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Abstract: This paper presents a framework to tackle the problem, which has received little attention in the lit-
erature, of adding variables to a synthetic population from aggregate data. The work herein thus enriches the
existing literature by proposing a new and e�icient methodology to meet this practical need. The methodology
integrates three distinct stages, the first of which theoretically models the problem as a multinomial distribu-
tion. The addition of a new variable is formulated as an entropy maximization using the variables available
in both the synthetic population and aggregate data. Solving this problem (in our specific case study) is not
possible due to the large number of constraints involved. The second stage then presents a heuristic yielding a
practical solution to the problem. This heuristic combines Bayes’ theorem with the cross-entropy minimization
algorithm. However, given the large number of parameters to be estimated by the proposed heuristic, some of
the results obtained prove to be invalid. To rectify this shortcoming, a post-processing method is applied dur-
ing a third stage to ensure the consistency of our results. The methodology is described in great detail, and
examples are provided for a better understanding of these three stages. Also, this methodology is applied to
a real-world case study. An income is allocated to each of the 157 000 households in the French city of Nantes
based on aggregate data from the FiLoSoFi database. Income constitutes an essential microsimulation variable
for taking many social and economic aspects into account (e.g. household purchasing power, redistribution
policy, tax policy). Special attention is also paid to the reproducibility of our results with the databases and
R-scripts used, all of which are freely available. This method remains general and is indeed applicable to other
variables with available aggregate data.
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1 Introduction

In recent years, microsimulation models have been applied to many fields: health (Tomintz et al. 2008; Edwards
& Clarke 2013), economic policy evaluation (Avram et al. 2013; Sutherland & Figari 2013), geography (O’Sullivan
2008), and transportation (Saadi et al. 2016; Rich 2018). This approach relies on two basic premises: 1) agent
behavior is determined by agents’ attributes, and 2) a more realistic picture of aggregate behavior can be drawn
by examining individual behavior (Tanton & Edwards 2013).
For human agents, these models require detailed attributes of individuals and households in terms of socioe-
conomic characteristics. Due to privacy, resources and time concerns, no comprehensive dataset containing
these characteristics exists at a small geographical scale. The recommended solution consists of generating
"synthetic population" representative of the actual population derived from available data. The generation of
synthetic populations refers to the methods and tools employed to assemble populations of entities that: fulfill



the requirements of both the model and simulation, and 2) fit the data or hypotheses available on the target
population (Thiriot & Sevenet 2020).
Population synthesis has been approached from two di�erent methodological perspectives: sample-less and
sample-based methods. The former category of methods (Gargiulo et al. 2010; Barthelemy & Toint 2013; Huynh
et al. 2016) does not require a sample and only considers aggregate data. In the latter category, a sample of indi-
viduals and/or households is used to control the joint distribution of attributes while generating the population.
Given their greater accuracy, sample-based methods are typically used whenever sample data are available
(Müller & Axhausen 2012; Yaméogo et al. 2020). Most statistical institutes o�er the public a population sample
in addition to an aggregate dataset. Such a sample is commonly obtained from the census or a specific rep-
resentative survey like the household travel survey (HTS) in the transportation field. However, when applying
these methods, it is only possible to generate a synthetic population from the variables already existing in the
sample. For example, if an income variable is not included in the sample, then a synthetic population with an
income cannot be directly generated. Depending on the data generation needs, it is entirely possible that not all
variables of interest are present in the sample. In such situations, it may o�en become necessary to enrich the
synthetic population with additional information, a process usually performed in two steps. During a first step,
the synthetic population is generated from the sample, while the second step adds the desired variables from
another data source (most o�en another sample) based on a set of variables common to both samples. This
latter step is known as statistical matching. According to D’Orazio et al. (2006), statistical matching: "aims to
integrate two (or more) datasets characterized by the fact that: 1) the di�erent datasets contain information on
a set of common variables and variables that are not jointly observed, and 2) the units observed in the datasets
are di�erent". Census and HTS data can thus be combined (He et al. 2020; Sallard et al. 2020).
However, a second sample that includes the additional socioeconomic variables of interest is not always avail-
able. Instead, practitioners o�en have access to other databases providing aggregate data for these variables,
e.g. income, level of education. Yet when adding variables to a synthetic population from aggregate data, the
statistical matching method can no longer be used and another approach is required. Applications of this type
are less common in the academic literature. This paper proposes a new method to meet this practical need,
namely by means of adding variables to a synthetic population generated from aggregate data. Our study
makes the following contributions:

• Introduction of a comprehensive framework based on an entropy formulation;

• Proposal of a general algorithm, which however leads to numerical failure;

• Development and application of an e�icient heuristic to easily allocate a global constant income to a
synthetic population of 157 000 households;

• Dissemination of our codes for any interested reader (R-scripts).

The remainder of this paper is organized as follows. The second section provides a brief literature review on
the allocation of new variables to a generated synthetic population of individuals and households. Section 3
is devoted to presenting the problem and relevant data. The fourth section formally describes the theoreti-
cal framework and proposed solution. The final two sections display and discuss the results of our analyses
followed by a conclusion o�ering some future perspectives.

2 Literature review

To generate a synthetic population (households and/or individuals), the most widely used methods are sample-
based. A�er producing a synthetic population, some studies focus on adding a new variable to the population
from another data source. The traditional approach involves statistical matching which is a flexible method
that draws on information available from di�erent data sources. This approach is based on a selection and
matching scheme.
In the selection operation, a list of attributes common to both synthetic population data and the additional
sample is defined. These common attributes are referred to as matching attributes and can be: gender, age,
profession, or household size. Following this step, a matching operation is conducted between the synthetic
population and the additional sample over a set common attributes: for each synthetic person, only the addi-
tional sample observations found to be equal over these attributes are eligible for matching (Bösch et al. 2016).



At the end of this second step, the synthetic individuals inherit other attributes from the additional sample of
individuals. The higher the number of common attributes, the more accurate the matching operation.
This selection and matching scheme has been used to assign additional attributes, i.e. daily activity-travel pat-
terns for each member of the synthetic population generated for Jakarta (Indonesia) (Ilahi & Axhausen 2019),
Zurich (Switzerland) (Hackl & Dubernet 2019), Rouen (France) (Vosooghi et al. 2019), Carinthia (Austria) (Felber-
mair et al. 2020), New York (USA) (He et al. 2020) and Sao Paulo (Brazil) (Sallard et al. 2020). The activity-travel
patterns were derived from household travel surveys (HTS), and each person in the synthetic population was
matched to an observation from the HTS.
Zhang et al. (2019) used another method to assign a community (a set of individuals possessing stronger ties
within a group) for each person in a synthetic population. Their framework utilizes both census data and a
sample of Call Detail Records (CDR), which is a standardized format of call logs collected by cell phone network
operators. However, due to privacy protection, no personal information is available in CDR data; therefore, the
statistical matching method could not be used. To assign individuals to communities, these authors formulated
community assignment as an integer programming problem.
Nonetheless, the two approaches described above, i.e statistical matching and integer programming, were only
designed for situations where the new data sources introduced contained disaggregate data (sample data). This
requirement serves to limit the application scope of such approaches.
A handful of approaches have been developed to add new attributes to a synthetic population from aggregate
data sources. Bösch et al. (2016) and Hackl & Dubernet (2019) assigned an activity location (places of work and
education) from aggregate commuter statistics. For each employed synthetic person, the workplace is derived
as follows: for all persons from the same municipality with the same mode of commuting, workplace munici-
palities are sampled at random from the observed commuter matrix, as weighted by their relative frequencies.
Educational locations are chosen from the closest ones of the appropriate type.
Murata et al. (2017) assigned an income to each worker in a synthetic population from a Japanese aggregate
data source using a two-step procedure. First, they used a simulated annealing method to assign a working
status (i.e. employed or unemployed) to each member of synthesized households according to three distinct
aggregate statistics showing the relationship between gender, family type and age in a prefecture or city. They
also assigned an industry type for employed individuals. Depending on both the working status and industry
type, the second step assigned an average wage to each worker using a di�erent aggregate data source. The
allocation of average wage is controlled by gender, five-year age cohort and industry type.
More recently, Hörl & Balac (2020) developed an approach to associate an income with each household of the
synthetic population by means of aggregate statistics. Income distribution by deciles is provided at the munic-
ipal level, and for each synthetic household, the municipality of residence is known. The two-step assignment
process is actually quite simple: each household is assigned to a decile with a 10 % probability; then, a random
income value is sampled with a uniform probability from the range between the lower and upper bounds of
each household’s decile.
Our study is based on the following analysis of this state-of-the-art. The allocation of variables to a synthetic
population from aggregate data is relatively unexplored in the literature. In most cases, this allocation process
relies on a random sampling distribution, which does not guarantee data consistency. Some agents (whether
individuals or households) may indeed receive irrelevant attributes. We have thus designed an e�icient and
consistent method that allocates a variable to a synthetic population from aggregate data. We first solve incon-
sistency problems through a conditional probability estimation using a combination of synthetic household
attributes. Next, we optimize the conditional probabilities obtained in order to assign the appropriate values
to the synthetic households. As a practical example herein, we assign an income to each synthetic household.
This method remains quite general and easily applicable to other variables for which aggregate data are avail-
able. To the best of our knowledge, no clear methodology for adding variables to a synthetic population from
aggregate data already exists.

3 Problem description

We begin by generating a synthetic population of households with data drawn from the French census. These
data are provided by the French National Institute of Statistics and Economic Studies (INSEE); more specifically
a sample 1 of census data for the city of Nantes has been used. This sample included approximately included

1The sample used is available via the following link: https://www.insee.fr/fr/statistiques/3625223?sommaire=3558417,
consulted on November 27, 2020.



62 000 households; data were collected from 2013 to 2017 and adjusted to the reference year of 2015. Each ob-
servation in the sample represents a unique household and its main residence characteristics (household size,
family composition, floor area of the dwelling unit, etc.). A statistical weight is also assigned to each household.
Since the objective of this paper is not to develop or test a particular generation method, the population was
generated as simply as possible. The sample was weighted according to the weight of each household. How-
ever, since the weights are not integers, we applied the Truncate, Replicate Sample (TRS) method (Lovelace &
Ballas 2013) to convert these fractional weights into integer weights. The TRS method uses both deterministic
and probabilistic sampling through a three-step process. We first selected the households with a weight above
1 and retained the integer part of these weights (Truncation step). The selected households were then repli-
cated based on their integer weights (Replication step). In the last step (Sampling), the remaining households
were randomly chosen with selection probabilities equal to the decimal part of the household weights. At the
end of this process, we obtained a synthetic population of approx. 157 000 households.
Next, we sought to allocate an income to each household of the synthetic population. For the city of Nantes, we
only had access to aggregate information on household living conditions (income, inequality and poverty indi-
cators), from a database called FiLoSoFi (for "localized disposable income system"). According to the FiLoSoFi
protocol, the unit surveyed is the tax household. This term refers to all individuals included on the same income
tax declaration.
The income provided in FiLoSoFi is an annual income per consumption unit, calculated as income divided by a
coe�icient, called consumption unit (CU), which is a weighting system that assigns a coe�icient to each member
of a household according to both household size and ages of its members. This system is used to compare
standards of living across households of di�erent sizes and compositions. The following weights (known as the
OECD scale) have been applied herein:

• 1 CU for the first adult in the household;

• 0.5 CU for every other person in the household aged 14 years or older;

• 0.3 CU for each child under 14.

For our purposes, the distributions of annual disposable income per CU (annual income available to a house-
hold for consumption and savings divided by the number of CU in that household) were used. This income mea-
sures households’ standard of living, and its distributions are given in deciles (from first to ninth). For the city
of Nantes, these deciles are provided for the entire population but also for certain specific variables, namely: 2

• number of persons in the tax household;

• family composition of the tax household;

• ownership status of the tax household;

• age of the reference person in the tax household.

Table 1 shows the di�erent modalities of variables.
2The database used is available via the following link: https://www.insee.fr/fr/statistiques/3560118, con-

sulted on November 3O, 2020.



Table 1: Attributes in the FiLoSoFi database

Variable Definition Modalities

[number of modalities]

S Number of persons in the tax household [5] 1 person; 2 persons; 3 persons; 4 persons; 5 per-
sons and more

C Family composition of the tax household [6] Single woman ; Single man; Couple without chil-
dren; Couple with children; Single-parent fam-
ily; Complex household

A Age of the reference person (RP) in the tax
household [6]

Under 30 ; 30-39 ; 40-49 ; 50-59 ; 60-74 ; 75/+

O Ownership status of the tax household [2] Owner; Tenant

A number of di�erences exist between FiLoSoFi data and aggregate census data. For example, in the FiLoSoFi
base, the term "person" is used (rather than inhabitant) in order to highlight the fact that a person a�iliated
with a household from a tax perspective is not necessarily a resident of that household (e.g. students a�iliated
with their parents for tax purposes but living in a separate dwelling). For these specific reasons, the number of
persons does not always equal the household population in the census.3

Let’s now estimate the annual disposable income per CU with the four variables in Table 1. For the sake of
simplification, this variable will be referred to as income (I). Table 2 lists the distribution of income deciles for
the city of Nantes.

3https://www.insee.fr/en/metadonnees/definition/c1285, consulted on November 30, 2020.



Table 2: Distribution of income deciles in the FiLoSoFi database

Modalities Deciles (euros)

D1 D2 D3 D4 D5 D6 D7 D8 D9

Entire population 10 303 13 336 16 024 18 631 21 263 24 188 27 774 32 620 41 308

1 person 9 794 12 961 14 914 16 865 18 687 20 763 23 357 27 069 33 514

2 persons 12 176 15 553 18 356 20 919 23 435 26 331 30 140 35 136 44 134

3 persons 10 584 13 656 16 489 19 145 21 893 24 891 28 440 33 432 42 079

4 persons 10 740 14 130 17 207 20 138 22 955 26 148 29 644 34 238 42 998

5 persons/+ 8 758 10 990 12 879 15 467 18 991 23 164 27 638 33 238 43 292

Single woman 10 714 13 334 15 332 17 186 19 031 21 111 23 715 27 360 33 480

Single man 9 016 12 224 14 288 16 388 18 268 20 305 22 908 26 696 33 551

Couple without children 14 417 18 066 20 791 23 225 25 785 28 911 32 718 37 961 47 273

Couple with children 10 822 14 238 17 646 20 665 23 596 26 837 30 528 35 573 44 977

Single-parent family 8 702 10 367 11 915 13 557 15 179 17 135 19 370 22 761 28 733

Complex households 8 692 11 052 13 063 15 207 17 648 20 452 23 853 27 843 35 179

Under 30 8 371 11 117 13 501 15 678 17 572 19 557 21 803 24 513 28 920

30-39 9 985 12 872 15 539 18 122 20 688 23 463 26 704 30 771 37 300

40-49 9 827 12 733 15 226 17 993 20 839 24 055 27 842 32 837 42 018

50-59 10 371 13 512 16 617 19 509 22 561 26 030 30 095 35 710 46 658

60-74 12 474 15 582 18 641 21 412 24 360 27 778 32 049 37 751 48 548

75/+ 14 005 16 389 18 583 20 869 23 275 26 028 29 648 34 849 43 945

Owner 16 543 19 966 22 545 25 022 27 626 30 612 34 336 39 727 50 060

Tenant 8 764 10 912 12 748 14 433 16 265 18 266 20 615 23 870 29 860

Note: The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of incomes are situated.

An estimated household income (I) distribution is sought based on:

• Household size (S);

• Family composition (C);

• Age of the reference person (A);

• Household ownership status (O).



4 Problem-solving heuristic

The objective here is to assign an income to all the various cross-modalities of the four variables SiCjAkOl,
with:

• i = 1, 2, ..., 5 : the number of modalities of household size;

• j = 1, 2, ..., 6 : the number of modalities of household composition;

• k = 1, 2, ..., 6 : the number of modalities of age of the reference person (RP);

• l = 1, 2 : the number of modalities of ownership status.

As an example,S4C5A2O2 represents the following cross-modality in the synthetic population: household size
- 4, family composition - single-parent, age of the RP - 30-39 and ownership status - tenant. The synthetic popu-
lation contains a total of 19 modalities (5+6+6+2) and 360 potential cross-modalities (5×6×6×2). Among
these cross-modalities, some are obviously infeasible, eg. S1C3AkOl (household size = 1, family composition
= couple with children). Therefore, P(S1C3AkOl) = 0 regardless of the age and ownership status modalities.
Of the 360 potential cross-modalities, 187 have nonzero probabilities. The income assignment consists of esti-
mating the probability distribution P(I|SiCjAkOl).
Since no information is available between two income deciles, the estimation of continuous probability P(I)
is replaced by an estimation of M discrete probabilities P(Im−1 < I < Im). Im is a growing sequence of all
income deciles ranging from m = 1 to M = 171 (19 modalities in the synthetic population× 9 deciles). The
decile of the entire is not taken into account because this information is redundant with the information for
each modality. For extrapolation purposes, let’s assume a linear distribution of income and then set for each
modality a minimum income I0 = 0 and a maximum income Imax equal to 1.5 times the 9th decile. Column
vector I is defined whereby the m component is the interval ]Im−1, Im[, with m = 1 to M = 190. This vector
includes the previous 171 deciles and the 19 maximum incomes, thus in all 190 modalities for the income are
defined.
We therefore estimate P(Im−1 < I < Im|SiCjAkOl) which represents 35 530 (187 × 190) cross-modalities
with income. This probability can be written in two distinct ways:

P(Im−1 < I < Im|SiCjAkOl) = P((Im−1 < I < Im) ∩ (SiCjAkOl))×
1

P(SiCjAkOl)
(1)

By applying Bayes’ theorem:

P(Im−1 < I < Im|SiCjAkOl) = P(SiCjAkOl|Im−1 < I < Im)× P(Im−1 < I < Im)

P(SiCjAkOl)
(2)

with :
i = 1, 2, ..., 5
j = 1, 2, ..., 6
k = 1, 2, ..., 6
l = 1, 2

The remainder of this section presents a model, based on Equation 1, that is capable of theoretically solving
this problem. For our particular case study however, the practical resolution of this problem fails. In a second
step, we will propose a heuristic based on Equation 2 to solve the problem in practice.

4.1 Theoretical framework

We have separately estimated the two parts of Equation 1 as follows.

4.1.1 Step 1 : The P(SiCjAkOl) estimate

P(SiCjAkOl) represents the probabilities corresponding to the various cross-modalities in the synthetic pop-
ulation. These joint probabilities are calculated from the synthetic population. For example:
P(S4C5A2O2) = number of synthetic households S4C5A2O2

total number of synthetic households



4.1.2 Step 2 : The P((Im−1 < I < Im) ∩ (SiCjAkOl)) estimate

This probability is estimated by the quantity:

P((Im−1 < I < Im) ∩ (SiCjAkOl)) =
number of households(Im−1 < I < Im) ∩ (SiCjAkOl)

total number of synthetic households (3)

Number of households (Im−1 < I < Im)∩ (SiCjAkOl) is not known but can be estimated as demonstrated
in the following.
(Im−1 < I < Im)∩ (SiCjAkOl) is one cross-modality among 35 530 and shall be numbered it k. The number
of households whose cross-modality with income is (Im−1 < I < Im) ∩ (SiCjAkOl) can then be denoted nk,
and the probability of this cross-modality being denoted pk is the kth component of column vector p. These
notations serve to simplify Equation 3 as follows:

P((Im−1 < I < Im) ∩ (SiCjAkOl)) = pk =
nk

N
(4)

Let’s now introduce the random vector n = (n1 . . . ns)
t, which describes a state of the population where n1

households have the cross-modality with income 1,... and ns households have the cross-modality with income
s. The probability distribution of n is thus described by a multinomial distribution:

P(n|N, s,q) = N !

s∏
k=1

qnk

k

nk!
(5)

where qk is the prior probability of the cross-modality with income k. For the sake of simplicity, let’s replace
P(n|N, s,q) by P(n) in the following.
n is constrained in order to ensure its consistency with the total number of households, the joint frequency
calculated from the synthetic population, and the deciles.

•
∑

k nk = N is the natural constraint.

•
∑

k∈MSiCjAkOl
nk = the number of synthetic households

whose cross-modality in the synthetic population is SiCjAkOl.
MSiCjAkOl

is the subset of indices corresponding to the cross-modality SiCjAkOl regardless of the in-
come modalities ]Im−1, Im[. These constraints ensure consistency between n and the synthetic popula-
tion.

•
∑

k∈M(Id−1,Si
<I<Id,Si

)
nk = 10%× nSi

Id,Si
is the income value corresponding to decile d for modality Si. Table 2 displays these values.

M(Id−1,Si
<I<Id,Si

) is the subset of indices corresponding to the modality Si, with Id−1,Si
< I < Id,Si

regardless of the values of other modalities of the synthetic population CjAkOl. nSi is the number of
households whose modality is Si. This constraint is repeated for all modalities of all variables and for all
deciles. This set of constraints ensures the compatibility of n with the income information.

These constraints are linear, and summarized by:

C · n = b (6)

By convention, the first row of C corresponds to the natural constraint; its components sum to equal 1. This
property will be used subsequently.
The best solution to our problem is the most likely realization of the random vector n:

n∗ = arg max
C·n=b

P(n) (7)

In accordance with Niven (2005), we will demonstrate that this optimization problem can be approximated by
a cross-entropy minimization problem, which is much easier to solve.



The logarithm of P(n) is introduced in order to transform the multiplications
∏

from Equation 5 into a sum Σ.
The referenced optimization problem then becomes:

n∗ = arg max
C·n=b

log(P(n)) (8)

In the following, n is considered to be a real random vector and not an integer random vector, i.e. components
of this vector can be non-integer.
n∗ is found by applying Fermat’s Rule to the Lagrangian of this last maximization, i.e. the di�erentiation of the
Lagrangian L at n∗ is zero. Let’s begin by di�erentiating the Lagrangian:

∂L

∂nk
=

∂

∂nk
(log(N !)− log(nk!)) + log(qk) + λ ·Ck (9)

with λ being Lagrange’s multipliers, and Ck the kth column of Matrix C.
According to Equation 9, this di�erentiation requires di�erentiating log(nk!) with respect to nk, a step that can
be accomplished analytically using Stirling’s Approximation.

log(nk!) ≈ nk log(nk)− nk

From this approximation and by recalling that N =
∑

k nk, Equation 9 becomes:

∂L

∂nk
≈ log(N)− log(nk) + log(qk) + λ ·Ck

Fermat’s Rule yields:
log(qk)− log(

n∗k
N

) + λ ·Ck = 0 (10)

The first component of vector Ck, i.e Ck1, equals 1 according to the comment in Equation 6, which implies that
for one λ, we are able to define λ′ = λ except for its fist component. Therefore λ′1 = λ1 + 1, such that:

log(qk)− log(
n∗k
N

) + λ′ ·Ck = 1

This equation defines the solution to the following minimization problem:

p∗ = arg min
C·p=b/N

pt · log(
p

q
) (11)

p is a column vector whose component k is pk; log(p
q ) must be read as the column vector whose component k

is log(pk

qk
).

By changing the variable of interestnk into pk = nk

N , Optimization Problem 11 is a minimization of the Kullback-
Leibler Divergence from q, o�en called the cross-entropy minimization problem and denoted MinxEnt in the
literature. Its solution is then the solution to the multinomial maximization problem 8 subject to Stirling’s Ap-
proximation. Since the solution to Problem 8 is the most likely realization, the MinxEnt solution will be called
the most probable distribution subject to Stirling’s Approximation.
In the absence of prior information on the probability of a given cross-modality with income, according to
Laplace’s Principle of Insu�icient Reason, all prior probabilities are then equal, i.e. q = 1

s , with s being the
number of cross-modalities with income. In this case, cross-entropy minimization Problem 11 becomes the
entropy maximization problem, as denoted by MaxEnt in the literature:

p∗ = arg max
C·p=b/N

−p log(p) (12)

In the following discussion, this analysis of the root of MaxEnt is applied to our specific study, given our lack
of prior information on discrete probabilities P((Im−1 < I < Im) ∩ (SiCjAkOl)). However, two types of
constraints are present, one on cross-modalities (Equation 15) in the synthetic population the other on income
deciles (Equation 16). Let’s now use the maximum entropy method:



Max −
∑
i,j,k,l

P((Im−1 < I < Im) ∩ (SiCjAkOl)). ln P((Im−1 < I < Im) ∩ (SiCjAkOl)) (13)

subject to the following constraints.
The natural constraint: ∑

i,j,k,l

P((Im−1 < I < Im) ∩ (SiCjAkOl)) = 1 (14)

Constraints derived from the synthetic population:∑
m

P((Im−1 < I < Im) ∩ (SiCjAkOl)) = P(SiCjAkOl) (15)

This constraint means that for a given cross-modality, the sum of all income probabilities is equal to the prob-
ability of the cross-modality. Since 187 cross-modalities exist, 187 constraints of this type can be derived, with
those from the deciles being:

∑
j,k,l

P((SiCjAkOl) ∩ (I < Id,Si)) = d

∑
i,k,l

P((SiCjAkOl) ∩ (I < Id,Cj
)) = d

∑
i,j,l

P((SiCjAkOl) ∩ (I < Id,Ak
)) = d (16)

∑
i,j,k

P((SiCjAkOl) ∩ (I < Id,Ol
)) = d

where d= 0.1, 0.2, ..., 0.9 and Id is the income value corresponding to decile d for a given modality of the synthetic
population.
In all, 19 modalities are present in the synthetic population; for each modality, there are 9 deciles and one
maximum income, hence yielding 190 constraints of this type.
Let’s rely on Kapur & Kesavan (1992) and Mattos & Veiga (2004) to numerically solve optimization Problem 12.
The numerical algorithm is based on the solution to Equation 10:

pk = qk exp(λ ·Ck) (17)

This equation is the key to rewriting optimization Problem12 in its dual form:

λ∗ = arg max
∑
k

(log(qk) + λ ·Ck)qk exp(λ ·Ck) + λ · (C · p− b/N) (18)

The variables of interest in this dual optimization are the Lagrange multipliers whose number is considerably
less than the number of variables of interest in the primal optimization, i.e. the number of constraints is far
less than the dimension of the probability distribution. This dual optimization problem is solved by a Newton’s
algorithm, which is well suited and e�icient by virtue of having demonstrated that the gradient and the Hessian
of the objective function can be calculated analytically (Kapur & Kesavan 1992).
Before launching the optimization algorithm, it is advisable to verify that the constraints are consistent; other-
wise every optimization algorithm would fail. This step implies searching for an initial probability distribution
p0 consistent with the constraints. The initial distribution was found by solving the linear programming prob-
lem:

(p0 0) = arg min
C·p+∆=b/N,∆≥0

1 ·∆ (19)



where: ∆ is a column vector whose dimension is equal to the number of constraints, 1 is a row vector of one
whose dimension is the same as ∆, and 0 is a column vector of zero with the same dimension as ∆. (p0 0)
is the concatenation of p0 and 0. The variable of interest in this Linear Programming set-up are p and ∆. The
initialization is set by p = 0 and ∆ = b/N . If the system is consistent, the minimum is reached with probability
distribution p0 that verifies: C · p0 = b/N and ∆ = 0. Linear programming Problem 19 is easy to solve
numerically.
Some implementations of MaxEnt algorithm require that matrix C be full rank. If such is not the case, a subset
of the rows of C is selected by using the QR decomposition with column pivoting of the transpose Matrix Ct

(Golub et al. 1996). This point is not fundamental to understanding our approach and is being mentioned here
in order to facilitate the understanding of the R-script accompanying this paper.
Our specific study, entails a numerical problem raised by virtue of using this classical numerical approach. Our
optimization problem includes 378 (187+190+1) constraints (actually slightly less since all constraints are not
independent) and 35 530 variables of interest. Equation 17 becomes numerically unstable due to the expo-
nential function, which depends on too many of the various λ component values. The failure to compute this
equation leads to failure of the algorithm. A heuristic yielding a practical solution is proposed below. The global
optimization problem will be divided into several optimization sub-problems in order to lower the number of
variables of interests and constraints.

4.2 Problem-solving heuristic

Let’s proceed starting from Equation 2 (Bayes’ theorem):

P(Im−1 < I < Im|SiCjAkOl) = P(SiCjAkOl|Im−1 < I < Im)× P(Im−1 < I < Im)

P(SiCjAkOl)

with :
i = 1, 2, ..., 5
j = 1, 2, ..., 6
k = 1, 2, ..., 6
l = 1, 2

4.2.1 Step 1 : The P(SiCjAkOl) estimate, see Section 4.1.1.

4.2.2 Step 2 : The P(Im−1 < I < Im) estimate

Im is a growing sequence of all income deciles (171 total) and the 19 maximum incomes (see Section 4). Let’s
now proceed with a linear extrapolation of these 190 incomes from the total population deciles (first row of
Table 2). For example, if Im lies between the Id−1 and Id deciles of the total population, we estimate:

P(I < Im) = P(I < Id−1) +
Im − Id−1
Id − Id−1

(P(Id)− P(Id−1)) (20)

P(I < Im−1) is estimated a similar manner; consequently: P(Im−1 < I < Im) = P(I < Im)− P(I < Im−1).

4.2.3 Step 3 : The P(SiCjAkOl|Im−1 < I < Im) estimate

• The next step consists of searching for the P(SiCjAkOl|Im−1 < I < Im) distribution (p distribution).
These quantities correspond to the 190 probability distributions, with each distribution being considered
separately. Each distribution will be the solution to a MinxEnt optimization. The previous large optimiza-
tion is now broken down into 190 smaller optimizations.

• Another di�erence with the previous large optimization problem is the prior assumptions. Let’s suppose
that P(SiCjAkOl|Im−1 < I < Im) has an a priori distribution, such as the P(SiCjAkOl) distribution
rather than a uniform distribution, which implies supposing that P(SiCjAkOl) provides more informa-
tion on P(SiCjAkOl|Im−1 < I < Im) than Laplace’s Principle of Insu�icient Reason.



As demonstrated above, the most probable distribution is the solution to the minimum cross-entropy (MinxEnt)
(subject to Stirling’s Approximation). The MinxEnt formulation is as follows:

min −
∑
i,j,k,l

P(SiCjAkOl|Im−1 < I < Im) ln
P(SiCjAkOl|Im−1 < I < Im)

P(SiCjAkOl)
(21)

Subject to constraints on deciles :

P(Si|Im−1 < I < Im) = P(Im−1 < I < Im|Si)×
P(Si)

P(Im−1 < I < Im)

P(Cj |Im−1 < I < Im) = P(Im−1 < I < Im|Cj)×
P(Cj)

P(Im−1 < I < Im)

P(Ak|Im−1 < I < Im) = P(Im−1 < I < Im|Ak)× P(Ak)

P(Im−1 < I < Im)
(22)

P(Ol|Im−1 < I < Im) = P(Im−1 < I < Im|Ol)×
P(Ol)

P(Im−1 < I < Im)

P(Si), P(Cj), P(Ak) and P(Ol) are all obtained from the synthetic population.
P(Im−1 < I < Im|Si), P(Im−1 < I < Im|Cj), P(Im−1 < I < Im|Ak) and P(Im−1 < I < Im|Ol) have also
been estimated by linear extrapolation for each modality in the same way as in Step 2 for the entire population.
Ultimately, 19 constraints and 187 variables of interest are obtained.
The consistency of each optimization is verified by means of Linear Programming in using the same method as
described in the previous approach. The rank deficiency of the constraints matrix is also treated just like in the
previous large optimization by using QR decomposition.
An existing implementation of the MinxEnt R package was adapted to our specific problem (package “minxent”
by Senay Asma, available at the Comprehensive R Archive Network (CRAN)).More specifically, we used a com-
puter of 2 x 2.60GHz CPU cores and 16 GB RAM; the computation time for these 190 optimizations was less than
1.5 seconds.

5 Results

In the proposed heuristic, we have successively estimated P(SiCjAkOl) (Step 1), P(Im−1 < I < Im) (Step
2) and P(SiCjAkOl|Im−1 < I < Im) (Step 3). We are now able to set the P(Im−1 < I < Im|SiCjAkOl)
distribution as formulated in Equation 2. The total number of estimated probabilities equals 35 530 (i.e 190
modalities for the income× 187 possible combinations). A�er a detailed analysis of these probabilities, some
incorrect values were identified:

• P(I < Im|SiCjAkOl) > 1

• P(Im−1 < I < Im|SiCjAkOl) < 0

These invalid probabilities are due to both the relatively large number of parameters to be estimated and the
very small di�erences existing between two successive deciles. For example, in Table 2 between deciles D8 for
complex households (27 843 euros) and D7 for age modality 40-49 (27 842 euros), the di�erence amounts to just
one euro. To correct this error, we performed a post-processing step in order to filter these invalid probabilities.
The post-processing procedure is described below :

• For each P(I < Im|SiCjAkOl) > 1, we set P(Im−1 < I|SiCjAkOl) = 0; this renormalization of prob-
ability distribution P(Im−1 < I < Im|SiCjAkOl) is intended to avoid sensitivity to maximum Income
Imax, which has been arbitrarily fixed at 1.5 times the 9th decile (1.5×D9).



• For each P(Im−1 < I < Im|SiCjAkOl) < 0 , the interval is enlarged until
P(Im−1 < I < Im+k|SiCjAkOl) ≥ 0 with k ≥ 1, which means that components m through m+k-1 are
removed from income column vector I.

This post-processing step has resulted in larger income brackets while also ensuring data consistency. The
remaining probabilities a�er this step are those of income ranges according to household characteristics. A
specific income is then to be allocated to each household of the synthetic population. Through the synthetic
population, the number of households for each cross-modality is known, as is the income distribution for each
cross-modality.

• We begin by compiling the number of households for each income range according to the income distri-
bution. For example, the total number of S1C1A1O2 households (size=1, single woman, under 30, ten-
ant) equals 14 613. From the P(Im−1 < I < Im|S1C1A1O2) distribution, income groups are therefore
assigned to households in this cross-modality.

• Next, a specific income is randomly assigned according to a continuous uniform distribution; this income
lies between the lower and upper bounds of each income range.

Upon completion of of these two operations, each household in the synthetic population is allocated an income.
The next section will verify the accuracy of our results.

5.1 Validation of results

To assess the performance of the proposed heuristic, let’s compare our outputs (i.e. the simulated income for
each household) with empirical observations (deciles from FiLoSoFi). New deciles from the specific simulated
household incomes were first recalculated (Table 3) before applying two validation methods.



Table 3: Distribution of simulated deciles

Modalities Deciles (euros)

D1 D2 D3 D4 D5 D6 D7 D8 D9

Entire population 9 993 13 333 16 053 18 632 21 249 24 152 27 684 32 500 41 549

1 person 9 699 12 664 14 972 17 160 19 361 21 842 24 969 29 408 37 239

2 persons 11 086 15 692 18 803 21 545 24 237 24 411 31 302 36 758 48 706

3 persons 9 746 13 397 16 649 19 713 22 840 25 931 29 685 35 263 47 193

4 persons 10 441 14 085 17 833 21 019 24 052 27 275 30 603 35 619 46 409

5 persons/+ 8 867 11 120 12 758 16 048 20 769 24 991 29 652 35 879 49 401

Single woman 10 293 13 106 15 295 17 376 19 556 22 016 25 177 29 475 36 872

Single man 9 093 12 340 14 528 16 902 19 147 21 612 24 721 29 356 37 835

Couple without children 14 381 18 363 21 276 23 837 26 554 29 777 33 981 39 419 54 456

Couple with children 10 837 14 475 18 359 21 648 24 663 27 889 31 737 37 760 51 965

Single-parent family 8 703 10 617 12 029 13 782 15 818 18 248 21 331 25 680 32 993

Complex households 9 085 13 338 15 809 17 848 20 301 22 927 25 887 30 109 35 901

Under 30 8 463 11 465 13 820 16 049 18 104 20 246 22 700 26 016 31 803

30-39 10 355 13 206 16 002 18 701 21 425 24 464 27 706 31 898 39 302

40-49 10 049 13 002 15 594 18 577 21 637 24 943 28 894 33 657 44 341

50-59 10 719 13 849 17 042 20 082 23 333 26 831 30 972 37 151 50 267

60-74 12 564 15 818 19 060 22 002 25 108 28 716 32 658 39 107 54 787

75/+ 14 055 16 638 18 967 21 299 23 833 26 691 30 533 35 770 46 406

Owner 17 025 20 499 23 125 25 598 28 221 31 306 35 196 41 078 53 325

Tenant 8 529 11 692 13 724 15 528 17 466 19 676 22 377 26 311 32 716

Note: The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of incomes are situated.

According to the first method, a graphical representation of the simulated and observed deciles was developed
through quantile-quantile plots (Q-Q plots); these representations are a graphical evaluation of the fit between
simulated and real data and moreover easily detect possible outliers. Figure 1 compares the distribution of
simulated deciles to the distribution of real (observed) deciles for each modality as well as for the entire pop-
ulation. In these Q-Q plots, each point represents a simulated decile, and the reference line plotted is the first
bisector. If the two distributions are identical, the points on the graph follow the line exactly.
The obtained Q-Q plots indicate a perfect fit between the simulated deciles and observed deciles from FiLoSoFi
for the entire population. For all other plotted modalities, the majority of points (over 80% ) fit along the first
bisector, thus showing that the simulated deciles fit very well with the observed deciles, which demonstrates
that the synthetic population has a simulated income on the whole consistent with the FiLoSoFi data.
We can also state that the fit of modalities "complex households", "5 persons or more" and "single-parent fam-
ily" is not as good. It can also be noted that in general, deciles D8 and especially D9 deviate the most from the
reference line.
Next, the second validation method estimates the accuracy of the proposed heuristic with two metrics typically
used in a microsimulation context:

• Absolute error |Im − In|

• Relative error | Im−InIm
|

where Im and In are the observed and simulated deciles for each modality. Tables 4 and 5 respectively present
the absolute and relative errors that exist between the two distributions. For the entire population deciles, the
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Figure 1: Quantile-Quantile plots between simulated and observed deciles

di�erences between simulated and observed deciles are very small (around 3% for the first decile D1 and less
than 0.6% for the other deciles), with absolute di�erences of 3 euros and 1 euro respectively for deciles D2 and
D4 (Table 4).
For the other modalities, small di�erences are also observed: 88% of the simulated deciles exhibit di�erences
of less than 10% with the real deciles and about 69% of the simulated deciles have di�erences of less than
5%. The smallest relative errors are observed for the variables "age of the reference person" and "number of
persons in the tax household", with di�erences of less than 1% for decile D1 of modalities "75/+", "60-74" and
"1 person". Morever, our results show that the simulated incomes are more consistent with the FiLoSoFi data
for deciles D1 through D7. More than 80% of these deciles have a relative di�erence of less than 5% with the
real data.
In contrast, only 71% of the simulated D8 and D9 deciles have relative di�erences of less than 10% with the real
deciles. As previously noted in Figure 1, larger di�erences are observed for the household family composition
variable. For the "complex household" and "single parent family" modalities in particular, the respective rela-
tive di�erences amount to over 15% (for deciles D2 to D4) and over 10% (for deciles D7 to D9). Possible reasons
for such discrepancies will be discussed in the next section.



Table 4: Absolute errors between observed and simulated deciles

Modalities Deciles (euros)

D1 D2 D3 D4 D5 D6 D7 D8 D9

Entire population 310 3 29 1 14 36 90 120 241

1 person 95 297 58 295 674 1 079 1 612 2 339 3 725

2 persons 1 090 139 447 626 802 1 080 1 162 1 622 4 572

3 persons 838 259 160 568 947 1 040 1 245 1 831 5 114

4 persons 299 45 626 881 1 097 1 127 959 1 381 3 411

5 persons/+ 109 130 121 581 1 778 1 827 2 014 2 641 6 109

Single woman 421 228 37 190 525 905 1 462 2 115 3 392

Single man 77 116 240 514 879 1 307 1 813 2 660 4 284

Couple without children 36 297 485 612 769 866 1 263 1 458 7 183

Couple with children 15 237 713 983 1 067 1 052 1 209 2 187 6 988

Single-parent family 1 250 114 225 639 1 113 1 961 2 919 4 260

Complex households 393 2 286 2 746 2 641 2 653 2 475 2 034 2 266 722

Under 30 92 348 319 371 532 689 897 1 503 2 883

30-39 370 334 463 579 737 1 001 1 002 1 127 2 002

40-49 222 269 368 584 798 888 1 052 820 2 323

50-59 348 337 425 573 772 801 877 1 441 3 609

60-74 90 236 419 590 748 938 609 1 356 6 239

75/+ 50 249 384 430 558 663 885 921 2 461

Owner 482 533 580 576 595 694 860 1 351 5 265

Tenant 235 780 976 1 095 1 201 1 410 1 762 2 441 2 856

Note: The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of
incomes are situated.



Table 5: Relative errors between observed and simulated deciles (%)

Modalities Deciles

D1 D2 D3 D4 D5 D6 D7 D8 D9

Entire population 3.01 0.02 0.18 0.01 0.07 0.15 0.32 0.37 0.58

1 person 0.97 2.29 0.39 1.75 3.61 5.20 6.90 8.64 11.11

2 persons 8.95 0.89 2.44 2.99 3.42 4.10 3.86 4.62 10.36

3 persons 7.92 1.90 0.97 2.97 4.33 4.18 4.38 5.48 12.15

4 persons 2.78 0.32 3.64 4.37 4.78 4.31 3.24 4.03 7.93

5 persons/+ 1.24 1.18 0.94 3.76 9.36 7.89 7.29 7.95 14.11

Single woman 3.93 1.71 0.24 1.11 2.76 4.29 6.16 7.73 10.13

Single man 0.85 0.95 1.68 3.14 4.81 6.44 7.91 9.96 12.77

Couple without children 0.25 1.64 2.33 2.64 2.98 3.00 3.86 3.84 15.19

Couple with children 0.14 1.66 4.04 4.76 4.52 3.92 3.96 6.15 15.54

Single-parent family 0.01 2.41 0.96 1.66 4.21 6.50 10.12 12.82 14.83

Complex households 4.52 20.68 21.02 17.37 15.03 12.10 8.53 8.14 2.05

Under 30 1.10 3.13 2.36 2.37 3.03 3.52 4.11 6.13 9.97

30-39 3.71 2.59 2.98 3.20 3.56 4.27 3.75 3.66 5.37

40-49 2.26 2.11 2.42 3.25 3.83 3.69 3.78 2.50 5.53

50-59 3.36 2.49 2.56 2.94 3.42 3.08 2.91 4.04 7.74

60-74 0.72 1.51 2.25 2.76 3.07 3.38 1.90 3.59 12.85

75/+ 0.36 1.52 2.07 2.06 2.40 2.55 2.99 2.64 5.60

Owner 2.91 2.67 2.57 2.30 2.15 2.27 2.50 3.40 10.52

Tenant 2.68 7.15 7.66 7.59 7.38 7.72 8.55 10.23 9.56

Note: The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of
incomes are situated.

6 Discussion

The discussion herein comprises two parts: an analysis of case study results, and an assessment of method
applicability.

6.1 Case study analysis

Our findings suggest that the proposed methodology yields results consistent with most of the observed ag-
gregate income data despite the fact that a number of income data points were removed in the post-processing
stage. However, some larger di�erences were found for specific household modalities as well as for the highest
deciles (D8 and D9).

6.1.1 Larger di�erences for some household modalities

Di�erences between modalities are due to the units surveyed in the two data sources used as highlighted in
the problem description section (paragraph 3). According to the FiLoSoFi protocol, the survey unit is the tax
household (all individuals included on the same income tax declaration). A person can thus be a�iliated with a
household from a tax perspective without necessarily residing in that household. According to the census pro-
tocol, only the inhabitants of a given dwelling are taken into account. Consequently, the number of households



and the definition of certain modalities in FiLoSoFi are not always the same as in the population census data.
This phenomenon is especially true for the household family composition variable, for which di�erences exist in
the definition of modalities between the two sources. Some households may therefore belong to two di�erent
modalities. For example, from the standpoint of the population census, a single-parent household comprises a
lone parent and one or more single children (who are not parents). On the other hand, in the FiLoSoFi database,
a tax household can be considered as a single-parent household if it is composed of several persons with the
lead tax registrant being single, divorced or widowed. Such a household would be considered as a single-parent
household in FiLoSoFi and as a complex household in the census. These discrepancies are therefore beyond
our control and cannot be corrected by the proposed heuristic.

6.1.2 Larger di�erences for the highest deciles (D8 and D9)

Since no information is available between any two income deciles, we have assumed a linear income distri-
bution. For each modality, we have arbitrarily set a maximum decile D10= D9×1.5 for purposes of the linear
approximation. This assumption may however be incorrect for the highest deciles and thus lead to certain bi-
ases.

6.2 Applicability of this methodology

The databases and R-scripts used herein are freely available. We will raise the level of community appropriation
of these tools by means of developing an R library.
In our case study, aggregate data take the form of deciles. Our heuristic has been designed to process this type of
information. However, our general methodology is able to incorporate various types of aggregate data: average
income, number of square meters per type of household, etc. As an example, we can use typical aggregate data
such as the mobility data available in Switzerland 4 or the United States 5, to determine a transportation mode
or mobility status of synthetic individuals.
Our methodology could be formally applied to sample-less synthetic population generation as well, in which
case the cross-modality probabilities are computed from the synthetic population. We did not test our method-
ology for this specific case.
Numerical problems arise when carrying out the large optimization method for our case study. We are currently
working on alternative, more numerically robust algorithms. In the meantime, we feel that this method can be
applied to problems with fewer constraints and variables of interest, as suggested by some preliminary simu-
lations we conducted on smaller-scale problems. On such problems, the optimized and heuristic solutions are
close to one another. These points will be subsequently studied in greater depth.
Since no information was available between two successive income deciles, income linearity was hypothesized.
Moreover, for each modality we set a maximum income Imax equal to 1.5 times the 9th decile and a minimum
income Imin to zero. These assumptions however may be incorrect and produce erroneous results. This point
can be remedied by studying the literature in income economics to gain better a priori knowledge of income
distribution and, particularly, for these extreme incomes.
The accuracy of Stirling’s Approximation depends on the number of households for a cross-modality with in-
comes. If this number is greater than 20, the approximation underestimated by less than 10%. To numerically
resolve the optimization problem, the number of households for a cross-modality with income is considered as
a real variable, thus suggesting that this number must be greater than 20. Caution is therefore required when
handling results relative to a small number of households, which is a quite common cautious rule in statistics.
This last remark provides an a posteriori justification of our post-processing treatment, which yielded larger
income brackets. One method improvement could consist of finding the right income discretization in order to
produce wider income ranges that lead to a more suitable number of households for a cross-modality with in-
comes. This change would result in fewer invalid probabilities, as suggested by our post-processing treatment.

4https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/tables.assetdetail.7226558.html,
consulted on January 20, 2020.

5https://www.census.gov/content/census/en/data/tables/2020/demo/geographic-mobility/cps-2020.html,
consulted on January 20, 2020.



7 Conclusion

This paper has presented a methodology to tackle the problem of adding variables to a synthetic population
from aggregate data; this problem has to date received scant attention in the literature. Such a methodology
integrates three distinct stages, the first of which theoretically models the problem by means of a multinomial
distribution. The issue herein is to identify the most probable conditional probability of the income in knowing
the cross-modalities of the synthetic population. This conditional probability derives from an entropy maxi-
mization problem based on the variables available in both the synthetic population and the aggregate data. In
our specific case study, solving this problem directly proves to be impossible due to the high number of con-
straints. The second stage then presented a heuristic o�ering a practical solution to the problem. This heuristic
combined Bayes’ theorem and the cross-entropy minimization algorithm. However, given the large number of
parameters needed to be estimated by the proposed heuristic, some of the results obtained were invalid. To
rectify this shortcoming, a post-processing method was applied during a third stage so as to ensure the consis-
tency of our results.
An income was allocated to each of the 157 000 households in the city of Nantes (France) based on aggregate
data from the FiloSoFi through use of this method. The results were easy to compute and wound up being
consistent with most of the aggregate data.
Special attention was paid to the reproducibility of our results with the databases and R-scripts used, all of
which are freely available. This method remains general and indeed applicable to other variables with avail-
able aggregate data. To the best of our knowledge, no clear methodology for adding variables to a synthetic
population from aggregate data already exists. An R library based on the findings presented herein is currently
under development.
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