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Many animal populations are subject to hunting or fishing in the wild. Detailed knowl-
edge of demographic parameters (e.g. survival, reproduction) and temporal dynamics 
of such populations is crucial for sustainable management. Despite their relevance 
for management decisions, structure and size of exploited populations are often not 
known, and data limited. Recently, joint analysis of different types of demographic 
data, such as population counts, reproductive data and capture–mark–recapture data, 
within integrated population models (IPMs) has gained much popularity as it may 
allow estimating population size and structure, as well as key demographic rates, while 
fully accounting for uncertainty. IPMs built so far for exploited populations have typi-
cally been built as age-structured population models. However, the age of harvested 
individuals is usually difficult and/or costly to assess and therefore often not avail-
able. Here, we introduce an IPM structured by body size classes, which allows making 
efficient use of data commonly available in exploited populations for which accurate 
information on age is often missing. The model jointly analyzes size-at-harvest data, 
capture–mark–recapture–recovery data and reproduction data from necropsies, and 
we illustrate its applicability in a case study involving heavily hunted wild boar. This 
species has increased in abundance over the last decades despite intense harvest, and 
the IPM analysis provides insights into the roles of natural mortality, body growth, 
maturation schedules and reproductive output in compensating for the loss of indi-
viduals to hunting. Early maturation and high reproductive output contributed to 
wild boar population persistence despite a strong hunting pressure. We thus demon-
strate the potential of size-class-structured IPMs as tools to investigate the dynam-
ics of exploited populations with limited information on age, and highlight both the 
applicability of this framework to other species and its potential for follow-up analyses 
highly relevant to management.
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Introduction

Many animal populations are affected by commercial, recre-
ational or subsistence harvest (Lebreton 2005, Peres 2010, 
Ripple et al. 2016), i.e. by the removal of individuals through 
hunting or fishing. Managing harvested populations in a sus-
tainable way has long been a central topic in applied ecology 
(Williams et al. 2002). It is especially true in the current con-
text of global change, as harvest may act in synergy with other 
detrimental effects such as habitat destruction or fragmenta-
tion (Camilo et al. 2007, Chen et al. 2015, Koons et al. 2015, 
Regehr et al. 2017). Likewise, harvest might interact with 
population-level effects of climate change in both marine 
and terrestrial ecosystems (the so-called ‘harvest-interaction’ 
hypothesis, Gamelon et al. 2019a). This interplay between 
harvest and climate may amplify environmentally induced 
fluctuations in population size and increase extinction risk, 
or, alternatively, dampen fluctuations and increase popula-
tion growth rates (Gamelon et al. 2019a). 

Models designed to assess interactive effects of harvest 
and other stressors on population dynamics and to pre-
dict sustainability of harvest management typically require 
detailed information on demographic parameters (e.g. sur-
vival, reproduction) and population size. Nonetheless, these 
quantities are challenging to estimate in absence of detailed 
long-term data (Clutton-Brock and Sheldon 2010). When 
demographic information is limited, the challenge lies in 
making efficient use of available data to gain an understand-
ing of the dynamics of exploited populations that is suffi-
cient to provide appropriate management recommendations. 
Available demographic data can be of different types, includ-
ing population counts, data on reproduction and capture–
mark–recapture (CMR) data. When several data types are 
available, a combined analysis within an integrated popu-
lation model (IPM) approach may offer several advantages 
(reviewed by Schaub and Abadi 2011, Zipkin and Saunders 
2018), even if each data type by itself provides only limited 
information on demographic parameters. First, combined 
analysis of different data sources usually increases the preci-
sion of demographic estimates (Barker and Kavalieris 2001, 
Péron et al. 2010). Second, imperfect detection and observa-
tion error inherently associated with data sampled in the field 
(e.g. population counts) can be accounted for and associated 
uncertainty is encapsulated in model predictions, providing 
a more realistic picture. Third, the use of IPMs may allow 
estimating additional parameters that are difficult or impos-
sible to quantify using separate analyses of available data. 
For instance, Péron et al. (2010) estimated dispersal rate in 
a black-headed gull Chroicocephalus ridibundus population at 
the regional scale, a parameter notoriously difficult to assess. 
Another striking example of demographic parameter difficult 
to estimate is immigration, which can be quantified through 
the use of IPMs (Abadi et al. 2010b).

Integrated analysis of different data sources as a tool 
to model the dynamics of exploited populations has 
been used for decades in fisheries research (reviewed by 
Maunder and Punt 2013). More recently, IPMs have been 

applied to harvested populations in terrestrial ecosystems 
(Gauthier et al. 2007, Conn et al. 2009, Fieberg et al. 
2010, Péron et al. 2012, Lee et al. 2015, Staton et al. 2017, 
Arnold et al. 2018). Importantly, IPMs built on exploited 
populations often integrate age-at-harvest data and cap-
ture–mark–recapture–recovery (CMRR) data into age-
structured population models (Methot Jr and Wetzel 2013, 
Arnold et al. 2018, Scheuerell et al. 2019). However, it is 
noteworthy that the applicability of this type of IPMs for 
exploited populations is limited because age-at-harvest data 
is often not available. Indeed, ageing individuals in the wild 
is challenging and generally involves expensive and time-
demanding analyses (see Morrongiello et al. 2012 for a 
straightforward analysis of growth rings on fish scales and 
turtle carapace scutes for age determination). Most estab-
lished techniques for age assessment, such as analyses of 
tooth wear for mammals (Hamlin et al. 2000) or otoliths 
for fish (Black et al. 2008), are hardly applicable routinely in 
exploited populations.

To overcome these limitations, we here develop an IPM 
relying on data commonly collected in exploited populations. 
Our model differs from traditional IPMs applied to vertebrate 
populations in two ways. First, it integrates CMRR data and 
an individual trait recorded at death (body size) into a size 
class-structured population model. Body size measurements 
are often easier and less costly to obtain from field studies 
of wild populations than age estimates, particularly when 
harvesting is part of the data collection process. Second, the 
model makes inference on population size using size-specific 
counts of individuals that have died due to harvesting. For 
each size class, the model allows us to get annual estimates 
of demographic parameters and of the number of alive indi-
viduals, a parameter often difficult to estimate and highly 
important for population management.

We illustrate the usefulness of this IPM for assessing pop-
ulation dynamics based on the case study of an economically 
important game species, the wild boar Sus scrofa. Wild boars 
have increased in abundance and have extended their range 
over the last decades in Europe (Massei et al. 2015) and North 
America (Lewis et al. 2019), leading to important damage to 
crops and high risk of disease transmission (see Schulz et al. 
2019 for an example with the African swine fever). Hunting 
is nowadays the only way to control wild boar expansion 
worldwide. Demographic parameters – and consequently 
population dynamics – of ungulates such as wild boar are 
strongly influenced by body size (reviewed by Gaillard et al. 
2000), and, contrary to large herbivores, age is not a struc-
turing factor of survival in wild boar (Focardi et al. 2008). 
Therefore, body size is the most appropriate structuring fac-
tor to model exploited wild boar populations (Gamelon et al. 
2012). Moreover, contrary to age, size information is rou-
tinely collected by hunters, making size-structured model 
relevant for modeling many game species. Although we 
focused on wild boar as a case study, the approach we pro-
pose can be reliably used for assessing population dynamics 
of a large range of vertebrate populations subjected to human 
exploitation.
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Material and methods

Demographic data collection

We studied a wild boar population located in the 11 000 
ha forest of Châteauvillain-Arc-en-Barrois in north-eastern 
France (48°02′N, 4°55′E). Between 1991 and 2016, as part 
of an intensive capture–mark–recapture program, 1152 wild 
boar females were captured between March and September 
using live-trapping techniques (e.g. corral traps). At each cap-
ture event, we recorded the date of capture, marked/identified 
and subsequently weighed all females before releasing them 
again. No information was available for marked individu-
als that died from natural causes (e.g. disease): these females 
were never recovered. Between October and February, wild 
boars are heavily harvested. Hunters are instructed to avoid 
shooting the largest females with a dressed body mass of ≥ 
50 kg (otherwise they must pay a financial penalty propor-
tional to the female’s mass) and obliged to report any kill. 
All females shot by hunters (previously marked or not) were 
weighed and their date of death was recorded by the staff of 
the Office Français de la Biodiversité. As wild boar rut usually 
begins in mid-December, females can be in oestrus, ovulat-
ing, pregnant or reproductively inactive when shot during the 
hunting season. Analysis of carcasses of shot females therefore 

allowed determining whether a female was reproductively 
active (i.e. in oestrus, ovulating or pregnant) or not. Among 
pregnant females, the number of fetuses present in the uteri 
was recorded.

Three types of demographic data were thus available 
(Fig. 1): CMRR data (with live recaptures between March 
and September, and harvest recoveries between October and 
February), size-at-harvest data (from October to February) 
and reproduction data (from October to February). CMRR 
data consisted of individual capture histories of 1152 marked 
females, which contained additional information on indi-
vidual body mass (in kg) at each capture (alive) and when 
shot (dead). Size-at-harvest data were represented by the 
number of females of a given body mass shot by hunters dur-
ing the hunting season of each study year (n = 7350 over the 
entire study period). Yearly reproduction data included the 
number of reproductively active females (n = 1679) among 
all shot females whose reproductive status had been assessed 
(n = 3648) and the number of fetuses counted in utero 
(n = 4344) of pregnant females (n = 811).

IPM construction

Integrated population models consist of two components, 
a population process model and a set of different data 

Figure 1. Wild boar life cycle graph. Three body mass classes (small S, medium M and large L) are considered. Starting in March, females 
of all body mass classes may reproduce (yellow dotted lines). Subsequently, they may grow to a larger body mass class or remain in the same 
class (green lines). They can then survive over the non-hunting season (turquoise lines) until October. Finally, females can survive or die 
during the hunting season from October to the end of February (purple lines). See Table 1 for parameter definitions.
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likelihoods (Besbeas et al. 2002), both of which are com-
bined and analyzed under a joint likelihood (Schaub and 
Abadi 2011, Zipkin and Saunders 2018). The population 
process model describes true changes in both population size 
and structure over time. It links demographic parameters to 
population dynamics. Data likelihoods, on the other hand, 
are probabilistic models that link different types of observed 
data to demographic rates and population-level quantities 
contained in the population model. In the following, we first 
describe the size-structured population model for wild boar, 
and then provide details on the separate data likelihoods for 
size-at-harvest, CMRR and reproduction data. A schematic 
representation of the entire IPM can be found in Fig. 2 and 
all parameter names are defined in Table 1.

Size-structured population model
We built a population model for wild boar structured by 
size classes. We assumed that population dynamics were well 
represented by the female segment of the population as the 
number of males is not limiting reproductive output in the 
polygynous wild boar (Gamelon et al. 2012), and therefore 
built a female-based model. Body mass (in kg) was used to 
categorize wild boar females into three size classes. Hereafter, 
the two terms ‘mass’ and ‘size’ are used interchangeably. 
The three body mass classes were: small (< 30 kg), medium 
(30–50 kg) and large (> 50 kg). These body mass classes are 
based on phenotypic characteristics and social structure of 
wild boar (Gamelon et al. 2012). Large females (> 50 kg) 

lead matrilineal social groups (Kaminski et al. 2005), which 
contain females of all ages (subadults – between 1 and 2 years 
old – and adults – older than 2 years old) and juveniles of 
both sexes (younger than 1 year old). Juveniles are lighter 
than 30 kg and clearly distinguishable by their striped and 
subsequently wear a reddish coat (subadults).

We used a pre-breeding census, with the start of the popu-
lation’s annual cycle being placed in March, just prior to the 
reproductive peak (Fig. 1). From there, the model describes 
the population’s transitions through seasons of reproduction, 
growth and natural mortality to October and finally through 
the hunting season to March of the next year (Fig. 1). All 
transitions are assumed to be subject to demographic stochas-
ticity and therefore modelled as Poisson or Binomial random 
variables.

Starting from March of year t, females in any size class 
z (marNz,t, where z = S for small, M for medium and L for 
large) can reproduce according to a breeding probability pBz,t 
and produce a litter of nFz,t piglets, half of which are assumed 
to be daughters (Gamelon et al. 2012). The annual number 
of offspring produced by mothers in size class z is therefore 
formulated as:

Off marN pB nFz t z t z t z t, , , , .~ Poisson ´ ´ ´( )0 5   

The newly born piglets are subject to early mortality, and only 
those surviving the first three months of life will be counted 

Figure 2. Directed acyclic graph (DAG) of the IPM. Squares represent data nodes, circles represent the parameters to be estimated. The 
index z takes values of S, M and L for small, medium and large size classes respectively. Time indices are omitted for simplicity. Solid arrows 
represent dependencies within the same time-step while dashed arrows represent dependencies between time-steps (time t to t + 1). See Table 
1 for parameter and data node definitions.
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among the young-of-the-year (YOYt) and recruited into 
the population. This postnatal survival S0t is described as a  
binomial process:

YOY Binomial sumt t tOff S~ ( ,), 0( )   

Next, each individual has a chance to either remain in the 
current size class or grow to any larger size class with a growth 
probability gPz,t. No backward transitions towards lighter size 
classes was ever observed in the studied population. For small 
individuals, gPS,t is the probability of growing either into the 
medium or the large size class. Given a small individual grows 
to a larger class, the probability of immediately growing to 
the large class is gSLt. For medium individuals, gPM,t is the 
probability of becoming large. Large individuals cannot grow 
any larger. We denote the numbers of individuals growing 
from any size class z to any other size class z′ as G_marNz,z′,t. 
The growth process can be summarized using the following 
deterministic model:
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In our IPM, we accounted for demographic stochasticity 
growth outcomes by formulating the above model using 
(sequential) binomial trials (see model code for details of 
implementation).

Following growth, the population experiences a non-
harvest season lasting roughly from March to the end of 
September. During this season, individuals in any size 
class z may die from natural mortality causes (probability  
1 − sNz,t) or survive with probability sNz,t (=

-e mNz t, , where 
mNz,t is the natural mortality hazard rate, Ergon et al. 2018) to  
early October:

octN G marN sNz t z tz t, , ,_ ,,~ Binomial sum ( )( )   

Note that since growth is assumed to happen prior to the non-
harvest season, individual survival probabilities correspond to 
the newly attained size class (post-growth). The remainder 
of the year (from October of year t to March of year t + 1) 
constitutes the hunting season. Since our study population 
is heavily hunted, we assumed that natural mortality during 
the hunting season was negligible, and survival through the 
hunting season (sHz,t) therefore depends entirely on hunting 
mortality ( sH ez t

mHz t
,

,= - , where mHz,t is the hunting mortal-
ity hazard rate). The population present in March of year t + 1 

Table 1. Notation and biological meaning of data, latent states and parameters.

Demographic and observation parameters
 pBz,t Breeding probability of females in size class z in year t
 nFz,t Litter size of females in size class z in year t
 S0t Postnatal survival in year t
 gPz,t Growth probability of size-class z females in year t
 gSLt Probability of a small female to grow into the large size class in year t
 sNz,t Natural survival probability of size-class z females from March to October of year t (= -e mNz t, )
 mNz,t Natural mortality hazard rates of size-class z females from March to October of year t
 dNz,t Natural mortality probability of size-class z females from March to October of year t (= 1 − sNz,t)
 sHz,t Hunting survival probability of size-class z females from October of year t to March of year t + 1 (= -e mHz t, )
 mHz,t Hunting mortality hazard rates of size-class z females from October of year t to March of year t + 1
 dHz,t Hunting mortality probability of size-class z females from March to October of year t (= 1 − sHz,t)
 pz,t Recapture probability of size-class z females in year t
 rt Recovery probability for females of any size during the hunting season from October of year t − 1 to March 

of year t
Population-level quantities
 Hz,t Number of size-class z females shot between October of year t − 1 and March of year t
 marNz,t Number of size-class z females alive in March of year t
 Offz,t Number of offspring produced by size-class z females in year t
 YOYt Total number of young-of-the-year (i.e. offspring that survived over the first three months)
 octNz,t Number of size-class z females alive in October of year t
Observational data
 Cz,t Number of size-class z females reported as shot between October of year t − 1 and March of year t
 nRepz,t Number of reproductive size-class z females reported as shot between October of year t − 1 and March of 

year t (i.e. females in oestrus, having ovulated or pregnant)
 nFemSz,t Number of size-class z females reported as shot between October of year t − 1 and March of year t for 

which reproductive status has been assessed
 nFetusz,t Number of fetuses counted in pregnant size-class z females reported as shot between October of year t − 1 

and March of year t
 nPregz,t Number of pregnant size-class z females reported as shot between October of year t − 1 and March of year t
 yi,1:T Multistate capture history of individual i over from the first (1) to the last (T) year of the study period



1301

is therefore made up of all individuals that were not killed 
during the hunting season: 

marN octN sHz t z t z t, , ,,+ ( )1 ~ Binomial   

By estimating the number of survivors during the hunting 
season and assuming all mortality is due to hunting, we can 
further quantify the true number of size-class z individu-
als that died due to hunting in the time interval t→t + 1 as 
Hz,t+1 = octNz,t − marNz,t+1.

The above stepwise formulation of the population model 
can also be summarized into and represented by a standard 
matrix population model (Caswell 2001) and the correspond-
ing projection matrix is given in the Supporting information.

We built this IPM assuming a closed population (no 
immigration/emigration) as the dispersal probability for 
female wild boar is generally very low (Truvé and Lemel 
2003, Keuling et al. 2010) and the home range of any female 
much smaller than the studied forest (Saïd et al. 2012).

Size-at-harvest data likelihood
Size-at-harvest data Cz,t consisted of the annual numbers of 
size-class z females shot and reported by hunters, with index 
t indicating the hunting season from October in year t − 1 to 
March in year t. As such, these data indirectly contain infor-
mation about population size and take on the role popula-
tion counts fulfill in traditional IPMs. We formulated the 
likelihood for these data as a state–space model (de Valpine 
and Hastings 2002, Conn et al. 2008), which links a pro-
cess model (i.e. the previously described size-class-structured 
population model) and an observation model. The obser-
vation model describes the link between the size-at-harvest 
data Cz,t and the true number of females shot by hunters in 
the population (Hz,t) (yellow part, Fig. 2). In order for a shot 
individual of size z to appear in Cz,t, it needs to be reported 
(with probability rt). Cz,t can therefore be described as a bino-
mial random variable:

C H rz t z t t, , ,~ Binomial( )   

Note that since reporting of shot wild boars is mandatory in 
the study area, we expected rt to be close to 1 (as previously 
estimated in Gamelon et al. 2011) and assumed it to be inde-
pendent of body size class.

Capture–mark–recapture–recovery (CMRR) data likelihood
CMRR data were analyzed using a multistate model (reviewed 
by Lebreton et al. 2009) that allows separating estimation of 
size-class-specific parameters associated with growth, natu-
ral mortality and hunting mortality (Lebreton et al. 1999, 
Gamelon et al. 2012). We described the fate of a marked 
individual i using seven states. States 1, 2 and 3 were ‘alive’ in 
the small, medium and large body mass classes, respectively. 
Similarly, states 4, 5 and 6 were individuals ‘recently shot’ in 

the three body mass classes. Finally, state 7 collected all indi-
viduals that either ‘recently died from natural causes’ or had 
been ‘dead’ for more than one year. Annual transitions among 
these states depended on size-class- and year-specific prob-
abilities of growth (pGz,t and pSLt), survival/mortality during 
the non-hunting season (sN ez t

mNz t
,

,= - ) and survival/mortal-
ity during the hunting season (sH ez t

mHz t
,

,= - ) as depicted in 
Fig. 1 (solid arrow transitions only). Individual capture his-
tories yi,1:T (where 1:T is the duration of the study period) 
were then modelled as the outcome of observing individuals 
in their respective states with size-class-specific capture prob-
abilities pz,t for states 1–3 and size-class-independent report-
ing probability rt for states 4–6 (state 7 was unobservable). 
We provide the full state transition and observation matri-
ces in the Supporting information and refer to the reader to 
Chapter 9 in Kéry and Schaub (2012) for the details of the 
Bayesian implementation of multistate models.

Reproduction data likelihoods
Necropsies of shot wild boar females allowed us to estimate 
annual size-class-specific breeding probability (pBz,t) and litter 
size (nFz,t). Breeding probability corresponds to the propor-
tion of shot size z females that showed signs of reproductive 
activity between October of year t − 1 and March of year t 
(nRepz,t) relative to all shot females for which reproductive 
status could be assessed (nFemSz,t) via a binomial likelihood:

nRep nFemS pBz t z t z t, , ,,~ Binomial( )   

The total number of fetuses counted in the uteri of pregnant 
females with size z shot between October of year t − 1 and 
March of year t (nFetusz,t), on the other hand, can be modelled 
as a Poisson random variable with an expected value equal to 
the product of the number of all shot females with size z that 
were pregnant (nPregz,t, which is a subset of reproductively 
active females nRepz,t) and the size-specific average litter size:

nFetus nPreg nFz t z t z t, , ,~ Poisson ´( )   

By sharing the parameters pBz,t and nFz,t between the popula-
tion model and the likelihoods for reproduction data from 
shot females, we assume that average breeding probability 
and litter size are identical for females that are shot before 
and that survive to give birth (i.e. the reproductive status does 
not affect hunting mortality).

Among-year variation in demographic parameters and 
detection parameters
We accounted for temporal variation in all demographic 
parameters, as well as recapture and recovery probabilities, 
by including normally distributed random-year effects on the 
relevant link scale according to the following equation:

link link( ),X z t z
X

t
X= ( ) +m e   
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Here, Xz,t is the value of demographic parameter X for size z 
females in year t, mz

X  is the average size-class-specific X over 
time (intercept) and et

X  is the random effect on X in year t. 
The link scales were log for early, natural and hunting mortal-
ity hazard rates (and, by extension, loglog for the correspond-
ing survival probabilities) and litter size, and logit for growth, 
recapture, and recovery probabilities. We used the same tem-
poral random effects for modelling among-year variation in a 
given parameter for all three size classes, assuming that good 
environmental conditions would be similarly beneficial for 
females of all size classes and that poor conditions would 
similarly negatively affect females of all size classes.

Additionally, previous research has shown that the avail-
ability of acorns, from October to February, can substantially 
influence both the overall proportion and size distribution of 
breeding females (Servanty et al. 2009, Gamelon et al. 2017, 
2021, Touzot et al. 2020). In the case of breeding probabil-
ity, we therefore accounted for this by letting the intercept 
depend not only on size class, but also on the combination of 
size class and acorn availability. The latter was defined using a 
categorical variable with three levels: N = no acorn, A = aver-
age availability of acorns, H = high availability of acorns/
mast seeding (see Servanty et al. 2009, Gamelon et al. 2017, 
Touzot et al. 2020 for a detailed description of the three cat-
egories of acorn mast years). The breeding probability model 
thus included a categorical interaction between size class and 
acorn availability.

Model implementation

Assuming independence among the datasets, the likelihood 
of the IPM is the product of the likelihoods for the differ-
ent datasets (Besbeas et al. 2002, Kéry and Schaub 2012): 
size-at-harvest data, CMRR data and reproduction data. 
Since some individuals are part of several datasets, the inde-
pendence assumption is not fully met in our case. However, 
this is unlikely to cause a substantial bias in results as recent 
simulation studies have shown that violation of the inde-
pendence assumption has little impact on IPM estimation 
and performance (Abadi et al. 2010a, Plard et al. 2019a, 
Weegman et al. 2021). We fit the IPM in a Bayesian frame-
work using NIMBLE (ver. 0.9.1 of the nimble R package, 
de Valpine et al. 2017). We used vague priors for all param-
eters (code), and initial values for all nodes were simulated 
manually prior to running the model to avoid initializa-
tion problems. Parameters were estimated by running four 
Markov chain Monte Carlo (MCMC) chains of 150 000 
iterations (the first 70 000 of which were discarded as burn-
in), which were subsequently thinned by a factor 10. We used 
visual inspection of the MCMC chains and the Brooks and 
Gelman diagnostic R̂  to assess model convergence (Brooks 
and Gelman 1998). All analyses and plotting were done in R 
ver. 4.0.2 (<www.r-project.org>).

Model assessment

We used three complementary approaches to assess the abil-
ity of our IPM to provide biologically relevant estimates of 

demographic parameters and population dynamics. First, 
we checked evidence for major lack of fit by comparing our 
IPM’s predictions of population size, harvest numbers and 
reproductive parameters to observed data (Supporting infor-
mation). Second, we checked posterior overlaps of demo-
graphic parameters estimated from the IPM to estimates 
obtained from separate, independent analysis of CMRR and 
reproduction data to test for potential major discrepancies 
among data sources included in the IPM (Supporting infor-
mation). Third, we determined the IPM’s ability to make 
biologically realistic short- to mid-term population fore-
casts using two simulation approaches: 1) stochastic matrix 
projections using posterior samples to determine realism of 
population size forecasts and; 2) continuation of MCMC 
predictions for an additional three years (2017–2019) and 
comparison of predicted versus realized number harvested 
in those years (Supporting information). In addition to the 
three types of model assessment, we also tested whether esti-
mates were robust to the model’s assumption about the tim-
ing of life history events (growth prior to the non-hunting 
season, Supporting information). Background, implementa-
tion details and results for each part of model assessment are 
provided in Supporting information.

Results

All four MCMC chains reached convergence. In the follow-
ing, we present estimates of our IPM for parameters asso-
ciated with demographic rates, population-level properties 
and detection, as well as conclusions from model assess-
ment. Numerical results are presented as posterior median 
[95% credible interval]. A visualization of posterior distri-
butions for all parameters can be found in the Supporting 
information.

Natural mortality, hunting mortality and postnatal 
survival

Both natural and hunting mortalities varied among size 
classes (Fig. 3A, D) and across time, the latter more so for 
hunting than natural mortality (Fig. 3A, C). Natural mortal-
ity hazard rate was estimated at a time-average of 0.43 [0.29, 
0.59], 0.04 [0.00, 0.22] and 0.15 [0.07, 0.26] for small, 
medium and large females, respectively. The resulting prob-
abilities of dying from natural causes between March and 
October (dNz,t = 1 − sNz,t = 1 − exp(mNz,t)) were 0.35 [0.25, 
0.44], 0.04 [0.00, 0.20] and 0.14 [0.08, 0.22] for the three 
size classes, and therefore highest for small individuals, fol-
lowed by large and finally medium ones (Fig. 3D). Hunting 
mortality probability (dHz,t = 1 − sHz,t = 1 − exp(mHz,t)), on 
the other hand, was highest for small females (0.85 [0.80, 
0.91]) and lowest for large females (0.24 [0.21, 0.29]), 
with medium females falling in between (0.47 [0.40, 0.56]) 
(Fig. 3A). The corresponding hunting mortality hazard rates 
were 1.93 [1.60, 2.42], 0.63 [0.52, 0.83] and 0.27 [0.23, 
0.34]. Hunting mortality was therefore substantially higher 
than natural mortality for all size classes. Postnatal survival 
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(i.e. the probability of surviving from birth to weaning (i.e. 
at about three months of age), S0) was estimated at a time-
average of 0.99 [0.96, 1.00] but uncertainty was high in cer-
tain years (Fig. 3D).

Growth transition probabilities among body mass 
classes

Small females had a time-average probability of 0.30 [0.23, 
0.40] to grow into the medium size class (m mS

gP gSL´ -( )1 )  
and of 0.07 [0.03, 0.14] to grow into the large size class 
(m mS

gP gSL´ ) within a year. They were therefore more likely to 
remain small than to grow. Medium-sized females were also 
more likely to stay in their current size class, with a probability 
of growing large of 0.45 [0.30, 0.63]. All growth probabilities 
varied considerably across years (Supporting information).

Reproductive parameters

Breeding probabilities varied substantially across years 
(Fig. 4A) and increased with body size, with a time-average 
of 11 [5, 26] % of small, 55 [39, 80] % of medium and 70 
[53, 86] % of large females reproducing in a year with aver-
age acorn production (Fig. 4B). Breeding probabilities were 
lower in years with low acorn abundance and higher in acorn 
mast years (high acorn abundance), and the effect of acorn 

abundance was more pronounced for small- and medium-
sized females than large ones (Fig. 4B). Litter size, on the 
other hand, varied very little over time (Fig. 4C) but also 
increased with body size: small, medium and large females 
produced litters of on average 3.85 [3.36, 4.57], 4.84 [4.62, 
7.15] and 6.42 [6.15, 6.79] piglets, respectively.

Detection probabilities

Recapture probabilities depended strongly on body size and 
were highest for small females at 0.68 [0.45, 0.91] and lowest 
for large females at 0.04 [0.02, 0.10], with medium females 
falling in between at 0.23 [0.15, 0.40] (Supporting informa-
tion). Size-independent hunting reporting probability (recov-
ery) was consistently high and estimated at a time-average of 
0.98 [0.89, 1.0] (Supporting information).

Population size and structure

Total population size increased over the first five years of 
the study period, then stabilized around an average of 280 
[228, 378] females in March and 587 [521, 734] in October 
(Fig. 5). Population size was highest between years 2007 and 
2008, with 797 [728, 954] females present in October 2007 
and 361 [300, 477] in the subsequent March. In general, the 
population contained a high proportion of large females in 

Figure 3. Posterior medians and associated 95% credible intervals of (A) annual hunting mortality probability dH for each body mass class 
(small = grey, medium = light grey and large = black), (B) postnatal survival probability and (C) annual natural mortality probability dN for 
the large class. (D) Posterior distribution of time-average natural mortality probability for the three body mass classes.
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March, while in October, the size distribution was more bal-
anced (Supporting information). The harvest, on the other 
hand, was dominated by small individuals (Supporting infor-
mation). The estimated numbers of harvested individuals 

varied across years from a minimum of 98 [95, 202] in the 
hunting season 1992–1993 to a maximum of 429 [421, 581] 
in 2007–2008, corresponding to years with relatively low/
high harvest mortality (Fig. 3A) and population size (Fig. 5).

Figure 4. Reproductive parameters estimated from the IPM. (A) Posterior medians and associated 95% credible intervals of annual breeding 
probabilities for the large size-class. (B) Posterior distributions of average breeding probabilities for the three body mass classes in years with 
low (yellow), average (black) and high (turquoise) acorn abundance. (C) Posterior medians and associated 95% credible intervals of annual 
litter size for the three body mass classes.

Figure 5. Estimated numbers of female wild boar in March (black), in October (turquoise) and in the harvest (purple). Estimates are plotted as 
posterior medians (dots) and corresponding 95% credible intervals (vertical lines). Pink crosses represent raw data on counts of harvested females.
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Model assessment

Predictions of population size and the number of harvested 
individuals were closely associated with observed data 
(Fig. 5), and the same was the case for model estimates of 
reproductive parameters (breeding probability and litter size 
in the Supporting information). Posterior distributions of the 
majority of demographic parameters from the IPM largely 
overlapped with posteriors obtained from separate analyses 
of CMRR and reproduction data (Supporting information), 
providing no evidence for severe lack of fit. Smaller posterior 
overlap still occurred for a subset of parameters associated 
with the largest size class, namely the probability of a small 
female to grow large and subsequent natural and hunting 
mortality of large individuals. Stochastic projections using 
matrices parameterized with posterior means of demographic 
parameters estimated by the IPM produced biologically real-
istic short- to mid-term population trajectories (Supporting 
information). None of the simulated populations decreased 
substantially within a 10-year period, but notably, a few 
simulations predicted substantial population increase to over 
750 females. Furthermore, the IPM produced predictions 
that matched observed numbers of harvested females for the 
2017–2018, 2018–2019 and 2019–2020 hunting seasons 
(size-at-harvest data that were not part of parameter estima-
tion can be found in the Supporting information). Finally, 
whether growth was modelled to happen prior to or after the 
non-hunting season did not substantially affect estimates or 
conclusions (Supporting information). The results of model 
assessment and tests are detailed further in the respective sec-
tions in Supporting information.

Discussion

We here developed an IPM that makes efficient use of data 
commonly collected for exploited populations, i.e. counts, 
body size/mass and assessment of reproductive status of 
females shot by hunters. Through integrated analysis of 
such data with CMRR data, this model provides estimates 
of key demographic parameters – including some that can-
not be estimated using independent analyses – while fully 
accounting for uncertainty. Using a wild boar population as 
a case study, we demonstrate that this framework is a relevant 
tool to obtain a comprehensive picture of the dynamics of 
exploited populations, particularly those with missing data 
on age.

A comprehensive picture of population dynamics

Through integrated analysis of CMRR data, reproductive 
data and size-at-harvest data, our IPM offers a comprehensive 
picture of the demographic mechanisms that prevented col-
lapse of the Châteauvillain-Arc-en-Barrois wild boar popula-
tion despite an unusually high hunting pressure over the last 
25 years (Toïgo et al. 2008). We showed that hunting mortal-
ity was size-specific, and highest for small females. Across size 

classes, hunting was the primary cause of death and hunting 
mortality clearly outweighed natural mortality (Fig. 3). Low 
natural mortality is common among ungulate species, for 
which average natural adult survival probability often exceeds 
0.90 for females (Gaillard et al. 2000). Our finding regard-
ing the relative importance of hunting and natural mortalities 
are in accordance with both other hunted wild boar popu-
lations and previous conclusions for this particular popula-
tion (reviewed by Toïgo et al. 2008, Gamelon et al. 2011, 
Gamelon 2020). 

Wild boar females in the focal population are highly 
fecund, being able to produce large litters (Fig. 4C) as early 
as their first year of life (Servanty et al. 2009) and at a body 
mass below 30 kg (i.e. small mass-class). Together with 
reduced survival due to hunting, this leads to a short genera-
tion time, i.e. a low mean age of mothers at first reproduc-
tion (Gaillard et al. 2005, 2016). Generation time is around 
two years for hunted wild boar, whereas it is close to six 
years for other, similar-sized ungulates (Servanty et al. 2011, 
Gamelon et al. 2021). This unusual life history (Focardi et al. 
2008) is reflected in our estimates of a substantial portion 
of small and medium-sized individuals breeding (particu-
larly under favorable environmental conditions, Fig. 4B). 
The resulting population dynamics are characterized by a fast 
turnover of individuals (Supporting information), and this 
explains why the number of individuals in the population did 
not decrease drastically during the study period despite the 
high hunting pressure (Fig. 5).

Demographic parameters of many seed consumer spe-
cies, such as wild boar, depend on mast seeding (reviewed 
by Yang et al. 2008, Bogdziewicz et al. 2016, Gamelon et al. 
2021). Mast seeding events result in pulsed resource avail-
ability, characterized by intermittent production of large seed 
crops synchronized at the tree population level (Ostfeld and 
Keesing 2000). Acorn mast events vary in intensity and fre-
quency over years and are major determinants of breeding 
proportions in wild boar (Servanty et al. 2009, Gamelon et al. 
2017, Touzot et al. 2020). Accordingly, we found a marked 
year-to-year variation in the proportion of breeding females 
(Fig. 4A) and a positive effect of acorn availability on the 
breeding probability for all size classes (Fig. 4B).

Substantial among-year variation was also evident for 
growth parameters, i.e. the probabilities for a female to grow 
into a heavier body mass class (Supporting information). 
While previous studies did not find any effect of acorn avail-
ability on growth patterns in this population (Touzot et al. 
2020, Gamelon et al. 2021), a large body of empirical evi-
dence shows that increasing population density is gener-
ally associated with reduced body mass in large herbivores 
(Bonenfant et al. 2009). Fluctuations in the strength of den-
sity dependence could explain such among-year variation in 
transition probabilities among body mass classes. Weather 
conditions (e.g. temperature) can also influence the probabil-
ity for a female to reach a heavier body mass class during the 
year, especially for small females (Veylit et al. 2020). Since 
mortality (from both hunting and natural causes) and repro-
ductive output vary substantially according to body mass 
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(Fig. 3, 4), factors affecting transitions between body mass 
classes may be crucial for population dynamics and remain to 
be carefully explored.

Estimates for demographic parameters hard to 
measure in the field

Despite being useful for making relevant management 
decisions, the total size of exploited populations is often 
unknown. The presented IPM allowed us to estimate the 
annual numbers and size-class-distributions of alive females, 
both before and after the hunting season, even in absence of 
detailed count surveys of the population (Fig. 5, Supporting 
information). Importantly, the Bayesian approach further 
provided not only single population size estimates, but full 
quantification of uncertainty around these estimates, which 
can be crucial when determining population status and har-
vest strategies (Williams et al. 2002).

Integrated analysis of multiple data sources also allowed 
us to get annual estimates of postnatal survival, a param-
eter often tricky to measure empirically. For instance, 
Baubet et al. (2009) aimed to tag piglets inside their birth 
nest to assess survival from birth to weaning (i.e. at about 
three months of age), but failed in this task not only because 
of difficulties to locate birth nests, but also because piglets 
were often abandoned after tagging. While IPMs can be rel-
evant tools for estimating parameters hard to measure in the 
field, it is important to keep in mind that such parameters, 
which are not (or only weakly) identifiable in independent 
analyses of components datasets, should be interpreted with 
caution (Riecke et al. 2019). Violation of model assump-
tions, unaccounted-for variation and lack-of-fit of an IPM 
may propagate bias into such ‘free’ parameters, potentially 
resulting in misleading conclusions. This was likely the case 
for the high estimated value of postnatal survival. Our IPM 
estimated this parameter close to one, which is substantially 
higher than previously assumed based on expert opinion 
(0.75, Gamelon et al. 2012, Touzot et al. 2020). Since three 
complementary model assessment methods did not pro-
vide evidence for severe lack of fit of the IPM (Supporting 
information), this discrepancy does not invalidate the overall 
results of our analysis. On the contrary, the upward bias of 
our estimate of postnatal survival is informative on its own, 
indicating that there likely are parts of the model that do not 
account sufficiently for variation and/or additional processes. 
Potential causes for overestimation of postnatal survival 
could involve unaccounted-for immigration, underestima-
tion of reproductive output or bias in some growth estimates. 
While the first option seems unlikely given the high degree 
of female philopatry in wild boar (Truvé and Lemel 2003, 
Keuling et al. 2010) and the large size of our study area, 
female reproductive output is likely underestimated in our 
model due to individual heterogeneity in reproductive tim-
ing. Indeed, some females assigned with a non-reproductive 
status might have been harvested before becoming reproduc-
tively active (Servanty et al. 2009). Moreover, the fact that the 
model assumed equal growth rates for young-of-the year and 

> 1 year-old small individuals may have led to bias growth 
parameter estimate. Perceived bias in estimates of a ‘free’ 
parameter in an IPM, here postnatal survival, can therefore 
provide valuable insights into what processes and parts of the 
life cycle warrant further study – and, potentially, data collec-
tion – to improve biological understanding in future studies.

A framework based on data commonly collected in 
exploited populations

Models designed to assess interactive effects of harvest and 
other stressors on population dynamics and predict sustain-
ability of harvest management require detailed information 
on demographic parameters. More often than not, demo-
graphic data are costly and sometimes logistically challenging 
to come by, and therefore limited. The IPM we propose here 
uses data integration to overcome data limitations, and is 
therefore not solely useful to understand the dynamics of this 
particular wild boar population, but potentially applicable 
to many other exploited populations in both terrestrial and 
marine environments. Many commercially important marine 
fish species, for instance, are subject to strong harvesting 
pressure (Pauly et al. 2002, Hutchings and Reynolds 2004). 
Hence, IPM approaches can be suitable tools for both model-
ling their dynamics (Hutchings and Myers 1994, Myers et al. 
1997) and predicting population collapses (Maunder 2004, 
Saunders et al. 2018). Such IPMs used in fisheries research 
are usually based on age-structured population models 
(reviewed by Maunder and Punt 2013). However, fish are 
indeterminate growers, and their demographic parameters 
are often strongly dependent on body size. Size or body mass 
distributions may therefore be more relevant for population 
dynamics than age distributions (Sauer and Slade 1987). 
IPMs structured by body mass instead of age may also be 
more practical to implement as collecting data on body mass 
of harvested animals is less challenging and more affordable 
than collecting data on age.

More generally, our framework adds to the spate of studies 
that have recently flourished in the literature and highlight 
that trait-based approaches (such as those based on body 
mass) and demographic approaches are intertwined (Salguero-
Gómez et al. 2018, Plard et al. 2019a, Smallegange and Berg 
2019). Trait-based demographic approaches usually treat 
body mass as a continuous variable, and population models 
coupled with them – for example integral projection models 
– are therefore structured by continuous traits (Ellner and 
Rees 2006, Coulson 2012). Recently, continuous trait struc-
ture has also been incorporated into integrated approaches 
using IPMs (Plard et al. 2019b), providing unique insights 
into how individual differences shape population dynamics. 
Here, we provide an integrated model for exploited popula-
tions structured by discrete body mass classes, which is practi-
cal in a management context in many cases for at least three 
reasons. First, body size classes may be relevant and suitable 
in practice. Specifically, harvest regulations that require hunt-
ers to target or avoid killing individuals of a certain body 
mass are only feasible if hunters can assess the size of the 
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target individual prior to the kill, when it is likely moving. 
While measuring body mass at sight is impossible, assessing 
which body mass class an animal falls into is doable, particu-
larly when this assessment is aided by knowledge of the social 
structure and/or phenotypic characteristics. Management 
recommendations based on body mass classes – instead of 
exact body mass itself – may thus be more realistic to imple-
ment in the field. Second, pooling individuals into size classes 
may alleviate some challenges associated with heterogeneous 
measurement error in harvest data collected by citizens (i.e. 
hunters, Bonney et al. 2014). While body mass of harvested 
boars in the present study was collected by trained scientists 
following a specific weighing protocol, information on har-
vested individuals is collected by the hunters themselves in 
many other systems. A large number of observers employing 
different measurement methods can result in heterogeneous 
measurement error that can be challenging to account for 
when modeling body size as a continuum, making the use of 
discrete body size classes more practical in some cases. Third, 
and as mentioned above, demographic parameters of a vari-
ety of exploited species are strongly dependent on body size 
and it is thus particularly relevant to use size-class-structured 
models. This is the case for wild boar but also for alligators 
(Dunham et al. 2014), turtles (Crouse et al. 1987), and 
many fish species, to name just a few examples. For species in 
which body size is not a major structuring factor of popula-
tion dynamics (e.g. in adult birds), our framework can be 
extended to other traits that are more closely associated with 
variation in demographic rates (e.g. parasite load, social sta-
tus). We therefore argue that size-class-structured IPMs, like 
the one proposed in this study, may be widely applicable for 
modelling the dynamics of exploited populations for which 
exact trait measures are not available and for which age is 
either challenging to estimate and/or weakly associated with 
demographic variation.

Limitations and outlook

When assessing the performance of our model, we found 
that, relative to an independent analysis, the IPM predicted 
a higher probability of small individuals to grow into the 
large size class, and large individuals to be more likely to 
die from natural causes and less likely to die due to hunt-
ing (Supporting information). One explanation is that indi-
vidual differences in body size also affect parameters that are 
modelled as size-independent, in this case reporting (recov-
ery) rate. In this population, hunters are discouraged from to 
shooting large females (> 50 kg). If this shooting rule leads to 
a decrease in their likelihood to report an (accidental) kill of 
such a female, particularly if the female was not marked (i.e. 
not part of the mark–recapture–recovery study), this would 
result in the observed downward bias in hunting mortal-
ity and upward bias in natural mortality (and possibly also 
growth) for the largest females. Preliminary analyses allowing 
for size-dependence in reporting rates indicate that this may 
indeed be the case, and potential sources of heterogeneity in 
reporting rates therefore warrant attention in future studies 

(Supporting information). Analogously, our framework could 
be extended to assess the importance of other sources of indi-
vidual heterogeneity to population dynamics. For example, 
the collection of wings of shot ducks makes it possible to dif-
ferentiate both between sexes and between juvenile and adult 
individuals in the harvest (Péron et al. 2012, Koons et al. 
2017, Raftovich et al. 2018). Thus, including age-class and 
sex-structure into IPMs may shed more light on the dynam-
ics of exploited populations. Stage-structured IPMs, such as 
the one presented here, are indeed highly versatile and allow 
modelling populations structured by a variety of individual 
traits, making them attractive not only for the study of ani-
mals with a wide range of life-history strategies, but poten-
tially also for plants which often have complex life cycles with 
many different stages (Caswell 2001, Salguero-Gómez et al. 
2016). Depending on study species and focal individual trait, 
extensions to account for mortality causes other than harvest 
and natural may become relevant (e.g. mortality due to poi-
soning, Tenan et al. 2012).

Just as there is variety in which individual traits are cru-
cial to population dynamics, there is variety in the types of 
data that may be available for a study species or population. 
In the IPM we built here for wild boar, a large amount of 
data on both recaptures and harvests of marked individuals 
(CMRR data) was central. However, we acknowledge that in 
the majority of exploited populations, such data may not be 
available. Nonetheless, the integrated approach may still be 
very relevant in studies of such populations, even in – and 
maybe especially because of – absence of long-term CMRR 
data. Nater et al. (in press), for example, have shown that 
IPMs can be used to gain detailed insights into the drivers of 
population dynamics even when data on marked individuals 
is available only for a handful of individuals and for part of a 
study period. Furthermore, the Bayesian implementation of 
IPMs allows including biological knowledge from alternative 
sources via informative priors to compensate for the lack of 
mark–recapture data. Natural mortality, in particular, often 
requires assumptions and/or informative priors, and these 
can be obtained from published studies on similar (non-
exploited) populations, expert knowledge (Servanty et al. 
2010), or using promising new approaches involving phylo-
genetic meta-analyses (Abadi et al. 2014, Porteus et al. 2018).

Finally, building an IPM with a relevant structure and 
fitting it to suitable data, as done here, is only a first step. 
It constitutes, for example, an ideal framework to quantify 
density dependence in both population dynamics and all 
underlying demographic rates (Gamelon et al. 2016, 2019b). 
This may be particularly relevant for exploited systems in 
which harvest itself is density-dependent and may further 
interact with other density-dependent factors (Boyce et al. 
1999). Furthermore, once fitted, the IPM may lend itself to 
a variety of follow-up analyses with high relevance to popula-
tion management. Retrospective perturbation analyses, such 
as transient life table response experiments, can be run on 
IPM outputs to determine the relative importance of dif-
ferent drivers of past population dynamics at the levels of 
demographic rates, population structure, trait dynamics and 
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environmental influences (Koons et al. 2016, 2017, Layton-
Matthews et al. 2021). Future population dynamics, on the 
other hand, can be explored using prospective perturbation 
analyses, such as sensitivity analyses and scenario simulations, 
and with the IPM as the starting point of such analyses, fore-
casts can be made that fully reflect uncertainty, thus facilitat-
ing risk analysis by management authorities (Williams et al. 
2002, Peeters et al. 2021).

Conclusions

Recent advances in methods for fitting statistical models have 
led to both an increase in and a diversification of population 
analyses combining different sources of demographic data. 
Here, we present an IPM that uses data commonly collected 
in exploited populations (i.e. harvest counts, CMRR data, 
reproductive data from necropsies, individual size measure-
ments) but does not require information on individual age. 
Applied to a case study of a heavily hunted population of wild 
boar, this integrated analysis provides a comprehensive pic-
ture of the demographic mechanisms that have prevented its 
decline despite an exceptionally high hunting rate. We thus 
showcase the usefulness of stage-structured IPMs for estimat-
ing demographic parameters and population sizes, including 
uncertainty therein, and highlight their potential for guiding 
management decisions for exploited species.
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