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A B S T R A C T   

Therapies targeting neurological conditions such as Alzheimer’s or Parkinson’s diseases are hampered by the 
presence of the blood-brain barrier (BBB). During the last decades, several approaches have been developed to 
overcome the BBB, such as the use of nanoparticles (NPs) based on biomaterials, or alternative methods to open 
the BBB. In this review, we briefly highlight these strategies and the most recent advances in this field. Limi-
tations and advantages of each approach are discussed. Combination of several methods such as functionalized 
NPs targeting the receptor-mediated transcytosis system with the use of magnetic resonance imaging-guided 
focused ultrasound (FUS) might be a promising strategy to develop theranostic tools as well as to safely 
deliver therapeutic molecules, such as drugs, neurotrophic factors or antibodies within the brain parenchyma.   

1. Introduction 

Brain parenchymal cells are isolated from the rest of the body by 
several barriers protecting them from neurotoxic molecules, pathogens, 
and circulating blood cells (Abbott et al., 2010). In parallel, these bar-
riers allow nutrient supply and strictly regulate brain ionic composition 
(Abbott et al., 2010). The blood-brain barrier (BBB) is located at the 
brain microvessel level and represents the largest interface for blood–-
brain exchange with an estimated total area for exchange in the brain of 
between 12 and 18 m2 for the average human adult (Cecchelli et al., 
2007). Other barriers are blood-cerebrospinal fluid (B-CSF), 
blood-retinal (BRB), and blood spinal barriers, each displaying different 
barrier properties and cellular composition (Abbott et al., 2010; Fran-
cisco et al., 2020). 

Neurodegenerative diseases (NDs), including Alzheimer (AD) and 
Parkinson (PD), represent a major threat to human health and have a 
huge impact on society and economy. Worldwide, it is estimated that 
nearly 45 million people have AD (Association, 2019) and 8 million live 
with PD (Dorsey et al., 2018). These age-related disorders are becoming 
increasingly prevalent, in part because the elderly population has 
increased in recent years, but also because of the evolution of lifestyles. 
Indeed, lifestyle greatly affects vascular functioning, and BBB dysfunc-
tion or loss of integrity have been reported in several of these NDs 
(Montagne et al., 2015; van de Haar et al., 2016; Ham et al., 2014). 

Other neurodegenerative diseases are the lipid storage diseases (LSDs) 
regrouping more than 50 types of inherited metabolic disorders in which 
harmful amounts of lipids accumulate in various tissues. Because the 
brain is the most cholesterol-rich organ of the body, some LSDs but not 
all, have devastating effects on neuron survival, development, and 
functionality (Lachmann, 2020). According to the National Organiza-
tion for Rare Disorders (NORD), LSDs are believed to have an estimated 
frequency of about one in every 5000 live births. 

Currently, there is no cure for any of these neurodegenerative dis-
eases. Memantine and a combination of memantine and donepezil are 
approved for treatment of moderate to severe AD whereas L-DOPA is 
given to PD patients, but these treatments only affect the neurotrans-
mitter levels and do not slow down or reverse the neurodegenerative 
process. The difficulty to find a cure for these NDs is at least partly due to 
the presence of the BBB that impedes the distribution of promising drug 
candidates within the central nervous system (CNS) (Cecchelli et al., 
2007; Sweeney et al., 2019). 

In the case of the LSDs, the enzyme therapy replacement (ERT), 
consisting in intravenous injection of the deficient enzyme to patients, 
has been used effectively for almost 30 years and helped stabilizing 
organ function or slowing down disease progression (Barton et al., 
1991). Unfortunately, the benefits of ERT are limited for LSDs patients 
with CNS dysfunctions since the injected enzyme cannot efficiently cross 
the BBB to reach neurons and to delay or stop the neurodegenerative 
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processes. 
Consequently, for several decades some approaches have been 

developed to improve the CNS delivery of drugs, antibodies, peptides, 
enzymes, neurotrophic factors, nucleic acids, etc. The transient opening 
of the BBB with chemical methods has been used in clinical practice for 
several years (Neuwelt et al., 1986). Encapsulation of therapeutic mol-
ecules into nanoparticles (NPs) based on biomaterials could be used to 
increase its half-life into the human body (Schroeder et al., 2000). These 
NPs can be modified and functionalized to specifically target the BBB 
endothelial cells, thus promoting CNS delivery of the cargo. Therefore, 

the combination of these 2 approaches (i.e NP encapsulation and tran-
sient opening of the BBB) might be a promising strategy to further in-
crease the efficiency of drug delivery to the CNS. 

The first objective of this review is to summarize our current 
knowledge on the development of different approaches to overcome the 
BBB to deliver therapeutic agents to the CNS, as well as imaging agents 
to diagnose NDs. Particular attention will be focused on the use of some 
types of NPs (PBCA, PLGA, cyclodextrins) able to target the receptor- 
mediated transcytosis (RMT) or to be coupled with BBB opening 
methods. 

Fig. 1. The blood-brain barrier (BBB): The barrier phenotype is beared by the endothelial cells forming the brain microvessels. Contrary to the peripheral endothelial 
cells, the BBB endothelial cells (i) possess tight junctions, composed of occludin and claudins, both associated to intracellular scaffolding proteins (Zonula occludens), 
(ii) display low pinocytotic activity, and (iii) lack fenestrations. The delivery of essential nutrients for brain functioning is then strictly controlled by the presence of 
several receptors and transporters expressed at the luminal (blood-side) face of the endothelial cells. The passive diffusion of hexoses, monocarboxylic acids, fatty 
acids or amino acids (a completer) following their concentration gradient is possible through the interaction with specific transporters belonging to the solute carrier 
(SLC) family like LAT1 and MCT1, responsible for large neutral amino acids and glucose transport, respectively. Largest molecules such as proteins (iron-linked 
transferrin, insulin, etc) or low-density lipoproteins (LDL) are delivered by the receptor-mediated transport (RMT) pathway or by unspecific adsorptive-mediated 
transcytosis pathway (AMT). Formation of endocytosis vesicles follows the interaction of the molecules with a receptor in the case of the RMT or with the cell 
membrane in the case of AMT. Then, these vesicles can follow different trafficking routes including degradation by lysosomes, recycling to the apical membrane, or 
be transcytosed to the basolateral side where the molecules can be released. 
Diffusion of lipophilic molecules is restricted by the presence of ATP-binding cassette (ABC) transporters such as P-gp, BCRP or MRPs. Furthermore, harmful xe-
nobiotics or waste products might be degraded by enzymes expressed by the BBB endothelial cells. 
Expression of these receptors, transporters, enzymes and efflux pumps as well as TJ functioning largely depends on the brain needs and are daily regulated by the 
interaction between BBB endothelial cells and other neural and mural cell types such as brain pericytes, astrocytes, neurons, oligodendrocytes, and microglial cells, 
thus forming the neurovascular unit (NVU). 
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2. Blood-brain barrier (BBB) 

2.1. Properties of the BBB 

As mentioned above, the BBB is localized at the endothelial cells 
composing the brain microvessels. It represents more than 650 km (370 
miles) of exchange length between blood and brain and are therefore, 
very heterogeneous. Indeed, this complex microvessel network is 
composed of pre-capillary arterioles, capillaries, and post-capillary ve-
nules displaying each different anatomical organization, size, and bar-
rier phenotype (Ge et al., 2005; Saubamea et al., 2012). For example, 
diameters of pre-capillary arterioles and post-capillary venules are 
comprised between 10 and 50 μm, whereas the capillary diameters do 
not exceed 10 μm. 

Another important point to be highlighted is the absence of barrier 
phenotype in few vascularized spaces of the brain such as at the cir-
cumventricular organs (CVOs) and choroid plexus (CP). Fenestrated 
microvessels of CVOs and CP allow diffusion of molecules to the brain 
parenchyma (Abbott et al., 2010). Interestingly, neurogenic niches have 
been reported in CVOs and around lateral ventricles where brain 
microvessels also show leaky characteristics, suggesting that it might be 
possible, in theory, to easily promote neurogenesis without the necessity 
to develop sophisticated strategies aiming to cross the BBB. 

Elsewhere, BBB endothelial cells display a barrier phenotype repre-
sented by an absence of fenestrations, a decrease/absence of pinocytic 
activity, the presence of tight junctions (TJ) associated with adherens 
(AJ) and gap junctions between adjacent cells (Fig. 1) (Saint-Pol et al., 
2020). TJ are constituted of transmembrane proteins that include 
occludin, claudin 1, -3 and -5 as well as junctional associated molecule 
(JAM), closely associated with cytoplasmic scaffolding proteins zonula 
occludens 1, 2 and 3 (ZO1, ZO2 and ZO3). Moreover, BBB endothelial 
cells express specific enzymes, receptors, and efflux pumps allowing to 
supply CNS with nutrients and to eliminate waste products (Abbott 
et al., 2010). However, it is important to keep in mind that BBB 
permeability and rate of pinocytosis are heterogeneous along the 
vascular tree, and show different pattern in BBB endothelial cells from 
arterioles, venules and capillaries, in relation with their barrier pheno-
type (Ge et al., 2005). 

Noteworthy, these barrier properties are modulated in response to 
neuronal activity and demands. This process is tightly regulated by 
crosstalks between BBB endothelial cells and other neural and mural cell 
types. Brain pericytes are embedded in the basal lamina of the brain 
capillaries, whereas smooth muscle cells surround the brain biggest 
vessels such as arterioles and venules (Sweeney et al., 2019). Brain 
pericytes cover almost 30% of the abluminal face of the brain capillaries 
and actively participate in the BBB formation and maintenance (Dane-
man et al., 2010). Astrocytes-end feet processes unsheathe the micro-
vessels, also maintaining the BBB integrity and properties (Berezowski 
et al., 2004). In conjunction with the basal membrane, microglial cells, 
oligodendrocytes and neurons, this structure forms the neurovascular 
unit (NVU) (Neuwelt, 2004). 

2.2. Crossing of the BBB for small molecules 

Due to the presence of TJs which seal the paracellular space, very few 
molecules can diffuse across two adjacent BBB endothelial cells (Banks, 
2009). Therefore, small lipophilic molecules (<500 Da) might passively 
diffuse through the membranes of endothelial cells of the BBB following 
their concentration gradients (Irudayanathan et al., 2017). This phe-
nomenon strongly depends on several physico-chemical parameters 
including the molecular weight of the molecule, its lipophilicity, charge, 
the number of hydrogen bond donors and the number of hydrogen bond 
acceptors and its polar-surface area (Wager et al., 2010). Some hydro-
philic or lipophilic molecules or gas use the transcellular route directly 
through the BBB endothelial cells (Banks, 2009). This transcellular route 
occurs freely across the biological membranes for compounds such as 

oxygen or carbon dioxide, or can be facilitated by the interaction with a 
specific transporter, as this is the case for hexoses, monocarboxylic 
acids, fatty acids, or amino acids. This very specific system is named 
solute-mediated carrier and involves a huge family of solute carrier 
(SLC) transporters, ubiquitously expressed in the body but most abun-
dant at the physiological barriers such as the BBB. Among these trans-
porters, glucose transporter isoform 1 (GLUT-1/SLC2A1) and large 
neutral amino acid transporter 1 (LAT1/SLC7A5) are responsible for the 
brain supply of glucose and essential amino acids (Sweeney et al., 2019; 
Singh and Ecker, 2018), respectively. Monocarboxylate transporter-1 
(MCT1) transports from blood into CNS the lactate released from skel-
etal muscles and ketone bodies derived from liver metabolism of fatty 
acids (Versele et al., 2020). Expressions of these transporters at the BBB 
are modulated depending on the CNS needs, but also in diseases like AD 
or brain cancers (Sweeney et al., 2019; Singh and Ecker, 2018). This 
passive and facilitated (i.e mediated by a SLC transporter) diffusion 
across the BBB endothelial cells, does not directly require adenosine 
triphosphate (ATP) consumption and follows the concentration 
gradients. 

However, this diffusion might be hindered by interaction with efflux 
pumps or by enzymatic degradation, especially for lipophilic molecules 
that interact with cellular membranes. Efflux pumps belong to the ATP- 
binding cassette (ABC) family and mediate the efflux of a large range of 
endogenous or exogenous substrates from the CNS. The most expressed 
efflux pumps at the human BBB are P-glycoprotein (P-gp, aka ABCB1) 
and breast cancer resistance protein (BCRP, aka ABCG2) (Fig. 1) (Uchida 
et al., 2011). Preferentially expressed at the luminal side of the endo-
thelial cells of the BBB, these efflux pumps transport a variety of mole-
cules with immense structural diversity, thus showing a significant 
overlap in their substrates (Pahnke et al., 2008). Other efflux pumps, the 
multidrug-resistance associated proteins (MRPs, aka ABCCs) are also 
reported to be expressed at the BBB but their expression pattern remains 
conflicting and seems to depend on the animal strain or cellular model 
used (Soontornmalai et al., 2006). 

Although it is often predicted that a lipophilic molecule with a mo-
lecular weight below 500 Da will easily cross the BBB endothelial cells 
by a transcellular route, this is not true in practice due to the expression 
level and activity of these efflux pumps. Besides, lipophilic molecules 
can also be degraded by specific enzymes expressed by BBB cells, thus 
forming a metabolizing barrier (Shawahna et al., 2013). Indeed, an 
array of enzymes responsible for phase I and phase II reactions often 
render substrates sufficiently polar to be excreted from the CNS or to be 
deactivated. Phase I enzymes comprise Monoamine oxydases A and B 
(MAOs) and Cytochromes P450 (CYP450), whereas phase II include, but 
are not limited to, UDP-glucuronosyltransferases and 
methyltransferases. 

2.3. Transcytosis of large molecules across the BBB 

For the largest molecules such as proteins, lipoproteins or peptides, 
the transcellular route across the BBB endothelial cells requires their 
interaction with specific receptor and transcytosis mechanisms (Fig. 1). 
Transferrin, lactoferrin, insulin, and lipoproteins use this receptor- 
mediated transcytosis (RMT)(Freskgård and Urich, 2017; Candela 
et al., 2008). This process is highly specific and requires endocytosis 
vesicles formation. However, intracellular transport of these molecules 
between the brain and blood remains poorly understood. For a recent 
and full overview of this topic, see De Bock et al., 2016 (De Bock et al., 
2016). 

Briefly, the most highly characterized internalization pathway is 
clathrin-mediated endocytosis (CME) intervening in transferrin, lipo-
proteins, and insulin transcytosis across the BBB. After the interaction 
between ligand and receptor, clathrin-coated endocytic vesicles are 
produced via complex modular protein machinery involving more than 
50 different proteins. This process shapes the membrane into a vesicle 
with sizes ranging from 70 to 150 nm (Kaksonen and Roux, 2018). 
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Other RMT mechanisms also exist at the BBB level, for example, the 
caveolae pathway. Caveolae are 50–100 nm flask-shape vesicles 
constituted by caveolin-1 at the endothelial cells. Low-density lipopro-
teins have been identified as able to cross the BBB using the caveolae- 
mediated pathway (Candela et al., 2008). Depending on the technique 
and model used, caveolin-1 expression at the BBB was reported as ab-
sent, low or, on the contrary, very high (De Bock et al., 2016; Strazielle 
and Ghersi-Egea, 2013; Smith and Gumbleton, 2006). Recently, quan-
titative targeted absolute proteomic analysis of brain capillaries isolated 
from wild-type mice clearly demonstrated that caveolin-1 is highly 
expressed at the mouse BBB level and that its expression increases from 
birth until 56 postnatal days (Omori et al., 2020). Further works are 
required to better decipher clathrin and caveolae involvement in RMT at 
the healthy and diseased BBB level. 

Nonetheless, after the endocytosis process, all newly internalized 
vesicles are then intracellularly trafficked to early endosomes to subse-
quently allow delivery or degradation of the cargo. In the first case, the 
early endosomes can fuse with the late endosomes that then release the 
cargo into the brain parenchyma under the forms of exosomes or free 
cargo. For the molecules that are destined to be degraded, the late 
endosomes transfer the cargo to acidic lysosomes (De Bock et al., 2016). 

The adsorptive-mediated pathway (AMT) also allows the transcytosis 
of large molecules through the BBB endothelial cells but does not require 
any interaction with a receptor. This non-specific process is mediated by 
the negative charge of the surface layer of glycans and glycoproteins that 
cover cell membranes in the body. This anionic layer, named glycocalyx, 
enables the unspecific binding of cationic molecules, which are then 
endocytosed to be trafficked across the endothelial cells. Therefore, 
conjugation of NPs to cationic protein such as albumin has been used to 
improve its delivery to the brain using this unspecific transcellular 
pathway (Lu et al., 2005). In mice, this glycocalyx is observed in the 
luminal face of brain capillaries with an area of coverage estimated at 
40% whereas only 15% and 4% were reported in cardiac and pulmonary 
capillaries, respectively (Ando et al., 2018). Caveolae are often referred 
to as endocytotic vesicles mediating AMT. 

Lastly, macropinocytosis represents another clathrin-independent 
endocytic route (reviewed in (Smith and Gumbleton, 2006; Lim and 
Gleeson, 2011)) and consists of the internalization of extracellular fluid 
and molecules. This pathway is therefore also referred to as fluid-phase 
endocytosis and, as for the AMT, the uptake of molecules via micro-
pinocytosis occurs in a nonspecific manner. Albumin, when 
non-cationized, might also be endocytosed by this pathway. Macro-
pinocytic vesicles have no apparent coat structures and are heteroge-
neous in size but larger than clathrin-coated and caveolae-derived 
vesicles with sizes ranging from 200 to 600 nm (De Bock et al., 2016). 

3. CNS delivery of drugs or therapeutic molecules 

3.1. Modifying the physicochemical properties of the drugs 

Since the presence of TJ between adjacent endothelial cells occludes 
the paracellular space at the BBB, the permeability of small molecular 
drugs relies on their transcellular transport across the BBB which mainly 
occurs by passive diffusion. Five key physiochemical parameters (mo-
lecular weight, lipophilicity, polar surface area, hydrogen bonding, and 
charge) require optimization to improve BBB permeability by passive 
diffusion (Lipinski et al., 2001). An empirical approach for selecting CNS 
compounds based on these parameters, known as ‘the rule of 5’ was 
developed by Lipinski in 2001 (Lipinski et al., 2001) and is still widely 
used in the early phase of drug discovery (i.e molecule with a molecular 
mass less than 500 Da, no more than 5 hydrogen bond donors, no more 
than 10 hydrogen bond acceptors, and an octanol–water partition co-
efficient log P not greater than 5). 

Although optimizing the physicochemical properties of the drugs to 
enable the passive permeation across the BBB is possible, there have 
been only few successful cases of this approach. As an example, we can 

cite the chlorambucil derivative, chlorambucil-tertiary butyl ester, that 
achieves a 7-fold greater concentration in brain than chlorambucil 
following the administration of equimolar doses (Greig et al., 1990). But 
modifying the physicochemical properties of the drugs does not only 
affect its passive diffusion across the BBB but also influence all ADME 
processes (e.g distribution to other organ and binding to plasmatic 
proteins). Many CNS drug discovery programs have tried to improve the 
CNS delivery of hydrophilic CNS-active compounds by lipidization of a 
polar parent molecule and although that increased lipophilicity 
enhanced drug delivery to the brain, it did not correlate with an 
improved in vivo efficacy of these compounds. This is, at least partly due 
to the fact, that increasing lipophilicity of the compound also increases 
its non-specific binding to brain tissue (i.e reducing its free brain frac-
tion) and thereby reduces its availability for its therapeutic target within 
the brain parenchyma. 

The new optimizing approach for CNS compounds thus concentrates 
on finding drug candidates with the right balance between free fraction 
in plasma, passive diffusion through the BBB and free fraction in the 
brain (Reichel, 2009). Due to the challenge of developing small CNS 
drugs with an optimal mix in physicochemical properties to cross the 
BBB without losing their efficacy within the brain parenchyma, other 
approaches consisting of improving their delivery through the BBB 
without affecting their physicochemical properties by encapsulating it 
into NPs have been developed for treating CNS diseases but also for 
allowing early detection of these diseases. 

3.2. Use of NPs to cross the BBB 

3.2.1. PBCA-NPs to deliver dalargin 
Since the early 1990s, NPs have been used to improve drug delivery 

to the brain and have immediately shown promising results. The official 
definition of NPs given by the European Commission is an organic or 
inorganic object with only one of its characteristic dimensions to be in 
the range 1–100 nm, even if its other dimensions are outside that range. 
Usually, in biomaterials and biological fields, it is widely considered that 
NPs are colloidal carriers with sizes between 1 and 1000 nm. Synthetic 
NPs may be prepared from polymeric (bio)materials such as poly(butyl 
cyanoacrylate) (PBCA), oligosaccharides (cyclodextrins), poly(ε-capro-
lactone) (PCL), poly (lactic-co-glycolic acid) (PLGA), polyesters (poly 
(lactic acid)) (PLA) or from inorganic materials such as gold or silica 
(Fisher and Price, 2019). The drug or molecule to deliver is dissolved, 
dispersed, encapsulated, entrapped, or attached to the NP. Liposomes, 
micelles, and extracellular vesicles (EVs) are also colloidal carriers, but 
are not discussed in this review since they have their own physical 
properties and were discussed elsewhere (Saint-Pol et al., 2020; Naqvi 
et al., 2020), including in this Special Issue. 

The first molecule to be designed with NPs to target the brain was 
dalargin, a hexapeptide of ≈700 Da with analgesic properties. When 
adsorbed at the surface of PBCA nanoparticles coated with polysorbate 
80 (PS80), a strong CNS analgesic effect was observed in mice after 
intravenous injection, but none when administrated alone or in the form 
of a mixture of drugs, nanoparticles, and surfactant (Kreuter et al., 1995; 
Schröder and Sabel, 1996). The uptake by the BBB endothelial cells was 
unspecific and was described as a “phagocytotic-like process” by the 
authors. Quickly, this approach showed also promising results with 
other molecules unable to cross the BBB such as loperamide, doxoru-
bicin, or tubocucarine (Alyautdin et al., 1997, 1998; Gulyaev et al., 
1999) and was extended to other surfactants such as polysorbate 85 or 
poloxamer 188, and NPs such as solid-lipid NPs (SLN) (Yang et al., 
1999). In addition to the BBB crossing, these coated PBCA-NPs also 
showed an increased efficiency when they were orally given to the an-
imals suggesting that these NPs can be also used as an oral drug delivery 
method (Yang et al., 1999; Schroeder et al., 1998). 

When the total biodistribution of injected dalargin-loaded and 
coated NPs were more deeply investigated in mice, it was observed that 
increased NPs brain delivery was the consequence of the decrease of the 
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liver uptake, and thus a decrease of the plasmatic clearance of dalargin 
(Schroeder et al., 2000). Indeed, NP brain delivery could be compared 
based on the percentage of injected dose able to reach the brain (% ID/g 
of brain). The % ID/g of a NPs reflects its ability to cross the BBB but is 
also related to its plasma concentration. Therefore, in all these studies, 
PBCA-NPs increased the half-life of dalargin in plasma, and promoted 
NPs interaction with cellular membranes of the BBB endothelial cells 
(Borchard et al., 1994; Ramge et al., 2000), but this interaction also 
occurred for all endothelial cells of the mice body. Despite the apparent 
efficiency of this method to deliver more molecules into the CNS, an 
increased quantity of NPs and dalargin were also measured in almost all 
organs. This phenomenon was later explained by the same team, 
demonstrating that coated NPs adsorbed plasmatic apolipoproteins such 
as ApoE or ApoA-I from the blood after injection and mimicked lipo-
protein particles, which were then uptaken by the endothelial cells via 
RMT and the LDL receptor (Kreuter et al., 2002). Then, bound drugs 
could be further transported into the brain by transcellular pathways 
before being released into CNS parenchyma. This interaction between 
plasmatic proteins and NPs is now known as opsonization, and more 
than 70 different serum proteins forming a “corona” around the NPs 
were first reported by label-free liquid chromatography-mass spec-
trometry tandem (Walkey et al., 2012). Recently, more than 235 pro-
teins were found to interact with different types of PLGA-NPs (Monge 
et al., 2020) among which, unsurprisingly, were the most abundant 
proteins in the plasma (i.e albumin, proteins of the complement and 
apolipoproteins) (Monge et al., 2020). 

3.2.2. Factors influencing NPs efficiency 
Promising for delivering drugs to the CNS, NPs are not only able to 

protect their cargo from rapid degradation and clearance, but they also 
can be functionalized or modified to cross more easily or specifically the 
BBB. Indeed, NPs delivery will depend on several other factors including 
NPs coating, size, shape, surface charge and functionalization of the NPs. 
First, it is possible to decrease the clearance of NPs by the liver, spleen, 
and macrophages, by grafting poly(ethylene glycol) (PEG) groups on 
their surface, thus increasing their plasmatic circulating half-life (Nance 
et al., 2012; Zhang et al., 2020a). Then, several studies reported that NPs 
passage is inversely related to their size (Decuzzi et al., 2010) and that 
optimal sizes vary between 50 nm and 100 nm. These sizes are in the 
same range as the clathrin-coated vesicles and caveolae, 70–200 and 
50–100 nm respectively (Hansen and Nichols, 2009; McMahon and 
Boucrot, 2011). However, some studies report NPs with sizes above 500 
nm that efficiently cross the BBB, especially when they are functional-
ized and/or coated with PEG (Nowak et al., 2020; Kolhar et al., 2013; 
Kurakhmaeva et al., 2009; Karatas et al., 2009). Another important 
factor that needs further study is the impact of the protein corona that 
forms on NPs when it come into contact with biological fluids on its sizes 
and plasmatic half-life. Regarding the shapes of the NPs, they can be 
spherical, rod-like, discoid, etc. Spherical forms are the most widely 
used because of their facility to be synthesized and characterized. 
However, the first studies focusing on this question clearly demonstrated 
that both elongated and flattened particles attached more to the endo-
thelial cells than the spherical ones, thus confirming that particle shape 
plays an important role in molecule delivery (Doshi et al., 2010). These 
results were later confirmed by studies demonstrating that functional-
ized rod-shaped polystyrene- and gold-NPs interacted more specifically 
with BBB cells and crossed more the barrier in vitro and in vivo than their 
spherical counterparts (Kolhar et al., 2013; Praca et al., 2018). Corona 
and Zeta potential/charge of the NPs are other important parameters 
that might affect NPs BBB crossing due to the high presence of the 
glycocalyx at the cell surface. However, it is not yet possible to identify 
an ideal charge of the NPs for CNS delivery as examples of NPs with 
positive (Fenart et al., 1999; Jallouli et al., 2007; Gao et al., 2014), 
neutral (Jallouli et al., 2007) and negative (Decuzzi et al., 2010; Kreuter 
et al., 2007; Wiley et al., 2013) zeta potentials have been reported to 
efficiently cross the BBB cross. 

3.2.3. Cyclodextrins 
To date, other NPs materials than PBCA are also used to improve CNS 

drug delivery in NDs. Among them, cyclodextrins (CDs) are of particular 
interest. Being considered as natural products in Japan, native CDs are 
widely used in medicine and foods in this country. Furthermore, they are 
approved by several official organizations such as the US food and drug 
administration (FDA) and the European Medicine Agency (EMA) and are 
therefore worldwide used in numerous industrial production processes 
in food, cosmetics, agriculture, environment, medicine, and chemistry. 
CDs are thus biomaterials widely used in the formulations of a huge 
quantity of marketed preparations because of their capacity to enhance 
drug solubility, drug bioavailability, and chemical stability. In oncology, 
several undergoing clinical trials aim to investigate their intravenous use 
to deliver anticancer drugs to several types of tumors (summarized in 
Table 1). However, native CDs are very-well known to induce toxicity in 
numerous cell lines in vitro due to their ability to trap cellular cholesterol 
(Coisne et al., 2016a) and CDs show high renal toxicity when directly 
injected into the bloodstream. 

Native CDs represent a family of cyclic oligosaccharides prepared 
from enzymatic digestion of starch. They are shaped as truncated cones 
with an outer hydrophilic surface of (α 1 → 4)-linked β-D-glucopyranose 
units and a lipophilic internal cavity (Coisne et al., 2016b) (Fig. 2A). 
They are usually made up of six, seven, or eight glucopyranose units 
defining the native α-, β- and γ-CDs, respectively. Native CDs and more 
specifically β-CDs are poorly water-soluble. Many derivatives have been 
generated to improve their water-solubility such as to add partial 
methylation by substitution of any of the hydroxyl groups (Table 2). 
Therefore, many CD derivatives display different degrees of substitution 
conferring specific biochemical and biological properties to the CDs. The 
safety and toxicity of these CDs usually depend of the type of CD used 
and of the route of administration. For example, intravenously injected, 
O-methylated CDs cause elevated levels of biomarkers of hepatic injury 
(Braga, 2019). 

Given the high capacity of CDs to form inclusion complexes with 
many molecules and biomaterials (hormones, peptides, etc), several 
researchers have proposed to use CDs to increase the brain delivery of 
these molecules. To date, several pre-clinical studies demonstrated 
higher brain delivery of CD formulation in particular for sulfobuty-
lether-β-cyclodextrin (SBEβCD), quaternary ammonium beta- 
cyclodextrin (QAbetaCD) and hydroxypropyl-β-cyclodextrin (HPβCD) 
(Coisne et al., 2016b; Shityakov et al., 2016; Gil et al., 2009) (Table 2). 
However, because these CDs cross only slightly the BBB (Banks et al., 
2019; Monnaert et al., 2004a), the exact molecular mechanisms of the 
CNS drug-releasing remains unclear. Endocytosis is still observed, but 

Table 1 
Few examples of undergoing clinical trials for intravenous nanoparticles PLGA, 
PLA and β-CD-based formulations.  

Study purpose ClinicalTrials.gov 
identifiers (Phase) 

Target the PSMA expressed by cancer cells with 
PEGylated PLGA-NPs or PLA-NPs to deliver 
docetaxel (BIND-014) to prostate, metastatic, 
cervical, head and neck, non small cell lung cancers 

NCT02479178 (Ph II) 
NCT02283320 (Ph II) 
NCT01812746 (Ph II) 
NCT01792479 (Ph II) 
NCT01300533 (Ph II) 

Use of formulated β-CD (CRLX301 or CRLX101) to 
deliver anticancer drugs to Rectal/Ovarian/Tubal/ 
Peritoneal cancer cells 

NCT02187302 (Ph II) 
NCT02010567 (Ph I/II) 
NCT02389985 (Ph I) 
NCT01803269 (Ph II) 
NCT01652079 (Ph II) 
NCT02769962 (Ph I) 

β-CD, β-cyclodextrin; PLA, poly (D,L-lactic acid); PLGA, poly (lactic-co-glycolic 
acid); PSMA, Prostatic specific membrane antigen. 
BIND-014 is a PLGA and PLA-nanoparticle formulation containing docetaxel and 
targeting the PSMA. CRLX301 and CRLX101 are formulations based on β-CD 
conjuged with docetaxel or camptothecin, respectively. 
Adapted from (Anselmo and Mitragotri, 2019). 
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CDs are also able to interact with and trap the cholesterol of the cell 
membranes (Coisne et al., 2016a). For this reason, it is suggested that 
CDs have fusogenicity properties and can bypass or inhibit the efflux 
pump activity of the P-gp and BCRP expressed by the BBB endothelial 
cells (Coisne et al., 2016b; Tilloy et al., 2006; Monnaert et al., 2004b; 
Nolay et al., 2020). 

In the context of the LSDs, the ability of some CDs to trap the cellular 
cholesterol is of particular interest. This is the case, for the Niemann- 
Pick disease type C (NPC), which is characterized by intracellular 

accumulation of cholesterol due to mutations in NPC1 or NPC2 gene. 
Almost 90% of NPC patients suffer from neurodegenerative symptoms. 
In 2009, Davidson et al. observed that the injection of HP-β-CD in NPC 
transgenic mice delayed the onset of the clinical disease, reduced 
intraneuronal storage of cholesterol, and significantly increased their 
lifespan (Davidson et al., 2009). Unfortunately, the beneficial effects of 
HP-β-CD observed in young mice were not confirmed in older animals, 
probably reflecting different maturation stage of the BBB in these ani-
mals (Banks et al., 2019; Monnaert et al., 2004a). Since beneficial effects 
of HP-β-CD were also reported in old NPC1-deficient mice animals 
following intracerebroventricular infusion, these results support the 
need to develop new CD formulations or to improve HP-β-CD delivery 
across the BBB for NPC patients. To date, the recruitment of NPC1 pa-
tients is ongoing for a clinical trial to test combined intravenous and 
intrathecal administrations of HP-β-CD in order to first assess liver 
tolerability and recovery (Table 3). 

3.2.4. PLGA 
PLGA-NPs are another promising type of NPs for improving CNS drug 

delivery and as theranostic platform. Even though PLGA-NPs may suffer 
from low drug loading and high drug release, they are still widely used 
because they show optimal properties for the encapsulation of a large 
variety of therapeutic agents such as proteins or DNA. Biocompatible 
and biodegradable, PLGA-NPs have already been approved by FDA and 
EMA for some intravenous applications and therefore are extensively 
employed in nanomedicine (summarized in (Park et al., 2019)). For 
example, some PLGA-NPs targeting one specific antigen are currently 
under investigation in several clinical trials for their ability to deliver 
docetaxel to cancer cells (summarized in Table 1). 

. Additionally, it is possible to easily control their size (from 100 to 
350 nm) and charge and they can be covalently coupled with fluo-
rophores, superparamagnetic iron oxide particles or with other ligands 
in order to reduce possible toxicity and/or to improve cell targeting. 

For example, PLGA-NPs were recently coupled with different 

Fig. 2. Nanoparticles (NPs) summarized in this review: (A) Cyclodextrins (CDs) are cyclic oligosaccharides consisting in α-D-glucopyranoside units attached with α 
1–4 links. Most common CDs used in medicine are composed by 5, 6, and 7 glucoses creating a cone shape and named α, β, and γ, respectively. (B), poly (lactic-co- 
glycolic acid)(PLGA)-NPs are synthesized by co-polymerization of two different monomers, the cyclic dimers (1,4-dioxane-2,5-diones) of glycolic acid and lactic acid 
and can be modified to include antibodies, fluorescent probes, peptides, etc. Superparamagnetic iron oxide nanoparticles (SPIONs) can also be added during the 
PLGA synthesis which can be used for magnetic targeting and retention and as a contrast agent for MRI. Therapeutical molecules can be added within the cavities of 
these NPs or can be covalently attached to the surface. 

Table 2 
Structure of native CDs and common modified CDs.  

Abbreviation N Substituent (R) Number of R group by CD 

α-CD 6 (− ) 0 
β-CD 7 (− ) 0 
γ-CD 8 (− ) 0 
HPβCD 7 -CH2-CHOH-CH3 5.6 
KLEPTOSE® CRYSMEB 7 -CH3 4 
Methyl-β-CD 7 -CH3 1.6 
RAMEβ 7 -CH3 12.6 
SBE7-β-CD 7 -(CH2)4–SO3Na 7 
TRIMETHYL-β-CD 7 -CH3 21 

CD, cyclodextrin; α-CD, α-cyclodextrin; β-CD, β-cyclodextrin; γ-CD, γ-cyclodex-
trin; CRYSMEB, crystalline methylated-β-cyclodextrin; HPβCD, 2-hydrox-
ypropyl-β-cyclodextrin; Methyl-β-CD, methyl-β-cyclodextrin; RAMEβ, 
randomly-methylated-β-cyclodextrin; SBE7-β-CD, sulfobutylether-7-β-cyclodex-
trin; TRIMETHYL-β-CD, TRIMETHYL-β- cyclodextrin. 
Adapted from (Coisne et al., 2016b). 
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imaging moieties thus forming a promising multimodal theranostic tool 
allowing to realize several imaging techniques including MRI, fluores-
cence at different emitting wavelengths (blue and NIR) or 89Zr-labeling 
enabled positron emission tomography (PET) imaging (Fig. 2B) (Zhang 
et al., 2020b). However, this multimodal NPs showed no brain pene-
tration. Coating of these NPs with poloxamer 188 should improve their 
interaction with BBB cells and thus their brain delivery. Indeed, intra-
venous injection of PLGA coated with poloxamer 188 was successfully 
used to increase the brain delivery of brain-derived neurotrophic factor 
(BDNF) in mice with brain trauma (Khalin et al., 2016), and promoted 
recovery of the brain deficits caused by the traumatic injury. Another 
system recently developed to improve the brain delivery of PLGA-NPs in 
mice and rat is the grafting of a glycosylated peptide named g7, derived 
from an analog of enkephalin. Enkephalin and its derivatives are anti-
nociceptive peptides that poorly cross the BBB (Dhanasekaran and Polt, 
2005). Interestingly, glycosylation of these analgesic peptides signifi-
cantly improved their ability to cross BBB endothelial cells. Tosi and 
collaborators reported an improved brain delivery of different molecules 
(e.g loperamide, zinc, etc) or fluorescent probes by encapsulation into 
PLGAg7-NPs in wild-type or transgenic mice (Tosi et al., 2007, 2011a, 
2020; Vilella et al., 2018). The crossing mechanism of the NPs is still 
unclear but in vitro and in in vivo investigations demonstrated that 
PLGAg7-NPs interacted more with BBB cells and were quickly endocy-
tosed, probably by adsorptive pathway (Tosi et al., 2011b). It might also 
be hypothesized that the glycosylated peptide coated on the PLGA-NP 
surface could interact with GLUT-1 highly expressed by the BBB endo-
thelial cells. 

Altogether, these results suggest that PLGA-NPs coated with polox-
amer 188 or coupled with different peptides or antibodies specifically 
targeting the BBB endothelial cells might represent a safe and powerful 

tool for early diagnostic of NDs and for promoting neuronal repair. 

3.3. Functionalization of NPs: the Trojan horse system 

In order to improve the brain delivery of NPs, it possible to hijack the 
RMT system. The best-studied macromolecule transport into the brain is 
the transferrin receptor (TfR)-mediated transcytosis pathway. When 
present in blood plasma, ferric iron rapidly interacts with apo- 
transferrin to form holo-transferrin. Then, holo-transferrin, which is 
present at relatively high concentrations in blood, interacts with the TfR, 
highly expressed at the cell surface of the BBB endothelial cells (Jefferies 
et al., 1984). Transferrin is then shuttled across the cells and iron is 
released into brain parenchyma. TfR is then recycled and redirected at 
the membrane of the cells. TfR is the RMT system the most widely used 
as a Trojan horse strategy to deliver NPs, recombinant proteins, and 
monoclonal antibodies within CNS. For example, when functionalized 
with antibodies targeting TfR, gold, SLN-, PLGA- or PLA-NPs are uptaken 
by BBB endothelial cells in vitro and in vivo (Johnsen et al., 2019; Li et al., 
2020; Ramalho et al., 2018; Loureiro et al., 2017). Their cargos are 
delivered to brain parenchyma of mouse models of AD or brain tumors 
(Johnsen et al., 2019; Li et al., 2020). The density of TfR antibodies fused 
to NPs positively influences this internalization since the highest density 
promotes the highest uptake (Johnsen et al., 2019; Li et al., 2020). 
Fluorescent hydrophobic probes reached more the CNS when they were 
included into CDs conjugated to lactoferrin (Ye et al., 2013). Similar 
conclusions were obtained when PLGA-NPs were fused with targeting 
systems recognizing other receptors such as LRP1 or opioid receptors 
expressed by the BBB endothelial cells (Duskey et al., 2020; Hoyos-Ce-
ballos et al., 2020). 

TfR is also targeted in order to develop new treatments in LSDs. As 
mentioned above, the treatment of LSDs patients with neurodegenera-
tive symptoms remains challenging because of the presence of the BBB, 
impeding the injected enzyme to reach neurons. Patients with muco-
polysaccharidosis type II (MPSII), for example, show a deficiency of 
iduronate 2-sulfatase (IDS) enzyme. Recently, Ullman et al., fused this 
enzyme with a Fc domain that has been engineered to bind to TfR 
(Ullman et al., 2020). When injected into IDS deficient mice, the authors 
observed a wide brain distribution of IDS and an improvement of lipid 
metabolism and CNS inflammatory state. Similarly, as shown in Table 3, 
a clinical trial consisting in intravenously injections of IDS fused with an 
anti-TfR antibody (JR-141) to MPSII patients resulted in an improve-
ment of their cognitive and motor symptoms (Okuyama et al., 2019, 
2020). 

Promising results were also obtained in MPSII mice treated by 
weekly injection of g7-PLGA-NPs containing IDS. After 6 weeks, the 
general improvement of mice’s health and physiological markers were 
reported (Rigon et al., 2019). The authors reported that the internali-
zation of these NPs and their neuronal delivery is mediated by clathrin. 
Optimization of this g7-PLGA-NP formulation should be considered to 
gain efficacy for this approach. 

In mucopolysaccharidosis type I (MPSI), patients show deficiency in 
α-L-iduronidase (IDUA). This enzyme was fused to an antibody targeting 
the Insulin receptor expressed at the BBB level and the construct, named 
AGT-181, was administrated in children and older patients Table 3. 
Cognitive stabilization or improvement was observed in all patients 
demonstrating that AGT-181 is successfully reaching the brain (Giu-
gliani et al., 2018). 

Although extremely promising, the use of the RMT system as a de-
livery method faces several obstacles that need to be seriously consid-
ered. First, transferrin receptor sequences differ in human, mouse, and 
rat. Therefore, a TfR antibody designed in rat could display a different 
affinity for the TfR in other species and these cross-species differences 
must be considered while establishing the efficacy of the treatment in 
vivo before its use in human (Lee et al., 2000). Secondly, if the TfR 
antibody targets the transferrin binding site, it could compete with the 
high concentrations of endogenous plasmatic transferrin. Finally, it has 

Table 3 
Few examples of clinical trials showcasing the progress of CNS-drug delivery 
approaches.  

Study purpose (Clinical trial ID) Starting Year Phase 

Use of nanoparticles in Neurodegenerative diseases 
Intrathecal administration of VTS-270 (HP-β-CD) in 

patients with Niemann-Pick C disease 
(NCT02534844) 

2015 Phase II/ 
III 

Use of the receptor-mediated system to deliver drugs 
Cerebral Enzyme replacement therapy in patients 

with mucopolysaccharidosis I using the insulin 
receptor-mediated transcytosis (AGT-181) 
(NCT03053089, NCT03071341) 

2015/2016 Phase I// 
II 

Cerebral Enzyme replacement therapy in patients 
with mucopolysaccharidosis II using the 
transferrin receptor-mediated transcytosis (JR- 
141) (NCT03128593 & NCT04573023) 

2017 & 2021 
(expected) 

Phase II 
& III 

BBB opening to deliver drugs 
Treatment of brain cancers with a combination of 

mephalan and BBB disruption mediated by 
mannitol (NCT02340156) 

1998 Phase I 

Brain delivery of Temozolomide in patients with 
high grades gliomas after Regadenoson 
administration (NCT02389738) 

2015 Early 
Phase I 

Determining exact dose of Regadenoson to 
transiently alter blood-brain barrier permeability 
in patients with high grade gliomas 
(NCT03971734) 

2020 Phase I 

Study designed to evaluate the safety of BBB 
opening in Patients with early AD using MRgFUS 
(NCT02986932) 

2017 Phase I 

Feasibility, safety and efficiency of repeated (MRI)- 
guided FUS for BBB opening in AD patients 
(NCT03739905) 

2018 Phase II 

Improvement of the delivery of Cerezyme to PD 
patients with the use of (MRI)-guided FUS 
(NCT04370665) 

2020 N/A 

BBB opening by (MRI)-guided FUS and PET 
tracking in AD patients to deliver therapeutics 
into the brain (NCT04118764) 

2020 Phase I  
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been clearly established that both the affinity and valency for the TfR 
could impact brain delivery of antibodies or their associated cargoes. 
Antibodies with high affinity for TfR, when used at low concentrations, 
showed an increased brain uptake compared to their lower-affinity 
counterparts. However, these antibodies were trapped within BBB 
endothelial cells and directed into the lysosomal compartment to be 
degraded (Bien-Ly et al., 2014). On the contrary, lower-affinity anti-
bodies were uptaken by brain parenchyma when injected at higher 
concentrations (Yu et al., 2011). Additional in vitro and in vivo experi-
ments demonstrated that decreasing the antibody-affinity for the re-
ceptor or that the use of a monovalent form instead of a bivalent 
structure increase their transcytosis rates (Niewoehner et al., 2014; Sade 
et al., 2014; Johnsen et al., 2018). 

Similarly, the abundance of Tf molecules present at the surface of the 
NPs, is also important. If the Tf abundancy is too high, NPs remain 
strongly attached to the BBB endothelial cells, whereas decreasing the Tf 
content at the NPs surface allows its transcytosis across the BBB (Wiley 
et al., 2013). Altogether, these data strongly suggest that a compromise 
needs to be found when the TfR is used as a Trojan system. Interaction 
with the receptor needs to be important enough to allow binding and 
transcytosis process, but not too high to avoid a limited release into 
brain parenchyma. It remains unknown whether other BBB receptors 
such as LDLR or insulin receptor also display these features, in particular 
when they are used as Trojan horse system for delivery of NPs (Portioli 
et al., 2017). At last, the level of receptors might be heterogeneous 
amongst the entire brain vasculature and might vary depending on the 
specific region of the CNS that is targeted. 

3.4. Opening the BBB to promote CNS drug delivery 

3.4.1. Targeting the TJ 
Another approach to efficiently deliver drugs, macromolecules, and 

NPs to the CNS is to transiently disrupt the BBB with the use of physical 
or chemical methods. One of the commonly used approaches is the 
intracarotid injection of arabinose or mannitol in patients with malig-
nant brain tumors or brain metastasis. It provokes an osmotic shock on 
the BBB endothelial cells, leading to a massive water efflux from cells, 
which in turn provokes a cell shrinkage. This triggers a physical BBB 
opening, with defective paracellular junctions, which is reversed in few 
minutes. During this time-lapse, the passage of molecules such as 
doxorubicin, methotrexate, or carboplatin, is facilitated by up to 90-fold 
(Williams et al., 1995). Even though the whole brain neural cells are 
unselectively exposed for 10–20 min to components and pathogens 
present in plasma, this technique performed by experienced surgeons is 
therapeutically beneficial in the treatment of high-grade malignant 
glioma. However, in some cases, the use of this method to disrupt BBB 
permeability can be highly traumatic and might result in serious side 
effects, such as seizures, permanent neurological disorders, and brain 
edema. 

As an alternative to mannitol, Cereport (RMP-7), a selective brady-
kinin B2 receptor agonist, has been used in clinic to trigger vasodilation 
of the capillaries around brain tumors, but this approach gave mitigated 
results in patients (Prados et al., 2003; D’Amico et al., 2020). Other 
chemical agents disrupting TJ between BBB endothelial cells have also 
been proposed such as Regadenoson, an activator of A2A adenosine re-
ceptors. Despite its efficacy in animal models, Regadenoson failed to 
achieve convincing results in clinical trials involving healthy subjects or 
patients with glioblastoma (Jackson et al., 2017, 2018) and Table 3. A 
new clinical trial is currently in progress to determine the optimal 
Regadenoson concentrations to transiently achieve BBB opening 
(Table 3). 

Peptides mimics can also be used as TJ modulators to transiently 
open the BBB and improve brain delivery of drugs or NPs. These syn-
thetic peptides are designed from endogenous protein sequences, usu-
ally claudins. Because they interact with the cellular claudin as their 
endogenous counterparts, they impede the real interaction between two 

intact proteins, thus rendering them inactive. As a consequence, the 
leakiness of the BBB is increased providing access of molecule to the 
brain parenchyma. The peptides C1C2 and C5C2, derived from claudin-1 
and claudin-5 respectively were reported to trigger transient opening of 
the BBB both in vitro and in vivo (Dithmer et al., 2017; Staat et al., 2015; 
Sauer et al., 2014). Alternatively, the C terminal domain of the Clos-
tridium perfringens enterotoxin’s can be used. In vitro, variants synthe-
sized from this domain have been shown to interact with claudin-5, thus 
leading to a transient TJ disruption promoting an increased passage of 
carboxyfluorescein across the BBB (Neuhaus et al., 2018). Further 
studies are necessary to demonstrate the efficiency of such approach in 
humans. 

3.4.2. Focused ultrasound (FUS) with microbubbles 
A new promising approach to transiently open the BBB has emerged 

recently with the use of ultrasound energy. Using focused ultrasound 
(FUS), specifically targeting certain brain regions, directly through the 
skull, might allow to transiently and safely opening the BBB. The low 
energy of FUS is transmitted to microbubbles that are injected into ce-
rebral blood circulation, leading to their oscillation, and allowing them 
to interact with the BBB endothelial cells provoking (i) tight junction 
disruption, (ii) sonoporation of cell membranes, and (iii) stimulation of 
transcytosis (Han et al., 2017). Studies performed in vivo demonstrated 
that the TJ disruption is mainly due to the downregulation of Claudins, 
Occludin, and ZO-1 expression (Sheikov et al., 2008), thus enabling the 
passage of molecules of 3 kDa and 70 kDa (Pandit et al., 2020). Besides, 
the downregulation of P-gp was also reported in FUS-treated rats (Cho 
et al., 2016). Further studies performed in Cav-1− /− mice have shown 
that the extravasation of large macromolecules (500 kDa and 2000 kDa) 
is controlled by the FUS-mediated increase of Cav-1 expression that 
promotes the unspecific transcytosis activity (Pandit et al., 2020). When 
used in disease animal models, coated PEG- and PS80 PLGA-NPs highly 
diffuse into FUS-treated brain regions thus showing an enhanced drug 
delivery, resulting in significantly stronger antitumour efficacy and 
longer survival time of the treated tumour-bearing mice (Nance et al., 
2014; Li et al., 2018). Several other studies have demonstrated similar 
results with the use of NPs produced from other biomaterials, as well as 
liposomes (reviewed in (Fisher and Price, 2019)). Interestingly, the first 
trials performed in humans also gave promising and exciting results. 
When applied in patients with early AD, magnetic resonance imaging 
(MRI)-guided FUS shows a safe and focal opening of the BBB in the 
hippocampus and entorhinal cortex followed by a BBB closure within 24 
h (Rezai et al., 2020). In patients with recurrent glioblastoma, repeated 
BBB opening did not show any deleterious effects and was well tolerated 
by patients (Carpentier et al., 2016). 

Surprisingly, studies performed in animals suggested that the BBB 
opening is also capable of stimulating hippocampal neurogenesis 
(Mooney et al., 2016) and microglial activation (Bobola et al., 2020). 
These mechanisms remain unclear and need further studies. 

Altogether these data demonstrate that low-intensity FUS used with 
microbubbles might be a very promising method to deliver molecules 
within specific areas of the CNS of patients with NDs and to promote 
neurogenesis or phagocytosis. In addition, it has been demonstrated that 
it is possible to control the size of the drug to be delivered by strictly 
modulating the FUS parameters. This possibility of a safe and localized 
brain delivery combined with the non-invasive nature of ultrasound 
confer to this approach several advantages over conventional technol-
ogies. However, current drawbacks need to be taken into account, such 
as the difficulty to monitor the process in real time using MRI or CT 
scanning, the cost, or the consequence of the CNS exposure to neurotoxic 
substances present in the bloodstream. Improvement of these issues 
remains necessary and several clinical trials are currently in progress 
(Table 3). 
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4. Conclusion and future perspectives 

To date, no effective treatment exists to cure neurodegenerative 
diseases such as AD or PD, or to prevent the detrimental processes un-
derlying the neurodegenerative symptoms observed in LSDs. Besides the 
complexity of these diseases, one of the main obstacles for such thera-
peutic improvement is the presence of the BBB, the real gatekeeper of 
the major part of the CNS. Among the different approaches developed 
since several decades, the use of NPs has received a lot of attention to 
improve the CNS delivery of small molecules but also of peptides, DNA, 
or neurotrophic factors such as BDNF, nerve growth factor (NGF) or glial 
derived neurotrophic factor (GDNF). A promising strategy to improve 
the brain delivery of NPs is the targeting of endogenous RMT systems 
that employ vesicular trafficking to transport ligands across the BBB 
endothelium. The recent successes obtained with this strategy, in 
particular with the enzyme replacement in LSDs (Okuyama et al., 2019, 
2020; Giugliani et al., 2018), demonstrate that the RMT system remains 
an exciting and promising therapeutic approach to deliver CNS drug or 
molecule for other NDs. However, in the case of NPs delivery, more 
attention should be given to the corona that might influence NPs size, 
charge and could alter biodistribution and then BBB crossing via RMT 
system. 

Further works are compulsory to better characterize BBB physiology 
and receptors expression patterns, especially in humans and in disease 
conditions. Indeed, possible alteration of its tightness and changes in the 
expression of receptors at the BBB in NDs should be better characterized. 
Recent development of new and relevant tools such as the human and 
non-human primate BBB models will help to reach these objectives 
(Cecchelli et al., 2014; Lippmann et al., 2012; Chaves et al., 2020). In-
formation on receptors expression at the BBB in healthy (Shawahna 
et al., 2011) but also in disease situations could be used to improve NPs 
access to the brain via RMT by targeting these receptors with antibodies 
or an appropriate targeting ligand. Another possibility is to combine the 
use of NPs with a method to open the BBB and thereby facilitate drug 
delivery into the brain parenchyma. FUS has recently gained attention 
for its potential application as a method for locally and transiently 
opening the BBB and might be used to achieve sufficient exposure of the 
brain parenchyma for therapeutic agents or diagnostic molecules. 
Despite encouraging results obtained in humans several key aspects of 
the effects of FUS on BBB opening and the possible side effects of 
repeated FUS treatments remain unexplored and need to be addressed 
before this methodology could be used for NDs such as AD and PD. 
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