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This paper presents a framework to tackle the problem, which has received little attention in the literature, of adding variables to a synthetic population from aggregate data. The work herein thus enriches the existing literature by proposing a new and e icient methodology to meet this practical need. The methodology integrates three distinct stages, the first of which theoretically models the problem as a multinomial distribution. The addition of a new variable is formulated as an entropy maximization using the variables available in both the synthetic population and aggregate data. Solving this problem (in our specific case study) is not possible due to the large number of constraints involved. The second stage then presents a heuristic yielding a practical solution to the problem. This heuristic combines Bayes' theorem with the cross-entropy minimization algorithm. However, given the large number of parameters to be estimated by the proposed heuristic, some of the results obtained prove to be invalid. To rectify this shortcoming, a post-processing method is applied during a third stage to ensure the consistency of our results. The methodology is described in great detail, and examples are provided for a better understanding of these three stages. Also, this methodology is applied to a real-world case study. An income is allocated to each of the 157 000 households in the French city of Nantes based on aggregate data from the FiLoSoFi database. Income constitutes an essential microsimulation variable for taking many social and economic aspects into account (e.g. household purchasing power, redistribution policy, tax policy). Special attention is also paid to the reproducibility of our results with the databases and R-scripts used, all of which are freely available. This method remains general and is indeed applicable to other variables with available aggregate data.

Introduction

In recent years, microsimulation models have been applied to many fields: health [START_REF] Tomintz | The geography of smoking in leeds: estimating individual smoking rates and the implications for the location of stop smoking services[END_REF][START_REF] D'orazio | Simobesity: combinatorial optimisation (deterministic) model[END_REF], economic policy evaluation [START_REF] Avram | The distributional e ects of fiscal consolidation in nine eu countries[END_REF]Sutherland & Figari 2013), geography (O'Sullivan 2008), and transportation [START_REF] Saadi | Hidden markov model-based population synthesis[END_REF][START_REF] Rich | Large-scale spatial population synthesis for denmark[END_REF]). This approach relies on two basic premises: 1) agent behavior is determined by agents' attributes, and 2) a more realistic picture of aggregate behavior can be drawn by examining individual behavior [START_REF] Tanton | Introduction to spatial microsimulation: history, methods and applications[END_REF].

For human agents, these models require detailed attributes of individuals and households in terms of socioeconomic characteristics. Due to privacy, resources and time concerns, no comprehensive dataset containing these characteristics exists at a small geographical scale. The recommended solution consists of generating "synthetic population" representative of the actual population derived from available data. The generation of synthetic populations refers to the methods and tools employed to assemble populations of entities that: fulfill the requirements of both the model and simulation, and 2) fit the data or hypotheses available on the target population [START_REF] Thiriot | Pairing for generation of synthetic populations: the direct probabilistic pairing method[END_REF].

Population synthesis has been approached from two di erent methodological perspectives: sample-less and sample-based methods. The former category of methods [START_REF] Gargiulo | An iterative approach for generating statistically realistic populations of households[END_REF][START_REF] Barthelemy | Synthetic population generation without a sample[END_REF][START_REF] Huynh | A heuristic combinatorial optimisation approach to synthesising a population for agent-based modelling purposes[END_REF] does not require a sample and only considers aggregate data. In the latter category, a sample of individuals and/or households is used to control the joint distribution of attributes while generating the population.

Given their greater accuracy, sample-based methods are typically used whenever sample data are available (Müller & Axhausen 2012;[START_REF] Yaméogo | Comparing methods for generating a twolayered synthetic population[END_REF]. Most statistical institutes o er the public a population sample in addition to an aggregate dataset. Such a sample is commonly obtained from the census or a specific representative survey like the household travel survey (HTS) in the transportation field. However, when applying these methods, it is only possible to generate a synthetic population from the variables already existing in the sample. For example, if an income variable is not included in the sample, then a synthetic population with an income cannot be directly generated. Depending on the data generation needs, it is entirely possible that not all variables of interest are present in the sample. In such situations, it may o en become necessary to enrich the synthetic population with additional information, a process usually performed in two steps. During a first step, the synthetic population is generated from the sample, while the second step adds the desired variables from another data source (most o en another sample) based on a set of variables common to both samples. This latter step is known as statistical matching. According to D' Orazio et al. (2006), statistical matching: "aims to integrate two (or more) datasets characterized by the fact that: 1) the di erent datasets contain information on a set of common variables and variables that are not jointly observed, and 2) the units observed in the datasets are di erent". Census and HTS data can thus be combined [START_REF] He | Evaluation of city-scale built environment policies in new york city with an emerging-mobility-accessible synthetic population[END_REF][START_REF] Sallard | A synthetic population for the greater são paulo metropolitan region[END_REF]).

However, a second sample that includes the additional socioeconomic variables of interest is not always available. Instead, practitioners o en have access to other databases providing aggregate data for these variables, e.g. income, level of education. Yet when adding variables to a synthetic population from aggregate data, the statistical matching method can no longer be used and another approach is required. Applications of this type are less common in the academic literature. This paper proposes a new method to meet this practical need, namely by means of adding variables to a synthetic population generated from aggregate data. Our study makes the following contributions:

• Introduction of a comprehensive framework based on an entropy formulation;

• Proposal of a general algorithm, which however leads to numerical failure;

• Development and application of an e icient heuristic to easily allocate a global constant income to a synthetic population of 157 000 households;

• Dissemination of our codes for any interested reader (R-scripts).

The remainder of this paper is organized as follows. The second section provides a brief literature review on the allocation of new variables to a generated synthetic population of individuals and households. Section 3 is devoted to presenting the problem and relevant data. The fourth section formally describes the theoretical framework and proposed solution. The final two sections display and discuss the results of our analyses followed by a conclusion o ering some future perspectives.

Literature review

To generate a synthetic population (households and/or individuals), the most widely used methods are samplebased. A er producing a synthetic population, some studies focus on adding a new variable to the population from another data source. The traditional approach involves statistical matching which is a flexible method that draws on information available from di erent data sources. This approach is based on a selection and matching scheme.

In the selection operation, a list of attributes common to both synthetic population data and the additional sample is defined. These common attributes are referred to as matching attributes and can be: gender, age, profession, or household size. Following this step, a matching operation is conducted between the synthetic population and the additional sample over a set common attributes: for each synthetic person, only the additional sample observations found to be equal over these attributes are eligible for matching [START_REF] Bösch | The ivt 2015 baseline scenario[END_REF].

At the end of this second step, the synthetic individuals inherit other attributes from the additional sample of individuals. The higher the number of common attributes, the more accurate the matching operation.

This selection and matching scheme has been used to assign additional attributes, i.e. daily activity-travel patterns for each member of the synthetic population generated for Jakarta (Indonesia) [START_REF] Ilahi | Integrating bayesian network and generalized raking for population synthesis in greater jakarta[END_REF], Zurich (Switzerland) [START_REF] Hackl | Epidemic spreading in urban areas using agent-based transportation models[END_REF], Rouen (France) [START_REF] Vosooghi | Shared autonomous vehicle simulation and service design[END_REF], Carinthia (Austria) [START_REF] Felbermair | Generating synthetic population with activity chains as agent-based model input using statistical raster census data[END_REF], New York (USA) [START_REF] He | Evaluation of city-scale built environment policies in new york city with an emerging-mobility-accessible synthetic population[END_REF] and Sao Paulo (Brazil) [START_REF] Sallard | A synthetic population for the greater são paulo metropolitan region[END_REF]. The activity-travel patterns were derived from household travel surveys (HTS), and each person in the synthetic population was matched to an observation from the HTS. [START_REF] Zhang | Connected population synthesis for transportation simulation[END_REF] used another method to assign a community (a set of individuals possessing stronger ties within a group) for each person in a synthetic population. Their framework utilizes both census data and a sample of Call Detail Records (CDR), which is a standardized format of call logs collected by cell phone network operators. However, due to privacy protection, no personal information is available in CDR data; therefore, the statistical matching method could not be used. To assign individuals to communities, these authors formulated community assignment as an integer programming problem.

Nonetheless, the two approaches described above, i.e statistical matching and integer programming, were only designed for situations where the new data sources introduced contained disaggregate data (sample data). This requirement serves to limit the application scope of such approaches.

A handful of approaches have been developed to add new attributes to a synthetic population from aggregate data sources. [START_REF] Bösch | The ivt 2015 baseline scenario[END_REF] and [START_REF] Hackl | Epidemic spreading in urban areas using agent-based transportation models[END_REF] assigned an activity location (places of work and education) from aggregate commuter statistics. For each employed synthetic person, the workplace is derived as follows: for all persons from the same municipality with the same mode of commuting, workplace municipalities are sampled at random from the observed commuter matrix, as weighted by their relative frequencies. Educational locations are chosen from the closest ones of the appropriate type. [START_REF] Murata | Income allocation to each worker in synthetic populations using basic survey on wage structure[END_REF] assigned an income to each worker in a synthetic population from a Japanese aggregate data source using a two-step procedure. First, they used a simulated annealing method to assign a working status (i.e. employed or unemployed) to each member of synthesized households according to three distinct aggregate statistics showing the relationship between gender, family type and age in a prefecture or city. They also assigned an industry type for employed individuals. Depending on both the working status and industry type, the second step assigned an average wage to each worker using a di erent aggregate data source. The allocation of average wage is controlled by gender, five-year age cohort and industry type.

More recently, [START_REF] Hörl | Reproducible scenarios for agent-based transport simulation: A case study for paris and île-de-france[END_REF] developed an approach to associate an income with each household of the synthetic population by means of aggregate statistics. Income distribution by deciles is provided at the municipal level, and for each synthetic household, the municipality of residence is known. The two-step assignment process is actually quite simple: each household is assigned to a decile with a 10 % probability; then, a random income value is sampled with a uniform probability from the range between the lower and upper bounds of each household's decile.

Our study is based on the following analysis of this state-of-the-art. The allocation of variables to a synthetic population from aggregate data is relatively unexplored in the literature. In most cases, this allocation process relies on a random sampling distribution, which does not guarantee data consistency. Some agents (whether individuals or households) may indeed receive irrelevant attributes. We have thus designed an e icient and consistent method that allocates a variable to a synthetic population from aggregate data. We first solve inconsistency problems through a conditional probability estimation using a combination of synthetic household attributes. Next, we optimize the conditional probabilities obtained in order to assign the appropriate values to the synthetic households. As a practical example herein, we assign an income to each synthetic household. This method remains quite general and easily applicable to other variables for which aggregate data are available. To the best of our knowledge, no clear methodology for adding variables to a synthetic population from aggregate data already exists.

Problem description

We begin by generating a synthetic population of households with data drawn from the French census. These data are provided by the French National Institute of Statistics and Economic Studies (INSEE); more specifically a sample 1 of census data for the city of Nantes has been used. This sample included approximately included 62 000 households; data were collected from 2013 to 2017 and adjusted to the reference year of 2015. Each observation in the sample represents a unique household and its main residence characteristics (household size, family composition, floor area of the dwelling unit, etc.). A statistical weight is also assigned to each household.

Since the objective of this paper is not to develop or test a particular generation method, the population was generated as simply as possible. The sample was weighted according to the weight of each household. However, since the weights are not integers, we applied the Truncate, Replicate Sample (TRS) method [START_REF] Lovelace | truncate, replicate, sample': A method for creating integer weights for spatial microsimulation[END_REF] to convert these fractional weights into integer weights. The TRS method uses both deterministic and probabilistic sampling through a three-step process. We first selected the households with a weight above 1 and retained the integer part of these weights (Truncation step). The selected households were then replicated based on their integer weights (Replication step). In the last step (Sampling), the remaining households were randomly chosen with selection probabilities equal to the decimal part of the household weights. At the end of this process, we obtained a synthetic population of approx. 157 000 households.

Next, we sought to allocate an income to each household of the synthetic population. For the city of Nantes, we only had access to aggregate information on household living conditions (income, inequality and poverty indicators), from a database called FiLoSoFi (for "localized disposable income system"). According to the FiLoSoFi protocol, the unit surveyed is the tax household. This term refers to all individuals included on the same income tax declaration.

The income provided in FiLoSoFi is an annual income per consumption unit, calculated as income divided by a coe icient, called consumption unit (CU), which is a weighting system that assigns a coe icient to each member of a household according to both household size and ages of its members. This system is used to compare standards of living across households of di erent sizes and compositions. The following weights (known as the OECD scale) have been applied herein:

• 1 CU for the first adult in the household;

• 0.5 CU for every other person in the household aged 14 years or older;

• 0.3 CU for each child under 14.

For our purposes, the distributions of annual disposable income per CU (annual income available to a household for consumption and savings divided by the number of CU in that household) were used. This income measures households' standard of living, and its distributions are given in deciles (from first to ninth). For the city of Nantes, these deciles are provided for the entire population but also for certain specific variables, namely:2 

• number of persons in the tax household;

• family composition of the tax household;

• ownership status of the tax household;

• age of the reference person in the tax household.

Table 1 shows the di erent modalities of variables. A number of di erences exist between FiLoSoFi data and aggregate census data. For example, in the FiLoSoFi base, the term "person" is used (rather than inhabitant) in order to highlight the fact that a person a iliated with a household from a tax perspective is not necessarily a resident of that household (e.g. students a iliated with their parents for tax purposes but living in a separate dwelling). For these specific reasons, the number of persons does not always equal the household population in the census.3 

Let's now estimate the annual disposable income per CU with the four variables in Table 1. For the sake of simplification, this variable will be referred to as income (I). Table 2 lists the distribution of income deciles for the city of Nantes. An estimated household income (I) distribution is sought based on:

• Household size (S);

• Family composition (C);

• Age of the reference person (A);

• Household ownership status (O).

Problem-solving heuristic

The objective here is to assign an income to all the various cross-modalities of the four variables S i C j A k O l , with:

• i = 1, 2, ..., 5 : the number of modalities of household size;

• j = 1, 2, ..., 6 : the number of modalities of household composition;

• k = 1, 2, ..., 6 : the number of modalities of age of the reference person (RP);

• l = 1, 2 : the number of modalities of ownership status.

As an example, S 4 C 5 A 2 O 2 represents the following cross-modality in the synthetic population: household size -4, family composition -single-parent, age of the RP -30-39 and ownership status -tenant. The synthetic population contains a total of 19 modalities (5 + 6 + 6 + 2) and 360 potential cross-modalities (5 × 6 × 6 × 2). Among these cross-modalities, some are obviously infeasible, eg. S 1 C 3 A k O l (household size = 1, family composition = couple with children). Therefore, P(S 1 C 3 A k O l ) = 0 regardless of the age and ownership status modalities.

Of the 360 potential cross-modalities, 187 have nonzero probabilities. The income assignment consists of estimating the probability distribution

P(I|S i C j A k O l ).
Since no information is available between two income deciles, the estimation of continuous probability P(I) is replaced by an estimation of M discrete probabilities P(I m-1 < I < I m ). I m is a growing sequence of all income deciles ranging from m = 1 to M = 171 (19 modalities in the synthetic population × 9 deciles). The decile of the entire is not taken into account because this information is redundant with the information for each modality. For extrapolation purposes, let's assume a linear distribution of income and then set for each modality a minimum income I 0 = 0 and a maximum income I max equal to 1.5 times the 9 th decile. Column vector I is defined whereby the m component is the interval ]I m-1 , I m [, with m = 1 to M = 190. This vector includes the previous 171 deciles and the 19 maximum incomes, thus in all 190 modalities for the income are defined.

We therefore estimate

P(I m-1 < I < I m |S i C j A k O l )
which represents 35 530 (187 × 190) cross-modalities with income. This probability can be written in two distinct ways:

P(I m-1 < I < I m |S i C j A k O l ) = P((I m-1 < I < I m ) ∩ (S i C j A k O l )) × 1 P(S i C j A k O l ) (1) 
By applying Bayes' theorem:

P(I m-1 < I < I m |S i C j A k O l ) = P(S i C j A k O l |I m-1 < I < I m ) × P(I m-1 < I < I m ) P(S i C j A k O l ) (2) 
with :

i = 1, 2, ..., 5 j = 1, 2, ..., 6 k = 1, 2, ..., 6 l = 1, 2
The remainder of this section presents a model, based on Equation 1, that is capable of theoretically solving this problem. For our particular case study however, the practical resolution of this problem fails. In a second step, we will propose a heuristic based on Equation 2 to solve the problem in practice.

Theoretical framework

We have separately estimated the two parts of Equation 1 as follows.

Step 1 : The

P(S i C j A k O l ) estimate P(S i C j A k O l )
represents the probabilities corresponding to the various cross-modalities in the synthetic population. These joint probabilities are calculated from the synthetic population. For example:

P(S 4 C 5 A 2 O 2 ) = number of synthetic households S4C5A2O2
total number of synthetic households

4.1.2

Step 2 : The P((

I m-1 < I < I m ) ∩ (S i C j A k O l )) estimate
This probability is estimated by the quantity:

P((I m-1 < I < I m ) ∩ (S i C j A k O l )) = number of households(I m-1 < I < I m ) ∩ (S i C j A k O l ) total number of synthetic households (3) Number of households (I m-1 < I < I m ) ∩ (S i C j A k O l )
is not known but can be estimated as demonstrated in the following.

(I m-1 < I < I m ) ∩ (S i C j A k O l )
is one cross-modality among 35 530 and shall be numbered it k. The number of households whose cross-modality with income is

(I m-1 < I < I m ) ∩ (S i C j A k O l )
can then be denoted n k , and the probability of this cross-modality being denoted p k is the k th component of column vector p. These notations serve to simplify Equation 3 as follows:

P((I m-1 < I < I m ) ∩ (S i C j A k O l )) = p k = n k N (4) 
Let's now introduce the random vector n = (n 1 . . . n s ) t , which describes a state of the population where n 1 households have the cross-modality with income 1,... and n s households have the cross-modality with income s. The probability distribution of n is thus described by a multinomial distribution:

P(n|N, s, q) = N ! s k=1 q n k k n k ! (5)
where q k is the prior probability of the cross-modality with income k. For the sake of simplicity, let's replace P(n|N, s, q) by P(n) in the following.

n is constrained in order to ensure its consistency with the total number of households, the joint frequency calculated from the synthetic population, and the deciles.

• k n k = N is the natural constraint. • k∈M S i C j A k O l
n k = the number of synthetic households whose cross-modality in the synthetic population is

S i C j A k O l .
M SiCj A k O l is the subset of indices corresponding to the cross-modality S i C j A k O l regardless of the income modalities ]I m-1 , I m [. These constraints ensure consistency between n and the synthetic population.

•

k∈M (I d-1,S i <I<I d,S i ) n k = 10% × n Si I d,Si
is the income value corresponding to decile d for modality S i . Table 2 displays these values.

M (I d-1,S i <I<I d,S i
) is the subset of indices corresponding to the modality S i , with

I d-1,Si < I < I d,Si
regardless of the values of other modalities of the synthetic population C j A k O l . n Si is the number of households whose modality is S i . This constraint is repeated for all modalities of all variables and for all deciles. This set of constraints ensures the compatibility of n with the income information.

These constraints are linear, and summarized by:

C • n = b (6)
By convention, the first row of C corresponds to the natural constraint; its components sum to equal 1. This property will be used subsequently.

The best solution to our problem is the most likely realization of the random vector n:

n * = arg max C•n=b P(n) (7) 
In accordance with [START_REF] Niven | Combinatorial Information Theory: I. Philosophical Basis of Cross-Entropy and Entropy URL[END_REF], we will demonstrate that this optimization problem can be approximated by a cross-entropy minimization problem, which is much easier to solve.

The logarithm of P(n) is introduced in order to transform the multiplications from Equation 5into a sum Σ.

The referenced optimization problem then becomes:

n * = arg max C•n=b log(P(n)) (8) 
In the following, n is considered to be a real random vector and not an integer random vector, i.e. components of this vector can be non-integer.

n * is found by applying Fermat's Rule to the Lagrangian of this last maximization, i.e. the di erentiation of the Lagrangian L at n * is zero. Let's begin by di erentiating the Lagrangian:

∂L ∂n k = ∂ ∂n k (log(N !) -log(n k !)) + log(q k ) + λ • C k (9)
with λ being Lagrange's multipliers, and C k the k th column of Matrix C.

According to Equation 9, this di erentiation requires di erentiating log(n k !) with respect to n k , a step that can be accomplished analytically using Stirling's Approximation.

log(n k !) ≈ n k log(n k ) -n k
From this approximation and by recalling that N = k n k , Equation 9 becomes:

∂L ∂n k ≈ log(N ) -log(n k ) + log(q k ) + λ • C k
Fermat's Rule yields:

log(q k ) -log( n * k N ) + λ • C k = 0 (10) 
The first component of vector C k , i.e C k1 , equals 1 according to the comment in Equation 6, which implies that for one λ, we are able to define λ = λ except for its fist component. Therefore λ 1 = λ 1 + 1, such that:

log(q k ) -log( n * k N ) + λ • C k = 1
This equation defines the solution to the following minimization problem:

p * = arg min C•p=b/N p t • log( p q ) (11) 
p is a column vector whose component k is p k ; log( p q ) must be read as the column vector whose component k is log( p k q k ). By changing the variable of interest n k into p k = n k N , Optimization Problem 11 is a minimization of the Kullback-Leibler Divergence from q, o en called the cross-entropy minimization problem and denoted MinxEnt in the literature. Its solution is then the solution to the multinomial maximization problem 8 subject to Stirling's Approximation. Since the solution to Problem 8 is the most likely realization, the MinxEnt solution will be called the most probable distribution subject to Stirling's Approximation.

In the absence of prior information on the probability of a given cross-modality with income, according to Laplace's Principle of Insu icient Reason, all prior probabilities are then equal, i.e. q = 1 s , with s being the number of cross-modalities with income. In this case, cross-entropy minimization Problem 11 becomes the entropy maximization problem, as denoted by MaxEnt in the literature:

p * = arg max C•p=b/N -p log(p) (12) 
In the following discussion, this analysis of the root of MaxEnt is applied to our specific study, given our lack of prior information on discrete probabilities P((I m-1 < I < I m ) ∩ (S i C j A k O l )). However, two types of constraints are present, one on cross-modalities (Equation 15) in the synthetic population the other on income deciles (Equation 16). Let's now use the maximum entropy method:

M ax - i,j,k,l P((I m-1 < I < I m ) ∩ (S i C j A k O l )). ln P((I m-1 < I < I m ) ∩ (S i C j A k O l )) (13) 
subject to the following constraints.

The natural constraint:

i,j,k,l P((I m-1 < I < I m ) ∩ (S i C j A k O l )) = 1 (14) 
Constraints derived from the synthetic population:

m P((I m-1 < I < I m ) ∩ (S i C j A k O l )) = P(S i C j A k O l ) (15) 
This constraint means that for a given cross-modality, the sum of all income probabilities is equal to the probability of the cross-modality. Since 187 cross-modalities exist, 187 constraints of this type can be derived, with those from the deciles being:

j,k,l P((S i C j A k O l ) ∩ (I < I d,Si )) = d i,k,l P((S i C j A k O l ) ∩ (I < I d,Cj )) = d i,j,l P((S i C j A k O l ) ∩ (I < I d,A k )) = d (16) i,j,k P((S i C j A k O l ) ∩ (I < I d,O l )) = d
where d= 0.1, 0.2, ..., 0.9 and I d is the income value corresponding to decile d for a given modality of the synthetic population.

In all, 19 modalities are present in the synthetic population; for each modality, there are 9 deciles and one maximum income, hence yielding 190 constraints of this type.

Let's rely on [START_REF] Kapur | Entropy Optimization Principles and Their Applications[END_REF] and [START_REF] Mattos | Entropy optimization: Computer implementation of the maxent and minexent principles[END_REF] to numerically solve optimization Problem 12. The numerical algorithm is based on the solution to Equation 10:

p k = q k exp(λ • C k ) ( 17 
)
This equation is the key to rewriting optimization Problem12 in its dual form:

λ * = arg max k (log(q k ) + λ • C k )q k exp(λ • C k ) + λ • (C • p -b/N ) (18) 
The variables of interest in this dual optimization are the Lagrange multipliers whose number is considerably less than the number of variables of interest in the primal optimization, i.e. the number of constraints is far less than the dimension of the probability distribution. This dual optimization problem is solved by a Newton's algorithm, which is well suited and e icient by virtue of having demonstrated that the gradient and the Hessian of the objective function can be calculated analytically [START_REF] Kapur | Entropy Optimization Principles and Their Applications[END_REF].

Before launching the optimization algorithm, it is advisable to verify that the constraints are consistent; otherwise every optimization algorithm would fail. This step implies searching for an initial probability distribution p 0 consistent with the constraints. The initial distribution was found by solving the linear programming problem:

(p 0 0) = arg min C•p+∆=b/N,∆≥0 1 • ∆ (19)
where: ∆ is a column vector whose dimension is equal to the number of constraints, 1 is a row vector of one whose dimension is the same as ∆, and 0 is a column vector of zero with the same dimension as ∆. (p 0 0) is the concatenation of p 0 and 0. The variable of interest in this Linear Programming set-up are p and ∆. The initialization is set by p = 0 and ∆ = b/N . If the system is consistent, the minimum is reached with probability distribution p 0 that verifies: C • p 0 = b/N and ∆ = 0. Linear programming Problem 19 is easy to solve numerically.

Some implementations of MaxEnt algorithm require that matrix C be full rank. If such is not the case, a subset of the rows of C is selected by using the QR decomposition with column pivoting of the transpose Matrix C t [START_REF] Golub | Matrix Computations[END_REF]). This point is not fundamental to understanding our approach and is being mentioned here in order to facilitate the understanding of the R-script accompanying this paper.

Our specific study, entails a numerical problem raised by virtue of using this classical numerical approach. Our optimization problem includes 378 (187+190+1) constraints (actually slightly less since all constraints are not independent) and 35 530 variables of interest. Equation 17becomes numerically unstable due to the exponential function, which depends on too many of the various λ component values. The failure to compute this equation leads to failure of the algorithm. A heuristic yielding a practical solution is proposed below. The global optimization problem will be divided into several optimization sub-problems in order to lower the number of variables of interests and constraints.

Problem-solving heuristic

Let's proceed starting from Equation 2(Bayes' theorem): 

P(I m-1 < I < I m |S i C j A k O l ) = P(S i C j A k O l |I m-1 < I < I m ) × P(I m-1 < I < I m ) P(S i C j A k O l ) with : i = 1, 2, ..., 5 j = 1, 2, ..., 6 k = 1, 2, ..., 6 l = 1, 2 4 

4.2.2

Step 2 : The P(I m-1 < I < I m ) estimate I m is a growing sequence of all income deciles (171 total) and the 19 maximum incomes (see Section 4). Let's now proceed with a linear extrapolation of these 190 incomes from the total population deciles (first row of Table 2). For example, if I m lies between the I d-1 and I d deciles of the total population, we estimate:

P(I < I m ) = P(I < I d-1 ) + I m -I d-1 I d -I d-1 (P(I d ) -P(I d-1 )) (20) 
P(I < I m-1
) is estimated a similar manner; consequently: P(I m-1 < I < I m ) = P(I < I m ) -P(I < I m-1 ).

Step 3 : The

P(S i C j A k O l |I m-1 < I < I m ) estimate
• The next step consists of searching for the

P(S i C j A k O l |I m-1 < I < I m ) distribution (p distribution).
These quantities correspond to the 190 probability distributions, with each distribution being considered separately. Each distribution will be the solution to a MinxEnt optimization. The previous large optimization is now broken down into 190 smaller optimizations.

• Another di erence with the previous large optimization problem is the prior assumptions. Let's suppose that P(S i C j A k O l |I m-1 < I < I m ) has an a priori distribution, such as the P(S i C j A k O l ) distribution rather than a uniform distribution, which implies supposing that P(S i C j A k O l ) provides more information on

P(S i C j A k O l |I m-1 < I < I m ) than Laplace's Principle of Insu icient Reason.
As demonstrated above, the most probable distribution is the solution to the minimum cross-entropy (MinxEnt) (subject to Stirling's Approximation). The MinxEnt formulation is as follows:

min - i,j,k,l P(S i C j A k O l |I m-1 < I < I m ) ln P(S i C j A k O l |I m-1 < I < I m ) P(S i C j A k O l ) (21)
Subject to constraints on deciles :

P(S i |I m-1 < I < I m ) = P(I m-1 < I < I m |S i ) × P(S i ) P(I m-1 < I < I m ) P(C j |I m-1 < I < I m ) = P(I m-1 < I < I m |C j ) × P(C j ) P(I m-1 < I < I m ) P(A k |I m-1 < I < I m ) = P(I m-1 < I < I m |A k ) × P(A k ) P(I m-1 < I < I m ) (22) P(O l |I m-1 < I < I m ) = P(I m-1 < I < I m |O l ) × P(O l ) P(I m-1 < I < I m )
P(S i ), P(C j ), P(A k ) and P(O l ) are all obtained from the synthetic population.

P(I m-1 < I < I m |S i ), P(I m-1 < I < I m |C j ), P(I m-1 < I < I m |A k ) and P(I m-1 < I < I m |O l )
have also been estimated by linear extrapolation for each modality in the same way as in Step 2 for the entire population. Ultimately, 19 constraints and 187 variables of interest are obtained.

The consistency of each optimization is verified by means of Linear Programming in using the same method as described in the previous approach. The rank deficiency of the constraints matrix is also treated just like in the previous large optimization by using QR decomposition.

An existing implementation of the MinxEnt R package was adapted to our specific problem (package "minxent" by Senay Asma, available at the Comprehensive R Archive Network (CRAN)).More specifically, we used a computer of 2 x 2.60GHz CPU cores and 16 GB RAM; the computation time for these 190 optimizations was less than 1.5 seconds.

Results

In the proposed heuristic, we have successively estimated

P(S i C j A k O l ) (Step 1), P(I m-1 < I < I m ) (Step 2) and P(S i C j A k O l |I m-1 < I < I m ) (
Step 3). We are now able to set the P(I m-1 < I < I m |S i C j A k O l ) distribution as formulated in Equation 2. The total number of estimated probabilities equals 35 530 (i.e 190 modalities for the income × 187 possible combinations). A er a detailed analysis of these probabilities, some incorrect values were identified:

• P(I < I m |S i C j A k O l ) > 1 • P(I m-1 < I < I m |S i C j A k O l ) < 0
These invalid probabilities are due to both the relatively large number of parameters to be estimated and the very small di erences existing between two successive deciles. For example, in Table 2 between deciles D8 for complex households (27 843 euros) and D7 for age modality 40-49 (27 842 euros), the di erence amounts to just one euro. To correct this error, we performed a post-processing step in order to filter these invalid probabilities. The post-processing procedure is described below :

• For each P(I < I m |S i C j A k O l ) > 1, we set P(I m-1 < I|S i C j A k O l ) = 0; this renormalization of prob- ability distribution P(I m-1 < I < I m |S i C j A k O l
) is intended to avoid sensitivity to maximum Income I max , which has been arbitrarily fixed at 1.5 times the 9 th decile (1.5 × D9).

• For each

P(I m-1 < I < I m |S i C j A k O l ) < 0 , the interval is enlarged until P(I m-1 < I < I m+k |S i C j A k O l ) ≥ 0 with k ≥ 1
, which means that components m through m+k-1 are removed from income column vector I.

This post-processing step has resulted in larger income brackets while also ensuring data consistency. The remaining probabilities a er this step are those of income ranges according to household characteristics. A specific income is then to be allocated to each household of the synthetic population. Through the synthetic population, the number of households for each cross-modality is known, as is the income distribution for each cross-modality.

• We begin by compiling the number of households for each income range according to the income distribution. For example, the total number of S 1 C 1 A 1 O 2 households (size=1, single woman, under 30, tenant) equals 14 613. From the

P(I m-1 < I < I m |S 1 C 1 A 1 O 2 )
distribution, income groups are therefore assigned to households in this cross-modality.

• Next, a specific income is randomly assigned according to a continuous uniform distribution; this income lies between the lower and upper bounds of each income range.

Upon completion of of these two operations, each household in the synthetic population is allocated an income.

The next section will verify the accuracy of our results.

Validation of results

To assess the performance of the proposed heuristic, let's compare our outputs (i.e. the simulated income for each household) with empirical observations (deciles from FiLoSoFi). New deciles from the specific simulated household incomes were first recalculated (Table 3) before applying two validation methods. According to the first method, a graphical representation of the simulated and observed deciles was developed through quantile-quantile plots (Q-Q plots); these representations are a graphical evaluation of the fit between simulated and real data and moreover easily detect possible outliers. Figure 1 compares the distribution of simulated deciles to the distribution of real (observed) deciles for each modality as well as for the entire population. In these Q-Q plots, each point represents a simulated decile, and the reference line plotted is the first bisector. If the two distributions are identical, the points on the graph follow the line exactly.

The obtained Q-Q plots indicate a perfect fit between the simulated deciles and observed deciles from FiLoSoFi for the entire population. For all other plotted modalities, the majority of points (over 80% ) fit along the first bisector, thus showing that the simulated deciles fit very well with the observed deciles, which demonstrates that the synthetic population has a simulated income on the whole consistent with the FiLoSoFi data.

We can also state that the fit of modalities "complex households", "5 persons or more" and "single-parent family" is not as good. It can also be noted that in general, deciles D8 and especially D9 deviate the most from the reference line.

Next, the second validation method estimates the accuracy of the proposed heuristic with two metrics typically used in a microsimulation context:

• Absolute error |I m -I n | • Relative error | Im-In Im |
where I m and I n are the observed and simulated deciles for each modality. Tables 4 and5 respectively present the absolute and relative errors that exist between the two distributions. For the entire population deciles, the di erences between simulated and observed deciles are very small (around 3% for the first decile D1 and less than 0.6% for the other deciles), with absolute di erences of 3 euros and 1 euro respectively for deciles D2 and D4 (Table 4).

For the other modalities, small di erences are also observed: 88% of the simulated deciles exhibit di erences of less than 10% with the real deciles and about 69% of the simulated deciles have di erences of less than 5%. The smallest relative errors are observed for the variables "age of the reference person" and "number of persons in the tax household", with di erences of less than 1% for decile D1 of modalities "75/+", "60-74" and "1 person". Morever, our results show that the simulated incomes are more consistent with the FiLoSoFi data for deciles D1 through D7. More than 80% of these deciles have a relative di erence of less than 5% with the real data.

In contrast, only 71% of the simulated D8 and D9 deciles have relative di erences of less than 10% with the real deciles. As previously noted in Figure 1, larger di erences are observed for the household family composition variable. For the "complex household" and "single parent family" modalities in particular, the respective relative di erences amount to over 15% (for deciles D2 to D4) and over 10% (for deciles D7 to D9). Possible reasons for such discrepancies will be discussed in the next section. 

Discussion

The discussion herein comprises two parts: an analysis of case study results, and an assessment of method applicability.

Case study analysis

Our findings suggest that the proposed methodology yields results consistent with most of the observed aggregate income data despite the fact that a number of income data points were removed in the post-processing stage. However, some larger di erences were found for specific household modalities as well as for the highest deciles (D8 and D9).

Larger di erences for some household modalities

Di erences between modalities are due to the units surveyed in the two data sources used as highlighted in the problem description section (paragraph 3). According to the FiLoSoFi protocol, the survey unit is the tax household (all individuals included on the same income tax declaration). A person can thus be a iliated with a household from a tax perspective without necessarily residing in that household. According to the census protocol, only the inhabitants of a given dwelling are taken into account. Consequently, the number of households and the definition of certain modalities in FiLoSoFi are not always the same as in the population census data. This phenomenon is especially true for the household family composition variable, for which di erences exist in the definition of modalities between the two sources. Some households may therefore belong to two di erent modalities. For example, from the standpoint of the population census, a single-parent household comprises a lone parent and one or more single children (who are not parents). On the other hand, in the FiLoSoFi database, a tax household can be considered as a single-parent household if it is composed of several persons with the lead tax registrant being single, divorced or widowed. Such a household would be considered as a single-parent household in FiLoSoFi and as a complex household in the census. These discrepancies are therefore beyond our control and cannot be corrected by the proposed heuristic.

Larger di erences for the highest deciles (D8 and D9)

Since no information is available between any two income deciles, we have assumed a linear income distribution. For each modality, we have arbitrarily set a maximum decile D10= D9×1.5 for purposes of the linear approximation. This assumption may however be incorrect for the highest deciles and thus lead to certain biases.

Applicability of this methodology

The databases and R-scripts used herein are freely available. We will raise the level of community appropriation of these tools by means of developing an R library.

In our case study, aggregate data take the form of deciles. Our heuristic has been designed to process this type of information. However, our general methodology is able to incorporate various types of aggregate data: average income, number of square meters per type of household, etc. As an example, we can use typical aggregate data such as the mobility data available in Switzerland4 or the United States5 , to determine a transportation mode or mobility status of synthetic individuals.

Our methodology could be formally applied to sample-less synthetic population generation as well, in which case the cross-modality probabilities are computed from the synthetic population. We did not test our methodology for this specific case.

Numerical problems arise when carrying out the large optimization method for our case study. We are currently working on alternative, more numerically robust algorithms. In the meantime, we feel that this method can be applied to problems with fewer constraints and variables of interest, as suggested by some preliminary simulations we conducted on smaller-scale problems. On such problems, the optimized and heuristic solutions are close to one another. These points will be subsequently studied in greater depth.

Since no information was available between two successive income deciles, income linearity was hypothesized. Moreover, for each modality we set a maximum income I max equal to 1.5 times the 9 th decile and a minimum income I min to zero. These assumptions however may be incorrect and produce erroneous results. This point can be remedied by studying the literature in income economics to gain better a priori knowledge of income distribution and, particularly, for these extreme incomes.

The accuracy of Stirling's Approximation depends on the number of households for a cross-modality with incomes. If this number is greater than 20, the approximation underestimated by less than 10%. To numerically resolve the optimization problem, the number of households for a cross-modality with income is considered as a real variable, thus suggesting that this number must be greater than 20. Caution is therefore required when handling results relative to a small number of households, which is a quite common cautious rule in statistics.

This last remark provides an a posteriori justification of our post-processing treatment, which yielded larger income brackets. One method improvement could consist of finding the right income discretization in order to produce wider income ranges that lead to a more suitable number of households for a cross-modality with incomes. This change would result in fewer invalid probabilities, as suggested by our post-processing treatment.

.2. 1

 1 Step 1 : The P(S i C j A k O l ) estimate, see Section 4.1.1.

Figure 1 :

 1 Figure 1: Quantile-Quantile plots between simulated and observed deciles

Table 1 :

 1 Attributes in the FiLoSoFi database

	Variable	Definition	Modalities
		[number of modalities]	
	S	Number of persons in the tax household [5]	1 person; 2 persons; 3 persons; 4 persons; 5 per-
			sons and more
	C	Family composition of the tax household [6] Single woman ; Single man; Couple without chil-
			dren; Couple with children; Single-parent fam-
			ily; Complex household
	A	Age of the reference person (RP) in the tax	Under 30 ; 30-39 ; 40-49 ; 50-59 ; 60-74 ; 75/+
		household [6]	
	O	Ownership status of the tax household [2]	Owner; Tenant

Table 2 :

 2 Distribution of income deciles in the FiLoSoFi database

	Modalities

Note:

The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of incomes are situated.

Table 3 :

 3 Distribution of simulated deciles The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of incomes are situated.

	Modalities

Note:

Table 5 :

 5 Relative errors between observed and simulated deciles (%)

	Modalities

Note:

The first decile (D1) is the income below which 10% of incomes are situated; The ninth decile (D9) is the income below which 90% of incomes are situated.

The sample used is available via the following link: https://www.insee.fr/fr/statistiques/3625223?sommaire=3558417, consulted on November

27, 2020. 

The database used is available via the following link: https://www.insee.fr/fr/statistiques/3560118, consulted on

November 3O, 2020.

https://www.insee.fr/en/metadonnees/definition/c1285, consulted on November 30, 2020.

https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/tables.assetdetail.7226558.html, consulted on January 20, 2020.

https://www.census.gov/content/census/en/data/tables/2020/demo/geographic-mobility/cps-2020.html, consulted on January 20, 2020.

Conclusion

This paper has presented a methodology to tackle the problem of adding variables to a synthetic population from aggregate data; this problem has to date received scant attention in the literature. Such a methodology integrates three distinct stages, the first of which theoretically models the problem by means of a multinomial distribution. The issue herein is to identify the most probable conditional probability of the income in knowing the cross-modalities of the synthetic population. This conditional probability derives from an entropy maximization problem based on the variables available in both the synthetic population and the aggregate data. In our specific case study, solving this problem directly proves to be impossible due to the high number of constraints. The second stage then presented a heuristic o ering a practical solution to the problem. This heuristic combined Bayes' theorem and the cross-entropy minimization algorithm. However, given the large number of parameters needed to be estimated by the proposed heuristic, some of the results obtained were invalid. To rectify this shortcoming, a post-processing method was applied during a third stage so as to ensure the consistency of our results.

An income was allocated to each of the 157 000 households in the city of Nantes (France) based on aggregate data from the FiloSoFi through use of this method. The results were easy to compute and wound up being consistent with most of the aggregate data.

Special attention was paid to the reproducibility of our results with the databases and R-scripts used, all of which are freely available. This method remains general and indeed applicable to other variables with available aggregate data. To the best of our knowledge, no clear methodology for adding variables to a synthetic population from aggregate data already exists. An R library based on the findings presented herein is currently under development.
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