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sub-populations and that failing to account for such differ-
ences may give a biased estimate of senescence rates of a 
species.
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Introduction

The evidence supporting the hypothesis that senescence 
(e.g. decline in survival and/or reproduction with age) 
occurs in wild populations has become substantial in recent 
decades. This has also led to an increasing interest in the 
underlying mechanisms that may influence senescence (see 
Nussey et  al. 2013 for a review). The fundamental evolu-
tionary mechanism(s) explaining the occurrence of actu-
arial senescence (i.e. survival senescence) has been attrib-
uted to the decline of natural selection with age (Medawar 
1952; Hamilton 1966). Williams (1957) expanded this 
work and provided the antagonistic pleiotropy theory of 
ageing, which states that an allele with a positive effect on 
reproduction early in life may be selected even if it has a 
negative effect on survival later in life. Subsequently, Kirk-
wood (1977) proposed the disposable soma theory of age-
ing. Both the antagonistic pleiotropy theory and the dispos-
able soma theory share the same prediction of a trade-off 
between reproduction and/or growth during early life and 
intensity of ageing later in life (Nussey et al. 2013; Lemai-
tre et  al. 2015). Because the energy available to an indi-
vidual is finite, senescence may be expected to start at the 
age of maturity (but see Brunet-Rossinni and Austad 2006) 
and manifest itself within the normal lifespan of the species 
(Nussey et al. 2013).

Abstract  Investigating factors which affect the decline 
in survival with age, i.e. actuarial senescence, is impor-
tant in order to understand how demographic rates vary 
in wild populations. Although the evidence for the occur-
rence of actuarial senescence in wild populations is grow-
ing, very few studies have compared actuarial senescence 
rates between wild populations of the same species. We 
used data from a long-time study of demography of house 
sparrows (Passer domesticus) to investigate differences in 
rates of actuarial senescence between habitats and sub-
populations. We also investigated whether rates of actu-
arial senescence differed between males and females. 
We found that rates of actuarial senescence showed large 
spatial variation. We also found that the onset of actuar-
ial senescence varied between sub-populations. However, 
these differences were not significantly explained by  a 
general difference in habitat type. We also found no sig-
nificant difference in actuarial senescence rates between 
males and females. This study shows that senescence rates 
in natural populations may vary significantly between 
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Rates of actuarial senescence (hereafter senescence) in 
wild populations may be significantly influenced by the 
environment. Specifically, if a population is exposed to 
environments that increase mortality, this may amplify the 
rate of senescence under particular circumstances (Caswell 
2007). For instance, it has been shown that a high level of 
predation (e.g. Dhondt et  al. 1998) or an increased com-
petition between individuals for resources (i.e. density 
dependence; e.g. Altwegg et al. 2003) may increase the rate 
of senescence (Nussey et al. 2007). Predation and density 
may even interact with each other in affecting senescence 
rates (e.g. Balbontin and Møller 2015). Because these 
sources of mortality may vary among populations, one may 
also expect senescence rates to vary among populations. 
For example, Kawasaki et al. (2008) found that the rate of 
ageing in stalk-legged flies (Telostylinus angusticollis) in 
wild populations was significantly faster compared to labo-
ratory populations founded from the same wild population. 
Similarly, Austad (1993) found that an island population of 
Virginia opossums (Didelphis virginiana) had a shallower 
senescence slope compared to the mainland population. 
This difference coincided with a lack of predators on the 
island (Austad 1993). Despite this empirical foundation, 
there has been a lack of studies investigating intraspecific 
spatial variation in senescence rates between different habi-
tats/populations in the wild (but see Austad 1993 and Baker 
and Thompson 2007; see also Bouwhuis et  al. 2010 and 
Balbontin et al. 2012 for studies of inter-population varia-
tion in rates of reproductive senescence). The lack of stud-
ies may be caused by the requirement for long-term moni-
toring of known-aged animals from different populations of 
the same species.

The rate of senescence may vary among groups in a 
given population (e.g. males and females). The difference 
in senescence rates between males and females has become 
a topic of increased interest in evolutionary biology (Mak-
lakov and Lummaa 2013; Regan and Partridge 2013). Life-
history theory predicts that the sex with the higher mor-
tality rates should be the one exhibiting the higher rates 
of senescence (Williams 1957). Therefore, as males from 
polygynous and dimorphic species suffer from high mortal-
ity rates during the mating season due for instance to male–
male combat, they should exhibit higher senescence rates 
than females (Bonduriansky et  al. 2008; Festa-Bianchet 
2012). An interspecific comparison of 35 vertebrate spe-
cies (Clutton-Brock and Isvaran 2007) provided an overall 
support for that prediction, finding that, in general, males 
had faster rates of senescence than females. As expected in 
socially monogamous species, such a difference in senes-
cence rates between males and females appeared to be 
less pronounced (Clutton-Brock and Isvaran 2007). How-
ever, it is noteworthy that, until now, many of the studies 
investigating senescence patterns in the wild have focused 

solely on females (but see Reed et  al. 2008; Brown and 
Roth 2009; Nussey et al. 2009; Pardo et al. 2013; Cornwal-
lis et al. 2014; Gamelon et al. 2014; Hayward et al. 2015; 
Zhang et al. 2015), and evidence for sex differences in rates 
of senescence in the wild remains somewhat scarce in the 
literature (Clutton-Brock and Isvaran 2007; Bonduriansky 
et al. 2008; Balbontin and Møller 2015).

Here, we aimed at filling these gaps in our knowledge 
by investigating intraspecific spatial variation and also sex 
differences in rates and onset of senescence in a wild meta-
population of house sparrows (Passer domesticus) in a Nor-
wegian archipelago (66.5°N, 12.5°E). This metapopulation 
has been intensively monitored by annual capture, mark and 
resighting of both males and females since 1993. An impor-
tant feature of this metapopulation is that some islands 
contain farms where the birds had the option of sheltering 
inside cattle-farm buildings whenever the weather is harsh 
(e.g. during winter). In contrast, other islands do not have 
any cattle-farms and the birds have to find shelter around 
the human settlements. Therefore, according to the current 
evolutionary theory of senescence, we expected: (1) inter-
population variation in rates and onset of senescence with 
faster and/or earlier senescence in the populations inhabit-
ing the islands free of cattle-farms compared to the popula-
tions living in more sheltered environments; and (2) no sex 
difference in senescence rates within a given population for 
this socially monogamous species (Anderson 2006).

Materials and methods

Study area and habitats

The study was carried out in an archipelago consisting of 
18 islands covering ca. 1600 km2 in the Helgeland district 
in northern Norway (see map in Baalsrud et al. 2014). The 
house sparrows on these islands have been systematically 
captured, marked and resighted several times during their 
lifetime since 1993 (e.g. Ringsby et al. 2002; Jensen et al. 
2008; Pärn et al. 2012). In this study, we compared two sets 
of islands which differed in habitat: two islands with cat-
tle farms (Gjerøy and Hestmannøy) and two islands with-
out cattle farms (Selvær and Træna). On the farm islands, 
house sparrows lived in association with dairy farms 
where they reproduced, foraged and sheltered (under harsh 
weather conditions) inside barns and cow-sheds. On these 
farm islands, the cattle food and seeds from cultivated 
crops were readily available for house sparrows through-
out the year. On the non-farm islands, where house spar-
rows live in association with small human settlements, 
the shelter provided by the barns was lacking. In addition, 
the main food resource on the non-farm islands was seeds 
from birdfeeders provided by the local human inhabitants. 



867Oecologia (2016) 181:865–871	

1 3

Although we focus on four islands, observations from the 
other islands were used to identify and exclude emigrants 
and immigrants from the dataset (n = 330). This was done 
to ensure that the effect of habitat/island on individual sur-
vival remained as constant as possible throughout the lifes-
pan of individuals. We were thus also able to separate mor-
tality from migration in our analyses.

Field work and datasets

Field work was carried out during the summer (1 May–15 
August) and autumn (1 September–1 November). During 
field work, house sparrows were captured using mist nets. 
Upon first capture, they were banded with a metal ring 
engraved with a unique id-number and three plastic color 
rings (two rings on each tarsus). In addition, we visited 
nests (nest boxes or under barn roofs) and marked fledg-
lings (age =  8–14  days old). Thus, after individuals had 
been marked they could be resighted by capturing them, 
or by observing their unique combination of color rings 
through a telescope or binoculars. For detailed descrip-
tion on field work, see Ringsby et al. (1998), Sæther et al. 
(1999) and Pärn et al. (2009).

Our datasets only included individuals that had a known 
age (i.e. individuals marked as fledglings or juveniles dur-
ing May–August). The dataset from farm islands included 
the years 1993–2013 and contained the resighting history 
of 3543 individuals (6574 observations). A continuous 
time series of observations from non-farm islands was only 
available from 2003 to 2013 (1539 individuals, 2035 obser-
vations). Before 2003, populations on the non-farm islands 
had experienced a severe decline in population size (Baal-
srud et al. 2014). The dataset used to compare senescence 
rates among males and females, contained only individu-
als that had been resighted and sexed as adults. The sex of 
individuals was determined by visual inspection of plum-
age characteristics. This dataset contained the resighting 
history of 1005 individuals (1715 observations).

Survival analyses

We estimated survival probabilities with capture–mark–
recapture (CMR) models (Lebreton et  al. 1992; Kéry and 
Schaub 2011). Previous studies have found that resighting 
probabilities may vary between islands and years in the 
metapopulation (Ringsby et al. 1999; Holand et al. 2014). 
We therefore included island, year and the interaction 
between islands and years in all models of resighting prob-
ability. To account for temporal variation in survival esti-
mates, we included the effect of years as a random factor in 
all survival models. An investigation by Jones et al. (2008) 
indicated that senescence in house sparrows at Helgeland 
started at the mean age of first reproduction (age  =  1). 

However, as the onset of senescence may occur later than 
the age of first reproduction (e.g. Weimerskirch 1992; Nus-
sey et  al. 2008; Peron et  al. 2010), we tested for linear 
effect of age and also non-linear (i.e. quadratic) change in 
survival probability with increasing ages (i.e. senescence) 
either starting at age = 1, 2, 3 or 4 in separate models. Due 
to low sample sizes at ages >4 (see Fig. 2), we did not test 
for onsets starting at later ages. In detail, our analyses were 
divided into three parts. First, at the metapopulation level 
(i.e. all four islands pooled together), we investigated the 
relationship between survival probability (on the logit-
scale) and age. Secondly, we investigated the difference in 
senescence rates (i.e. difference in slopes) between the two 
habitats (farm- vs. non-farm islands). Thirdly, we investi-
gated if there were significant differences in senescence 
rates between islands (Gjerøy, Hestmanøy, Selvær and 
Træna) in the metapopulation. The rates of senescence were 
thus estimated separately for each habitat/island. To illus-
trate how survival probability varied among age classes, we 
used age as a factor instead of a continuous variable (see 
Figs. 1, 2).

Our ancillary analysis investigated the difference in 
senescence rates between males and females. These differ-
ences were estimated in the same models as in our main 
analyses, with the addition of “sex” as a factor (male/
female). We thus tested if there were significant differences 
in senescence rates between males and females in general, 
within habitats or within islands.

We used the model fitting options provided by the pro-
graming language BUGS (Lunn et  al. 2000). This lan-
guage offers several options for creating CMR models in 
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Fig. 1   The mean survival probability of age classes in a metap-
opulation of house sparrows (Passer domesticus) on four islands in 
the Helgeland archipelago, northern Norway. Age =  0 denotes the 
mean survival of fledglings on the four islands. Lines indicate upper 
and lower limits of a 95 % Bayesian credibility interval of the mean 
value. Numbers along the top of the figure indicate observed sample 
sizes for each age class
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a Bayesian framework using MCMC simulations to obtain 
posterior stationary distributions of parameters (Kéry and 
Schaub 2011). The models were run in JAGS (v.3.2.0; Plum-
mer 2003) controlled from R (v.3.1.1, R Core Team 2014) 
using the package “JagsUI” (v.1.1). This package allows for 
easy parallel computation of multiple chains on computers 
using a cpu with multiple cores. For all models, we used 
three chains each with 120,000 iterations and a thinning rate 
of 6; the first 90,000 iterations were discarded (“burn-in”). 
Mixing and convergence of chains to a stationary distribution 
was evaluated by visual inspection of time-series plots pro-
duced by JAGS and by the Brooks–Gelman–Rubin criterion 
(R-hat; Brooks and Gelman 1998). Parameter estimates were 
obtained as the mean from the respective stationary poste-
rior distributions and lower/upper limits of the 95 % Bayes-
ian credibility interval (BCI). We applied vague priors for 
all parameters (see Kéry and Schaub 2011). We considered 
respective slope estimates obtained within habitats/islands 
as significantly different from each other if the 95 % BCI of 
their difference (Δβ) did not include zero (Kéry and Schaub 
2011; Holand et  al. 2014). Subtracting/adding parameter 
estimates (while obtaining a 95 % BCI of the sum) is a com-
mon feature of the BUGS language (Kéry and Schaub 2011).

Results

The first part of our main analysis did not indicate a gen-
eral, significant linear or non-linear decline in survival 
probability with age in the metapopulation (see Fig.  1; 
Table  1; Electronic Supplementary Material Table  1A). 
We also found no significant difference in senescence rates 
(linear or non-linear) between males and females at the 
metapopulation level (Electronic Supplementary Material 
Table 2A and 3A).

The second part of our main analysis indicated that 
linear senescence rates were not significantly differ-
ent between the two habitat types (see Table  1), starting 
at age =  1 [Δβ = −0.01 BCI: (−0.25, 0.22)], age =  2 
[Δβ = −0.18 BCI: (−0.61, 0.22)], age = 3 [Δβ = −0.35 
BCI: (−1.25, 0.414)] or age  =  4 [Δβ  =  −1.29 BCI: 
(−2.99, 0.311)]. We also found no significant difference in 
non-linear senescence rates between habitats (Electronic 
Supplementary Material, Table 1A). In addition, we did not 
detect a significant difference in senescence rates (linear 
or non-linear) between males and females either on farm 
islands or non-farm islands (Electronic Supplementary 
Material, Tables 2A and 3A).
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Fig. 2   The change in survival probability with age in four island 
populations of house sparrows in the Helgeland archipelago, north-
ern Norway (1993–2013). The dashed line indicates the predicted lin-
ear decline in survival probability (i.e. actuarial senescence) starting 

at age =  1 (Træna) or age =  2 (Gjerøy). Solid lines indicate upper 
and lower limits of a 95 % Bayesian credibility Interval of the mean 
values (open symbols). Numbers along the top of the figure indicate 
observed sample sizes for each age class
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The results from the third part of the main analysis 
indicated that there were significant differences in linear 
senescence rates between islands (see Fig.  2 and Elec-
tronic Supplementary Material, Tables 4A and 5A). Spe-
cifically, the senescence rates on Gjerøy and Træna were 
found to be significantly steeper compared to Hestman-
nøy. There was a significant linear decline in survival 
probability on Træna starting at age =  1 and on Gjerøy 
starting at age = 2 (see Table 1). We found no significant 
difference in non-linear senescence rates between islands 
(Electronic Supplementary Material, Table  1A).We also 
found no significant difference in senescence rates (lin-
ear or non-linear) between males and females on any of 
the four islands (Electronic Supplementary Material, 
Tables 2A and 3A).

Discussion

This study has shown that senescence rates and onset of 
senescence may vary spatially in a wild metapopulation. 
Although the lack of mean difference in senescence rates 
between habitats did not support our initial hypothesis, the 
results of this study suggest that local environmental condi-
tions may have an important effect on the ageing patterns 
of wild animals. Failure to account for such variation may 
lead to an oversimplified view of senescence rates of a 
species (Fig. 1 vs. Fig. 2). Although the specific cause of 
heterogeneous senescence rates between populations may 
be difficult to detect, the resulting effect on local demog-
raphy may influence the population dynamics of the sub-
population (Gaillard et  al. 2000) and the metapopulation 

Table 1   Estimates for the 
linear change in survival 
probability with age of house 
sparrows (Passer domesticus) in 
a metapopulation on the coast 
of Helgeland, northern Norway

All posterior distributions of parameter estimates (logit scale) are presented with the mean and lower/upper 
values of the 95  % credibility interval in parentheses. Parameter estimates for the intercepts and slopes 
were estimated at different levels of the metapopulation and under the assumption that senescence started 
either at age = 1, age = 2, age = 3 or age = 4. Statistically significant slope-estimates are highlighted in 
bold

Population Age at onset of senescence Intercept Slope

All islands pooled 1 0.126 (−0.116, 0.376) −0.034 (−0.116, 0.049)

All islands pooled 2 0.296 (−0.022, 0.627) −0.108 (−0.235, 0.012)

All islands pooled 3 0. 795 (0.381, 1.213) −0.012 (−0.195, 0.169)

All islands pooled 4 1.237 (0.578, 1.939) −0.181 (−0.492, 0.104)

Farm islands 1 0.189 (−0.062, 0.452) −0.043 (−0.130, 0.041)

Farm islands 2 0.367 (0.012, 0.729) −0.115 (−0.249, 0.016)

Farm islands 3 −0.014 (−0.479, 0.448) 0.001 (−0.190, 0.192)

Farm islands 4 0.469 (−0.248, 1.217) −0.165 (−0.485, 0.134)

Non-farm islands 1 −0.208 (−0.716, 0.317) −0.055 (−0.311, 0.194)

Non-farm islands 2 0.203 (−0.641, 1.096) −0.299 (−0.746, 0.126)

Non-farm islands 3 0.474 (−1.544, 2.716) −0.352 (−1.255, 0.437)

Non-farm islands 4 2.100 (−1.546, 4.479) −1.454 (−3.215, 0.189)

Gjerøy 1 0.541 (0.186, 0.909) −0.124 (−0.298, 0.048)

Gjerøy 2 0.907 (0.390, 1.448) −0.274 (−0.538, −0.013)

Gjerøy 3 0.625 (−0.045, 1.337) −0.046 (−0.440, 0.341)

Gjerøy 4 −0.390 (−1.058, 0.243) 0.940 (−0.091, 2.096)

Hestmannøy 1 −0.041 (−0.349, 0.270) −0.044 (−0.168, 0.075)

Hestmannøy 2 −0.038 (−0.453, 0.391) −0.052 (−0.237, 0.130)

Hestmannøy 3 −0.525 (−1.139, 0.086) 0.132 (−0.138, 0.404)

Hestmannøy 4 0.107 (−0.880, 1.131) −0.030 (−0.452, 0.377)

Selvær 1 0.186 (−0.487, 0.925) −0.053 (−0.363, 0.251)

Selvær 2 0.871 (−0.158, 2.105) −0.344 (−0.881, 0.146)

Selvær 3 1.584 (−0.215, 3.744) −0.551 (−1.592, 0.337)

Selvær 4 2.712 (−0.284, 5.000) −1.486 (−3.159, 0.197)

Træna 1 0.365 (−0.721, 1.544) −0.772 (−1.573, −0.069)

Træna 2 1.229 (−1.358, 4.149) −1.951 (−4.553, 0.076)

Træna 3 −0.015 (−5.000, 4.081) −2.443 (−7.404, 2.418)

Træna 4 −4.610 (−5.000, 3.016) −0.998 (−5.293, 4.354)
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as a whole. Accounting for such heterogeneities may be 
important for predicting future population fluctuations of 
fragmented populations (i.e. metapopulations) in the wild.

Although the pattern found on one non-farm island fitted 
the expected pattern of faster senescence rates and earlier 
onset, this was not the case on the other non-farm island 
(see Fig. 2). In addition, the rates of senescence on the two 
farm islands were significantly different (see Table  1 and 
Electronic Supplementary Material, Tables  4A and 5A) 
even though these islands are only ca. 11 km apart. A dis-
tinct difference between the two farm islands was the mean 
survival probabilities of the first two adult age classes (see 
Fig. 2; Table 1). The relatively high survival probability of 
these age classes on the farm island of Gjerøy may point 
to a difference in investment strategies between the two 
islands. Individuals that invest a relatively large amount of 
energy in early reproduction and/or survival may also be 
expected to suffer more pronounced senescence in later life 
(McCleery et  al. 1996; Orell and Belda 2002; Reid et  al. 
2003; Reed et al. 2008; Hammers et al. 2013). However, the 
lack of differences in fledgling survival probability among 
populations (see Fig. 2) appears to exclude the possibility 
that the variation observed was caused by a substantial dif-
ference in mortality before maturation (e.g. stronger selec-
tion for quality individuals). Alternatively, differences in 
natal environments may have caused subsequent changes in 
the senescence pattern between the islands that manifested 
in the adult age classes (Nussey et  al. 2007; Reed et  al. 
2008; Millon et al. 2011; Cartwright et al. 2014). However, 
the specific cause for the within habitat variation found in 
our study is not known as we have not observed an obvious 
source for adult mortality that may differ in strength within 
habitats. These differences may be subtle and very difficult 
to observe in the wild (Nussey et al. 2013).

As the house sparrow is a socially monogamous spe-
cies (Anderson 2006), the lack of difference in senescence 
found between adult males and adult females appears to 
support the pattern found by Clutton-Brock and Isvaran 
(2007). Although one might expect a general female-biased 
mortality pattern in birds (Liker and Szekely 2005) to cause 
a different senescence rate in females, this did not appear 
to be the case in our populations (see Electronic Supple-
mentary Material, Tables 2A and 3A). Indeed, the overall 
result from our analysis did not support the notion of a gen-
eral pattern of female-biased mortality in house sparrows. 
Previous studies on house sparrows have also not detected 
a general sex bias in adult survival probability (for review, 
see Anderson 2006).
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