Pbs2,θ (k)

+ b3nlσ
2
3 (k)Plin(k). (20)

In these equations, Pδδ , Pδθ , and Pθθ are, respectively, the non-linear
matter density–density, density–(velocity divergence), and (velocity
divergence)–(velocity divergence) power spectra. Plin is the matter
linear power spectrum, and Pb2, δ , Pbs2, δ , Pb2, θ , Pbs2, θ , Pb22, Pb2s2,
Pbs22, and σ 2

3 are one-loop bias integrals; their expressions can be
found in e.g. Gil-Marı́n et al. (2015) and de la Torre et al. (2017).
The linear and non-linear power spectra of density and velocity
divergence are specified at the effective redshift of the sample. To
model Plin we use the CAMBBoltzmann solver code (Lewis, Challinor
& Lasenby 2000; Howlett et al. 2012), whereas for Pδδ(k), Pδθ , and
Pθθ we use the standard perturbation theory (SPT) one-loop model
of Scoccimarro (2004, equations 63–65). In this model, the degree of
non-linearity in Pδδ , Pδθ , and Pθθ is quantified by the same parameter
that measures the clustering amplitude, i.e. σ 8(z).

In equation (18), we have introduced the term D(σ 12, σ z) to model
the combined damping effect of incoherent motions and redshift
errors. Its explicit expression is

D(σ12, σz) = (
1 + k2ν2σ 2

12

)−1
exp

(−k2ν2σ 2
z

)
. (21)

The first term, modelled as a Lorentzian damping, accounts for the
effect of random motions within dark matter haloes, quantified by the
pairwise velocity dispersion σ 12. The second term accounts for the
redshift measurement errors and is modelled as a Gaussian function.
In our analysis, we fix σ z to the VIPERS estimated value and leave
σ 12 as a free factor we can fit for and then treat it as a nuisance
parameter.

Since the 2PCF model fits well the corresponding measurements
from the VIPERS mocks on all scales considered, we decided to
ignore the model correction terms CA(k, ν, f, b1) and CB(k, ν, f,
b1) of Taruya et al. (2010), which are instead considered in other
analyses (e.g. Gil-Marı́n et al. 2015).

To test the robustness of our model, we also considered an
alternative 2PCF model, in which we used (1) the HALOFIT semi-
analytical prescription calibrated by Takahashi et al. (2012) to model
the matter power spectra, and (2) the fitting functions of Bel et al.
(2019) to model Pδ, θ (k) and Pθ , θ (k). We find that the alternative
model provides results very similar to the original one, the differences
being much smaller than the statistical errors.

We then use equation (18) to model the multipole moments of the
anisotropic power spectrum,

P s
� (k) = 2� + 1

2

∫ 1

−1
P s

g (k, ν)Pl(ν) dν, (22)

and, from these, the multipole moments of the anisotropic 2PCF,

ξ s
� (s) = i�

∫
k2

2π2
P s

� (k)j�(ks) dk, (23)

where j� indicates the spherical Bessel functions. Having neglected
the CA(k, ν, f, b1) terms, in our model the parameters b1 and f are
fully degenerate with σ 8. The two bias parameters b1 and b2 are also
highly degenerate.

5.4 3PCF model

The 3PCF model we adopt is the same one used by Slepian &
Eisenstein (2017) and Slepian et al. (2017a) to detect the BAO feature
in the 3PCF of SDSS DR12 galaxies and to measure their biasing
relation in redshift space.

Our 3PCF model is derived from galaxy bispectrum
B(|k1|, |k2|, |k3|), defined as〈
δg(k1)δg(k2)δg(k3)

〉 = δD(k1 + k2 + k3)B(|k1|, |k2|, |k3|). (24)

In particular, we assume the redshift-space tree-level galaxy bispec-
trum derived in Scoccimarro et al. (1999). From this, we obtain the
3PCF model by Fourier transform, following the prescriptions of
Slepian et al. (2017b).

The 3PCF model can be expressed as

ζ (s12, s13, s23) =
l=4∑
l=0

Al(b1, γ, γ ′, β) fl (s12, s13, s23)

+ B(b1, β)
lmax∑
l=0

kl (s12, s13, s23) , (25)

where γ ≡ b2/b1 and γ ′ ≡ bs2/b1 are combinations of the bias
parameters. The first term of equation (25) accounts for contributions
separable in k1, k2 in the Scoccimarro et al. (1999) bispectrum model.
Its Fourier transform can be computed analytically as the product of
two quantities. The first one, Al, depends on the bias parameters, b1,
b2, bs2 , and on the linear distortion parameter β = f/b1. The second
one, fl, depends on the linear power spectrum, Plin(k). The explicit
expression of the Al and fl terms is given in Appendix B.

The second term in equation (25) accounts for the non-separable
terms (i.e. the terms in which k3 appears explicitly). It is also made-up
of two terms. The multiplicative factor B = b3

1(7β2 + 2β3) depends
on b1 and β, while the terms kl(s12, s13, s23) in the sum depend on
Plin(k). Their explicit expressions are given in equations (17)–(19)
of Slepian et al. (2017b). The contribution of non-separable terms is
small compared to that of the separable one and therefore we will
ignore them in the 3PCF model, similarly to what we did with the
CA and CB terms in the 2PCF model.

Scoccimarro et al. (1999) and Gil-Marı́n et al. (2015) have
modelled the effect of incoherent motions with a damping term in
the galaxy bispectrum,

DB (ασ12) =
{

1 + α2
[
(k1ν1)2 + (k2ν2)2 + (k3ν3)2

]2 σ 2
12

2

}−2

. (26)

The magnitude of the damping effect is determined by the pairwise
velocity dispersion, σ 12 and modulated, in the model, by a multi-
plicative factor, α (with α = 0 describing a purely coherent flow). In
this work, however, we decided to drop this damping term since it has
a negligible impact on scales larger than 10 h−1 Mpc as we show in
a dedicated test in Section 7.2, where we assess the sensitivity of our
results to the choice of smin. This choice has the further advantage
of avoiding computationally demanding two-dimensional Fourier
transforms.

5.5 Integral constraint

The so-called integral constraint effect originates from the assump-
tion that the mean density estimated from the data coincide with
the true one. This assumption biases the estimate of the correlation
function on scales comparable to the size of the survey (Hui &
Gaztañaga 1999), where it cannot be neglected, in particular at BAO
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Table 2. Priors for the free parameters used in our likelihood analyses. The
pairwise velocity dispersion, σ 12, is expressed in h−1 Mpc.

Analysis/Parameters b1 γ β σ 8(z) σ 12

2PCF [0.1, 5] [−5, 5] [0.1, 5] [0, 5] [0, 10]
3PCF [0.1, 5] [−5, 5] [0.1, 5] [0.1, 5] –
2PCF+3PCF [0.1, 5] [−5, 5] [0.1, 5] [0, 5] [0, 10]

scales (Slepian & Eisenstein 2017). However, the maximum scales
considered in our analysis (40 h−1 Mpc) are significantly smaller than
the size of the survey. This guarantees that the integral constraint is
negligible, as shown by Cappi et al. (2015), and will be ignored in
our analysis.

5.6 Summary of model parameters

Our 2PCF and 3PCF models are specified by the set of free param-
eters listed in Table 2. These include the clustering rms amplitude,
σ 8, the linear redshift distortion parameter β ≡ f/b1, the pairwise
velocity dispersion, σ 12, and the two galaxy bias parameters, b1 and
γ ≡ b2/b1.

The other model parameters that are kept fixed to their fiducial
values are: the shape parameters of Plin(k), which are set to the
Planck values (Planck Collaboration VI 2020); the VIPERS rms
redshift error, σ z = 5 × 10−4(1 + z); the bias parameters bs2 and
b3nl, which are derived from local Lagrangian theory, i.e.

bs2 = −4

7
(b1 − 1) , (27)

b3nl = 32

325
(b1 − 1) . (28)

This choice is motivated by the fact that their measured values would
be too noisy, as we have verified by running a dedicated likelihood
analysis, aimed at testing the local Lagrangian bias hypothesis.
Finally, we set α = 0; a choice that has a negligible impact on
the results, as we show in Section 7.2.

6 PARAMETER INFERENCE

To estimate the free parameters of the model, described as a vector
θ , and their uncertainties, we compute the posterior probability,
P (μ(θ )|d), where μ(θ) is the model prediction vector and d is the
data vector.

We perform three different analyses: one in which the data vector
is represented by the VIPERS 2PCF monopole and quadrupole mea-
sured in the two samples G1 and G2 in the range [15, 40] h−1 Mpc;
one where we consider the measured 3PCF monopole of the same
galaxies in the same range of scales; and one considering both statis-
tics. In each case, we use the corresponding numerical covariance
matrix C as described in Section 4.

To evaluate the posterior probability, we multiply the likelihood,
L(d|μ, C), by the prior probability, P (θ ). For each free parameter,
the prior is modelled as a step function with zero value outside the
ranges specified in Table 2. To compute the likelihoodL(d|μ, C), we
use the covariance matrices described in Section 4. The latter have
been numerically estimated from a large (153) but finite number
of mock VIPERS catalogues, which introduce a systematic error.
To correct for this, we adopt the approach of Sellentin & Heavens
(2016) and use the modified likelihood function:

L (d|μ, C, Nm) = c̄p (det C)−1/2

[
1 + χ2(μ, C)

Nm − 1

]− Nm
2

, (29)

where

χ2(μ, C) = (d − μ)T C−1 (d − μ) , (30)

c̄p = �
(

Nm
2

)
π (Nm − 1)p/2 �

(
Nm−�

2

) , (31)

with Nm being the number of mock catalogues, and � the Gamma
function.

To sample the posterior P (μ(θ)|d) we use a Markov chain
Monte Carlo (MCMC) approach that generates a set of chains,
i.e. collections of points in the parameter space {θ1, θ2, . . . , θN }.
Some of the parameters used in our analysis are expected to be
(partly) degenerate. In these cases, we do not consider the individual
parameters, but a suitable combination, as e.g. for b1σ 8 and fσ 8 in
the case of the 2PCF analysis alone.

7 R ESULTS

In this section, we present the results of three analyses based,
respectively, on the VIPERS 2PCF only, 3PCF only, and on the
combination of the two statistics.

The first analysis is very similar to those of de la Torre et al. (2013,
2017), Pezzotta et al. (2017), and Mohammad et al. (2018) and we
use it to validate our likelihood pipeline. The main goal of the second
analysis, which builds upon the work of Moresco et al. (2017), is to
measure the bias parameters b1 and γ ≡ b2/b1. Finally, the joint 2PCF
and 3PCF analysis is aimed at breaking parameter degeneracies to
obtain independent constraints on the galaxy bias, the evolution of
cosmic structures, and the clustering amplitude.

For all such analyses, the G1 and G2 VIPERS subsamples are used
(see Table 1). For the 2PCF study only, we also consider the P1 and
P2 samples to allow us a direct comparison to Pezzotta et al. (2017).

7.1 2PCF

The results of the 2PCF analysis are shown in Fig. 5. In the panels
we plot the 2D and 1D posterior probability distributions for the
combinations of degenerate parameters fσ 8, b1σ 8, and for σ 12,
obtained from the analysis of the VIPERS P1 (z̄ = 0.61) and P2
(z̄ = 0.87) samples and for different smin values indicated in the
plots. We considered the 2PCF monopole and quadrupole moments
and used the 10 × 10 covariance submatrix Cξ , ξ of Fig. 4.

Our analysis is very similar, though not identical, to that of Pezzotta
et al. (2017). To minimize the differences, we compare our results
obtained by using an SPT one-loop 2PCF model in redshift space with
their Taruya–Nishimichi–Saito (TNS) model (Taruya et al. 2010). For
the same reason, we push the analysis down to smin = 5 h−1 Mpc,
but then show the results obtained with larger values up to smin =
15 h−1 Mpc (our reference case).

The 2D and 1D posterior distributions shown in Fig. 4 agree well
with the results of Pezzotta et al. (2017) except for the pairwise
velocity dispersion, σ 12, which is significantly (2σ ) smaller. This is
not surprising since, as shown in fig. 18 of Pezzotta et al. (2017), the
Scoccimarro (2004) 2PCF model tends to underestimate the value of
σ 12.

The 2D contours in Fig. 5 show a mild anticorrelation between
fσ 8 and b1σ 8, which is expected since larger redshift distortions that
boost up the 2PCF monopole can be compensated by reducing the
clustering amplitude b1σ 8. In addition, we find a positive correlation
between fσ 8 and σ 12, which is explained by the fact that damping
effects can be compensated by increasing the clustering amplitude.
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Joint 2- and 3-point clustering analysis 1193

Figure 5. Marginalized 2D posterior probability levels for the parameters b1σ 8, fσ 8, and σ 12, from the 2PCF analysis of the P1 and P2 ‘control’ samples
(left/right respectively), as a function of the minimum scale included in the analysis (see legend). The units of σ 12 are h−1 Mpc and the darker/lighter shades for
each set correspond to 68 per cent and 95 per cent confidence levels, respectively. 1D distribution functions on the diagonal give the 1D marginalized probability
distributions of each parameter, with the 68 per cent interval indicated by the blue-shaded area for the smin = 15 h−1 Mpc reference case only. The horizontal
and vertical dashed lines give the best-fitting values obtained by Pezzotta et al. (2017) on similar subsamples of the VIPERS PDR2 catalogue.

Table 3. Summary of the best-fitting parameter values and their 1σ uncertainties, as obtained from the G1/G2 VIPERS samples using the 2PCF-only, 3PCF-only,
and joint 2PCF+3PCF analyses. The parameters common to all analyses are b1, γ , β, and σ 8. For the 2PCF and joint analyses, the pairwise velocity dispersion
σ 12 is also considered. To account for parameter degeneracy, we also list some of the relevant parameter combinations constrained by the individual 2PCF and
3PCF analyses.

Sample Probe σ 8(z) b1 γ β σ 12 f b1σ 8(z) fσ 8(z)

2PCF – – – 1.2 ± 0.6 2.4 ± 2.1 – 0.56+0.12
−0.11 0.7 ± 0.2

G1 3PCF – – 0.1+0.8
−1.3 0.02+0.70

−0.0 – – 1.0 ± 0.3 0.0 ± 0.5

Joint 0.50 ± 0.12 1.60 ± 0.43 −0.1+0.8
−1.3 0.4+0.3

−0.2 2.4 ± 2.0 0.64+0.55
−0.37 0.84+0.09

−0.14 0.36+0.17
−0.12

2PCF – – – 0.6+0.9
−0.3 1.0+1.6

−1.0 – 0.67+0.15
−0.17 0.49+0.42

−0.16

G2 3PCF – – 0.2+3.5
−1.3 0.0+1.4

−0.0 – – 0.4+0.5
−0.2 0.0+0.7

−0.0

Joint 0.39+0.11
−0.13 1.9+0.8

−0.5 0.5+1.3
−1.2 0.49+0.31

−0.23 1.0+1.6
−1.0 1.0 ± 1.0 0.74+0.07

−0.08 0.43+0.16
−0.15

To assess the sensitivity of our results to some of the model
parameters, we have performed two robustness tests. In the first
one we have repeated the likelihood analysis with different values
of smin = 5, 10, and 15 h−1 Mpc. The results are shown in the same
Fig. 5. As expected, increasing the value of smin amplifies the errors,
especially for the non-linear σ 12 parameter. However, no systematic
error is introduced as all results agree with those of Pezzotta et al.
(2017) and with each other.

As a second test we used the alternative 2PCF model introduced
in Section 5.3 in which we (1) use HALOFIT (Takahashi et al. 2012)
to model Pδδ and (2) adopt the fitting formula of Bel et al. (2019)
to model Pδθ and Pθθ . The results are very similar to those obtained
with the reference 2PFC model.

Finally, we have repeated the likelihood analysis on G1 and G2
samples that we use for the 3PCF analysis too. The results, which
are qualitatively similar to those obtained with P1 and P2, are
summarized in Table 3 where we list the best-fitting parameters
and their 1σ uncertainties.

We confirm that the 2PCF analysis successfully constrains the
parameter combinations fσ 8, b1σ 8, and β ≡ f/b1 but leave γ uncon-
strained. This is not surprising since this parameter is sensitive to the
small-scale clustering that we ignore, having set smin = 15 h−1 Mpc.
Indeed, when the analysis is extended down to smin = 5 h−1 Mpc, we
do measure a γ value significantly different from zero, yet mildly
inconsistent with the results of previous VIPERS analyses (Cappi
et al. 2015; Di Porto et al. 2016). This value is also in tension with
the one yielded by the 3PCF analysis presented in the next section. It
probably indicates the minimum scales below which our galaxy 2PCF
model fails and thus justifies our choice of setting smin = 15 h−1 Mpc.

7.2 3PCF

We have repeated the likelihood analysis to compare the 3PCF
measurements in the G1 and G2 sample with the 3PCF model
described in Section 5.4 and the 35 × 35 covariance matrix Cζ , ζ

shown in Fig. 4.
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1194 A. Veropalumbo et al.

Figure 6. Marginalized 2D and 1D posterior distributions for the parameters b1σ 8, β, and γ , obtained from the 3PCF analysis of the G1 and G2 VIPERS
samples (left- and right-hand panels, respectively). The plots show the results for the two choices of smin as indicated by the legend. As in previous figures,
darker/lighter shades correspond to 68 per cent and 95 per cent confidence levels, respectively. The green dashed lines report the marginalized 1D distributions
obtained for the same parameters from the 2PCF analysis, using smin = 15 h−1 Mpc.

This analysis improves upon the one performed by Moresco et al.
(2017) in different ways. First, we use a more accurate 3PCF model
and a covariance matrix estimated from realistic mock catalogues
to perform a full likelihood analysis. Secondly, here we use the
final, PDR2 release of the VIPERS catalogue. Finally, we consider
all triangle configurations and not just a few subsets. We stress the
importance of this latter aspect since, in our estimator, we use a
triangle representation that is flexible enough to allow us to select
subsets of triangles characterized by specific configurations and side
lengths, greatly simplifying the comparison with model predictions.

The plots in Fig. 6 are analogous to those of Fig. 5. They
show the 2D and 1D marginalized posterior distributions for the
parameters b1σ 8, β, and γ obtained from the 3PCF measured in the
G1 (left) and G2 (right) samples. The best-fitting parameters and
their uncertainties are listed in Table 3. The 3PCF analysis allows
us to estimate the non-linear bias parameter γ , which turns out to
be consistent with zero, while 2PCF is completely insensitive to
it, as shown by the green, dot–dashed curves in the bottom right-
hand panels. This result is in agreement with Moresco et al. (2017)
and marginally consistent with those obtained from counts-in-cells
analyses of Cappi et al. (2015) and Di Porto et al. (2016) where a
non-zero value of γ was measured but on scales much smaller than
those considered here.

The constraints on the distortion parameter β are, on the contrary,
quite weak. The best-fitting value of this parameter is consistent with
zero within the errors. This is not unexpected since in our analysis we
considered only the 3PCF monopole moment, which is insensitive to
the RSD effects. Constraints on β could be obtained by considering
the 3PCF multipoles. This is, however, beyond the scope of this work
since a multipole analysis would require the use of a significantly
larger covariance matrix, which cannot be accurately estimated with
the 153 mock catalogues at our disposal.

Another interesting feature is the mild degeneracy between β and
the clustering amplitude b1σ 8 also seen for the 2PCF. The difference

is that here the error on b1σ 8 from the 3PCF analysis is about
three times larger than from the 2PCF one.

To test the sensitivity to the choice of smin we repeated the
likelihood analysis using smin = 5, 10, 15, and 20 h−1 Mpc. In
Fig. 6, we only show the cases of smin = 10 and 15 h−1 Mpc to
avoid overcrowding. When smin decreases, the maximum of the 1D
posterior distributions for bσ 8 shifts to smaller values. However, due
to the large errors, the best-fitting values of bσ 8 (but also the ones
of γ and β) are in fact consistent with each other for all choices
of smin. In Appendix C, we present a more detailed study of the
impact of smin on the parameters’ estimates using the VIPERS mock
catalogues. Finally, despite their different shapes, the 1D posteriors
of all parameters obtained from the 3PCF analysis for all values of
smin largely overlap those obtained from the 2PCF.

To further assess the impact of non-linear effects, we compared
the measured 3PCF with a model including the damping term of
equation (26) and varying its strength. The result is shown in Fig. 7,
with the reference case with α = 0 corresponding to no damping.
We set the pairwise velocity dispersion, σ 12, equal to the best-fitting
value obtained from the 2PCF analysis. The plot compares model
predictions with the 3PCF measured for various triangle shapes,
whose side lengths are indicated on the x-axis. The results show that
incoherent motions do not significantly affect model predictions on
the scales considered in our analysis. They may, however, become
relevant for next-generation surveys, in which statistical errors will
be significantly smaller than those considered here. We plan to further
investigate this aspect and introduce a novel non-linear 3PCF model
to tackle the problem.

7.3 Joint analysis of 2PCF and 3PCF

Finally, we perform for the first time a joint 2PCF and 3PCF
correlation analysis on the VIPERS data. The main goal is to break the
parameter degeneracy and obtain individual estimates for σ 8, for the
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Joint 2- and 3-point clustering analysis 1195

Figure 7. The impact of small-scale damping on our model for the 3PCF monopole. The estimated 3PCF from the VIPERS G1 and G2 samples (top and bottom
respectively, data and error bars as in Fig. 3) is compared to the theoretical predictions, varying the amplitude of non-linear motions, through the parameter α.
The case α = 0 corresponds to the reference case, in which small-scales non-linear motions are ignored.

linear growth rate f, and for the two bias parameters b1 and γ . Fig. 8
shows the 1D and 2D posterior probability distributions (blue regions
and solid curves) of these parameters from the likelihood analysis of
the G1 and G2 samples and using the full 45 × 45 covariance matrix.
The same range of scales [15, 40] Mpc h−1 was considered in both
the two- and three-point statistics. The 1D posterior distributions
obtained from the 2PCF-only (green, dot–dashed) and 3PCF-only
(red, dashed) analyses are also shown for reference. The best-fitting
values of the joint analysis and their uncertainties are listed in
Table 3.

The joint analysis successfully breaks the σ 8−b1−f degener-
acy, and the parameters can be measured individually, although
with different uncertainties. The value of σ 8 is measured with a
∼20 per cent uncertainty in both G1 and G2 samples. The error on
b1 is ∼20 per cent in the G1 sample, increasing to ∼30 per cent
in G2. The error on the growth rate f is significantly larger (65–
75 per cent), reflecting the fact that the f−σ 8 degeneracy is only
partially broken by our analysis. Though significantly less precise,
it is reassuring that our best-fitting σ 8 and f values are in agreement
with those of the Planck Collaboration VI (2020) cosmology, scaled
to the redshift of the survey (vertical and horizontal dashed lines).
The sensitivity of these results to the choice of smin is thoroughly
discussed in Appendix C.

The joint analysis does not improve the estimate of γ , whose
precision is driven by the 3PCF signal, as shown in Fig. 8. It does
instead improve the estimate of σ 12 whose value, in agreement
with the one obtained from the 2PCF analysis, is estimated with
a significantly higher precision.

Overall, the results of the joint analysis clearly show that the
degeneracy of some parameters are successfully broken, thanks to
the ability to extract information from intermediate to small scales
where non-linear effects are relevant, both in the evolution of the
density fluctuation and in the biasing relation.

8 D I SCUSSI ON AND C ONCLUSI ONS

In this work, we have measured the 2PCF and 3PCF of the galaxies
in the final data release of the VIPERS survey and used their
joint information to break parameter degeneracies and estimate the
galaxy bias parameters, b1 and γ , the clustering amplitude, σ 8, and
the linear growth rate of density fluctuations, f, at two redshifts z �
0.61 and z � 0.8.

Because of the survey footprint, separated in two patches highly
elongated in one direction, we performed the analysis in configu-
ration space focusing on scales smaller than 40 h−1 Mpc. To do so,
we adopted a one-loop anisotropic 2PCF model to account for non-
linear effects, galaxy bias, and redshift distortions. For the 3PCF we
considered the tree-level model of its monopole moment in redshift
space proposed by Slepian et al. (2017b). To estimate the 3PCF we
have used the SHD method of Slepian & Eisenstein (2015) whose
efficiency allowed us to measure the 3PCF of all 153 mock VIPERS
catalogues and thus to estimate the covariance matrix used in the
likelihood analysis. Because of all these aspects, we believe that our
analysis improves over the previous joint 2PCF and 3PCF analysis
of the WiggleZ galaxy sample that was performed by Marı́n et al.
(2013) using the brute-force triplet counting estimator simplified
analytic models for 2PCF, 3PCF, and their covariance matrix.

The main results of this work can be summarized as follow.

(i) When we use the P1 and P2 data sets, the results of our 2PCF
analysis agree, as expected, with those obtained by Pezzotta et al.
(2017) in the range [5, 50] h−1 Mpc, despite having used a different
covariance matrix and a different 2PCF model. Indeed, our estimates
of

f σ8(z = 0.61) = 0.58 ± 0.12,

f σ8(z = 0.87) = 0.43 ± 0.12
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1196 A. Veropalumbo et al.

Figure 8. Marginalized 1D and 2D posterior distributions for the parameters σ 8(z), f(z), and b1, from the joint 2PCF+3PCF analysis of the G1 and G2 VIPERS
samples (left- and right-hand panels, respectively). All estimates use smin = 15 h−1 Mpc. The meaning of contours and shaded areas is as in Fig. 6. The vertical
and horizontal black dashed lines show for reference the values measured for the same parameters by Planck Collaboration VI (2020), self-consistently scaled
to the corresponding VIPERS redshift.

and

b1σ8(z = 0.61) = 0.69 ± 0.04,

b1σ8(z = 0.87) = 0.70 ± 0.04

match those of Pezzotta et al. (2017) (f σ8(z = 0.61) =
0.55 ± 0.12, f σ8(z = 0.87) = 0.40 ± 0.11; b1σ8(z = 0.61) =
0.73 ± 0.03, b1σ8(z = 0.87) = 0.74 ± 0.04).

When we consider pairs with smin ≥ 10 h−1 Mpc the 1D posterior
probability distribution of γ ≡ b2/b1 is flat, whereas it peaks at
negative values when pairs at separations as small as 5 h−1 Mpc are
included. Since a negative value is neither confirmed by previous
VIPERS analyses (Cappi et al. 2015; Di Porto et al. 2016) nor
by our joint 2PCF and 3PCF analysis, we consider it as a piece
of evidence that the 2PCF model is inadequate to describe galaxy
clustering on such small scales. Moreover, we found that including
pairs with separations larger than 40 h−1 Mpc, where shot noise starts
to be significant, increases the computational cost of a less accurate
covariance matrix, and does not improve the quality of the fit.

For all these reasons, we focused on a smaller scale range
[15, 40] h−1 Mpc, and then assessed the robustness of our results
to this choice. We then repeated the 2PCF analysis of G1 and G2
samples using this range and found f σ8(z = 0.61) = 0.47+0.17

−0.15. This
is in good agreement with the estimates of de la Torre et al. (2017),
fσ 8(z = 0.6) = 0.48 ± 0.11, and of Gil-Marı́n et al. (2017), fσ 8(z
= 0.57) = 0.432 ± 0.022. Our measurements are shown in Fig. 9
together with existing estimates of fσ 8 obtained at different redshifts.
As evident, there is an excellent agreement with previous results
and with the theoretical expectation of a Planck cosmology (Planck
Collaboration VI 2020).

(ii) We measured the 3PCF of the G1 and G2 samples in the same
range as the 2PCF, [15, 40] h−1 Mpc, for all triangle configurations.
We compared these measurements with the model predictions to

estimate the bias parameters b1 and γ (for the remaining parameters
we have the assumed a local Lagrangian bias model). We found
γ (z = 0.61) = 0.1+0.8

−1.3 and γ (z = 0.8) = 0.2+3.5
−1.3, in tension with the

result of Moresco et al. (2017) (γ (z � 0.6) = −0.47 ± 0.144). The
mismatch probably reflects the different scales probed by the two
cases, since Moresco et al. (2017) pushed their analysis to scales as
small as 1 h−1 Mpc (and fixed all parameters of the model except b1

and b2).
Di Porto et al. (2016) estimated the biasing function from a count-

in-cells analysis of the first data release of VIPERS. Among the
shape parameters are used to characterize the biasing function in that
analysis the one dubbed B ≡ [1 − b̃/b̂] can be directly compared to
γ . The measured B values at the redshifts of the G1 and G2 samples
and on the scale of 8 h−1 Mpc (B(z = 0.6) = 0.007 ± 0.006 and B(z
= 0.8) = 0.005 ± 0.005) agree with our estimates of γ .

Cappi et al. (2015) also performed counts in cells to derive
volume-averaged higher order correlation functions from which they
inferred the bias parameters b1 and b2. The scales considered in their
analyses and the magnitude cuts are, however, different from ours.
Nevertheless, it is reassuring that, similarly to our case, they did not
detect significant deviations from a linear biasing.

(iii) We have shown that a joint two- and three-point correlation
analysis of the VIPERS samples successfully breaks the degeneracy
among σ 8, f, and b1 (and, consequently, b2) and reduces the errors in
the estimate of their combinations fσ 8, b1σ 8, and f/b1. It is instructive
to compare our results to those of similar analyses, aimed at breaking
parameter degeneracies by combining two- and three-point statistics
in configuration (Marı́n et al. 2013) and Fourier space (Gil-Marı́n
et al. 2017) and by combining clustering and gravitational lensing
measurements using the VIPERS PDR2 data (de la Torre et al. 2017).

Our estimates of the clustering amplitude, σ 8(z = 0.61) =
0.50 ± 0.12 and σ8(z = 0.8) = 0.39+0.11

−0.13, are in good agreement
with those obtained by de la Torre et al. (2017) (σ 8(z = 0.6) =
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Figure 9. Comparison of our new estimates of the growth rate of structure, parametrized by the product fσ 8 (light blue circles), with previous measurements
from the literature: 6dFGS (Beutler et al. 2012; Adams & Blake 2017; Huterer et al. 2017); Two Micron All-Sky Survey (2MASS; Davis et al. 2011); Galaxy
And Mass Assembly (GAMA; Blake et al. 2013); WiggleZ (Blake et al. 2012); VIMOS-VLT Deep Survey (VVDS; Guzzo et al. 2008); VIPERS (de la Torre
et al. 2013, 2017; Hawken et al. 2017; Pezzotta et al. 2017; Mohammad et al. 2018); FastSound (Okumura et al. 2016); SDSS+BOSS+eBOSS (Alam et al.
2021), ‘C3 – Cluster Clustering Cosmology’ (Marulli et al. 2020). The black solid line shows the �CDM+GR Planck Collaboration VI (2020) model prediction.

0.52 ± 0.06 and σ 8(z = 0.86) = 0.48 ± 0.04), Marı́n et al. (2013)
(σ8(z = 0.55) = 0.61+0.08

−0.09), Gil-Marı́n et al. (2017) (σ 8(z = 0.57) =
0.66 ± 0.067), and with the Planck �CDM predictions, as shown in
the right-hand panel of Fig. 10.

Similarly, our estimates of the growth rate f (z = 0.61) =
0.64+0.55

−0.37 and f(z = 0.8) = 1.0 ± 1.0 agree with those of de la Torre
et al. (2017) (f(z = 0.6) = 0.93 ± 0.22 and f(z = 0.86) = 0.99 ± 0.19)
and Gil-Marı́n et al. (2017) (f(z = 0.57) = 0.649 ± 0.076) within
the error that is much larger in our case. All these measurements
are shown in the left-hand panel of Fig. 10 together with the Planck
�CDM predictions (Planck Collaboration VI 2020).

We notice that the errors on both f and σ 8 in our case are
significantly larger than in de la Torre et al. (2017), despite having
used similar data sets. The reason for this is twofold. First of all, we
have adopted a more conservative approach and considered smin =
15 h−1 Mpc, whereas de la Torre et al. (2017) used smin = 5 h−1 Mpc.
This choice, motivated by the discrepant γ value found in the 2PCF
analysis, prevents us from accessing information encoded on smaller
scales. If these are included, then the errors in the measured f and σ 8

significantly decrease towards values comparable to those of de la
Torre et al. (2017), as illustrated in Appendix C. The second reason
is that the clustering–lensing analysis is more efficient in breaking
parameter degeneracy than the joint 2PCF–3PCF. In fact, the latter
combines the galaxy 2PCF, which has a b1σ 8 degeneracy, to the
galaxy 3PCF, which has a similar degeneracy, b3

1σ
4
8 . On the contrary,

the lensing analysis has a b1σ
2
8 degeneracy, which is effectively

broken when combined with the galaxy 2PCF.
(iv) We have performed many tests to check the robustness of our

results against non-linear effects, which are expected to be relevant
on the scales probed here and are the reason for the conservative
cut at smin = 15 h−1 Mpc. Decreasing smin reduces parameters errors
from the 2PCF-only analysis but also picks up a negative value
for γ , in mild tension (given the considerable uncertainty) with the
joint 2PCF–3PCF analysis and previous VIPERS analyses. On the

contrary, reducing smin does not have a significant impact on the 3PCF
and the joint analyses. In Table 4, we list the best-fitting values of
σ 8, f, b1, and γ obtained for different choices of smin. Errors increase
when smin increases, as a result of the reduction of the number of
pairs/triplets and scales included in the analysis. In particular, with
smin = 20 h−1 Mpc no significant constraints can be set on γ . A
detailed analysis of the sensitivity of our results to the choice of smin

is presented in Appendix C.

Our work confirms the importance of clustering analyses beyond
two-point statistics. Here, we were able to break parameter degen-
eracies using a relatively modest number of objects (23 352 and
13 046 for the G1 and G2 samples, respectively). In this respect, this
work represents a successful pilot study in the preparation for the
next generation spectroscopic surveys, such as the DESI project, the
Euclid (Laureijs et al. 2011), and the Roman (Akeson et al. 2019)
space telescope missions. These surveys will be able to perform
clustering analyses on scales much larger than those considered
here. However, small scales will still encode an even larger amount
of information. Its extraction will require measuring higher order
statistics and comparing results to non-linear models, as we have
done in this work. In this respect, one of the main lessons learned
from our analysis is the need to develop a full one-loop model for the
3PCF, matching the 2PCF one, which we plan to present in future
work.

The availability of such a model, along with that of a new
generation of efficient 3PCF estimators (Slepian & Eisenstein 2015,
2016), would make higher order clustering analyses in configuration
space more palatable and a serious contender to more traditional
Fourier-space methods. Bispectrum analyses enjoy the availability
of fast estimators and non-linear models. However, they suffer from
mode coupling induced by complex survey geometries, which is
difficult to account for. Comparing the performances of joint two- and
three-point clustering analyses in configuration and Fourier space for
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1198 A. Veropalumbo et al.

Figure 10. Values for f(z) (left-hand panel) and σ 8(z) (right-hand panel), as estimated from our joint 2PCF and 3PCF analysis (light blue circles), again
compared to other recent measurements using different techniques: VIPERS joint lensing–RSD analysis (de la Torre et al. 2017), BOSS DR12 P(k) + B(k)
analysis (Gil-Marı́n et al. 2017), and Wiggle-z ξ + ζ analysis (Marı́n et al. 2013). For completeness, we also include results at smaller redshifts by Shi et al.
(2018) (joint lensing–RSD analysis), Singh et al. (2019) (joint analysis of galaxy and CMB lensing and SDSS spectroscopy), and Jullo et al. (2019) (BOSS
DR12 RSD+lensing analysis).

Table 4. Best-fitting values of the parameters obtained in the joint analysis
of 2PCF and 3PCF, using different values of smin. The values of smin are in
h−1 Mpc. All the constraints are compatible within 1σ .

Sample smin σ 8(z) f b1 γ

10 0.4 ± 0.1 1.0+0.7
−0.5 1.8+0.4

−0.3 −0.1 ± 0.6

G1 15 0.5 ± 0.1 0.6+0.6
−0.4 1.6 ± 0.4 −0.1+0.9

−1.3

20 0.4+0.3
−0.2 1.1+1.6

−1.0 0.5+0.7
−0.4 Unconstrained

10 0.3 ± 0.1 1.4+1.2
−0.8 2.0+1.0

−0.6 −1.1+1.4
−2.2

G2 15 0.4 ± 0.1 1.0 ± 1.0 1.9+0.8
−0.5 0.5+1.3

−1.2

20 0.2+0.2
−0.1 0.9+1.4

−0.8 1.8+1.9
−0.9 −0.2+1.5

−3.9

next-generation spectroscopic surveys is another open issue, which
we plan to investigate in the future.

Finally, in this analysis, we were able to break parameter degen-
eracies using higher order statistics. Alternatively, it can be broken
by combining two-point clustering and gravitational lensing, as in
de la Torre et al. (2017). Both approaches have advantages and
disadvantages. The two- and three-point clustering analysis requires
a single (spectroscopic) data set to be performed. However, it is
less efficient in removing parameters’ degeneracy. The clustering–
lensing analysis is more effective in breaking degeneracy but needs
both a photometric and a spectroscopic survey to be performed. How
to best combine these two types of analyses is another interesting
issue that deserves a dedicated future study.

AC K N OW L E D G E M E N T S

AV and EB thank Emiliano Sefusatti, Alexander Eggemeier, Elena
Sarpa, and Massimo Guidi for useful discussions. This paper
uses data from the VIMOS Public Extragalactic Redshift Survey
(VIPERS). VIPERS has been performed using the ESO Very
Large Telescope, under the ‘Large Programme’ 182.A-0886. The
participating institutions and funding agencies are listed at http:
//vipers.inaf.it. AV, EB, LG, and LM are supported by ASI/INAF
agreement no. 2018-23-HH.0 ‘Scientific Activity for Euclid Mission,
Phase D’ and INFN Project ‘InDark’. EB and LG are further

supported by MIUR/PRIN 2017 ‘From Darklight to Dark Matter:
Understanding the Galaxy–Matter Connection to Measure the Uni-
verse’. EB is also supported by ASI/INAF agreement no. 2017-
14-H.O ‘Unveiling Dark Matter and Missing Baryons in the High-
Energy Sky’. MM acknowledges the grants ASI no. I/023/12/0,
ASI no. 2018-23-HH.0, and support from MIUR, PRIN 2017
(grant 20179ZF5KS). This research was supported by the Munich
Institute for Astro- and Particle Physics (MIAPP) that is funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC – 2094
- 390783311. LM also acknowledges the support from the grant
PRIN-MIUR 2017 WSCC32.

DATA AVAI LABI LI TY

The VIPERS PDR2 data, as well as the mock samples, used here
are publicly available from the VIPERS web site (http://vipers.inaf.
it). The clustering measurements and covariance matrices from this
paper are available from the authors, upon request.

REFERENCES

Adams C., Blake C., 2017, MNRAS, 471, 839
Akeson R. et al., 2019, preprint (arXiv:1902.05569)
Alam S. et al., 2021, Phys. Rev. D, 103, 083533
Alcock C., Paczynski B., 1979, Nature, 281, 358
Bel J., Pezzotta A., Carbone C., Sefusatti E., Guzzo L., 2019, A&A, 622,

A109
Beutler F. et al., 2012, MNRAS, 423, 3430
Blake C. et al., 2012, MNRAS, 425, 405
Blake C. et al., 2013, MNRAS, 436, 3089
Cappi A. et al., 2015, A&A, 579, A70
Cole S. et al., 2005, MNRAS, 362, 505
Davidzon I. et al., 2016, A&A, 586, A23
Davis M., Nusser A., Masters K. L., Springob C., Huchra J. P., Lemson G.,

2011, MNRAS, 413, 2906
de la Torre S. et al., 2013, A&A, 557, A54
de la Torre S. et al., 2017, A&A, 608, A44
DESI Collaboration, 2016a, preprint (arXiv:1611.00036)
DESI Collaboration, 2016b, preprint (arXiv:1611.00037)
Di Porto C. et al., 2016, A&A, 594, A62

MNRAS 507, 1184–1201 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/1/1184/6333362 by C
N

R
S user on 29 April 2023

http://vipers.inaf.it
http://vipers.inaf.it
http://dx.doi.org/10.1093/mnras/stx1529
http://arxiv.org/abs/1902.05569
http://dx.doi.org/10.1103/PhysRevD.103.083533
http://dx.doi.org/10.1038/281358a0
http://dx.doi.org/10.1051/0004-6361/201834513
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21473.x
http://dx.doi.org/10.1093/mnras/stt1791
http://dx.doi.org/10.1051/0004-6361/201525727
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/10.1051/0004-6361/201527129
http://dx.doi.org/10.1111/j.1365-2966.2011.18362.x
http://dx.doi.org/10.1051/0004-6361/201321463
http://dx.doi.org/10.1051/0004-6361/201630276
http://arxiv.org/abs/1611.00036
http://arxiv.org/abs/1611.00037
http://dx.doi.org/10.1051/0004-6361/201424448


Joint 2- and 3-point clustering analysis 1199

Eisenstein D. J. et al., 2005, ApJ, 633, 560
Fry J. N., 1994, Phys. Rev. Lett., 73, 215
Garilli B. et al., 2014, A&A, 562, A23
Gil-Marı́n H., Noreña J., Verde L., Percival W. J., Wagner C., Manera M.,

Schneider D. P., 2015, MNRAS, 451, 539
Gil-Marı́n H., Percival W. J., Verde L., Brownstein J. R., Chuang C.-H.,

Kitaura F.-S., Rodrı́guez-Torres S. A., Olmstead M. D., 2017, MNRAS,
465, 1757

Granett B. R., Favole G., Montero-Dorta A. D., Branchini E., Guzzo L., de
la Torre S., 2019, MNRAS, 489, 653

Guo H., Li C., Jing Y. P., Börner G., 2014, ApJ, 780, 139
Guo H. et al., 2015, MNRAS, 449, L95
Guzzo L. et al., 2008, Nature, 451, 541
Guzzo L. et al., 2014, A&A, 566, A108
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Hawken A. J. et al., 2017, A&A, 607, A54
Howlett C., Lewis A., Hall A., Challinor A., 2012, J. Cosmol. Astropart.

Phys., 04, 027
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APPENDI X A : 3 PCF ESTI MATOR BI NNI NG

The algorithm of Slepian & Eisenstein (2015) used in this work
estimates the multipole coefficients of the 3PCF Legendre expansion
in radial bins 
r12 and 
r13 , ζl(
r12 , 
r13 ). To obtain an unbiased
estimate of ζ (
r12 , 
r13 , 
μ) in bins 
μ, one needs to use bin-
averaged Legendre polynomials P l(
μ), i.e.

ζ (
r12 , 
r13 , 
μ) =
lmax∑
l=0

ζl(
r12 , 
r13 )P l(
μ), (A1)

where

P l(
μ) ≡ P l(μmin ≤ μ ≤ μmax)

= 1


μ

[Pl+1(μ) − Pl−1(μ)

2l + 1

]μmax

μmin

, (A2)

in the bin 
μ = [μmin, μmax]; when l = 0, P l=0(
μ) = 1.
In this work, we express the 3PCF as a function of r23, rather than

μ, with the two quantities related through the relation

μ = r2
12 + r2

13 − r2
23

2r12r13
, (A3)

so that, given r12 and r13, the cosine angle μ varies in the range [0,
1], whereas r23 varies between |r12 − r13| and |r12 + r13|. One can
show that in this case the binned Legendre polynomials are of the
form

P l(
r12 , 
r13 , 
r23 ) = 32π

V12V13

∫
k2Il(k; 
r12 )Il(k; 
r13 )

× I0(k; 
r23 ) dk, (A4)

where V12 and V13 represent the volume of the spherical shells of
width 
r12 and 
r13 , respectively, and

Il(k; 
r ) =
∫ rmax

rmin

r2jl(kr) dr, (A5)

where jl(kr) are spherical Bessel functions.
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APPENDIX B: EXPLICIT EXPRESSIONS FO R
T H E 3 P C F MO D E L

The explicit expression of the Al terms that appear in equation (25)
is

A0 = b3
1

{
34

21

[
1 + 4

3
β + 1154

1275
β2 + 936

2975
β3 + 21

425
β4

]

+γ

[
1 + 2

3
β + 1

9
β2

]
+ 16

675
β2γ ′

}
,

A1 = −b3
1

[
1 + 4

3
β + 82

75
β2 + 12

25
β3 + 3

35
β4

]
,

A2 = b3
1

{
8

21

[
1 + 4

3
β + 52

21
β2 + 81

49
β3 + 12

35
β4

]

+32γ

945
β2 + 5

2

(
8

15
+ 16β

45
+ 344β2

4725

)
γ ′
}

,

A3 = −b3
1

[
8

75
β2 + 16

175
β3 + 8

315
β4

]
,

A4 = b3
1

[
− 32

3675
β2 + 32

8575
β3 + 128

11025

]
. (B1)

In the same equation, the fl terms are

fl(r12, r13, r23)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ [l](r12)ξ [l](r13)Ll (μ23) + cyc. if l is even,

[
ξ [l+](r12)ξ [l−](r13)

+ ξ [l+](r13)ξ [l−](r12)
]
Ll (μ23) + cyc. if l is odd,

(B2)

where

ξ
[l]
i =

∫
k2 dk

2π2
2π2Plin(k)jl (kri) ,

ξ
[l±]
i =

∫
k2 dk

2π2
k±1Plin(k)jl (kri) , (B3)

and Plin(k) is the linear matter power spectrum.

APPENDIX C : SENSITIVITY TO NON-LINEAR
EFFECTS

Since our clustering analysis includes scales smaller than
40 h−1 Mpc, non-linear effects in both dynamics and galaxy bias
cannot be neglected. To minimize the impact of potential system-
atic errors derived from an incorrect model of these effects, we
have adopted a conservative approach and excluded scales below
15 h−1 Mpc from the analysis. These are scales, however, where a
significant amount of cosmological information is stored. In this
appendix, we use the realistic mock VIPERS catalogues to perform
several tests to assess the sensitivity of our results to the choice of this
minimum scale, smin. We are confident that these tests provide useful
indications for the real data analysis since, as we have discussed
in Section 3, the 2PCF and 3PCF measured in the mocks agree
well with those measured on the real data on all scales considered
here.

Let us first consider the parameter combination fσ 8, as obtained
from the 2PCF and the 3PCF. We show here the results from the
G2 sample only, since they are representative of the generality of
the results. In Fig. C1, we show the average and rms scatter over
the 153 mocks of the value of fσ 8 estimated using the 2PCF and

Figure C1. Average estimates over the 153 mock samples of fσ 8 using the
2PCF (top, filled circles) and the 3PCF (bottom, filled squares), as a function
of the minimum scale included in the analysis, smin. The black dashed line in
both cases gives the reference value, corresponding to the cosmology of the
simulated mocks, while error bars are given by the scatter among the mocks.
Note how the error bars for the 3PCF estimates are ∼10 times larger than
those from the 2PCF, due to the fact that for the latter only the monopole (i.e.
the isotropic information) has been considered.

Figure C2. Average estimates of f(z) and σ 8(z) from the joint 2PCF–3PCF
analysis of the 153 mocks (filled blue squares), compared to the reference
cosmology (black dashed line). As usual, error bars are the standard deviation
over the mocks. While the estimates of f(z) are robust, recovering the input
value of the mocks, there is a small bias for σ 8 (still within 1σ at the reference
smin = 15 h−1 Mpc).

the 3PCF (top and bottom panels, respectively), as a function of
smin. The results show that including scales as small as 5 h−1 Mpc
significantly reduces the statistical error without compromising the
accuracy. This conclusion is true for both the 2PCF and the 3PCF
cases, indicating that the models we have used are adequate for
measuring this parameter combination.

Things are different when one tries to break the parameter
degeneracy through the joint 2PCF and 3PCF analysis, as shown
in Fig. C2. In the two panels, the average estimates of σ 8 (top)
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and f (bottom) are plotted as a function of smin. Note how the size
of the error bars decreases, when smaller scales are progressively
included in the analysis. For smin = 5 h−1 Mpc they are significantly
smaller than in our baseline case (smin = 15 h−1 Mpc). However,
while random errors decrease, systematic errors increase: the value
of σ 8 is systematically underestimated in general (although at the 1σ

level only) and, to compensate, the measured growth rate is larger
than the true one. These results justify our conservative choice to set
smin = 15 h−1 Mpc and indicate that a better modelling is required to
push a joint 2PCF and 3PCF analysis to smaller scales.
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