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Abstract
Weighted timed games are two-player zero-sum games played in a timed automaton equipped with
integer weights. We consider optimal reachability objectives, in which one of the players, that we
call Min, wants to reach a target location while minimising the cumulated weight. While knowing if
Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable
(with two or more clocks), several conditions, one of them being the divergence, have been given to
recover decidability. In such weighted timed games (like in untimed weighted games in the presence
of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting
to try to emulate this finite memory with other strategic capabilities. In this work, we allow the
players to use stochastic decisions, both in the choice of transitions and of timing delays. We give
for the first time a definition of the expected value in weighted timed games, overcoming several
theoretical challenges. We then show that, in divergent weighted timed games, the stochastic value
is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same
value while only using stochastic choices, and no memory.
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1 Introduction

Real-time aspects are often inherent in the behaviour of critical software systems. Timed
automata [2] extend finite-state automata with timing constraints, providing an automata-
theoretic framework to model and verify real-time systems. While this has lead to the
development of mature verification tools, the design of programs verifying some real-time
specifications remains a notoriously difficult problem. One way to avoid the need to a
posteriori debugging is to automatise the process as much as possible. To do so, the situation
is modelled into a timed game, played by a controller and an antagonistic environment: they
act, in a turn-based fashion, over a timed automaton. A simple, yet realistic, objective for the
controller is to reach a target location. We are thus looking for a strategy of the controller,
that is a recipe dictating how to play so that the target is reached no matter how the
environment plays. Reachability timed games are decidable [4], and EXPTIME-complete [19].
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For many applications, this qualitative setting is often too coarse to model faithfully
the system. This motivated a shift to a quantitative setting, based on weighted extensions
of the models considered so far. Weighted extensions of these timed automata and games
have thus been considered in order to measure the quality of the winning strategy for the
controller [11, 1]: when the controller has several winning strategies, the quantitative version
of the game helps choosing a good one with respect to some metrics. More precisely, the
controller, which we now call player Min, wants to reach the target while minimising the
cumulated weight. The model we consider, called weighted timed game (WTG for short), is
defined as follows: the game takes place over a weighted (or priced) timed automaton [5, 3],
where locations are split among the two players, transitions are equipped with weights, and
locations with rates of weights (the cost is then proportional to the time spent in this location,
with the rate as proportional coefficient). In this setting, the possibility to use negative
weights on transitions and locations is crucial when one wants to model energy or other
resources that can grow or decrease during the execution of the system under study.

While solving the optimal reachability problem on weighted timed automata has been
shown to be PSPACE-complete [8] (i.e. the same complexity as the non-weighted version),
WTGs are known to be undecidable [13]. Many restrictions have then been considered in
order to regain decidability, the first and most interesting one being the class of strictly non-
Zeno cost with only non-negative weights (in transitions and locations) [11]: this hypothesis
requires that every execution of the timed automaton that follows a cycle of the region
automaton has a weight far from 0 (in interval [1, +∞), for instance). This setting has been
extended in the presence of negative weights in transitions and locations [16]: in the so-called
divergent WTGs, each execution that follows a cycle of the region automaton has a weight in
(−∞, −1] ∪ [1, +∞). A triply-exponential-time algorithm allows one to compute the values
and almost-optimal strategies, while deciding the divergence of a WTG is PSPACE-complete.

When studying optimal reachability objectives with both positive and negative weights, it
is known that strategies of player Min require memory to play optimally (see [15] for the case
of finite games). More precisely, the memory needed is pseudo-polynomial (i.e. polynomial if
constants are encoded in unary). For WTGs, the memory needed even becomes exponential.
An important challenge is thus to find ways to avoid using such complex strategies, e.g. by
proposing alternative classes of strategies that are more easily amenable to implementation.

Strategies considered so far are deterministic. Though the game has no stochastic edges,
it is possible to allow players to use stochastic strategies. This approach has been recently
studied in the setting of finite games [20], where it is shown that memory may indeed be
emulated using randomness in finite reachability games with integer weights. More precisely,
the minimal value Min can achieve using memoryless stochastic strategies is the same as
the value achievable using deterministic strategies. In the present work, we lift the results
obtained in [20] for finite games to the timed setting.

A first important challenge is to analyse how to play stochastically in WTGs. To our
knowledge, this has not been studied before. Starting from a notion of stochastic behaviours
in a timed automaton considered in [7] (for the one-player setting), we propose a new class of
stochastic strategies. Compared with [7], our class is larger in the sense that we allow Dirac
distributions for delays, which subsumes the setting of deterministic strategies. However,
in order to ensure that strategies yield a well-defined probability distribution on sets of
executions, we need measurability properties stronger than the one considered in [7] (we
actually provide an example showing that their hypothesis was not strong enough).

Then, we turn our attention towards the expected cumulated weight of the set of plays
conforming to a pair of stochastic strategies. We first prove that under the previous
measurability hypotheses, this expectation is well-defined when restricting to the set of plays
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Figure 1 On the left, a weighted timed game. Locations belonging to Min (resp. Max) are depicted
by circles (resp. squares). The target location is ℓ3. Location ℓ1 (resp. ℓ5) has (deterministic) value
+∞ (resp. −∞). As a consequence, the value in ℓ4 is determined by the edge to ℓ3, and depicted in
blue on the right. In location ℓ2, the value associated with the transition to ℓ3 is depicted in red,
and the deterministic value in ℓ2 is obtained as the minimum of these two curves.

following a finite sequence of transitions. In order to have the convergence of the global
expectation, we identify another property of strategies of Min, which intuitively ensures that
the set of target locations is reached quickly enough. This allows us to define a notion of
stochastic value (resp. memoryless stochastic value) of the game, i.e. the best value Min can
achieve using stochastic strategies (resp. memoryless stochastic strategies), when Max uses
stochastic strategies (resp. memoryless stochastic strategies) too.

In a second step, we aim at adapting the proof techniques of [20] from finite to infinite
games. It is well-known that the classical region abstraction of timed automata is not suited
to analyse WTGs (there are cases in which one has to split regions). In order to obtain
positive results, we focus on the class of divergent WTGs. We prove that the notion of
optimal deterministic switching strategy, which was central in the approach of [20], can be
adapted to divergent WTGs. Our main result is then to show that for these games, the two
versions of stochastic values are equal to the deterministic value. In other terms, we show
that Min can emulate memory using randomisation, and vice versa. Moreover, combining
memory and randomisation does not increase Min’s capabilities. Due to the lack of space,
detailed proofs of all results can be found in the long version [21].

2 Weighted timed games

We let C be a finite set of variables called clocks. A valuation is a mapping ν : C → R≥0. For
a valuation ν, a delay t ∈ R≥0 and a subset Y ⊆ C of clocks, we define the valuation ν + t

as (ν + t)(x) = ν(x) + t, for all x ∈ C, and the valuation ν[Y := 0] as (ν[Y := 0])(x) = 0
if x ∈ Y , and (ν[Y := 0])(x) = ν(x) otherwise. The valuation 0 assigns 0 to every clock.
A (non-diagonal) guard on clocks of C is a conjunction of atomic constraints of the form
x ▷◁ c, where ▷◁ ∈ {≤, <, =, >, ≥} and c ∈ N. A valuation ν : C → R≥0 satisfies an atomic
constraint x ▷◁ c if ν(x) ▷◁ c. The satisfaction relation is extended to all guards g naturally,
and denoted by ν |= g. We let Guards(C) denote the set of guards over C.

▶ Definition 1. A weighted timed game (WTG) is a tuple G = ⟨LMin, LMax, LT , ∆, wt⟩ where
LMin, LMax, LT are finite disjoint subsets of Min locations, Max locations, and target locations,
respectively (we let L = LMin ⊎ LMax ⊎ LT ), ∆ ⊆ L × Guards(C) × 2C × L is a finite set of
transitions, wt : ∆ ⊎ L → Z is the weight function.

ICALP 2021
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Without loss of generality, we suppose the absence of deadlocks except on target locations,
i.e. for each location ℓ ∈ L\LT and valuation ν, there exists (ℓ, g, Y, ℓ′) ∈ ∆ such that ν |= g,
and no transitions start in LT . The semantics of a WTG G is defined in terms of a game
played on an infinite transition system whose vertices are configurations of the WTG. A
configuration is a pair (ℓ, ν) with a location and a valuation of the clocks. Configurations
are split into players according to the location. A configuration is final if its location is a
target location of LT . The alphabet of the transition system is given by ∆ × R≥0: a pair
(δ, t) encodes the delay t that a player wants to spend in the current location, before firing
transition δ. For every delay t ∈ R≥0, transition δ = (ℓ, g, Y, ℓ′) ∈ ∆ and valuation ν, there
is an edge (ℓ, ν) δ,t−→ (ℓ′, ν′) if ν + t |= g and ν′ = (ν + t)[Y := 0]. The weight of such an edge
e is given by t × wt(ℓ) + wt(δ). An example is depicted on Figure 1.

A finite play is a finite sequence of consecutive edges ρ = (ℓ0, ν0) δ0,t0−−−→ (ℓ1, ν1) δ1,t1−−−→
· · · (ℓk, νk). We sometimes denote such a play (ℓ0, ν0) (δ0,t0)···(δk−1,tk−1)−−−−−−−−−−−−−→, since intermediate
locations and valuations are uniquely defined by the initial configuration and the sequence of
transitions and delays. We denote by |ρ| the length k of ρ. The concatenation of two finite
plays ρ1 and ρ2, such that ρ1 ends in the same configuration as ρ2 starts, is denoted by ρ1ρ2.
We denote by I(ρ, δ) the interval of delays t such that the play ρ can be extended with the
edge δ,t−→. We let FPlays be the set of all finite plays, whereas FPlaysMin (resp. FPlaysMax)
denote the finite plays that end in a configuration of Min (resp. Max). A play is then a
maximal sequence of consecutive edges (it is either infinite or it reaches LT ).

We call path a finite or infinite sequence π of transitions of G. Each play ρ of G is
associated with a unique path π (by projecting away everything but the transitions): we
say that ρ follows the path π. A target path is a finite path ending in the target set LT .
We denote by TPaths the set of target paths. We let TPathsρ (resp. TPathsn

ρ ) the subset
of target paths that start from the last location of the finite play ρ (resp. containing n

transitions). A path is said to be maximal if it is infinite or if it is a target path.
A deterministic strategy for Min (resp. Max) is a mapping σ : FPlaysMin → ∆ × R≥0

(resp. τ : FPlaysMax → ∆ × R≥0) such that for all finite plays ρ ∈ FPlaysMin (resp. ρ ∈
FPlaysMax) ending in non-target configuration (ℓ, ν), there exists an edge (ℓ, ν) σ(ρ)−−−→ (ℓ′, ν′).
We let dStratMin and dStratMax denote the set of deterministic strategies in G for players Min
and Max, respectively. A play or finite play ρ = (ℓ0, ν0) δ0,t0−−−→ (ℓ1, ν1) δ1,t1−−−→ · · · conforms
to a deterministic strategy σ of Min (resp. Max) if for all k such that (ℓk, νk) belongs to
Min (resp. Max), we have that (δk, tk) = σ((ℓ0, ν0) δ0,t0−−−→ · · · (ℓk, νk)). For all deterministic
strategies σ and τ of players Min and Max, respectively, and for all configurations (ℓ0, ν0),
we let Play((ℓ0, ν0), σ, τ) be the outcome of σ and τ , defined as the unique maximal play
conforming to σ and τ and starting in (ℓ0, ν0).

The objective of Min is to reach a target configuration, while minimising the cumu-
lated weight up to the target. Hence, we associate to every finite play ρ = (ℓ0, ν0) δ0,t0−−−→
(ℓ1, ν1) δ1,t1−−−→ · · · (ℓk, νk) its cumulated weight, taking into account both discrete and con-
tinuous costs: wtΣ(ρ) =

∑k−1
i=0 [ti × wt(ℓi) + wt(δi)]. Then, the weight of a maximal play ρ,

denoted by wt(ρ), is defined by +∞ if ρ is infinite (does not reach LT ), and wtΣ(ρ) if it ends
in (ℓT , ν) with ℓT ∈ LT .

A deterministic strategy σ ∈ dStratMin guarantees a certain value, against all pos-
sible strategies of the opponent: for all locations ℓ and valuations ν, we let dValσℓ,ν =
supτ∈dStratMax,G

wt(Play((ℓ, ν), σ, τ)). Then, for all locations ℓ and valuations ν, we let dValℓ,ν

be the deterministic value of G in (ℓ, ν), defined as dValℓ,ν = infσ∈dStratMin dValσℓ,ν . We say that
a deterministic strategy σ of Min is ε-optimal wrt the deterministic value if dValσℓ,ν ≤ dValℓ,ν+ε

for all (ℓ, ν). It is said optimal if this holds for ε = 0.
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As usual in related work [1, 11, 12, 16], we assume that all clocks are bounded by a constant
M ∈ N, i.e. every transition of the WTG is equipped with a guard g such that ν |= g implies
ν(x) ≤ M for all clocks x ∈ C. We denote by wL

max (resp. w∆
max, we

max) the maximal weight
in absolute values of locations (resp. of transitions, edges) of G, i.e. wL

max = maxℓ∈L |wt(ℓ)|
(resp. w∆

max = maxδ∈∆ |wt(δ)|, we
max = MwL

max + w∆
max).

In the following, we rely on the crucial notion of regions, as introduced in the seminal work
on timed automata [2]. A game G can be populated with the region information, without loss
of generality, as described formally in [16], e.g. The region automaton, or region game, R(G)
is thus the WTG with locations S = L × Reg(C, M) and all transitions ((ℓ, r), g′′, Y, (ℓ′, r′))
with (ℓ, g, Y, ℓ′) ∈ ∆ such that the model of guard g′′ (i.e. all valuations ν such that ν |= g′′)
is a region r′′, time successor of r such that r′′ satisfies the guard g, and r′ is the region
obtained from r′′ by resetting all clocks of Y . Distribution of locations to players, final
locations, and weights are inherited from G. We call region path a finite or infinite sequence
of transitions in this automaton, and we again denote by π such paths. A play ρ in G is
projected on a region path π, with a similar definition as the projection on paths: we again
say that ρ follows the region path π. It is important to notice that, even if π is a cycle
(i.e. starts and ends in the same location of the region game), there may exist plays following
it in G that are not cycles, due to the fact that regions are sets of valuations.

As shown in previous work [11, 16], knowing whether dValℓ,ν = +∞ for a certain
configuration is a purely qualitative problem that can be decided easily by using the region
game: indeed, dValℓ,ν = +∞ if and only if Min has no strategies that guarantee reaching the
target LT . This is thus a reachability objective, where weights are useless. Moreover, Max
has a strategy that guarantees that no plays reach the target LT from any configuration (ℓ, ν)
such that dValℓ,ν = +∞. In this situation, considering stochastic choices is not interesting.
We thus rule out this case by supposing in the following that no configurations
of G have a value +∞: such configurations can be removed in the region game by
strengthening the guard on transitions.

3 Playing stochastically in WTGs

Our first contribution consists in allowing both players to use stochastic choices in their
strategies. From a game theory point of view, this seems natural. From a controller synthesis
point of view, we claim that the question is natural too, especially because player Min may
require exponential memory to play optimally in WTGs. This is already the case even
without clocks (such games are then sometimes called shortest-path games) where it has
been shown in [20] that the memory required by Min could be traded for stochastic choices
instead (and vice versa). We aim at extending this result in the context of weighted timed
games. Before doing so, we must introduce stochastic strategies in the context of weighted
timed games, which has never been explored until now, as far as we are aware of. We
will however strongly rely on a recent line of works aiming at studying stochastic timed
automata [7, 9, 6, 10], thus extending the results in the context of two-player games (instead
of model-checking) and with weights, which indeed represents the main challenge in order to
give a meaning to the expected payoff.

Naturally, deterministic strategies for Min are extended to more general stochastic
strategies as mappings η : FPlaysMin → Dist(∆ × R≥0) where each finite play is associated
to a probability distribution over the set of pairs of transition and delay. Here, we let
Dist(S) the set of all probability distributions over a set S (equipped with an underlying
σ-algebra). Since ∆ is a finite set, this is equivalent to letting first Min choose a transition

ICALP 2021
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via η∆ : FPlaysMin → Dist(∆), and then, knowing the chosen transition, choose a delay via
ηR+ : FPlaysMin × ∆ → Dist(R≥0), the support of the distribution ηR+(ρ, δ) being included
in the interval I(ρ, δ) of valid delays. We can then recombine η∆ and ηR+ to obtain the
distribution η(ρ). Similar definitions hold for Max whose general strategies are denoted by θ.

Notice that deterministic strategies are a special case of strategies, where the distributions
are chosen to be Dirac distributions. Another useful restriction over strategies is the non-
use of memory: a strategy η is memoryless if for all finite plays ρ, ρ′ ending in the same
configuration, we have that η(ρ) = η(ρ′). A similar definition holds for Max.

Probability measure on plays. We fix two strategies η and θ for both players, and an
initial configuration (ℓ0, ν0). Our goal is to define a probability measure on plays. To do
so, and following the contribution of [7] for stochastic timed automata, the set of plays of a
WTG G starting from (ℓ0, ν0) and conforming to η and θ can naturally be equipped with
a structure of σ-algebra whose generators are all subsets of plays that start with a finite
prefix following the same finite path π (remember that paths are sequences of transitions,
with no information on the delayed time) with some Borel-measurable constraints on the
delays taken along π. The a priori idea is thus to define a probability measure Pη,θ

ℓ0,ν0
on such

generators which extends uniquely as a probability measure over the whole σ-algebra, by
Carathéodory’s extension theorem.

Consider thus a finite path π, starting in location ℓ, and a play ρ ending in the same
location ℓ. We define the probability Pη,θ

ρ (π) taking into account all possible plays that start
with ρ and continue according to π (we leave the Borel-measurable constraints on the delays for
now, but discuss them later). It is defined by induction on the length of π by Pη,θ

ρ (ε) = 1, and
for all transitions δ = (ℓ, g, Y, ℓ′) ∈ ∆, Pη,θ

ρ (δπ) =
∫

I(ρ,δ) η∆(ρ)(δ) × Pη,θ

ρ
δ,t−→(π) dηR+(ρ, δ)(t).

This definition is very similar to the one in [7] except that we choose to decouple the
distribution on pairs of ∆ × R≥0 by first selecting a transition and then delay, whereas
authors of [7] consider independent choices, the one on transitions being described by some
weights on transitions (depending on the current region).

For modelling purposes, authors of [7] enforce that probability distributions on delays do
not forbid any delays of the interval I(ρ, δ) of possible delays, thus ruling out singular distri-
butions like Dirac ones that would consider taking a single possible delay (like deterministic
strategies do). More formally, they require ηR+(ρ, δ) to be absolutely continuous (i.e. equival-
ent to the Lebesgue measure) on interval I(ρ, δ). We claim that even with this assumption,
the previous definition of the probability may not be well-founded, as demonstrated by the
example given in [21, Appendix A]. From this example, we see the importance to moreover
enforce that the distributions η∆(ρ) and ηR+(ρ, δ) are “measurable wrt the sequence of delays
along the play ρ”. This is easy to define for the transition part. For delays, since we want
deterministic strategies to be a subset of stochastic strategies, we must be able to choose
delays by using Dirac distributions, and by extension discrete distributions (that are not
absolutely continuous, as [7] requires). This results in the following hypothesis:

▶ Hypothesis 1. A strategy η satisfies this hypothesis if
1. for all transitions δ0, . . . , δk, δ, the mapping

(t0, . . . , tk−1) 7→ η∆

(
(ℓ0, ν0) (δ0,t0)···(δk−1,tk−1)−−−−−−−−−−−−−→

)
(δ)

is measurable; and
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2. for all plays ρ and transition δ, the probability distribution ηR+(ρ, δ) (of the random
variable t) is described by a cumulative distribution function (CDF) that is the sum of
an absolutely continuous function G(ρ, δ) and Heaviside functions1 t 7→

∑
i αi(ρ, δ)H(t −

ai(ρ, δ)). Moreover, for all transitions δ0, . . . , δk−1, δ, the mappings (t0, . . . , tk−1, t) 7→
G(ρ, δ)(t), (t0, . . . , tk−1) 7→ αi(ρ, δ), and (t0, . . . , tk−1) 7→ ai(ρ, δ) must be measurable
(where we use notation ρ to denote the play (ℓ0, ν0) (δ0,t0)···(δk−1,tk−1)−−−−−−−−−−−−−→).

This hypothesis allows us to obtain :

▶ Lemma 2. If η and θ are strategies satisfying Hypothesis 1, the probabilities Pη,θ
ρ (π) of

following a path π after the play ρ are well defined. It can be extended into a probability
distribution over maximal paths π starting in the last location of ρ.

Apart from the well-definition that is new, the rest of the proof is very close to the one
of [7]. The probability measure easily extends to unions of maximal paths: in particular,
Pη,θ

ℓ0,ν0
(TPathsℓ0,ν0) is set as the sum

∑
π∈TPathsℓ0,ν0

Pη,θ
ℓ0,ν0

(π) of probabilities of all paths
reaching LT from ℓ0. Authors of [7] go one step further, by using Carathéodory’s theorem
to extend the probability measure on paths (Pη,θ

ρ (π)) to a measure on plays (Pη,θ
ρ ), whose

σ-algebra is generated by maximal plays with Borel-measurable constraints on the delays.
We do not formally need this further extension and will only use such extension to give an
intuitive introduction of the expected payoff below. In the following, we let StratMin and
StratMax be the sets of (stochastic) strategies satisfying Hypothesis 1, for both players. We
let mStratMin and mStratMax be the respective subsets of memoryless strategies.

Expected payoff of plays. As explained before, by Carathéodory’s theorem, the set of plays
can be equipped with a probability distribution, and we are interested in the expectation
of the random variable wt(ρ) (where ρ conforms with two fixed strategies η and θ). This
only makes sense if the probability to reach a target location is equal to 1, since otherwise,
the expected weight will intuitively be +∞ (there is a non-zero probability to not reach
the target location, the weight of all such plays being +∞). We thus now require that
Pη,θ

ℓ0,ν0
(TPathsℓ0,ν0) = 1 (i.e. the probability to follow an infinite path is 0). We will see

afterwards that this is not a sufficient condition to ensure that the expected weight is finite.
We would like to define the expected weight to reach the target as (we write Eη,θ

ℓ0,ν0

instead of Eη,θ
ℓ0,ν0

(wt), since we only consider the expectation of the weight wt): Eη,θ
ℓ0,ν0

=∫
ρ

wt(ρ) dPη,θ
ℓ0,ν0

(ρ) where the integral is over all plays ρ that start in (ℓ0, ν0) and reach the
target LT (such restriction is again justified by the fact that the probability mass of all other
plays is 0). This is problematic a priori (and we will see below an example where this indeed
would be a problem) since the cumulated weight is not known to be a measurable function
of the play, wrt the measure Pη,θ

ℓ0,ν0
.

To overcome this challenge, we follow a different approach, consisting in mimicking the
construction of the probability before: first define the expected payoff of all plays following a
given path, and then sum over all possible paths.

▶ Definition 3. We define the expected weight Eη,θ
ρ (π) of plays that can extend ρ (the weight

of ρ is thus not counted in the expectation) and that follow the path π. It is defined by
induction on the length of π by Eη,θ

ρ (ε) = 0 and for all transitions δ = (ℓ, g, Y, ℓ′):

Eη,θ
ρ (δπ) =

∫
I(ρ,δ)

η∆(ρ)(δ)
[(

t wt(ℓ) + wt(δ)
)
Pη,θ

ρ
δ,t−→(π) + Eη,θ

ρ
δ,t−→(π)

]
dηR+(ρ, δ)(t)

We then define the expected weight Eη,θ
ρ =

∑
π∈TPathsρ

Eη,θ
ρ (π), when this sum converges.

1 We let H denote the mapping from R to [0, 1] such that H(t) = 0 if t < 0 and H(t) = 1 otherwise.
Recall that it is the CDF of the Dirac distribution choosing t = 0.
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Hypothesis 1 is sufficient to show the well-definition of all expectations Eη,θ
ρ (π):

▶ Lemma 4. If η ∈ StratMin and θ ∈ StratMax, Eη,θ
ρ (π) is well-defined for all ρ and π.

However, the infinite sum in Eη,θ
ρ can be problematic. We thus need a stronger hypothesis

to ensure its convergence. We adopt here an asymmetrical point of view, relying only on
hypothesis on the strategy η of Min. Our choice is grounded in our controller synthesis view,
Min being the controller desiring to reach a target location with minimum expected payoff,
while Max is an uncontrollable environment.

▶ Definition 5. A strategy η ∈ StratMin of Min is said proper if for all finite plays ρ and
strategies θ ∈ StratMax, Pη,θ

ρ (TPathsρ) = 1 and the infinite sum
∑

π∈TPathsρ
Eη,θ

ρ (π) converges.

We let Stratp
Min be the set of proper strategies of Min, mStratp

Min the subset of memoryless
proper strategies. Notice that a deterministic strategy of Min is proper as soon as it guarantees
to reach the target set of locations (remember that we have ruled out configurations with
a deterministic value dVal(ℓ, ν) = +∞ where Min cannot deterministically guarantee to
reach the target LT ): this shows that proper strategies exist (even without using memory).
For stochastic strategies, we have seen above that reaching the target set of locations with
probability 1 is a necessary but not sufficient condition to be proper. Not only Max must
reach the target almost surely, but he must do it quickly enough so that the expectation
converges. We now give a sufficient condition for a strategy to be proper, that we will use in
the rest of this article.

▶ Hypothesis 2. A strategy η ∈ StratMin of Min satisfies this hypothesis if there ex-
ist m ∈ N and α ∈ (0, 1] such that for all finite plays ρ and strategies θ ∈ StratMax,
Pη,θ

ρ (
⋃

n≤m TPathsn
ρ ) ≥ α.

This hypothesis is indeed a sufficient condition for a strategy to be proper:

▶ Lemma 6. All strategies of Min satisfying Hypothesis 2 are proper.

Sketch of proof. The idea is to decompose Eη,θ
ρ for all ρ as Eη,θ

ρ =
∑∞

n=0
∑

π∈TPathsn
ρ
Eη,θ

ρ (π).
Since TPathsn

ρ is a finite set, only the first sum must be shown to be converging. It is done
by noticing that the weight of plays of length n grows linearly wrt n, while the probability∑

π∈TPathsn
ρ
Pη,θ

ρ (π) decreases exponentially wrt n (thanks to Hypothesis 2). More precisely,
we show for all n ∈ N and all ρ ∈ FPlays, that
1. for all π ∈ TPathsn

ρ , |Eη,θ
ρ (π)| ≤ Pη,θ

ρ (π) n we
max; and

2.
∑

π∈TPathsn
ρ
Pη,θ

ρ (π) ≤ (1 − α)⌊n/m⌋.
This allows us to show that Pη,θ

ρ (TPathsρ) = 1 and that the sum Eη,θ
ρ =

∑
π∈TPathsρ

Eη,θ
ρ (π)

converges. ◀

Now that we have associated an expected payoff to each convenient pair of strategies, we
are able to mimic the classical definition of value to stochastic strategies. Let ℓ be a location
and ν be a valuation. For all η ∈ Stratp

Min and θ ∈ StratMax, we let Valηℓ,ν = supθ∈StratMax
Eη,θ

ℓ,ν .
Then, we let Valℓ,ν be the value of G in (ℓ, ν), defined as the best expected payoff Min
can hope for: Valℓ,ν = infη∈Stratp

Min
Valηℓ,ν . Both definitions can be generalised by replacing

configurations (ℓ, ν) by finite plays ρ: we let Valηρ and Valρ be the generalised versions. We
also define the memoryless values mValη and mVal, where all strategies are taken memoryless.

Our main contribution, presented in details in Section 5, is to compare the memoryless
(stochastic) value, the deterministic value and the stochastic value, showing their equality for
a fragment of WTGs. Along the way, we will need the following result showing that when Min
plays with a proper strategy, Max always has a best response strategy that is deterministic:
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▶ Lemma 7. Let η ∈ Stratp
Min and ε > 0. There exists a deterministic strategy τ ∈ dStratMax

such that for all finite plays ρ, Eη,τ
ρ ≥ Valηρ − ε. If η ∈ mStratp

Min is memoryless, then there
exists a deterministic strategy τ ∈ dStratMax such that for all finite plays ρ, Eη,τ

ρ ≥ mValηρ − ε.

4 Divergent weighted timed games

As we have already seen in the introduction, interesting fragments of WTGs have been
designed, in order to regain decidability of the problem of determining whether the value of a
WTG is below a certain threshold. One such fragment is obtained by enforcing a semantical
property of divergence (originally called strictly non-Zeno cost when only dealing with
non-negative weights [11]): it asks that every play following a cycle in the region automaton
has weight far from 0. We will consider this restriction in the following, since it allows for
a large class of decidable WTGs, with no limitations on the number of clocks. Formally, a
cyclic region path π of R(G) is said to be a positive cycle (resp. a negative cycle) if every
finite play ρ following π satisfies wtΣ(ρ) ≥ 1 (resp. wtΣ(ρ) ≤ −1).

▶ Definition 8 ([16]). A WTG is divergent if every cyclic region path is positive or negative.

In [16], it is shown that this definition is equivalent to requiring that for all strongly
connected components (SCC) S of the graph of R(G), either every cycle π inside S is positive
(we say that the SCC is positive), or every cycle π inside S is negative (we say that the SCC
is negative). The best computability result in this setting is:

▶ Theorem 9 ([16]). The deterministic value of a divergent WTG can be computed in
triply-exponential-time.

We explain how to recover from Theorem 9 the needed shape of ε-optimal strategies,
since this is one of the new technical ingredient we need afterwards.

Switching strategies for Min. Theorem 9 is obtained in [16] by using a value iteration
algorithm (originally described in [1] for acyclic timed automata). If V represents a value
function, i.e. a mapping L × RC

≥0 → R∞, we denote by Vℓ,ν the image V (ℓ, ν), for better
readability. One step of the game is summarised in the following operator F mapping each
value function V to the value function defined for all (ℓ, ν) ∈ L × RC

≥0 by F(V )ℓ,ν = 0 if
ℓ ∈ LT , F(V )ℓ,ν = sup(ℓ,ν)

δ,t−→(ℓ′,ν′)
[
t × wt(ℓ) + wt(δ) + Vℓ′,ν′

]
if ℓ ∈ LMax, and F(V )ℓ,ν =

inf(ℓ,ν)
δ,t−→(ℓ′,ν′)

[
t × wt(ℓ) + wt(δ) + Vℓ′,ν′

]
if ℓ ∈ LMin, where (ℓ, ν) δ,t−→ (ℓ′, ν′) ranges over

valid edges in G. Then, starting from V 0 mapping every configuration to +∞, except for the
targets mapped to 0, we let V i = F(V i−1) for all i > 0. The value function V i is intuitively
what Min can guarantee when forced to reach the target in at most i steps.

The value computation of Theorem 9 is then obtained in two steps. First, configura-
tions (ℓ, ν) of value dValℓ,ν = −∞ are found by using a decomposition of the region game R(G)
into strongly-connected components (SCC). Indeed, in divergent WTGs, configurations of
value −∞ are all the ones from which Min has a strategy to visit infinitely many times config-
urations of a single location (ℓ, r) of R(G) contained in a negative SCC. This is thus a Büchi
objective on the region game, that can easily be solved with some attractor computations.
Notice that if a configuration (ℓ, ν) has value −∞, this implies that all configurations (ℓ, ν′)
with ν′ in the same region as ν have value −∞. As we explained at the end of Section 2 for
the values +∞, we can then remove configurations of value −∞ by strengthening the guards
on transitions, while letting unchanged other finite values.
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Then, the (finite) value dVal is obtained as an iterate V H of the previous operator, with H

polynomial in the size of the region game and the maximal weights of G. This means that
playing for only a bounded number of steps is equivalent to the original game. In particular,
at horizon H, we have that F(V H) = V H+1 = dVal so that dVal is a fixpoint of F . As a side
effect, this allows one to decompose the clock space RC

≥0 into a finite number α of cells (a
refinement of the classical regions) such that dVal is affine on each cell.

Based on this, we can construct good strategies for Min that have a special form, the
so-called switching strategies (introduced in [15] in the untimed setting, further extended in
the timed setting with only one-clock in [14]).

▶ Definition 10. A switching strategy σ is described by two deterministic memoryless
strategies σ1 and σ2, as well as a switching threshold K. The strategy σ then consists in
playing strategy σ1 until either we reach a target location, or the finite play has length at
least K, in which case we switch to strategy σ2.

Our new contribution is as follows:

▶ Theorem 11. In a divergent WTG, for all ε > 0 and N ∈ N, there exists a switching
strategy σ for Min, for which the two components σ1 and σ2 satisfy Hypothesis 1, such that
for all configurations (ℓ, ν), dValσℓ,ν ≤ max(−N, dValℓ,ν) + ε.

In particular, if all configurations have a finite deterministic value, there exists an
ε-optimal switching strategy wrt the deterministic value. In the presence of a
configuration with a deterministic value −∞, we build from Theorem 11 a family of switching
strategies (indexed by the parameter N) whose value tends to −∞.

The proof of Theorem 11 requires to build both strategies σ1 and σ2, as well as a switching
threshold K. The second strategy σ2 only consists in reaching the target and is thus obtained
as a deterministic memoryless strategy from a classical attractor computation in the region
game R(G). It is easy to choose σ2 smooth enough so that it fulfils Hypothesis 1. In contrast,
the first strategy σ1 requires more care. We build it so that it fulfils two properties, that we
summarise in saying that σ1 is fake-ε-optimal wrt the deterministic value:
1. each finite play conforming to σ1 from (ℓ, ν) and reaching the target has a cumulated

weight at most dValℓ,ν + |ρ| ε (in particular, if dValℓ,ν = −∞, no such plays should exist);
2. each finite play conforming to σ1 following a long enough cycle in the region game R(G)

has a cumulated weight at most −1.
Here, “fake” means that σ1 is not obliged to guarantee reaching the target, but if it does so,
it must do it with a cumulated weight close to dValℓ,ν , the error factor depending linearly
on the size of the play. The second property ensures that playing long enough σ1 without
reaching the target results in diminishing the cumulated weight. Then, if the switch happens
at horizon K big enough, (K = (we

max|R(G)|(|L|α + 2) + N)(|R(G)|(|L|α + 1) + 1) suffices
for instance), Min is sure that the cumulated weight so far is low enough so that the rest
of the play to reach a target location (following σ2 only) will not make the weight increase
too much. In the absence of values −∞ in dVal, the first property allows one to obtain a
Kε-optimal strategy even in the case where the switch does not occur (because we reach
the target prematurely). The construction of a fake-ε/K-optimal strategy σ1 (the linear
dependency on the length of the play in the first property of fake-optimality is thus taken
care by a division by K here) relies on the fact that F(dVal) = dVal to play almost-optimally
at horizon 1. More formally:

For all configurations of value −∞, σ1 is built as a winning strategy for the Büchi
objective “visit infinitely often configurations of a location (ℓ, r) of R(G) contained in
a negative SCC”. By definition, all cyclic paths following σ1 will be inside a negative
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SCC, and thus be of cumulated weight at most −1, by divergence of the WTG. Moreover,
no plays conforming to σ1 from such a configuration of value −∞ will reach a target
location, since the chosen negative SCC is a trap controlled by Min. It is easy to choose
σ1 smooth enough so that it fulfils Hypothesis 1.
For the remaining configurations of finite value, we rely upon operator F , letting σ1

choose a decision that minimises the value at horizon 1. However, because of the guards
on clocks, infimum/supremum operators in F are not necessarily minima/maxima, and
we thus need to allow for a small error at each step of the strategy: this is the main
difference with the untimed setting, which by the way explains why our definition of
switching strategy needed to be adapted. We will use the arginfε operator defined for all
mappings f : A → R and B ⊆ A by arginfε

Bf = {a ∈ B | f(a) ≤ infB f + ε}. Then, for
all configurations (ℓ, ν) ∈ LMin × RC

≥0, we choose σ1(ℓ, ν) as a pair (δ, t) in

arginfε/K

(ℓ,ν)
δ,t−→(ℓ′,ν′)

(t wt(ℓ) + wt(δ) + dValℓ′,ν′)

This set is non empty since dVal is a fixpoint of operator F in this case. Moreover, knowing
that the mapping dValℓ is piecewise affine by the results shown in [16], it is possible to
choose σ1 so that it fulfils the measurability (even piecewise continuity) conditions of
Hypothesis 1. More precisely, we can consider it to take the same kind of decision for all
configurations of a same cell: same transition, and either no delay or a delay jumping to
the same border of cell.

The strategy σ1 thus built makes a small error wrt the optimal at each step. But once
again strongly relying on the divergence of the WTG, we can nevertheless show that σ1 is
fake-ε/K-optimal wrt the deterministic value.

Memoryless strategies for Max. WTGs are known to be determined [14], i.e. the de-
terministic value is also equal to dValℓ,ν = supτ∈dStratMax

infσ∈dStratMin wt(Play((ℓ, ν), σ, τ)).
In this setting, we can turn our study to the point of view of Max, looking for good
strategies for this other player. A deterministic strategy τ of Max has an associated value:
dValτℓ,ν = infσ∈dStratMin wt(Play((ℓ, ν), σ, τ)). It is ε-optimal wrt the deterministic value if
dValτℓ,ν ≥ dValℓ,ν − ε for all (ℓ, ν).

As Max does not wish to go to the target, we show that no switch is necessary to play
ε-optimally: memoryless strategies are sufficient to guarantee a value as close as wanted to
the deterministic value. For a configuration with a value equal to −∞, all the deterministic
strategies for Max are equivalent where they are all equally bad. Without loss of generality,
we can therefore suppose that there are no configurations in G with a value equal to −∞.
Then, it is shown in [16] that remaining values are bounded in absolute value by we

max|R(G)|,
since optimal plays have no cycles. We use that fact to build a memoryless deterministic
strategy τ analogous to strategy σ1 before:

▶ Theorem 12. In a divergent WTG, there exists a memoryless ε-optimal strategy for
player Max wrt the deterministic value (that moreover satisfies Hypothesis 1).

5 Emulate memory with randomness, and vice versa

The main contribution of this article, apart from defining a notion of expected value in
weighted timed games, is to relate the different notions of values. In divergent WTGs,
memory can thus be fully emulated with stochastic choices, and combining memory and
stochastic choices does not bring more power to players, which we summarise by:
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▶ Theorem 13. In all divergent WTGs, for all (ℓ, ν), dValℓ,ν = Valℓ,ν = mValℓ,ν .

The proof of this result is decomposed into several inequalities on these values. One is
easier, and holds for all WTGs: the stochastic value is at most equal to the deterministic
value, using the inclusion of deterministic strategies into stochastic ones, and Lemma 7.

▶ Lemma 14. In all WTGs G, for all configurations (ℓ, ν), Valℓ,ν ≤ dValℓ,ν .

We show in the rest of this section the inequalities comparing the deterministic value with
the other values: first we show that memoryless stochastic strategies can emulate deterministic
ones (mValℓ,ν ≤ dValℓ,ν); then we show that deterministic strategies can emulate stochastic
ones (dValℓ,ν ≤ Valℓ,ν and dValℓ,ν ≤ mValℓ,ν).

Simulating deterministic strategies with memoryless strategies. We focus here on showing
that, for all configurations (ℓ, ν), mValℓ,ν ≤ dValℓ,ν . We build a memoryless strategy of Min
at least as good as a deterministic strategy. By Theorem 11, we can start from a switching
strategy for Min. For N ∈ N and ε > 0, we thus consider a switching strategy σ = (σ1, σ2, K)
of value dValσℓ,ν ≤ max(−N, dValℓ,ν) + ε, and simulate it with a memoryless strategy for Min,
denoted ηp, with a probability parameter p ∈ (0, 1). This new strategy is a probabilistic
superposition of the two memoryless deterministic strategies σ1 and σ2.

Formally, we define ηp(ℓ, ν), with ℓ ∈ LMin, depending on the sign of the SCC containing
the location (ℓ, r), with r the region of ν, of the region game R(G).

In a positive SCC, Min always chooses to play σ1, thus looking for a negative cycle in
the next SCCs (in topological order) if any. Formally, letting (δ1, t1) = σ1(ℓ, ν), we define
ηp

∆(ℓ, ν) = Diracδ1 and ηp
R+((ℓ, ν), δ1) = Diract1 .

In a negative SCC, we let ηp(ℓ, ν) be the distribution picking σ1(ℓ, ν) with probability p,
and σ2(ℓ, ν) with probability 1 −p. Formally, ηp

∆ chooses the transition given by σ1(ℓ, ν) with
probability p and of σ2, with probability 1 − p, except if those transitions are equal, in which
case ηp

∆ chooses it with probability 1. If transitions chosen by σ1 and σ2 are distinct, ηp
R+ is

a Dirac distribution over the corresponding delay. Otherwise, ηp
R+ chooses with probability p

the delay given by σ1, and with probability 1 − p the one given by σ2.
Theorem 11 ensuring that strategies σ1 and σ2 satisfy Hypothesis 1, the superposition ηp

also satisfies these hypotheses. Moreover, we use the sufficient condition in Hypothesis 2 to
show that ηp is also proper:

▶ Lemma 15. For all p ∈ (0, 1), the strategy ηp satisfies Hypothesis 2.

To show the expected result, we prove that mValη
p

ℓ,ν ≤ max(−N, dValℓ,ν) + 3ε for all (ℓ, ν),
for p close enough to 1: we conclude that mValℓ,ν ≤ dValℓ,ν by taking the limit when N

tends to +∞ and ε tends to 0. We get that inequality by showing the following result, paired
with the fact that dValσℓ,ν ≤ max(−N, dValℓ,ν) + ε.

▶ Proposition 16. For all configurations (ℓ, ν) and ε > 0 small enough, there exists p̃ ∈ (0, 1)
so that for all p ∈ [p̃, 1), mValη

p

ℓ,ν ≤ dValσℓ,ν + 2ε.

Proof. Lemma 7 allows us to limit ourselves to deterministic strategies for Max. For all
deterministic strategies τ of Max, we compute a lower bound on p independent of τ such that
Eηp,τ

ℓ,ν ≤ dValσℓ,ν +3ε/2. By Lemma 7 (with ε/2), we obtain the desired mValη
p

ℓ,ν ≤ dValσℓ,ν +2ε.
The case where the whole region game only contains positive SCCs is easy, since then

ηp chooses the transition and delay given by σ1 with probability 1. By divergence, G then
contains no negative cycles. A play conforming to ηp is also conforming to the deterministic
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Π0,≤K

ΠN,≥K

Π̃

Figure 2 Partition of paths TPaths.

strategy σ1, so it must be acyclic. In particular, there exists only one play ρ conforming to
ηp and τ . This one is also conforming to σ and thus reaches the target with a cumulated
weight wtΣ(ρ) = Eηp,τ

ℓ,ν ≤ dValσℓ,ν as expected.
Now, suppose that the region graph contains at least a negative SCC. Thus, we let c > 0

be the maximal size of an elementary cycle of the region game (that visits a pair (ℓ, r) at
most once) and w− > 0 be the opposite of the maximal cumulated weight of an elementary
negative cycle in R(G) (necessarily bounded by we

max |R(G)|).
We partition the set FPlaysηp,τ

ℓ,ν into subsets Πi,j according to the number i of choices of
probability 1 − p along the play (the probability as described previously with the product
of the probabilities given by ηp

∆ and ηp
R+), and their length j (we always have i ≤ j). The

partition is depicted in Figure 2:
ΠN,≥K , depicted in blue, contains all plays with a length greater than K (the switching
threshold)
Π0,≤K , depicted in yellow, contains all plays without any probability 1 − p, with a length
at most K;
Π̃, depicted in red, contains the rest of the plays.

We can use the particular shape of the memoryless strategy ηp for Min, and the fact
that we fixed a deterministic strategy τ for Max, to decompose the expectation Eηp,τ

ρ on the
partition. Indeed, notice that the set of plays conforming to ηp and τ , from a particular
configuration (ℓ, ν), is countable. Moreover, we can associate a probability to each play
(instead of a probability to a path). For a finite play ρ = (ℓ0, ν0) δ0,t0−−−→ · · · (ℓk−1, νk−1)
conforming to ηp and τ , we let

Pηp,τ
ℓ,ν (ρ) =

k−1∏
i=0

pi

where, for all i ∈ {0, . . . , k − 1}

pi =
{

1 if ℓi ∈ LMax

ηp
∆(ℓi, νi)(δi) × ηp

R+((ℓi, νi), δi)(ti) if ℓi ∈ LMin

This definition allows us to recover the probability of a path π using the probability of all
plays following π. Then, we obtain easily

Eηp,τ
ℓ,ν =

∑
ρ∈Π0,≤K

wt(ρ)Pηp,τ
ℓ,ν (ρ)

︸ ︷︷ ︸
γ0,≤K

+
∑

ρ∈ΠN,≥K

wt(ρ)Pηp,τ
ℓ,ν (ρ)

︸ ︷︷ ︸
γN,≥K

+
∑
ρ∈Π̃

wt(ρ)Pηp,τ
ℓ,ν (ρ)

︸ ︷︷ ︸
γ̃

(1)
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We now compute and bound the three expectations γ0,≤K , γN,≥K and γ̃. In the following,
for a set Π of plays, we let Pηp,τ

ℓ,ν (Π) =
∑

ρ∈Π Pηp,τ
ℓ,ν (ρ).

Red zone is such that γ̃ ≤ ε/4. All plays in Π̃ have a length at most K: so the cumulated
weight of all such play is at most Kwe

max. So, we have

γ̃ =
∑
ρ∈Π̃

wt(ρ)Pηp,τ
ℓ,ν (ρ) ≤

∑
ρ∈Π̃

Kwe
maxP

ηp,τ
ℓ,ν (ρ) = Kwe

maxP
ηp,τ
ℓ,ν (Π̃)

But, all plays ρ ∈
⋃

j≤K Πi,j with i ≤ K take i transitions of probability 1 − p. In particular,
by bounding all other probabilities by 1, and since there are at most 2K plays in

⋃
j≤K Πi,j ,

we obtain (using that 1 − (1 − p)K ≤ 1)

Pηp,τ
ℓ,ν (Π̃) ≤ 2K

K−1∑
i=1

(1 − p)i = 2K (1 − p)(1 − (1 − p)K)
p

≤ 2K 1 − p

p
−→p→1 0 (2)

If we suppose that

p ≥ 1
1 + ε/(4 × 2KKwe

max)

we obtain as desired

γ̃ ≤ 2KKwe
max

1 − p

p
≤ ε

4

Yellow and blue zones are such that γ0,≤K + γN,≥K ≤ dValσℓ,ν + 5ε/4. All plays in
Π0,≤K reach the target without taking any probability 1 − p from ηp

∆, so they are conforming
to σ1. In the case where dValℓ,ν = −∞, Π0,≤K = ∅ and γ0,≤K = 0, since no play conforming
to σ1 from (ℓ, ν) reaches the target. In this case, Min can stay in a cycle with a negative
cumulated weight as long as he wants. Now, if dValℓ,ν is finite, Theorem 11 (see [21,
Lemma 19]) allows us to show that the cumulated weight of a play in Π0,≤K is at most
dValℓ,ν + Kε/K = dValℓ,ν + ε, as dValℓ,ν = infσ∈dStratMin dValσℓ,ν ≤ dValσℓ,ν . Therefore, in both
cases, we can write

γ0,≤K ≤
(
dValσℓ,ν + ε

)
Pηp,τ

ℓ,ν (Π0,≤K)

Let ρ be a play in Πi,j with 0 ≤ i and j ≥ K. Since ηp only allows cycles in negative
SCCs, all region cycles in ρ have a cumulated weight at most −1. By definition of K and
the proof of Theorem 11, wt(ρ) ≤ dValσℓ,ν ≤ dValσℓ,ν + ε.

By summing up the contribution of yellow and blue zones, we get

γ0,≤K + γN,≥K ≤
(
dValσℓ,ν + ε

)
Pηp,τ

ℓ,ν (Π0,≤K ∪ ΠN,≥K) (3)

We distinguish two cases.
If dValσℓ,ν ≥ −5ε/4, having Pηp,τ

ℓ,ν (Π0,≤K ∪ ΠN,≥K) ≤ 1, we get

γ0,≤K + γN,≥K ≤
(

dValσℓ,ν + 5ε

4

)
Pηp,τ

ℓ,ν (Π0,≤K ∪ ΠN,≥K) ≤ dValℓ,ν + 5ε

4

If dValσℓ,ν < −5ε/4, then by (2),

Pηp,τ
ℓ,ν (Π0,≤K ∪ ΠN,≥K) = 1 − Pηp,τ

ℓ,ν (Π̃) ≥ 1 − 2K 1 − p

p
−→p→1 1



B. Monmege, J. Parreaux, and P.-A. Reynier 137:15

If we suppose that

p ≥ 2K

2K + 1 − dValσ
ℓ,ν

+5ε/4
dValσ

ℓ,ν
+ε

∈ (0, 1)

then

Pηp,τ
ℓ,ν (Π0,≤K ∪ ΠN,≥K) ≥

dValσℓ,ν + 5ε/4
dValσℓ,ν + ε

and, by negativity of dValσℓ,ν + ε, we can rewrite (3) as

γ0,≤K + γN,≥K ≤
(
dValσℓ,ν + ε

) dValσℓ,ν + 5ε/4
dValσℓ,ν + ε

= dValσℓ,ν + 5ε

4

In all cases, we have γ0,≤K + γN,≥K ≤ dValσℓ,ν + 5ε/4.

Gathering all constraints on p. We gather all the lower bounds over p that we need in the
proof:

p̃ =


max

(
1

1+ε/(4×2K Kwe
max) , 1

2

)
if dValσℓ,ν ≥ −5ε/4

max

 1
1+ε/(4×2KKwe

max) , 1
2 , 2K

2K+1−
dValσ

ℓ,ν
+5ε/4

dValσ
ℓ,ν

+ε

 otherwise

Then, for p ∈ (p̃, 1), we have Eηp,τ
ℓ,ν ≤ dValσℓ,ν + 3ε/2. Since p̃ does not depend on τ , we

conclude that for p ∈ (p̃, 1), we have mValη
p

ℓ,ν ≤ dValσℓ,ν + 2ε. ◀

Simulating (stochastic) strategies with deterministic strategies. Finally, we show that, for
all configurations (ℓ, ν), dValℓ,ν ≤ Valℓ,ν and dValℓ,ν ≤ mValℓ,ν . To do so, we consider a proper
strategy η ∈ Stratp

Min of Min and an initial configuration (ℓ, ν). We build a deterministic
strategy σ such that dValσℓ,ν ≤ Valηℓ,ν + ε. Thus, in the case where Valℓ,ν ̸= −∞, we can
consider η to be an ε-optimal strategy so that dValσℓ,ν ≤ Valℓ,ν + 2ε which allows us to
conclude. In the case where Valℓ,ν = −∞, then, for all N ∈ N, we can consider η to be such
that Valηℓ,ν ≤ −N . Then, dValσℓ,ν ≤ −N + ε, which implies that dValℓ,ν = −∞, by taking the
limit when N tends to +∞.

The deterministic strategy σ uses the same kind of memory as η (in particular, it will be
memoryless if η is memoryless). However, we want this strategy to be relatively simple to
define, independent of the memory of η. Intuitively, we want to build a switching strategy
(as in Section 4) on a game induced by the memory of η, i.e. a deterministic strategy σ1 that
uses the memory capabilities of η, a memoryless deterministic strategy σ2 obtained by an
attractor in the region game, and a threshold K. Strategy σ then consists in playing σ1 for
at most K steps, before switching to strategy σ2. The construction of σ1 is done in a similar
way as in the deterministic case, Min always choosing the best possible candidate according to
the choices of η, thus trying to minimise the immediate reward obtained in one turn. Under
this condition, we verify that σ1 satisfies some properties similar to the fake-ε-optimality
encountered in Section 4. Then, by mimicking the techniques of Theorem 11, we obtain that
the switching strategy η obtained from η1 satisfies the desired inequality dValσℓ,ν ≤ Valηℓ,ν + ε.
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6 Conclusion

We have introduced stochastic strategies for WTGs, showing that, in divergent games, Min
can use randomisation to emulate memory, and vice versa. We aim at extending our study
to more general WTGs. As a first step, we may consider the class of almost-divergent WTGs
(adding the possibility for an execution following a region cycle to have weight exactly 0 ),
used in [12, 17] to obtain an approximation schema of the optimal value. We wonder if similar
ε-optimal switching strategies may exist also in this context, one of the crucial argument in
order to extend our emulation result. Another question concerns the implementability of the
randomised strategies: even if they use no memory, they still need to know the precise current
clock valuation. In (non-weighted) timed games, previous work [18] aimed at removing this
need for precision, by using stochastic strategies where the delays are chosen with probability
distributions that do not require exact knowledge of the clocks measurements. In our setting,
we aim at further studying the implementability of the randomised strategies of Min in
WTGs, e.g. by requiring them to be robust against small imprecisions.
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