
HAL Id: hal-03282100
https://hal.science/hal-03282100v1

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Environmental drivers of varying selective optima in a
small passerine: A multivariate, multiepisodic approach

Marlène Gamelon, Jarle Tufto, Anna L K Nilsson, Kurt Jerstad, Ole W
Røstad, Nils C Stenseth, Bernt-Erik Saether

To cite this version:
Marlène Gamelon, Jarle Tufto, Anna L K Nilsson, Kurt Jerstad, Ole W Røstad, et al.. Environmental
drivers of varying selective optima in a small passerine: A multivariate, multiepisodic approach. Evo-
lution - International Journal of Organic Evolution, 2018, 72 (11), pp.2325 - 2342. �10.1111/evo.13610�.
�hal-03282100�

https://hal.science/hal-03282100v1
https://hal.archives-ouvertes.fr


ORIGINAL ARTICLE

doi:10.1111/evo.13610

Environmental drivers of varying selective
optima in a small passerine: A multivariate,
multiepisodic approach
Marlène Gamelon,1,2 Jarle Tufto,3 Anna L. K. Nilsson,4 Kurt Jerstad,5 Ole W. Røstad,6 Nils C. Stenseth,1,4

and Bernt-Erik Sæther1

1Centre for Biodiversity Dynamics CBD, Department of Biology, Norwegian University of Science and Technology, 7491

Trondheim, Norway
2E-mail: marlene.gamelon@ntnu.no

3Centre for Biodiversity Dynamics CBD, Department of Mathematical Sciences, Norwegian University of Science and

Technology, 7491 Trondheim, Norway
4Centre for Ecological and Evolutionary Synthesis CEES, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
5Jerstad Viltforvaltning, Aurebekksveien 61, 4516 Mandal, Norway
6Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432 Ås,
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In changing environments, phenotypic traits are shaped by numerous agents of selection. The optimal phenotypic value maximizing

the fitness of an individual thus varies through time and space with various environmental covariates. Selection may differ

between different life-cycle stages and act on correlated traits inducing changes in the distribution of several traits simultaneously.

Despite increasing interests in environmental sensitivity of phenotypic selection, estimating varying selective optima on various

traits throughout the life cycle, while considering (a)biotic factors as potential selective agents has remained challenging. Here,

we provide a statistical model to measure varying selective optima from longitudinal data. We apply our approach to analyze

environmental sensitivity of phenotypic selection on egg-laying date and clutch size throughout the life cycle of a white-throated

dipper population. We show the presence of a joint optimal phenotype that varies over the 35-year period, being dependent

on altitude and temperature. We also find that optimal laying date is density-dependent, with high population density favoring

earlier laying dates. By providing a flexible approach, widely applicable to free-ranging populations for which long-term data

on individual phenotypes, fitness, and environmental factors are available, our study improves the understanding of phenotypic

selection in varying environments.

KEY WORDS: Clutch size, density dependence, egg-laying date, fluctuating environment, selection episode.

Environments, through variation in habitats, competition, or pre-

dation, are heterogeneous at both temporal and spatial scales. Such

changes in biotic and abiotic conditions impose selection on wild

populations (Bell 2010), leading phenotypic traits to be constantly

shaped and reshaped by the environment and numerous agents of

natural selection (Endler 1986). Although often ignored, popu-

lation density is one of these potential selective agents (Sæther

et al. 2016). For a long time, evolution has been considered too

slow and too weak to leave a signature in ecological dynamics

(Slobodkin 1961). However, it is now widely accepted that rates

of evolution can be rapid and strong (Pelletier et al. 2007; Ozgul

et al. 2009, 2010; Pemberton 2010; Bell 2010; Schoener 2011).

Interestingly, observations of phenotypic selection in free-ranging

populations also indicate that evolution may vary through space

2 3 2 5
C© 2018 The Author(s). Evolution C© 2018 The Society for the Study of Evolution.
Evolution 72-11: 2325–2342

http://orcid.org/0000-0002-9433-2369
http://orcid.org/0000-0002-0049-9767


M. GAMELON ET AL.

(Hedrick et al. 1976; Endler 1977; Hereford 2009; Siepielski et al.

2013) and time (Siepielski et al. 2009; Bell 2010; Morrissey and

Hadfield 2012). A landmark case study of varying selection is the

beak size variation in Darwin’s finches in response to droughts.

While drought events have favored large beaks well adapted to

large seeds, high precipitation have selected for smaller beak sizes

particularly useful for consuming small and soft seeds (Grant and

Grant 2002) such that the optimal phenotypic value maximizing

fitness is moving as a result of fluctuating environmental condi-

tions (Charlesworth 1993; Tufto 2015; Chevin et al. 2015).

Chevin et al. (2015) provided a method for estimating varying

phenotypic selection from measurements of a fitness-related trait

across time. It assesses the support for stabilizing selection and

for an optimal phenotype possibly influenced by environmental

covariates (hereafter called environmental sensitivity of selection

sensu Chevin et al. (2010)) and random effects autocorrelated

across years. Using great tits (Parus major) as a case study, this

work showed autocorrelated variations in the optimal egg-laying

date that maximizes the number of offspring surviving to the

fledgling stage. In addition, the optimal date was well predicted by

spring temperature. This study left some questions unanswered,

in particular how to measure varying phenotypic selection on

multiple correlated traits and also throughout multiple episodes

of selection.

Indeed, natural selection does not operate on a single trait

but acts jointly and correlatively on multiple characters, and the

environment causes this complex selection to change in a more

or less predictable way. This very fundamental and widely ac-

knowledged vision of how adaptation to changing environment

proceeds still fails to be detected in a comprehensive way. The

classical approach of Lande and Arnold (1983) allows estimat-

ing variation in linear and quadratic selection gradients acting

on multiple traits including correlational selection (Phillips and

Arnold 1989b; Sinervo and Svensson 2002) over time (Engen

et al. 2012). This multivariate selection analysis thus provides

important information on the direction, shape, and strength of se-

lection acting on multiple phenotypic traits over time by linking

relative fitness to trait values. However, relating such phenotypic

selection gradients to environmental factors may lead to incom-

plete representations of how the environment interacts with the

trait-fitness relationships (Hunter et al. 2018). Indeed, this vari-

ation not only reflects variation in the fitness function (i.e., the

relationship between individual expected fitness and individual

phenotype, see Walsh and Morrissey (2018)), but is complicated

by the response to selection generated by the varying fitness func-

tion and phenotypic changes caused by other evolutionary forces.

As a simple illustration, if the mean phenotype tracks a varying

optimum almost perfectly (e.g., through plasticity), little varia-

tion in selection gradients will be detected using the traditional

method of Lande and Arnold (1983). Conversely, an evolutionary

force such as genetic drift will generate varying gradients, even if

the fitness function is constant (Chevin and Haller 2014). In other

words, considering phenotypic selection coefficients such as se-

lection gradients or differentials alone does not necessarily allow

one to characterize how the fitness function has changed, because

changes in the distribution of phenotype can change selection

coefficients, independently of changes in the fitness function.

Natural selection does not operate on a single episode but

the strength and the direction of selection on a trait may change

from one life-cycle stage to another (Engen et al. 2011; Chevin

et al. 2017). This was recognized more than thirty years ago by

Arnold and Wade (1984) who highlighted the need to measure

selection through separate episodes of selection across the life

cycle. However, if selection is estimated separately for each life-

cycle segment as in Engen et al. (2012), this leads to a loss of

parsimony when different episodes are similarly influenced by

the same environmental covariates or random processes.

Here, we analyze fluctuating fitness functions through time

and space in a Norwegian white-throated dipper population (Cin-

clus cinclus) by extending the approach from Chevin et al. (2015).

In particular, we explore the dynamics of selective optima through

time and space on two key fitness-related traits in such a small

passerine (Newton 1998), namely egg-laying date and clutch size.

For many breeding females, information on egg-laying date and

clutch size is available annually, thus providing the required data

to develop a multivariate approach. We evaluate the effects of

biotic and abiotic factors such as weather conditions, altitude, and

densities as well as random unobserved drivers on spatio-temporal

variation in selective optima of the two traits. To make efficient

use of all the data, we estimate varying phenotypic selection

through several episodes of selection in a single joint model,

from egg to fledgling stage (episode 1), from fledgling to recruit

stage (episode 2), and via mother survival (episode 3), thanks to

the availability of individual-based data from birth to death.

Importantly, instead of modeling variation in selection gradi-

ents, we model fluctuations in the fitness function directly. Param-

eter estimates from our model can thus more easily be related to

the theory on varying selection, both in time (Bull 1987; Lande and

Shannon 1996; Lande 2007; Tufto 2015) and space (Kirkpatrick

and Barton 1997). While much of this theory predominantly deals

with simple life histories with discrete, nonoverlapping genera-

tions, our approach provides a statistical model for estimating

varying selection acting in an age-structured population by ap-

plying a stochastic trait-dependent Leslie matrix (Caswell 2001),

including covariates such as population density. Further theoreti-

cal work will be needed to understand the evolutionary response

to selection described by our modeling approach, through some

integrated measure of overall lifetime fitness. Still, in our dipper

case study, even in the absence of such theory, we find that the

observed pattern in mean phenotypic trait values, qualitatively
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behaves as expected in response to our estimated spatial and tem-

poral variation in selective optima.

Methods
STUDY SPECIES AND DATA COLLECTION

The studied population is located in the river system of Lyngdal-

selva in southern Norway (58◦08’–58◦40’N, 6◦56’–7◦20’E). The

white-throated dipper is a short-lived passerine bird distributed

in mountainous regions across the Palearctic. It depends on

open water for foraging and running water for nesting. The

amount of ice during the winter thus influences the availability

of feeding and breeding habitats explaining why survival and

fecundity rates are affected by mean winter temperature (temp)

(December–February) of the whole region called Sørlandet

(http://www.yr.no/sted/Norge/Vest-Agder/Audnedal/Konsmo˜

6051/klima.vinter.html) (Sæther et al. 2000; Loison et al. 2002;

Nilsson et al. 2011a; Gamelon et al. 2017). Demographic rates

are also strongly density-regulated and annual estimates of the

number of breeding females in the population (variable dens) are

available from a previous study (Gamelon et al. 2017). For each

year t = 1979, 1980, . . . , 2013, all breeding sites were visited

during the nest building period to identify breeding pairs and

record occupied nests. Assuming that covariates are missing at

random, we based the analysis on a subset of i = 1, 2, . . . , 546

breeding events with nonmissing covariates out of a total of

1880 observed breeding events. The altitude (alti ) (ranging from

sea level to an altitude of about 600 m above sea level) and

the identity of each breeding territory (k = 1, 2, . . . , 167) were

recorded. During visits in the breeding season, ringed mothers

were identified and unringed mothers given a ring to allow future

identifications ( j = 1, 2, . . . , 375). For each breeding pair, the

egg-laying date (date of first egg laying) and the clutch size (y0i )

was determined (Nilsson et al. 2011b). We express egg-laying

date as the number of days elapsed since 1st of March (zi ). On

average, 20 days later, fledglings that had survived were ringed

and their number recorded (y1i ). Finally, the next season, that is,

on average 343 days later, a number y2i of ringed fledglings were

recorded as recruited to the breeding population if they were

caught breeding. Mothers caught again breeding the following

year were recorded as having survived (y3i = 1); otherwise,

they were considered as dead (y3i = 0) (Fig. 1). Therefore,

survival on episodes 2 and 3 (p2i and p3i ) correspond to apparent

survival, that is the probability for a female to survive and stay

in the population until the next breeding season. Survival on the

first episode (p1i ) corresponds to true survival, because there

is no possible dispersal during the first episode. Note that the

annual recapture rate is high during the studied period, ranging

between 88 and 92% (estimates obtained in a previous work

(Gamelon et al. 2017)), meaning that virtually all the females

alive were caught breeding. Moreover, age of the mothers (ai )

was determined. The oldest breeding female recorded in our

population was 10 years of age. Also, multiple-clutching was

sometimes observed in that population. Thus, we also recorded

the total number of eggs produced by a female a given year.

STATISTICAL MODEL

Using the above data, our aim is to estimate varying selective

optima, extending the method of Chevin et al. (2015) to multiple

traits (individual laying dates and clutch sizes) and to multiple

episodes of selection (egg-to-fledgling survival s = 1, fledgling-

to-recruit survival s = 2, and adult female survival s = 3) through

associated survival probabilities psi , s = 1, 2, 3 (Fig. 1). A more

technical discussion of other differences from the Chevin et al.

(2015) method is given in Appendix A. We emphasize that our

model of stabilizing selection does not necessarily imply a fit-

ness optimum within the range of observed phenotypic values in

any particular generation. Instead, as in theoretical models such

as Lande and Shannon (1996); Hansen (1997); Bürger (1999),

overall individual fitness is a strictly decreasing function on both

sides of some optimal trait value possibly located outside this

range. The particular model we implement, at least when survival

is low such that the model becomes approximately Gaussian, also

implies that selection acts to reduce the phenotypic variance and

that selection gradients (sensu Lande and Arnold 1983) change

linearly with the distance from the assumed optimum.

Before describing in detail how we implement stabilizing

selection, we describe more generally how covariates and random

effects (some of which induce varying selection) need to enter

into the model given that the different episodes differ in duration.

As recommended by Ergon et al. (2018), we model all three

survival probabilities psi only indirectly via effects of covariates

and random effects on the hazard function. More specifically, we

allow a nonconstant hazard (instantaneous mortality rate) with

respect to age but assume that covariates and random effects act

with a constant multiplicative effect on this rate (via a log link)

within each episode of selection. Thus, the hazard for an offspring

or an adult female at age a is

λsi (a) = λ0(a) exp(ηsi ). (1)

Here, ηsi is a (nonlinear) predictor containing fixed and random

effects on the hazard associated with the i’th breeding event dur-

ing selection episode s = 1, 2, 3, and λ0(a) is a baseline hazard

affecting all individuals, possibly varying with age a within each

interval. The survival probabilities associated with each of the

three episodes of selection are given by

psi = exp

(
−
∫ as

as−1

λ0(a) exp(ηsi ) da

)

= exp (− exp(ηsi )λ̄s(as − as−1)), (2)
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Figure 1. Dipper life cycle. Episode 1 corresponds to the episode from egg to fledgling stage (in red), episode 2 from fledgling to recruit

stage (in green), and episode 3 corresponds to adult female stage (in blue).

where as−1 and as is the age at the beginning and end of selection

episode s. Note how λ̄s is the mean of the possibly nonconstant

baseline hazard λ0(a) during selection episode s.

To model selection on the laying date zi and on clutch size y0i ,

we in turn assume that the (time-averaged) hazard of individual i

during each selection episode has the form

exp(ηsi )λ̄s = exp

(
η

(β)
si + 1

2ω2
s

(
zi − η

(θ)
si

)2
)

, (3)

with the parameter ωs determining the rate of proportional in-

crease in the hazard with increasing deviations of the phenotypic

laying date zi from the optimal laying date η
(θ)
si . ωs thus corre-

sponds to the width of the fitness peak (smaller ωs causes stronger

stabilizing selection). Here

η
(θ)
si = θ0s + θdens,sdensi + θtemp,s tempi + θalt,salti + ζti (4)

is a linear subpredictor determining the optimal laying date during

episode s containing possible effects of environmental covariates

such as population density (densi ), winter temperature (tempi ),

and altitude (alti ) as well as a random effect term ζt as in Chevin

et al. (2015). Similarly,

η
(β)
si = β0s + βclutchsize,s y0i

+ βtemp,s tempi + βdens,sdensi + βalt,salti + βage,sai

+ σsuti + τsvki + κsw ji + xai ,s (5)

is another linear subpredictor determining the hazard at the opti-

mal laying date containing effects of covariates as well as a num-

ber of random effects (details are given in the next 4 paragraphs

and Appendix A). The above regression coefficients must not be

confused with the selection gradient β as defined by Lande and

Arnold (1983). All parameters possibly differ between episodes

s = 1, 2, 3, but can also be constrained to the same value for

different subsets of episodes. Importantly, this facilitates the for-

mulation of more parsimonious model alternatives in cases where

the evidence for any difference between episodes is small. Note

that the log of mean baseline hazard has been absorbed in the

possibly episode-dependent intercept β0s = ln λ̄s in (5).

Before going through the details of the linear predictors in 4

and 5, note first that the expected number of recruits produced by

a given female (the fecundities fa in the first row of a prebreeding

census Leslie matrix), assuming that a single clutch is laid, are

given by products of clutch size y0 and the survival probabili-

ties for the two first episodes of selection fa(y0i , zi ) = y0i p1i p2i .

These fecundities are important fitness components and corre-

spond to the number of young produced during the breeding

season in year t that have survived until the next year t + 1

(see Fig. 1). Even without a quadratic effect of clutch size in

(5), provided that increasing clutch sizes translates to a reduction

in overall survival during episodes s = 1 or 2 (βclutchsize,s suffi-

ciently positive), it follows that these fecundities are maximized

for some intermediate clutch size, as expected through the trade-

off between offspring number and offspring survival (Smith and

Fretwell 1974). Note that the model may predict an optimum

located outside the range of observed phenotypic values. Thus,

our model specifies a joint optimum for the two phenotypic traits

laying date and clutch size for which fa(y0, z) is maximized. To

obtain a more standard measure of the strength of stabilizing se-

lection acting jointly on both traits, we evaluated the matrix of

second derivatives of ln fa(y0, z) at the joint optimum to obtain the

parameters of the Gaussian approximation of the fitness function

(appearing in many theoretical models, e.g., Phillips and Arnold
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(1989a); Chevin (2013); Tufto (2017)). We report the widths ωy0

and ωz of this approximation with respect to each trait (in units

of number of eggs and number of days, respectively), analogous

to standard deviations of Gaussian distributions.

Temporal covariates and temporal random effects appearing

in 4 and 5 translate to variation from year to year in the opti-

mal laying date and clutch size, respectively. To model possibly

correlated fluctuations in the joint optimum as in Chevin (2013)

as well as autocorrelation across time (as in Lande and Shannon

1996; Lande 2009; Tufto 2015; Chevin et al. 2017), the random

effects representing yearly variation in overall survival ut (5) and

variation in the optimal laying date ζt (4) are assumed to follow a

first-order vector autoregressive VAR(1) process[
ut

ζt

]
= �

[
ut−1

ζt−1

]
+ wt , (6)

where � is a 2 × 2 matrix of autoregressive coefficients and wt

is bivariate normal N (0, �) white noise. This only specifies the

autocorrelation matrix function (see Wei 2006, ch. 16.1) of the

process (ut , ζt ). But as long as the variance of ut is small, optimal

clutch size will be approximately linearly dependent on ut and

so the autocorrelation matrix function of the joint optimal clutch

size and laying date will be almost identical to that of (ut , ζt ).

Correlation between ut and ζt can arise either through �, � or

both having nonzero off-diagonal entries. If � and � are both

diagonal, this simplifies to two independent AR(1) processes and

if all entries of � are zero, ut and ζt are simple independent

and identically normally distributed (iid) white noise processes.

We parameterize this part of the model in terms of �, the white

noise correlation ρ = �12/
√

�11�22, the stationary variance σ2
ζ

of ζt , and with the stationary variance of ut in (5) set equal to

one but with separate parameters σs representing the potentially

different effects of ut on the three selection episodes. Note also

that additional correlation in variation of the joint optimum as

well as autocorrelation across time can be induced through the

temporal fixed effect covariates appearing in each linear predictor.

Correlated optima discussed above are distinct from corre-

lational selection. Two kinds of correlational selection can be

accommodated in our non-Gaussian model for fa(y0i , zi ), either

by adding zi y0i as a covariate in (5) making the optimal clutch

size dependent on laying date (first kind), or by adding clutch size

y0i as an additional covariate in (4) making the optimal laying

date dependent on clutch size (second kind).

To model the effect of the age of breeding female, we consider

models where the log hazard during the different episodes is either

independent of age (a single term β0,s in (5)), linearly dependent

on age (an additional term βage,sagei in (5)) or nonlinearly de-

pendent on age. Instead of modeling non-linear age-dependence

parametrically (using for example quadratic, Gompertz, piecewise

linear or two-parameter Weibull models (Gaillard et al. 2004;
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Figure 2. The log of the hazard (per year) (upper plot) and the

resulting probability of surviving each episode (lower plot) as a

function of mother age. Mean hazard and survival are computed

at optimal egg-laying date and at the most frequent clutch size

(five eggs), at mean altitude, population density, and winter tem-

perature for each episode.

Marzolin et al. 2011)), we use a nonparametric approach: we

model the age effects through a set of correlated random effects,

more precisely as a second-order random walk. This is a com-

monly used method for smoothing data and modeling response

functions (Green and Silverman 1994; Rue and Held 2005). It

provides a simple and flexible way to model the hazard variations

as a function of age, and thus to explore senescence. Under the

second-order random walk model, the joint distribution of the

age effects xs,1, xs,2, . . . , xs,10 (last term in (5), Fig. 2, upper plot,

blue curve) is specified by assuming that the second-order dif-

ferences �2xs,a are independently normally distributed with zero

mean and variance νs . The parameter νs (estimated along with

the random age effects themselves) thus controls the magnitude

of these second- order differences (analogous to the second-order

derivative) and hence the smoothness of the resulting function.

Further details on the implementation of the model and the two

last random effects terms appearing in 5 are given in Appendix A.

Apart from the nonlinear predictor, our model based on the

assumption of multiplicative effects on the hazard corresponds to

a generalized linear mixed model with a log-log link (or com-

plementary log-log) function with the log of the length of the

selection episode included as an offset variable. Surprisingly, this

link and its associated assumption of multiplicative effects on the
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hazard is rarely used in ecology and evolution. However, this is

a standard assumption in many models in survival analysis (Er-

gon et al. 2018), for example in Cox proportional hazards model,

and seems more reasonable from a biological point of view. We

must point out, however, that the magnitude of the variation in

optimal clutch size induced by temporal covariates and random

effects, depends, to some extent, on our choice of link function.

For the alternative logit link, the induced variations implied by

the model would have been somewhat smaller and would go to

zero in the limit of low survival where the logit tends to a log link.

The logit and other link functions such as the probit, however,

would not lead to regression coefficients having a common inter-

pretation across episodes of selection of different length (Ergon

et al. 2018). Hence, those link functions would not facilitate the

fitting of sometimes more parsimonious null models for which

these regression coefficients are constrained to a common value

across several selection episodes.

Results and Discussion
Our statistical model applied to the dipper allows us to select the

most parsimonious model (Table 1) among all the tested ones

(Table 2). In this section, we explore in detail all the effects

retained in the best model and discuss their implications.

AGE EFFECTS ON SURVIVAL

The best model indicates no effect of mother age on offspring

survival from egg to fledgling stage (episode 1) and from fledgling

to recruit stage (episode 2) (see last row in Table 1, Fig. 2).

Considering for instance a linear effect of female age on offspring

survival does not improve the model fit (models B to E, Table 2).

Indeed, model B that includes a different linear age effect for

episodes 1 and 2 provides estimates not significantly different

from zero (β̂age,1 = −0.009 ± 0.039 for episode 1 and β̂age,2 =
−0.029 ± 0.024 for episode 2). Because the probability of rearing

a chick is independent of mother age, our findings indicate no

senescence in maternal care. Note also that we do not detect

senescence in clutch size (results not shown here). Mean survival

on the first episode is close to 83% and drops around 7% on

the second episode (Fig. 2). This high mean survival on episode

1 compared to episode 2 (about 10 times higher) simply results

from the much longer duration of the second episode. At the adult

stage (episode 3), survival is age-dependent, increasing from age

1–4 and decreasing from age 4 onwards. This result indicates

actuarial senescence (Fig. 2), caused by a progressive loss of

cellular and physiological functions late in life (Williams 1957;

Hamilton 1966). Senescence is pervasive in the wild (Nussey et al.

2013), and we provide here additional evidence in a short-lived

species.

ENVIRONMENTAL EFFECTS ON SURVIVAL

As expected for this species that strongly depends on open wa-

ter for foraging, warmer winters favor adult survival (see third

row in Table 1). Therefore, adult females are more likely to sur-

vive, stay, and breed the next breeding season in the population

when the winters are mild. Apparent survival from fledgling to

recruit stage is not affected by winter temperatures (model Y, es-

timate = 0.043 (SE: 0.042)). In accordance with previous studies

(Gamelon et al. 2017; Nilsson et al. 2011a; Sæther et al. 2000;

Loison et al. 2002), high population density increases competi-

tion among individuals and thus mortality (and possibly dispersal

rate), especially at the adult stage (see fourth row in Table 1).

Including an effect of density on survival on other episodes does

not improve the model fit (models AA to AI, Table 2). However, it

is noteworthy that a model including an additional effect of den-

sity on episode 1 is close to the best model (model AC), but the

low effect size indicates no density-dependent mortality on this

first episode (β̂dens,1 = −0.003 ± 0.003). We thus do not find any

evidence for density-dependent mortality at the offspring stage,

contrary to some other passerine bird species such as great tit

(Reed et al. 2013a; Saether et al. 2016) for which low densities

are generally associated with high offspring survival. Notice also

that high altitudes negatively affect offspring survival from egg to

fledgling stage and also from fledgling to recruit stage (see fifth

row in Table 1).

SURVIVAL AND VARYING SELECTIVE OPTIMA FOR

CLUTCH SIZE

Mortality on episode 1 decreases in large clutches (see second

row in Table 1, first axis on Fig. 3A). However, because of

high overall survival during the first short selection episode, this

does not translate to strong selection for large clutch sizes. Low

mortality on episode 1 in large clutches also means that females

with large clutches have offspring with the highest survival in the

nest. This suggests individual heterogeneity, with some females

performing better than others in terms of reproductive success.

It is noteworthy that females that lay a large number of eggs, not

only during a given breeding event but generally during the whole

breeding season, do not pay direct survival costs. Indeed, adding

a term for the effect of the total number of eggs laid during the

whole breeding season in (5) does not provide any improvement

as indicated by model F (Table 2, β̂eggs,3 = −0.062 ± 0.061). For

episode 2, the best model indicates that large clutch sizes increase

mortality (Table 1, Fig. 3B). This might be due to malnutrition

and reduced parental care (Noordwijk et al. 1980). As a result

of lower survival during the second episode, this translates to

overall survival over the two first episodes combined decreasing

with increasing clutch size. Therefore, laying too many eggs is

associated with increasing offspring mortality. But obviously,

laying too few eggs is not a successful breeding tactic for a female

2 3 3 0 EVOLUTION NOVEMBER 2018
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Table 1. Parameters estimated with the best model retained (Table 2).

Selection episode

Parameters Egg to fledgling Fledgling to recruit Adult female

Meaning Symbol s = 1 s = 2 s = 3 Unit

Intercept, mortality β̂0,s 1.95 ± 0.40 0.66 ± 0.28 0
Effect of clutch size on mortality β̂clutchsize,s −0.170 ± 0.080 0.076 ± 0.055 0
Effect of winter temperature on mortality β̂temp,s 0 0 −0.243 ± 0.035 ◦C−1

Effect of population density on mortality β̂dens,s 0 0 0.0096 ± 0.0028
Effect of altitude on mortality β̂alt,s 0.00053 ± 0.00028 0.00053 ± 0.00028 0 m−1

Intercept, optimal egg-laying date θ̂0,s 40.9 ± 9.6 42.1 ± 5.5 0 d
Effect of population density on optimal date θ̂dens,s −0.41 ± 0.14 −0.41 ± 0.14 0 d
Effect of winter temperature on optimal date θ̂temp,s 0 8.9 ± 3.5 0 d◦C−1

Linear deterministic trend on optimal date θ̂t,s −1.37 ± 0.59 −1.37 ± 0.59 0 d◦year−1

Effect of altitude on optimal date θ̂alt,s 0.100 ± 0.029 0.100 ± 0.029 0 d◦m−1

Quadratic effect of egg-laying date ω̂s 45 ± 12 45 ± 12 0
SD of random year effect σ̂s 0 0.144 ± 0.050 0.144 ± 0.050
SD of random territory effect τ̂s 0.180 ± 0.054 0.180 ± 0.054 0.180 ± 0.054
Beta-binomial dispersion parameter γ̂s 1.879 ± 0.137 1.093 ± 0.085
SD of second order random age effect ν̂s 0 0 0.36 ± 0.17

Displayed are the meaning of the parameters, their notations and their estimates (± standard errors) for the three episodes of selection.
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Figure 3. Estimated (A) survival rate on episode 1 (from egg to fledgling stage, in red), (B) survival rate on episode 2 (from fledgling to

recruit stage, in green), and (C) total fecundity rate (i.e., total survival rate from egg to recruit stage × clutch size, in black) as a function

of egg-laying dates and clutch sizes. Mean vital rates are computed at average altitude, population density, and winter temperature. The

red cross indicates mean clutch size and mean egg-laying date observed during the study period. The minor tick marks are at the 10th,

20th, and 30th of each month.

either (Lack 1954; Boyce and Perrins 1987; Both et al. 2000).

Here, we provide evidence for an optimal clutch size maximizing

offspring survival and more generally overall fecundity rate

estimated to be 6.69 eggs. The width of the fitness function with

respect to clutch sizes, ωy0 , is estimated to be between 4.89 and

5.89 eggs in different years, being approximately proportional

to the optimum in any given year. The fitness function is also

somewhat asymmetric with respect to clutch size (Fig. 3C). This

high value for the width of the fitness function indicates weak

stabilizing selection for optimal clutch size, as also illustrated in

Fig. 3C.

We find that this optimal clutch size varies through time

between 6.19 and 7.53 eggs (Fig. 4A). This agrees quite well with

observed clutch sizes in the population, mainly ranging between

4 and 6 eggs (Table 3). The mean observed clutch size of 4.52

eggs is somewhat smaller than the estimated overall optimum.

However, this observed mean is influenced by the left tail of the

frequency distribution, which might reflects total failure of some
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Table 2. Model selection—Displayed are the tested models derived from the best model retained. �AIC and �p are the relative

differences to the best model in AIC values and number of parameters p, respectively.

�AIC �p Description

A 0 0 Best model, see Table 1
B 2.44 2 βage,1 �= 0, βage,2 �= 0 (different linear age effect for episodes 1 and 2)
C 1.97 1 βage,1 �= 0 (linear age effect for episode 1)
D 0.66 1 βage,1 = βage,2 �= 0 (common linear age effect for episodes 1 and 2)
E 0.49 1 βage,2 �= 0 (linear age effect for episode 2)
F 0.94 1 β#eggs, 3

G 1.96 1 φ11 �= 0 (ut ∼ AR(1))
H 2 1 σζ > 0 and φ12 �= 0 (ut dependent on ζt-1)
I 2.97 2 βclutchsize/date,1 �= 0, βclutchsize/date,2 �= 0 (correlational selection of first kind)
J 1.56 1 βclutchsize/date,1 = βclutchsize/date,2 �= 0 (correlational selection of first kind)
K 16.73 −6 Remove stab. sel. on z (quadratic term in eq. 3) for episodes 1 and 2
L 0.5 1 ω1 �= ω2 (strength of stabilizing selection different for episodes 1 and 2)
M 2.02 1 θ0,3 �= 0 (stabilizing selection for episode 3)
N 5.73 −1 θt = 0 (remove trend in optimal laying date)
O 1.21 1 θclutchsize,1 = θclutchsize,2 �= 0 (correlational selection of second kind)
P 2 1 σζ > 0 (random effect on optimal laying date)
Q 4 2 σζ > 0 and φ22 �= 0 (ζt ∼ AR(1))
R 3.93 2 σζ > 0 and φ21 �= 0 (ζt dependent on ut−1)
S 9.06 −1 θtemp,2 = 0 (remove temperature effect on optimal laying date)
T 7.31 −1 θdens,1 = θdens,2 = 0 (remove density effect on optimal laying date)
U 9.88 −1 θalt,1 = θalt,2 = 0 (remove altitude effect on laying date)
V 16.9 0 All age effects modelled as second order random walks
W 2.48 −2 βclutchsize,1 = βclutchsize,2 = 0
X 45.88 −1 βtemp,3 = 0
Y 0.7 1 βtemp,2 �= 0
Z 24.39 0 βtemp,2 = βtemp,3

AA 10.39 −1 βdens,3 = 0
AB 1.46 1 βdens,2 �= 0
AC 0.98 1 βdens,1 �= 0
AD 11.62 0 βdens,1 �= 0, βdens,3 = 0
AE 14.34 0 βdens,1 = βdens,3 �= 0
AF 7.71 0 βdens,2 = βdens,3

AG 12.36 0 βdens,2 �= 0, βdens,3 = 0
AH 10.4 0 βdens,1 = βdens,2 = βdens,3

AI 2.66 2 βdens,1 �= 0, βdens,2 �= 0, βdens,3 �= 0
AJ 1.88 −1 βalt,1 = βalt,2 = 0
AK 2.9 1 βalt,1 = 0, βalt,3 �= 0
AL 1.97 1 βalt,1 �= 0, βalt,2 �= 0
AM 1.97 1 βalt,3 �= 0
AN 3.41 0 βalt,2 = 0
AO 0.94 0 βalt,1 = 0
AP 2.11 0 βalt,1 = 0, βalt,2 = βalt,3 �= 0
AQ 3.74 0 βalt,1 = βalt,2 = 0, βalt,3 �= 0
AR 1.27 0 βalt,1 = βalt,2 = βalt,3

AS 3.95 2 βalt,1 �= 0, βalt,2 �= 0, βalt,3 �= 0
AT 1.03 1 βclutchsize/date,1 �= 0 (correlational selection of first kind)
AU 2 1 βclutchsize/date,2 �= 0 (correlational selection of first kind)
AV 2.13 1 θ0,1 �= 0, θ0,2 �= 0, θ0,3 �= 0
AW 1.99 1 θt,1 �= θt,2

AX 2.14 2 θclutchsize,1 �= 0, θclutchsize,2 �= 0 (correlational selection of second kind)

(Continued)
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Table 2. Continued.

�AIC �p Description

AY 2.03 0 θdens,1 = 0
AZ 7.54 0 θdens,2 = 0
BA 1.44 1 θdens,1 �= 0, θdens,2 �= 0
BB 2.96 0 θalt,1 = 0
BC 11.38 0 θalt,2 = 0
BD 1.32 1 θalt,1 �= 0, θalt,2 �= 0
BE 1.99 1 σ2 �= 0, σ3 �= 0
BF 2 1 σ1 �= 0, σ2 = σ3 �= 0
BG 4 2 σ1 �= 0, σ2 �= 0, σ3 �= 0
BH 2.26 2 τ1 �= 0, τ2 �= 0, τ3 �= 0
BI 1.8 1 τ1 �= 0, τ2 = 0, τ3 �= 0
BJ -0.18 0 τ1 = τ3 �= 0, τ2 = 0
BK 0.28 1 τ1 = τ3 �= 0, τ2 �= 0
BL 5.2 3 κ1 �= 0, κ2 �= 0, κ3 �= 0
BM 3.2 2 κ1 = 0, κ2 �= 0, κ3 �= 0
BN 1.4 1 κ1 = κ3 = 0, κ2 �= 0
BO 1.28 1 κ2 = κ3 �= 0, κ1 = 0
BP 3.96 2 σζ > 0 and φ11 �= 0 and φ22 �= 0 (ut and ζt ∼ AR(1))
BQ 4 2 σζ > 0 and φ12 �= 0 and φ21 �= 0
BR 7.96 4 σζ > 0 and φ11, φ12, φ21 and φ22 �= 0

Subscripts indicate the selection episode under consideration, that is 1 for the first episode from egg to fledgling stage, 2 for the second episode from

fledgling to recruit stage and 3 for the third episode corresponding to the adult stage.

Table 3. Observed frequencies of different clutch sizes in the

population.

Clutch size 0 1 2 3 4 5 6 7

Frequency 57 1 52 69 186 636 192 4

females. Interestingly, the observed mean clutch size maximizes

total fecundity rate (Fig. 3C).

According to our model, the temporal variation in optimal

clutch size is induced by random variations in survival during

episode 2 modeled by the random effect term σ2ut in (5) (σ̂s =
0.144 ± 0.050 for episode s = 2, Table 1) such that larger clutches

turn out to be favored in years with high survival. Modeling ut as

an autoregressive process does not improve the model (Table 2,

model G), that is, we find no evidence for autocorrelation in these

variations.

Finally, the models including correlational selection between

egg-laying date and clutch size on maximum survival on the first

two episodes do not perform better than the best model (models

I and J, Table 2). There is thus no evidence for correlational

selection between clutch size and egg-laying date on offspring

survival.

It should be noted that we have treated clutch size as a trait

on which selection operates, rather than as a fitness component.

This is reasonable because in many bird populations, recruitment

(function of clutch size) has a limited influence on the population

growth rate (see Saether et al. (2016) for a comparative analysis).

Instead, a large proportion of the temporal variance in popula-

tion change of temperate passerines is due to variation in survival

(Gould and Nichols 1998; Saether et al. 2004), dipper being no

exception (Loison et al. 2002). It is therefore relevant not to con-

sider clutch size as a fitness component but rather as a trait under

selection.

SURVIVAL AND VARYING SELECTIVE OPTIMA FOR

EGG-LAYING DATE

We find that egg-laying date is under stabilizing selection. In-

deed, removing stabilizing selection in (3) for episodes 1 and 2

does not provide any improvement in AIC (model K, Table 2).

Interestingly, ωs , that determines the strength of stabilizing se-

lection, is similar for episodes 1 and 2 (see 11th row in Table 1).

Indeed, estimating two different values (ω̂1 = 33.37 ± 9.1 and

ω̂2 = 49.11 ± 12.8) does not improve the model fit (model L,

Table 2). Given the much longer duration of episode 2, however,

most of the selection happens during this episode. The approx-

imate width of the overall fitness function ωz varies between

27.76 and 32.01 days reflecting strong stabilizing selection on

egg-laying date, as illustrated in Fig. 3C. Adding stabilizing se-

lection for episode 3 does not improve the model fit (model M,
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Figure 4. Estimated annual optimal clutch size (plot A) and laying

dates (plot B) for the best model (Table 1). In plot B, the red and

green curves are the estimated optimal laying dates in terms of

survival during episodes 1 and 2, respectively, and the black curve

the optimal laying date for both episodes combined. Note that the

overall optima (black curve) nearly coincide with the optima of the

episode 2. All optima are estimated at the average altitude and for

the most frequent clutch size (five eggs). Gray lines represent mean

phenotypic values and the size of the gray dots the frequencies of

different phenotypes in the total population. The minor tick marks

in plot B are located as in Fig. 3.

Table 2), meaning laying eggs early or late in the breeding

season has no effect on mother survival. In contrast, in a trop-

ical parrot, the green-rumped parrotlet (Forpus passerinus), there

is strong selection on egg-laying date through adult survival, such

that females that breed early in the season exhibit lower survival

to the next breeding season (Tarwater and Beissinger 2013). This

discrepancy between our finding and Tarwater and Beissinger

(2013) might be explained by the contrasting life-history strate-

gies of these two species. Indeed, parrotlets have a much slower

pace of life than the dipper. In slow-living species, adult survival

has the highest contribution to population growth rate and is thus

expected to be particularly canalized (Gaillard and Yoccoz 2003).

This explains why viability selection is important in slow-living

species like parrotlets compared to short-lived species such as

dipper. As a consequence, our results indicate that the strong

stabilizing selection on egg-laying date operates only through

offspring survival.

The timing of egg laying and more generally the timing

of reproduction is critical in many species (Price et al. 1988)

because hatching/birth should match with good environmental

conditions in terms of weather and/or food resources. Otherwise,

offspring survival may be jeopardized. Our findings provide

evidence for an optimal laying date in the dipper with an overall

mean egg-laying date maximizing survival from egg to fledgling

stage estimated to be θ̂0,1 = 40.9 ± 9.6 days after the 1st of

March (i.e., mid-April, Fig. 3A, see sixth row in Table 1) and

with an overall mean egg-laying date maximizing survival from

fledgling to recruit stage estimated to be θ̂0,2 = 42.1 ± 5.5 days

after the 1st of March (Fig. 3B, Table 1). This translates to a

mean egg-laying date maximizing total fecundity rate estimated

to be April 12 (Fig. 3C). This mean optimal date is slightly

earlier than the mean laying date actually observed over the study

period (April 22 for n = 741 clutches for which information on

egg-laying date was available, second axis, Fig. 3C).

Observed egg-laying dates have advanced at a rate of

0.15 ± 0.07 days/year during the 35-year period (Fig. 4B, gray

dots). Interestingly, we find a significant trend toward earlier op-

timal dates at a rate of θ̂t,s = 1.37 ± 0.59 days/year (Table 1).

Removing the trend worsens model fit considerably (model N,

Table 2). This estimate seems somewhat large and would imply

an advance in the optimum of 47 days over the course of the

study. The lower confidence limit of 7.24 days for this advance

(based on approximate normality of θ̂t,s) seems more reasonable

and comparable to the observed phenotypic change of 8.8 days

on average (ranging from 4 to 17 days), recorded in other bird

populations over a 25-year period (Crick et al. 1997).

Importantly, in addition to the linear trend, the estimated opti-

mal laying date (at the average altitude) varies over years between

February 8 and May 24 (Fig. 4B, black line) as a result of the

effects of winter temperature and population density. Removing

the effect of environmental covariates on the optimal laying date

worsens model fit (models S and T, Table 2) thus providing strong

evidence for environmental sensitivity of selection. In particular,

when the winter following the breeding season is warm, the

optimal laying date maximizing survival from fledgling to recruit

stage (i.e., episode 2) is delayed by θ̂temp,2 = 8.9 ± 3.5days/◦C

(see eighth row in Table 1). One can hypothesize that when the

subsequent winter is mild, offspring produced at late laying dates

during the previous breeding season are disproportionately more

likely to survive, thus generating selection for later laying dates.

While including the same effect of winter temperature on the

optimal laying date of episode 1 led to a slight improvement
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Figure 5. Estimated optimal (black line) and observed mean (gray

line) egg-laying dates as a function of altitude (mean centered),

together with observed egg-laying dates (gray dots). Dot size illus-

trates the number of individuals exhibiting the same laying date

at a given altitude. Estimated optimal egg-laying dates are com-

puted at average population density and winter temperature. The

minor tick marks are located as in Fig. 3.

in AIC, such a model would clearly be biologically unrealistic

as survival on episode 1 has to be causally independent of the

following winter conditions (Fig. 1). This model alternative was

thus excluded from consideration (see Burnham and Anderson

2002, ch. 6.8.7). Under our best model, different optima for

episodes 1 and 2 are therefore estimated (Fig. 4B, red and green

curves). The overall optimum (black curve) is approximately an

average of the optima for each of the two episodes, weighted by

the respective strength of stabilizing selection for each episode

(this approximation would be exact if the fitness functions for

each episode were exactly Gaussian). Indeed, as can be seen

from Fig. 4 B, the overall optimum always falls between the

green and red curve but much closer to the green curve given the

much stronger stabilizing selection during episode two.

Interestingly, previous studies on other passerine bird species

have shown that selection on egg-laying date often depends on the

timing of the peak in caterpillars, the main food resources, itself

closely related to spring temperatures (e.g., in great tits, (Chevin

et al. 2015; Visser et al. 2006; Reed et al. 2013b)). Here, we do not

find statistical evidence for the effect of spring conditions (date

of ice break-up) on the optimal egg-laying date. Based on the

upper confidence limit, the regression coefficient is considerably

smaller than its expected value (see Appendix A), suggesting that

other environmental factors are more important for the dipper’s

optimal laying date. This discrepancy between our findings and

previous works may be explained by the difference in the biology

of these species. While great tit strongly depends on insect avail-

ability during spring, food resources are available on a larger time

window (over spring and summer) for the dipper.

We also find that optimal egg-laying date is density-

dependent, with high densities favoring earlier optimal date (see

seventh row in Table 1). Despite a large amount of theoretical

and experimental works on the role of density as a selective agent

(Charlesworth 1994; Engen et al. 2013; De Lisle and Rowe 2013;

Shaw 1986), empirical evidence in the wild remains scarce (but

see Sæther et al. (2016) for great tits and Hunter et al. (2018)

for Soay sheep (Ovis aries)). In green-rumped parrotlets for in-

stance, late breeding dates are selected for when the density is low,

through enhanced adult survival (Tarwater and Beissinger 2013).

Similarly, a recent study has shown that in North American red

squirrels (Tamiasciurus hudsonicus), high population densities

might increase the strength of selection for earlier birth dates

(Fisher et al. 2017), favoring successful recruitment for juveniles.

Here, our findings provide additional support for a key role of

density as a selective agent in the wild.

Having included the temporal covariates winter temperature

and population density, we do not find any latent variations in

optimal laying date as indicated by the lack of improvement in

AIC when including ζt (corresponding to random variation in the

optimal laying date) as a iid random effect (model P, Table 2).

We also considered including ζt distributed as an AR(1) process

(φ22 �= 0, model Q), cross-correlated with ut−1 (corresponding

to variation in overall survival) (φ21 �= 0, model H) or cross-

correlated with ut+1 (φ12 �= 0, model R) but neither of these model

alternatives led to any improvement in AIC.

Through their estimated joint effect on the optimal laying

date, winter temperature and population density induce autocor-

relation on the deviations of the optimal laying dates from the

estimated linear trend. For episode 1, only influenced by popu-

lation density and no additional latent random process, the auto-

correlation function of the optimum is identical to that of popu-

lation density, with a significant autocorrelation of 0.58 at lag 1

(Fig. A3). For episode 2, despite also being influenced by pop-

ulation density in addition to winter temperature, the resulting

optimum given by θ̂dens,2denst + θ̂temp,2tempt exhibited no signif-

icant autocorrelation, mainly because of the larger effect of winter

temperature (exhibiting no autocorrelation, Fig. A2) accounting

for 75% of the total variance in the optimum. Since the optimal

laying date for episodes 1 and 2 combined almost coincides with

the optimum for episode 2 (Fig. 4B, black and green curves), the

same applies to the corresponding autocorrelation function.

Finally, in addition to the dependency on winter temperature

and population density, we find that optimal and observed egg-

laying dates depend on altitude (model U, Table 2), occurring later

at high altitudes (see tenth row in Table 1, black line on Fig. 5).

This result gives clear support for spatial variation in phenotypic

selection and provides empirical evidence for adaptation along
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an environmental gradient. To what extent this can be explained

by the altitudinal gradient in temperatures would require fine-

grained data on local temperature, unfortunately not available.

Interestingly, the slope in the mean phenotype based on the egg-

laying dates in the complete data (gray line in Fig. 5, n = 741) is

significantly shallower than the estimated slope in the optimum

(black line in Fig. 5, one sided Z -test, P-value = 0.041). Thus,

laying tends to occur too late at low altitudes and too early at high

altitude relative to the estimated optimal laying date. This suggests

maladaptation at the extreme ends of the gradient, possibly caused

by gene flow as in Kirkpatrick and Barton’s (1997) model of

evolution of species’ range or by imperfect plasticity (Tufto 2000;

Chevin and Lande 2011; Gienapp et al. 2014).

MODEL WITHOUT TEMPORAL COVARIATES

Our statistical approach can be used when environmental covari-

ates involved in the varying optima are missing. As an illustration,

we removed population density and winter temperatures as tem-

poral covariates as well as the trend in optimal egg-laying dates

and tested different models for the random effects instead (see

Table A1). The best model (see Fig. A1 and Table A2) included

both latent variations in overall mortality (through the ut term

inducing variation in optimal clutch size as before) and in opti-

mal laying date (through a significant ζt term, model BT vs best

model, σ̂ζ = 19 ± 12 days), jointly following a vector autoregres-

sive process (see (6)). In line with the absence of autocorrelation

in the optima induced by the temporal covariates for model A in

Table 2 (Fig A3), we found no evidence for autocorrelation in

optima via ut and ζt for the model without temporal covariates

(models BU and BV in Table A1). Surprisingly, this model in-

cludes a negative autoregressive coefficient φ̂12 = −0.45 ± 0.95,

making ζt−1 (optimal laying date in year t − 1) negatively cor-

related with ut (the hazard in year t). A possible explanation is

that an unknown temporal covariate influences the optimal laying

date with a delayed effect on survival.

The moving optimal laying dates and clutch sizes estimated

with the best models with and without temporal covariates are

generally in accordance (Fig. 4 vs Fig. A1). The parameter

estimates provided by the model without temporal covariates are

close to the ones of our best model for the effects of clutch size and

altitude on mortality (comparison between Table 1 and Table A2).

However, including temporal covariates improves the precision of

most parameter estimates (Table 1 vs Table A2). In particular, the

precision of the estimates of optimal egg-laying date strongly dif-

fers between the two models, being equal to θ̂0,1 = 22 ± 29 days

after the 1st of March (i.e., March 30 ± 29 days) when excluding

temporal covariates and to 40.9 ± 9.6 days (i.e., April 10 ± 9.6

days) for the first episode and to θ̂0,2 = 42.1 ± 5.5 days (i.e.,

April 12 ± 5.5 days) for the second episode when including them.

Similarly, ωs for episodes 1 and 2 is estimated to be 45 ± 12 and

81 ± 45 for the best models with and without temporal covariates

(translating to widths ωz of the Gaussian approximation of the

fitness function ranging from 28 to 32 days and 39 to 62 days, re-

spectively). This difference also explains the shift in the estimated

optimal laying dates (Fig. 4B vs Fig. A1B) since the location of

the optimum is, to some extent, estimated through extrapolation

of the quadratic model of the effect of laying date on the hazard

beyond the range of observed phenotypic values (see (3)).

Conclusion
Understanding how life-history traits vary in time and space and

determining the selective forces behind this variation is one of

the central issues in ecology and evolution. Instead of working

within the classical framework of Lande and Arnold (1983), we

have extended the statistical glm-like approach used in several

works (Janzen and Stern 1998; Shaw and Geyer 2010; Chevin

et al. 2015), by allowing movements of the underlying fitness

function. These movements can be induced through observed

environmental covariates or latent processes following different

types of plausible autoregressive models. This extension leads to

a nonlinear latent variable statistical model, efficiently handled

thanks to modern statistical software. A particular advantage of

our approach is that all the data for several episodes are utilized

in a single joint model. Also, correlational selection on multiple

traits and correlated optima are accommodated as possible model

alternatives.

The statistical approach we have used leads to models of sta-

bilizing selection that are different from the standard Gaussian fit-

ness function frequently used in theoretical models. Our approach

is similar to how a quadratic effect of a trait in the logistic regres-

sion approach of Janzen and Stern (1998) translates into a non-

Gaussian, plateauing fitness function if survival is high. Our view

is that such non-Gaussian functions are more realistic because they

reflect the constraint that survival probabilities necessarily have an

upper bound of one. The difference from our approach is in the ex-

act link function used (the logit link vs the loglog link correspond-

ing to our proportional hazard assumption). The same type of ar-

gument can be made for how non-Gaussian stabilizing selection

on clutch size emerges in our model. This being said, if survival is

low, for example during selection on laying date in episode s = 2,

and not strongly dependent on clutch size, the resulting fitness

function is well approximated by a Gaussian function with widths

ωz and ωy0 easily derived from the basic parameters of the model

(Table 1). It should also be noted that when estimated optima fall

outside the range of observed phenotypic values, the existence of

an optimum is not an inference drawn from the data alone. Instead,

we assume that an optimum exists and this is a reasonable assump-

tion. For instance, based on a priori biological knowledge, we

know that the reproductive success of a female that starts breeding
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too early in the season under harsh winter conditions will be low.

The locations of optima are in turn estimated based on the most

parsimonious model of the fitness curvature supported by the data.

In our dipper case study, using model selection criteria to

choose between a large number of alternative models, we find ev-

idence for varying selective optima on two key life-history traits.

Spatio-temporal variation in optimal laying dates is induced by

variation in altitude, winter temperature, and population density.

Optimal clutch sizes, resulting from an estimated trade-off be-

tween offspring number and survival, exhibit similar random vari-

ations over time. Selection on these traits mainly operates through

low survival from fledgling to recruit stage (episode 2), parallel-

ing the key role of this life stage as a driver of fluctuations in avian

population dynamics (Saether et al. 2016). For adult survival, we

clearly show that senescence occurs but we find no cost of large

clutch sizes or selection on laying dates via adult survival.

Our statistical approach can also be used when environmen-

tal covariates involved in the varying optima are missing. Indeed,

the moving optimal laying dates and clutch sizes estimated with

the models with and without temporal covariates are generally

in accordance (Fig. 4 vs Fig. A1). However, including relevant

environmental covariates is important to improve the overall pre-

cision of parameter estimates and of course, to identify the agents

of selection.

Our main objective in the present study has been to estimate

the pattern of varying selective optima acting at various life

stages. We are not aware of any simple theory for how this trans-

lates to variation in selection acting over the whole lifespan of an

individual. It is noteworthy that the variation in mean phenotypes

through space and time in many respects are qualitatively similar

to variation in the estimated optima. However, we cannot con-

clude that these patterns in mean phenotypes are consistent with

the pattern of varying selection estimated by our method. Further

work is needed to quantify the expected evolutionary response

that is expected from our model. Given the complications of

age-structured and density-dependent models (Engen and Saether

2017), this is likely feasible only via simulation-based approaches.
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Appendix A
STATISTICAL MODEL DETAILS

To accommodate overdispersion in the number of surviving

fledglings y1i and in the number of surviving recruits y2i , we use

a beta-binomial distribution for each episode s = 1, 2, parame-

terized in terms of the survival probability psi and a dispersion

parameter γs (the factor by which the variance is inflated relative

to the simpler binomial model). Conditional on the initial clutch

size y0i , the joint distribution of number of fledglings y1i and

number of recruits y2i is then

p(y1i , y2i ) = p(y1i )p(y2i |y1i )

=
2∏

s=1

betabin(ysi ; ys−1,i , psi , γs), (A1)

where betabin(y; n, p, γ) is the probability mass function of the

beta-binomial distribution. Similarly, the survival of the adult fe-

male y3i associated with breeding event i is modeled as Bernoulli

distributed with parameter p3i .

The other random effects vk and w j appearing in (5), based

on territory and female identity, are included to model possible

positive correlation between number of fledglings and recruits

produced by the same territory and female in different years. We

parameterized the model such that they are iid standard normal

and like ut , their effect on the different episodes s = 1, 2, 3 are

potentially different, depending on whether their standard devia-

tions τs and κs differ between episodes.

In practice, the expected number of recruits produced as

function of clutch size y0 and laying date z, fa(y0, z) (Fig. 3C),

was computed by evaluating

fa(y0, z) =
∞∫

−∞

∞∫
−∞

y0 p1(y0, z, v, w)p2(y0, z, v, w) f (v) f (w)dvdw

=
∞∫

−∞

∞∫
−∞

y0 exp

(
−

2∑
s=1

(as − as−1) exp(ηs(y0, z, v, w))

)

f (v) f (w)dvdw, (A2)

using numerical integration (R-package cubature), thus inte-

grating out the above nontemporal random territory and female

identity effects v and w. Here f is the standard normal proba-

bility density function, ηs(y0, z, v, w) is the nonlinear predictor
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Table A1. Model selection—Displayed are all the tested models

derived from the best model without temporal covariates (i.e.,

best model without population density and winter temperatures,

see Table A2 for a list of parameters included in the best model),

the difference � AIC (respectively �p) in AIC (respectively in num-

ber of parameters p) between each model and the best one and

their description.

�AIC �p Description

BS 0 0 Best model
BT 6.74 −1 φ12 = 0
BU 1.79 1 φ11 �= 0
BV 1.76 1 φ22 �= 0
BW 1.59 1 φ21 �= 0
BX 7.1 0 φ11 �= 0, φ12 = 0
BY 5.35 0 φ22 �= 0, φ12 = 0

given by equations (3), (4), and (5) (a function of y0, z, v, and

w), and as − as−1 the duration of episode s. In the terminology

of generalized linear-mixed models, this gives us the so called

marginal as opposed to conditional model (Agresti 2002, Section

12.2.2) with respect to v and w. Fixed effect covariates were set

to their mean values and other temporal random effects were set

to zero (in Fig. 3) or to their estimated values (in Fig. 4) (giving

us a conditional model with respect to ζt and ut ). Computing the

arithmetic mean fitness in this way, averaging over these random

effects rather than considering the fitness function conditional on

their values, appears to be the most reasonable approach, at least

under the assumption of hard selection (nonlocal density regu-

lation occurring after locally varying selection, see Tufto (2015)

Appendix S3). The joint optimum of fa(y0, z) (Figs. 4 and A1)

and the second derivatives of its log was also computed numeri-

cally (R function optim).

To implement the model, software for fitting generalized

linear-mixed models cannot be used, because ηsi in (3) is nonlin-

ear in the parameters and the random effects. Instead, we used

Template Model Builder (Kristensen et al. 2016) (R-package

TMB) that provides a general framework for fitting complex, non-

linear, random effects (latent variable) models. Briefly, the user

defines the joint likelihood for the data and the random effects as a

C++ template function. Based on this template, TMB generates

a function computing the Laplace approximation of the marginal

likelihood. This is, in turn, maximized numerically to obtain the

maximum likelihood estimates of the model parameters. Biolog-

ically meaningful models derived from variations of (4) and (5)

were fitted (Table 2). We selected the best model using the Akaike

information criteria AIC (Burnham and Anderson 2002) among

all tested models and recovered the estimates of all parameters to-

gether with their associated standard errors. Explanatory variables

alti , tempi and densi were mean centered.
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Figure A1. Estimated annual optimal clutch size (plot A) and lay-

ing dates (plot B) for the alternative model without temporal co-

variates (Table A2).

An important advantage of the modeling framework pro-

vided by TMB is that models that are nonlinear in the parameters

and random effects can be fitted with little effort from the user

perspective. In contrast, Chevin et al. (2015) used the INLA

R-package (Rue et al. 2009) to estimate a log-linear model for

the Poisson mean with a constant quadratic term representing

stabilizing selection and a random autocorrelated effect on the

slope. This translates to autocorrelated fluctuations in the moving

optimal phenotype. This approach requires modeling variation

in the elevation of the fitness function in different years through

a fixed effect on the intercept (the term μt in their eq. (3)). If

instead, variation in elevation was modeled through a random

effect on the intercept, this would translate to an undesirable

and unrealistic quadratic relationship between the expected

fitness at the optimum and the location of the optimum. In

contrast, the TMB framework we have used here allows more

biologically realistic models to be fitted with the inclusion

of random effects acting directly on the fitness maximum (or

equivalently, on the minimum of the hazard function) and on its
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Table A2. Parameters estimated with an alternative model without any temporal covariates (population density and winter tempera-

tures) but with autocorrelated random effects.

Selection episode

Parameters Egg to fledgling Fledgling to recruit Adult female

Meaning Symbol s = 1 s = 2 s = 3 Unit

Intercept, mortality β̂0,s 1.94 ± 0.40 0.68 ± 0.29 0
Effect of clutch size on mortality β̂clutchsize,s −0.170 ± 0.080 0.082 ± 0.055 0
Effect of altitude on mortality β̂alt,s 0.00084 ± 0.00053 0.00084 ± 0.00053 0 m−1

Intercept, optimal egg-laying date θ̂0,s 22 ± 29 22 ± 29 0 d
Effect of altitude on optimal date θ̂alt,s 0.20 ± 0.12 0.20 ± 0.12 0 dm−1

Quadratic effect of egg-laying date ω̂s 81 ± 45 81 ± 45 0
SD of random year effect σ̂s 0 0.032 ± 0.067 0.032 ± 0.067
SD of random territory effect τ̂s 0.181 ± 0.055 0.181 ± 0.055 0.181 ± 0.055
Beta-binomial dispersion parameter γ̂s 1.915 ± 0.139 1.072 ± 0.084
SD of second-order random age effect ν̂s 0 0 0.34 ± 0.17
VAR(1) autoregressive parameters �̂ 0 −0.45 ± 0.95

0 0
SD of latent fluctuations in optimum date σ̂ζ 19 ± 12 d

Displayed are the meaning of the parameters, their notations, and their estimates (± standard errors) for the three episodes of selection.
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Figure A2. Sample autocorrelation- and cross-autocorrelation functions (see e.g., Shumway and Stoffer 2011, Defs. 1.14 and 1.41) for

the time series of observed population densities and temperatures. The off-diagonal plots displays estimates of corr(denst, tempt−k).

location. Modeling variation in the elevation of fitness functions

across years in this way makes better use of the data as some

of the information contained in mean survival in a given year to

some extent, depending on the magnitude of the random effect

on the fitness maximum, is informative about the location of the

optimum.

Another important improvement over the Chevin et al.’s

(2015) method is the inclusion of individual level covariates (such

as altitude) directly influencing the location of the phenotypic op-

timum at the individual level. This makes the overall predictor

(3) nonlinear also in the fixed effect parameters (the parameter

θalt,s in 4). In the INLA-based approach of Chevin et al. (2015),
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Figure A3. Estimated autocorrelation functions of optimal laying

dates θ̂dens,sdenst + θ̂temp,stempt induced by population density

and winter temperature for episodes s = 1 and s = 2.

a term for this could naively be included as an interaction term

between trait value and altitude in the linear predictor. But again,

this would translate to an unrealistic quadratic relationship be-

tween the maximum of the fitness function and the fitness optima

experienced by individuals at different altitudes.

EFFECT OF SPRING CONDITIONS ON OPTIMAL

EGG-LAYING DATE

As the species mainly feed underwater, we used the timing of

ice break-up during spring as a measure of spring conditions.

Ice cover break-up was defined as when there no longer was a

connective ice layer across the southern end of the lake Lygne

located in the middle of the dipper system, where the outlet is 1st

of March was set as day 1 and dates were sequentially numbered.

This information was available from 1979 to 2009. From 2010

to 2013, the timing of ice break-up was set to its mean observed

between 1979 and 2009, that is 46 days after 1st of March.

From the best model retained (Table 2), we tested an ad-

ditional effect of the timing of ice break-up (denoted spring)

on optimal egg-laying date, similar for episodes 1 and 2 (i.e.,

θspring,1 = θspring,2 �= 0, �AIC=0.89). We found that θ̂spring,1 =
θ̂spring,2 = −0.229 ± 0.276, in the opposite direction and different

from the theoretical value of θspring,s = 1 expected if the optimal

laying date occurs at a fixed number of days after ice break up.

While there may still be an effect that is not detected because

of low statistical power, the effect would have to be quite small,

based on the upper approximate confidence 95% confidence limit

of 0.31. We also considered additional model alternatives by ex-

cluding the effect of mean winter temperatures (i.e., θspring,1 =
θspring,2 �= 0, θtemp,2 = 0). Once again, this model did not show

any improvement (�AIC = 9.16). In addition, we tested an effect

of the timing of ice break-up on optimal egg-laying date, differ-

ent for episodes 1 and 2 (i.e., θspring,1 �= 0, θspring,2 �= 0, �AIC =
2.23). We also evaluated the effect of the timing of ice break-up

on optimal egg-laying date on episode 1 only (i.e., θspring,1 �= 0,

�AIC = 0.23) and on episode 2 only (i.e., θspring,2 �= 0, �AIC =
1.99). Finally, we tested the effect of the timing of ice break-up

on optimal egg-laying date on episode 1 only while excluding the

effect of mean winter temperatures (i.e., θspring,1 �= 0, θtemp,2 = 0,

�AIC = 8.19). None of these models improved the fit.
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