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Quantum simulation using synthetic systems is a
promising route to solve outstanding quantum many-body
problems in regimes where other approaches, including
numerical ones, fail1. Many platforms are being devel-
oped towards this goal, in particular based on trapped
ions2–4, superconducting circuits5–7, neutral atoms8–11 or
molecules12,13. All of which face two key challenges: (i)
scaling up the ensemble size, whilst retaining high qual-
ity control over the parameters and (ii) certifying the out-
puts for these large systems. Here, we use programmable
arrays of individual atoms trapped in optical tweezers,
with interactions controlled by laser-excitation to Rydberg
states11 to implement an iconic many-body problem, the
antiferromagnetic 2D transverse field Ising model. We
push this platform to an unprecedented regime with up
to 196 atoms manipulated with high fidelity. We probe
the antiferromagnetic order by dynamically tuning the pa-
rameters of the Hamiltonian. We illustrate the versatil-
ity of our platform by exploring various system sizes on
two qualitatively different geometries, square and trian-
gular arrays. We obtain good agreement with numerical
calculations up to a computationally feasible size (∼ 100
particles). This work demonstrates that our platform can
be readily used to address open questions in many-body
physics.

Previous works demonstrated the potential of Rydberg-
based quantum simulators with up to a few tens of atoms14–16,
including high-fidelity manipulations17–19. In particular, the
transverse field Ising model (TFI) has been studied in 1D with
up to 51 atoms14,15,20, in 2D square arrays, but with a limited
degree of coherence16,21 making it difficult to observe genuine
quantum features, and recently in 3D with 22 atoms22. Here
we implement the TFI in 2D, combining much larger atom
numbers (up to ∼ 200) and a high degree of coherence. In
our implementation, we explore two geometries which exhibit
qualitatively different phase diagrams: the bipartite square lat-
tice and the geometrically frustrated triangular lattice23. On
the square lattice, we prepare the Néel state characteristic of
antiferromagnets with unprecedented probability. On the tri-
angular lattice, we observe for the first time, the creation of
two distinct antiferromagnetic orders. The large number of
atoms involved makes direct comparison between experimen-
tal results and the best numerical simulations extremely chal-

lenging. To validate the dynamics of our simulator we have
pushed matrix product state simulations to their limit and are
able to simulate the dynamics of up to 100 atoms in 2D. We
obtain an impressive agreement between the simulation and
the experiment up to this number, which is one of the largest
for which a direct comparison has been performed. Finally,
by comparing the experiment to classical Monte Carlo calcu-
lations we demonstrate that our results cannot be reproduced
by a classical equilibrium distribution at the same mean en-
ergy, and that the experiment features an enhanced probability
of finding classical ground states.

For arrays of atoms coupled by the (repulsive) van der
Waals interaction, when excited to Rydberg states, the Hamil-
tonian of the TFI model is:

HRyd =
∑
i<j

Uijninj +
~Ω

2

∑
i

σxi − ~δ
∑
i

ni, (1)

where the Rydberg and ground states are mapped onto
the (pseudo-) spin states |↑〉 and |↓〉, respectively. Here
Uij = C6/r

6
ij is the van der Waals interaction, rij is the dis-

tance between atoms i and j, ni = |↑〉 〈↑|i = (1 + σzi )/2, and
σi are the usual Pauli matrices. The two spin states are cou-
pled via a laser field with a Rabi frequency Ω and a detuning
δ, which act as transverse and longitudinal fields, respectively.
Antiferromagnetic (AF) ordering in the system appears as a
consequence of the strong interactions characterised by the
Rydberg blockade radius Rb, as illustrated in Fig. 1a24. The
type of antiferromagnetic ordering depends on the geometry
of the array and the Hamiltonian parameters.

We create defect-free square and triangular arrays of re-
spectively up to 196 and 147 87Rb atoms using an op-
timised atom-by-atom assembly protocol25 (see Fig. 1b).
We define |↓〉 =

∣∣5S1/2, F = 2,mF = 2
〉

and |↑〉 =∣∣75S1/2,mJ = 1/2
〉
, which are coupled via the intermediate

state
∣∣6P3/2, F = 3,mF = 3

〉
with two counter-propagating

laser beams of wavelength 420 nm and 1013 nm26 (see
Sec. A). We achieve a single atom excitation probability of
99% and a coherence time ∼ 20 times longer than in our pre-
vious work16 (see Sec. C 1). We use arrays with atomic spac-
ing a = 10 µm, leading to a nearest-neighbour interaction of
U/h ' 1.95 MHz.

To probe the phase diagram of HRyd we sweep Ω(t) and
δ(t), and transfer the system from its initial paramagnetic
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FIG. 1. Emergence of antiferromagnetic ordering from the Rydberg blockade in square and triangular arrays. a, Illustration of the
Rydberg blockade with two atoms, whereby the strong interactions prevent the simultaneous excitation of two atoms from the ground state
(red circles) to the Rydberg state (blue circles) within the Rydberg blockade radius Rb at which U = ~Ω. b,c Single-shot fluorescence images
of ground state (|↓〉) atoms in a 14× 14 square array and a 147-atom triangular array with an atomic separation of a = 10 µm. b, Initial PM
states and c, nearly perfect AF ordering.

(PM) ground state |↓↓ . . . ↓〉 into the AF phase. A quantum
phase transition (QPT) separates these two phases. Ideally,
one would adiabatically drive the system such that it remains
in the instantaneous ground state. However, the energy gap at
the QPT decreases with the atom number N , (∼ 1/

√
N on a

square lattice and∼ exp(−αN) for the triangular lattice27,28).
This leads to time scales which are experimentally imprac-
tical due to decoherence effects. Hence, we choose sweep
times (∼ 6 µs) which are short enough to avoid sizeable deco-
herence but sufficiently long to quasi-adiabatically probe the
phase diagram (see Sec. C 2). We record fluorescence images
of the atoms remaining in |↓〉. Single-shot images, showing
prepared, nearly perfect AF ordering on the square and trian-
gular arrays, are shown in Fig. 1c. For the results presented
here, we typically repeat the sequence 1000 times.

We first focus on the square lattice,using arrays of size
N = L× L, with even L so that the two Néel states have the
same energy. In Fig. 2a we sketch the (bulk) phase diagram.
In the case of the van der Waals interaction implemented here,
the AF phase region is expected to extend up to ~Ωc ≈ 1.25 U
at ~δ ≈ 4.66 U/2 (Ref. 29). More complex phases30 ap-
pear at the lower and upper boundaries of ~δ/U in the AF
region. The applied sweeps are shown in Fig. 2a, with the
QPT being crossed during the ramp down of Ω(t). Figure 2b
presents an experimental histogram of the states recorded at
the end of the sweep for the 8× 8 array. Remarkably, out
of 264 ' 2 × 1019 possible states, we obtain a perfectly or-
dered state with a probability of ∼2.5%, as can be seen by
the two prominent peaks. The fluorescence images show the
two corresponding Néel states. To characterise the magnetic
ordering of the states prepared during the sweep, we measure
the order parameter, which is the normalised staggered mag-

netisationmstag = 〈|nA − nB|〉/(N/2), giving the difference
in the number of excitations on each sublattice (A,B), aver-
aged over many realisations. The two perfect AF states corre-
spond to one of the two sublattices being fully excited, such
that mstag = 1. We access the dynamics of the system dur-
ing the sweep by rapidly turning off the excitation laser at
different times toff (see Fig. 2a). Fig. 2c presents the evo-
lution of mstag for the 6× 6 and 10× 10 arrays, using the
same sweep. Over the first 1.5 µs of the sweep the system is
in the PM phase, where fluctuations lead to small but finite
mstag ∼ 1/

√
N . We then observe the growth of mstag during

the drive of the system from the PM to the AF phase.

To benchmark our platform, we perform a systematic com-
parison of the dynamics with matrix product state (MPS) nu-
merical simulations (see Sec. B). We consider both the pro-
grammed and the real parameters, the latter of which include
independently calibrated experimental imperfections, with the
exception of decoherence effects (see Sec. C 3). For the 6× 6
array, we observe a good agreement between the experimen-
tal results and the MPS simulations, for both situations. For
the 10× 10 array, the experiment and the real MPS simula-
tions also agree well. The difference between the programmed
and the real MPS simulations highlights that the imperfections
have a more severe impact on larger systems. Additionally,
the reduced final value of mstag for the programmed MPS on
the 10× 10 array indicates that as the system size grows, adi-
abaticity is indeed harder to achieve.

We now characterise the final state obtained at the end of
the sweep (Ω = 0). Firstly, we visualise the shot-wise con-
tributions to mstag using a 2D histogram of the probability
P (nA, nB) of the |↑〉 populations nA and nB of the two sub-
lattices A, B. Here, the two Néel states appear as points at
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FIG. 2. The Ising model on a square lattice. a, Sketched bulk phase diagram for the square lattice. The inset shows the sweep shape with
toff the switch-off time of the excitation laser. The corresponding trajectory in the phase diagram is shown as a red arrow. b, State histogram
for the 8× 8 array at the end of the sweep. The insets show fluorescence images of the two perfect AF states, which are obtained with 2.5%
probability. c, Growth of the staggered magnetisation during the sweep for the 6 × 6 and 10 × 10 arrays. The blue circles are experimental
results with standard errors on the mean smaller than the markers size. The error bar on the final point is indicative of the long-term stability
of the machine (see Sec. C 4). MPS simulations without (dashed line) and with (grey lines) experimental imperfections for which 50 (6× 6),
77 (10 × 10) disorder instances are shown, with their average shown in black. The vertical dotted lines correspond to the turning points in
the sweep. d, Final staggered magnetisation histograms for the 10× 10 and 14× 14 arrays and e, corresponding correlation maps, with MPS
results shown in the lower half for the 10× 10 array.

(N/2, 0) and (0, N/2). The results are plotted in Fig. 2d for
the 10× 10 and 14× 14 arrays. For both systems we observe
the presence of points along the diagonal highlighting that the
average Rydberg density is ∼ 50%. For the 10× 10 we ob-
serve a conglomeration of points around the two corners be-
longing to the Néel states. Because of the imperfections and
the scaling of the energy gap, the state preparation becomes
more challenging with increasing system size. The elongated
histogram for the 14 × 14 array demonstrates that, remark-
ably, we prepare strongly AF ordered states (mstag ∼ 0.4),
even for such large systems. This is also evident in the fluo-
rescence image in Fig. 1c, containing 184 atoms (out of 196)
obeying AF ordering. For a comparison with simulations, we
have devised an algorithm to stochastically sample the MPS
wavefunction, thereby obtaining snapshots as in the experi-
ment (see Sec. B 2). The lower half of Fig. 2d shows the so-
obtained histogram for the 10× 10 lattice, which matches the
experiment very well. For even larger atom numbers, accurate
MPS simulations become intractable.

Secondly, we compute the connected spin-spin correlation
function defined as

Ck,l =
1

Nk,l

∑
i,j

〈ninj〉 − 〈ni〉〈nj〉, (2)

where the sum runs over all pairs of atoms i, j separated by
ke1 + le2, with e1(2) denoting the two vectors of the under-

lying lattice, and Nk,l being the number of such pairs. Fig-
ure 2e shows the Ck,l correlation maps corresponding to the
mstag histograms shown in Fig. 2d. The plots display the al-
ternation of correlation and anti-correlation, expected for AF
ordering, whose values would be±1/4 for the Néel state. The
spatial decay of the correlations is well described by corre-
lation lengths of ξ ' 7a and 5.5a for the two system sizes
respectively, showing that the sweeps produce highly AF or-
dered states31. Again we observe very good agreement be-
tween experimental and real MPS results for the 10× 10 ar-
ray, confirming that the simulations capture well the experi-
mental conditions (for a real-time analysis of the correlations
during the sweep, see Sec. C 5).

To further quantify the AF ordering, we analyse the distri-
bution of antiferromagnetic cluster sizes32. For each run of the
experiment, we decompose the snapshot into individual clus-
ters obeying local AF ordering (see examples in Fig. 3a,b).
We count the number of atoms inside each individual cluster,
and record the largest size, smax. From the full set of snap-
shots we reconstruct the probability distribution P (smax). For
a perfectly AF-ordered state, this distribution presents as a sin-
gle peak of unit probability at smax = N , while imperfect or-
dering shows up as a distribution broadened towards smaller
smax. In Fig. 3c,d we show P (smax) at two instants during
the sweep for the 10× 10 array (blue bars). Even at interme-
diate times, shortly after entering the AF region (Fig. 3c), we
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FIG. 3. Quantum real-time evolution versus classical equilib-
rium: a, b, Fluorescence images on a 10× 10 array illustrating how
we extract the largest AF domains comprising of smax sites, indi-
cated by the blue boundaries. c, d, Distributions of smax during c and
at the end of d the sweep (blue), compared to the classical equilib-
rium result (yellow) with the corresponding hypothetical temperature
Thyp.

observe the presence of significant AF ordering, as the distri-
bution is centred around large values of smax. At the end of the
sweep (Fig. 3d), Néel states are observed, as shown in Fig. 3b,
and more than 27% of the shots feature AF states with clusters
missing at most 10 sites.

The fact that we obtain a distribution of final states raises
the question whether the system has thermalised during the
finite duration of the sweep14,33. To answer this question, we
compare the observed distribution P (smax) to the correspond-
ing distribution obtained from a classical equilibrium setup
with a hypothetical temperature Thyp. We focus on a classical
description for two reasons: i) the classical energy is the one
accessible in the experiment and ii) at the end of the sweep,
Ω = 0 and the quantum and classical statistical mechanics
descriptions coincide.

To determine Thyp we match the classical Ising energy
Eclass(toff) of the experimental system with EMC

class(T ) from
the corresponding classical statistical mechanics system for
a given temperature T estimated from a Monte Carlo (MC)
sampling34. We refer to Sec. D 1 for a thorough discussion
of Thyp during the sweep. In Fig. 3c,d, we show P (smax)
for the corresponding classical equilibrium distributions (or-
ange bars), and observe that they are centered at a signifi-
cantly smaller smax, and do not reproduce the distribution of
the experimental results. In particular, the probability of find-
ing perfectly ordered states is much higher in the experiment.
An equivalent analysis of the MPS real-time evolution shows
similar features (see Sec. D 3). Our analysis therefore reveals
that despite residual imperfections, the experiment does not

thermalise during the state preparation protocol and can only
be consistently reproduced by a unitary quantum mechanical
real-time description. Furthermore, the enhanced probability
of finding the targeted classical states is promising for future
applications of the Rydberg platform, e.g., as a quantum an-
nealer to solve optimisation problems of various types35–37.

Having explored the square lattice we now consider the
more complex triangular array. Here, the TFI model features
a richer phase diagram, with prominent ordered phases at 1/3
and 2/3 Rydberg filling, as sketched in Fig. 4a. The 1/3 phase
is the analogue of the AF ordering on the square lattice, where
the Rydberg blockade prevents neighbouring sites from being
excited simultaneously, leading to one of the three sublattices
being filled with Rydberg excitations, illustrated in Fig. 1c.
The 2/3 phase is the “particle-hole” inverse of this, with two
sublattices being fully excited and one sublattice containing
ground state atoms. In between these phase regions, at 1/2
filling, the classical Ising model (Ω = 0) is strongly frustrated
for nearest-neighbour interactions, with an exponentially large
(in N ) ground state manifold23. Finite Ω stabilises yet an-
other ordered phase in a process called “order by disorder”
(OBD)29,38–42.

To explore the triangular phase diagram, we consider
hexagonal clusters of various sizes, built shell by shell around
a central three-atom triangle (see Fig. 1b). We apply the
sweeps shown in Fig. 4a for two different final detunings δf,
to create the 1/3 and the 2/3 phases. To quantify the state
preparation process, we again measure the temporal dynam-
ics of the order parameter, the normalised staggered magneti-
sation. For the triangular array, this is defined as mstag =

〈
∣∣nA + ei2π/3nB + e−i2π/3nC

∣∣〉/(N/3), where nA,B,C is the
Rydberg population on each of the three sublattices. We plot
the results in Fig. 4b for the experiment and two types of MPS
simulations (programmed and real) for a 75-atom array, with
δf chosen to prepare the 1/3 phase. We observe the growth of
the AF ordering both in the experiment and the simulations,
which agree very well during the first 5 µs of the sweep. Af-
ter this the experimental results plateau at a lower value of
mstag than expected from the MPS. The inclusion of experi-
mental imperfections decreases the final value of mstag, how-
ever, there is still a discrepancy with the experimental results.
A possible explanation could be the enhanced sensitivity of
the QPT from paramagnetic to the 1/3 AF phase (believed to
be first-order27) to the residual experimental imperfections not
included in the MPS simulation. Confirming the origin of this
effect will be the subject of future work.

To further characterise the prepared final states we consider
Ck,l, defined similarly to Eq. (2). Here, the perfect AF state
would have Ck,l = +2/9 and −1/9 for correlated and anti-
correlated sites, respectively. In Fig. 4c,e we show the final
state correlation maps for the 1/3 (2/3) phases on atom ar-
rays of 75, 108 and 147 sites (108 sites). We observe a pat-
tern characteristic of three-sublattice ordered states, through-
out almost the entire bulk of our systems, with a correlation
length ξ ∼ 3—3.7a for the 1/3 phase and ξ ∼ 2a for the
2/3 phase. In Fig. 4d,f we plot the corresponding distribu-
tions of the complex order parameter. For perfectly ordered
1/3 (2/3) systems, one would expect peaks at the three cor-
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FIG. 4. Antiferromagnetic ordering on a triangular array. a, Sketched bulk phase diagram for the triangular lattice. The red arrows show
the sweeps used to prepare the phases at filling 1/3 and 2/3. b, Growth of the staggered magnetisation during the sweep for a 75-atom array.
The blue circles are experimental results with standard errors on the mean smaller than the markers size. The error bar on the final point is
indicative of the long-term stability of the machine (see Sec. C 4). MPS simulations without (dashed line) and with (grey lines) experimental
imperfections for which 50 disorder instances are shown, with their average shown in black. The vertical dotted lines correspond to the turning
points in the sweep. c, Final experimental correlation maps and d, corresponding staggered magnetisation histograms plotted in the complex
plane for the 75, 108 and 147 site triangular arrays for the sweep preparing the 1/3 phase. For the 75 and 108 site arrays the lower half of the
histograms show the analogous MPS results. e, Final experimental correlation map and g, corresponding staggered magnetisation histogram
for the 108 site triangular array for the sweep preparing the 2/3 phase. The lower half in f shows corresponding MPS results.

ners of the bounding hexagon, marked by red (green) dots. We
observe correspondingly aligned triangular distributions with
good agreement between the experimental and MPS results.
There is a higher accumulation of points at the corners in the
MPS results, which corresponds to a higher value of mstag.
While the distributions spread almost fully to the corners in
the 1/3 phase results, for the 2/3 phase the size of the triangle
is visibly reduced. This reduction is due to finite-size cluster
effects: the boundary is filled with Rydberg excitations which
reduces the maximal possible extent of the distribution to the
inner hexagon (dashed lines) (see Sec. E 1). To our knowl-
edge, the above results are the first observations of the 1/3 and
2/3 phases using a quantum many-body system. Despite the
experimental imperfections, and the finite sweep duration, we
are able to produce highly-ordered states on even the largest
147-atom array. This is highlighted in Fig. 1c showing a flu-
orescence image of the 1/3 phase on the 147-atom array with
almost perfect AF ordering. Finally, similar to the square

array, we observe an enhanced probability of finding highly
ordered states compared to a classical equilibrium system at
the same energy, as revealed by experimental order parameter
distributions which are centred at larger values (see details in
Sec. E 2).

As a conclusion, we have probed the quantum dynamics
of Ising magnets in square and triangular geometries, beyond
situations which can be exactly simulated classically. We
have validated the experimental results with comprehensive
numerical simulations up to computationally feasible sizes.
We have shown a high degree of coherence and control, over
a large number of atoms. Combined, this demonstrates that
our platform is now able to study quantum spin models in
regimes beyond those accessible via numerical investigations.
We have also identified a potential advantage of Rydberg
quantum simulators to prepare targeted classical states, com-
pared to classical equilibrium systems. Natural extensions
of this work include a thorough investigation of the dynam-
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ics of the 2D quantum phase transition, and further explo-
rations of the effects of frustration, in particular the obser-
vation of the elusive OBD phase. Finally, our benchmark
provides a roadmap for improving the platform even further
thus opening exciting prospects beyond quantum simulation,
e.g. for optimisation35,37, quantum sensing43,44 and quantum
computing45–47.
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46 L. Henriet, L. Béguin, A. Signoles, T. Lahaye, A. Browaeys, G.-
O. Reymond, and C. Jurczak, Quantum computing with neutral
atoms, Quantum 4, 327 (2020).

47 M. Morgado and S. Whitlock, Quantum simulation and comput-
ing with Rydberg qubits, arXiv:2011.03031 (2020).

48 D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and
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In order to create defect-free arrays consisting of N atoms,
we begin with a stochastically loaded array containing > 2N
traps and then, using a single, moving optical tweezer trap, re-
arrange the atoms into the desired configuration. Optimisation
of the rearrangement algorithms and the introduction of mul-
tiple cycles25 have enabled us to create arbitrary arrays with
up to 200 atoms.

Following the rearrangement, the atoms are optically
pumped into the ground state |↓〉 =

∣∣5S1/2, F = 2,mF = 2
〉

in the presence of a static magnetic field of 7 G with 99.9%
efficiency. The tweezers are then switched off for the du-
ration of the sweeps. We use the Rydberg state |↑〉 =∣∣75S1/2,mJ = 1/2

〉
with a lifetime τ = 175 µs, and van

der Waals coefficient C6/h = 1947 GHz · µm6. To
excite the atoms from |↓〉 to |↑〉, we drive a two-photon
transition using counter-propagating laser beams with wave-
lengths 420 nm and 1013 nm, via the intermediate state∣∣6P3/2, F = 3,mF = 3

〉
with a lifetime of 113 ns. We use

two Ti:Sapphire lasers (M-Squared), because of their intrin-
sic low phase noise at high frequency49. One, operating at
840 nm, is frequency doubled to 420 nm with up to 2 W, and
the second, at 1013 nm, seeds an AzurLight Systems fibre
amplifier delivering up to 10 W. The 420 nm light is fibre cou-
pled to the experiment, whilst the 1013 nm light is free-space.
The 1/e2 radii and maximum powers of the lasers at the posi-
tion of the atoms are w420 = 250 µm, P420 = 350 mW, and
w1013 = 130 µm, P1013 = 5 W, allowing for Rabi frequencies
of up to Ω420 = 2π × 200 MHz and Ω1013 = 2π × 50 MHz.
To limit the spontaneous emission, the lasers are detuned by
2π×700 MHz from the intermediate state, resulting in a max-
imum effective Rabi frequency of Ω = 2π × 7 MHz.

To detect the state of the atoms the tweezers are turned back
on, recapturing atoms in |↓〉, which we then image. The atoms
in |↑〉 are repelled from the tweezers and hence are not im-
aged. This detection method features imperfections, described
in detail in Ref. 49, which result in two types of errors. Firstly
a false positive, with probability ε, where a ground-state atom
is lost and misidentified as a Rydberg atom, and secondly
a false negative, with probability ε′, where a Rydberg atom
decays quickly, is recaptured and hence, misidentified as a
ground-state atom. The results presented in the main text have
ε = 1% and ε′ = 3%.

B. Matrix Product States

In order to verify the experimental results we compare to
numerical simulations. For the large atom numbers used in
this work Exact Diagonalisation methods are too expensive
and so we employ matrix product state (MPS) methods as de-
scribed in this section.

1. Method

Matrix product state methods are well documented in the
literature50,51, so we focus here on the aspects important for
the discussion in this paper.

MPS methods approximate the physical state by a linear
network of N tensors, one at each site. Initially developed
for one-dimensional many body systems, the method is also
successful on two-dimensional systems of limited width52. In
our case the L× L square lattice is mapped row-by-row to a
linear tensor network, for the triangular arrays the mapping is
similar except that the rows have variable width. The MPS
approximation is controlled by the bond dimension χ, which
limits the maximum amount of entanglement between con-
secutive subsystems. An MPS with bond dimension χ can
exhibit at most an entanglement entropy of S = ln(χ) for a
bipartition into two connected chains.

For ground state wavefunctions of gapped, local Hamilto-
nians one expects the entanglement entropy of subsystems to
follow an area law53. This means that the entanglement en-
tropy between two subsystems is proportional to the length (or
area) of the perimeter of the subsystems, and not proportional
to their volume. When considering a time-dependent situation
as we do here, the entanglement structure can become more
complicated, and, for example, change to a volume law if long
times after a quench are studied. Since we typically fix the du-
ration of our sweeps while scaling up the system size, we are
effectively still dealing with an area-law situation. Applying
these considerations to the square and the triangular lattice ar-
rays, we are simulating systems with a maximal entanglement
entropy between subsystems proportional to the width of the
clusters, i.e. S ∼ L for the square arrays. This translates into
a scaling of the required bond dimension χ ∼ exp[αL] for
simulations of constant accuracy. Based on this scaling we
are able to reach widths of L = 10 for the square lattice and a
similar width for the triangular array (N = 108) with a bond
dimension of up to χ = 512, see discussion below.

For the unitary time evolution we use the time-dependent
variation principle (TDVP)54,55 which works by projecting the
Hamiltonian onto the state’s tangent space and then applying
the time evolution operator for a small time-step. At each step
we can either use a single-site or a two-site algorithm, the
latter of which allows for growth of the MPS’ bond dimension.
The simulation starts in the initial product state which evolves
in time according to the Hamiltonian Eq. (1), at first using
the two-site variant until the bond dimension is saturated to a
certain chosen value χ, and then we switch to the single-site
variant for a significant performance increase.

For every system size these simulations are repeated for 30
to 70 different realisations of random lattice positions, and in-
clude other experimental uncertainties, described in Sec. C 3.
We use the implementation of TDVP provided by the python
package TeNPy56. The computationally most expensive sim-
ulations for the 10 × 10 square with a bond dimension of
χ = 512 take up to 14 days for a single disorder instance.
We use computer clusters to simultaneously simulate around
50 disorder instances.

2. Sampling

The experiment delivers snapshots of the state of the sys-
tem projected to the Rydberg Fock space. From this data,
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one can determine local densities, density correlation func-
tions, and sublattice histograms. These quantities can also be
obtained from Exact Diagonalization, as well as the classical
and quantum Monte Carlo algorithms. With the MPS method
local densities and correlations can also be obtained easily by
tensor contractions. However, the sampling of the Fock space
snapshots is not so simple. While the weight of a given con-
figuration can be efficiently obtained by contracting the MPS
network with the snapshot configuration as the input on the
physical legs, it is less straightforward to find the most proba-
ble configurations out of the 2N possible states.

We devised an algorithm to generate statistically indepen-
dent snapshots of a given MPS wave function:

1. Pick an arbitrary site i among the n unprojected sites of
the normalised MPS, and determine the diagonal ele-
ments of the single site reduced density matrix p(i)

g and
p

(i)
e (for the ground state (|↓〉) and excited state (|↑〉)

respectively) which sum up to one.

2. Draw a random number r ∈ [0, 1] and select g if r <
p

(i)
g or else select e. Apply the single site projector for

the selected subspace, effectively fixing the physical leg
of that site’s tensor.

3. The remaining MPS with n−1 unprojected sites is nor-
malised to the value of p(i)

g|e, depending on the randomly
selected subspace in the previous step. Thus we divide
the MPS by that value to normalise it to 1.

4. Repeat the process until there are no unprojected sites
remaining.

It does not matter whether the sites to be projected are
picked randomly or in sequence, however the latter provides
the opportunity to optimise the generation of thousands of
snapshots by pre-contracting the tensor network. We usually
generate 1000 to 10000 snapshots for each data point shown.
The algorithm presented here is related to the “collapse” step
in “Minimally entangled typical thermal state” MPS algo-
rithms for finite temperature simulations57.

In Fig. 5 we compare the average Rydberg density n =∑
i〈ni〉/N and the correlator C0,1 during the time-evolution

on a 10× 10 square lattice computed by standard tensor con-
tractions (black curves) to their value from a sample average
of 1000 snapshots, generated with the algorithm discussed
above (blue dots). The perfect agreement demonstrates that
the devised algorithm successfully samples the MPS wave
function.

3. Bond dimension χ dependence

Due to the aforementioned scaling of the computational
complexity of the problem with χ, a trade-off between accu-
racy and available computational resources has to be achieved.
In Fig. 6 we analyse the scaling of relevant observables used
in this paper with the bond dimension χ, including experi-
mental imperfections. Both the average Rydberg density n

a b

FIG. 5. MPS Sampling. a, Average Rydberg density and b nearest-
neighbour correlation function during the MPS state dynamics on
the 10× 10 square lattice. The black lines show the observables
computed from standard tensor contraction, the blue dots show the
corresponding sample average of 1000 generated snapshots.

(Fig. 6a) and the order parameter mstag (Fig. 6b) show only a
very weak dependence on χ for small times toff . As expected,
for larger times, the variation with χ becomes stronger, in par-
ticular for mstag. Nevertheless, this variation remains small
even at the end of the sweep and, notably, the uncertainty from
different interaction disorder instances, shown by the shaded
regions, is comparable to the variation between the lowest and
largest bond dimensions.

In Fig. 6c,d, we plot n and mstag at the end of the sweep
versus 1/χ for different system sizes. For L = 6, simula-
tions with up to χ = 512 reveal a nice convergence for these
observables, and the larger systems show only a slight depen-
dence on χ. The variation resulting from χ is again smaller
than that of the random Uij , illustrated by the lighter lines.

To summarise, our MPS simulations for systems up to
L = 10 are reliable to characterise and benchmark the exper-
imental results, although they might not be fully converged in
χ with regard to other observables, such as the entanglement
entropy. Finally, we want to mention that reliable simulations
of the dynamics for the largest experimental results achieved
in this paper (L = 14) seem to be out of reach with currently
available computational hardware, because of the exponential
scaling of χ with linear system size L.

C. Benchmarking the platform

In this section we discuss experimental imperfections, and
systematically compare the results of the experiment with nu-
merical simulations. We first investigate the coherence of the
laser excitation for a single atom, and then introduce the im-
perfections relevant to the many-atom case.

1. Coherence of single-atom laser excitation

To investigate the efficiency and the coherence of the Ryd-
berg excitation on a single atom, we drive Rabi oscillations
between the |↓〉 and |↑〉 states. The results are shown in
Fig. 7a, where the oscillations are fitted by a damped sine
Ae−Γt cos(Ωt)+B. We obtain a decay rate Γ = 0.04(1)µs−1

due to spontaneous emission from the intermediate state and
to the shot-to-shot fluctuations of the laser power (∼ 1%).
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a c

b d

FIG. 6. Scaling of observables with MPS bond dimension χ. a,
Rydberg density and b, order parameter during the MPS state dy-
namics, including experimental imperfections, for different χ on the
10 × 10 square lattice. The insets show the distribution due to the
multiple Uij disorder realisations, at final toff = 6 µs for χ = 256.
Scaling of c, n and d,mstag with χ at the end of the state preparation
protocol for different system sizes. The lightly coloured lines show
the multiple disorder instances.

In Fig. 7b, we show a magnification of the first period, from
which we measure a 97.3% probability of transferring a single
atom to the |↑〉 state with a π-pulse. For this experiment, fol-
lowing the methods outlined in Ref. 49, we measure ε = 0.4%
and infer from simulation using the experimental parameters
ε
′

= 1.9%. When accounting for these detection errors, we
extract a probability of 99.1% to transfer a single atom to the
|↑〉 state.

2. Benchmarking the 4× 4 array

Here we investigate the dynamics of the system for different
sweeps on the 4× 4 array. This system size can be fully sim-
ulated by solving the Schrödinger equation (SE), for which
we include the detection errors (here ε = 1% and ε′ = 3%).
We assess the adiabaticity of the drive by performing three
sweeps of durations 2.5 µs, 4 µs and 8 µs. The parameters
of the sweeps, shown in Fig. 8a, are as follows: at a de-
tuning δ/2π = −8 MHz, Ω is linearly increased from 0 to
∼ 2π × 1.4 MHz, we then linearly sweep the detuning to
∼ 2 MHz while keeping Ω constant, and finally decrease Ω to
0. As we drive a two-photon transition, the atoms experience
a changing light shift as Ω is swept. We counteract this effect
by changing δ accordingly. We use as observables the average
Rydberg density n and staggered magnetisation, mstag. For
all sweeps we observe a good agreement between experiment
and simulation, especially in the evolution of n. As expected,
short sweeps lead to oscillations in the evolution of n due to
a failure to adiabatically drive the system. This is confirmed
by the value of mstag at the end of the sweep, ∼ 0.5, which

a

b

FIG. 7. Testing the coherence of the Rydberg-excitation on a sin-
gle atom. a, Rabi oscillations showing the probability of measur-
ing the atom in |↓〉 as a function of the excitation time. The line
is a fit to the data by the function Ae−Γt cos(Ωt) + B, yielding
Γ = 0.04(1)µs−1, Ω = 2π × 1.32(1) MHz, A = 0.975(6), and
B = 0.507(3). b, High resolution measurement of the first period
of the oscillation. Error bars are statistical and often smaller than
marker size.

would be 1 if the sweep were adiabatic. As the sweep time
increases, this oscillatory behaviour is reduced and the value
of mstag increases.

To understand the discrepancies between the SE results and
the data we consider the potential experimental imperfections
relevant for many-atom systems. The first is the disorder in
atomic positions, which comes from two effects, (i) the static
disorder in the trap positions (standard deviation ∼ 100 nm),
and (ii) the finite temperature (10 µK) of the atoms leading
to shot-to-shot fluctuations in atom position with a standard
deviation of σr = 170 nm in the plane of the array, and
σz = 1 µm in the transverse direction. This results in a spa-
tially correlated, non-gaussian distribution of the interaction
energy Uij (see also Fig. 10e,f)58. This effect is included in
simulations by repetitions with randomly assigned atom posi-
tions chosen from a Gaussian distribution with the mentioned
standard deviations. We run simulations of the dynamics and
average over many runs of the distribution in interaction en-
ergies. The runs are shown in Fig.8 in light grey, with the
average SE〈Uij〉in black. This disorder has very little influ-
ence on the results and cannot explain the remaining disagree-
ment. Another potential source of imperfection comes from
the finite size of the 1013 nm beam, leading to inhomoge-
neous Ω and δ (due to the light-shift of the two-photon tran-
sition) across the array, however on this small system the in-
homogeneity is found to have negligible effect on the results.
The observation that the discrepancy is largest for the longest
sweep duration indicates that decoherence plays an important
role.

To study this effect we solve the Master equation (ME)
for which the time evolution of the density matrix ρ(t) is de-
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a

b

c

FIG. 8. Benchmarking multiple sweeps on the 4 × 4 array Time
evolution of a, sweep shape, b, Rydberg density, and c, staggered
magnetisation for three distinct sweeps (of durations 2.5 µs, 4 µs
and 8 µs) on the 4 × 4 array. In (b, c) experimental data is shown
in purple circles, the green (red) dashed line shows solutions to the
Schrödinger (Lindblad master) equation. Solid grey lines show so-
lutions of the Schrödinger equation for several random instances of
the interaction disorder (see text), the black line is the average over
these instances.

scribed by

d

dt
ρ = − i

~
[H, ρ] + L[ρ], (3)

with a Liouvillian

L[ρ] =
∑
i

γ

2
(2niρni − niρ− ρni) (4)

and a decoherence rate γ = 0.05 µs−1 which describes well
the single-atom Rabi oscillation, when accounting for the
shot-to-shot fluctuations of the laser power.

These results agree closely with the experimental data indi-
cating that decoherence at the single particle level is sufficient
to describe the system. We conclude from these studies that
there is an optimised sweep duration which has to be (i) long
enough to cross the gaps as adiabatically as possible and (ii)
short enough to avoid strong decoherence effects. Through-
out this paper, we limit the duration of the sweeps to be about
6− 7.5 µs to fulfil these two conditions.

3. Effect of imperfections on larger arrays

For larger arrays we use the matrix product state (MPS)
method, described in detail in Sec. B to calculate the dynam-
ics of the systems during the sweeps.

We first perform the programmed simulation, without ex-
perimental imperfections, for the 6 × 6, 8 × 8, and 10 × 10
arrays, using the same sweep for each array. Figure 9 shows
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FIG. 9. Effect of experimental imperfections on different sys-
tem sizes. The left (right) column shows the average density (order
parameter mstag). Different lines show successive additions of im-
perfections on the MPS simulations, starting from the programmed
case. Experimental data is shown by circles.

the evolution of n and mstag, with the experimental data as
purple points, and the blue line showing the MPS results. We
find good agreement over the first 1.5 µs after which we ob-
serve an overshoot in the experimental results in both n and
mstag for all system sizes. We also observe thatmstag eventu-
ally saturates on the experiment at lower values than the MPS,
and that this effect worsens for larger systems.

We therefore include in the MPS the imperfections dis-
cussed in the previous section, and illustrated in Fig. 10 for
the 10 × 10 array, starting from the experimentally measured
sweep shape, adding the inhomogeneous fields δi, Ωi, the de-
tection deficiency and, finally, the shot-to-shot fluctuations of
the interaction energies caused by the fluctuating atom posi-
tions. The results are shown in Fig. 9. The imperfections have
very little effect on n, and are not able to explain the over-
shoot, in n andmstag, at intermediate times. However, at later
times we observe better agreement for all system sizes. For
the 6× 6 and the 8× 8 arrays, each imperfection has a small
contribution which tends to decrease the final value of mstag.
On the 10 × 10 array the largest contribution to the disagree-
ment with the MPS real sweep result is the inhomogeneity of
the fields. This is unsurprising as the waist of the 1013 nm
laser is comparable to the size of the array.

A final imperfection we consider is the loss of atoms dur-
ing the rearrangement process, leading to a probability that
the prepared array is not perfect. After the rearrangement,
we take an image of the atoms to check the number of va-
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a

b

c

d

e f

FIG. 10. Experimental parameters for the experiment on the
10×10 square lattice. a-b, Sweep shape for a, the average Rabi fre-
quency Ω and b, the average detuning δ versus time. The dashed line
shows the proposed protocol, the solid line the experimentally ob-
tained parameters. c-d, Spatial dependence of Ω (c) and δ (d) at the
maximal values during the protocol. e-f, Distribution of the Rydberg
interactions Uij caused by the fluctuations in the atom positions. e,
shows the long-range interactions up to a distance of ∼ 50 µm, and
f, shows the distribution of the nearest neighbour interactions. The
dashed vertical line shows the average nearest-neighbour interaction
Unnb. The vertical grey line shows, as a reference, the programmed
value for non-fluctuating atoms Uprogrammed.

a b

FIG. 11. Effect of vacancies on AF ordering a, Histogram of the
number of defects for the 14× 14 array. Out of the ∼ 17000 exper-
imental realisations shown here, we only kept the ∼ 500 defect-free
shots for the results presented in the main text. b, mstag for dif-
ferent filling fractions. We observe a substantial increase in mstag

for defect-free array experiments, compared to ∼ 99% filled array
experiments.

cancies (missing atoms) in the target structure. In Fig. 11a,
we show the histogram of the number of vacancies for the
14×14 array, for which∼ 17000 experiments have been con-
ducted, with an average filling fraction of ∼ 98%. Thanks
to our high experimental repetition rate of 1–2 Hz, we can
post-select the experiments for which the rearrangement pro-
cess was successful. We do this for all results presented in
the main text. To check the effect of vacancies on the prepa-

FIG. 12. Long-term stability of the growth of antiferromagnetic
ordering on the 8×8 array. We show several measurements for the
same parameters, realised typically over 10 hours. We observe a dis-
persion of the measurements due to long-term drift of the machine.
The dashed line is a phenomenological fit to the data. The standard
error on the mean is smaller than symbol size.

ration of the antiferromagnetic order, we measure mstag as
a function of the filling fraction. To decrease the filling frac-
tion, we increase the number of allowed vacancies. The results
are shown in Fig. 11b. We observe a substantial difference in
mstag, between ∼ 99% filled arrays and defect-free arrays, of
approximately 10%. This highlights the importance of only
considering perfect arrays.

4. Long-term stability of the machine

We now discuss the long-term stability of the machine. We
do this analysis on the 8× 8 array by measuring the growth of
antiferromagnetic ordering mstag throughout the sweep. The
results are presented in Fig. 12. Each point represents a mea-
surement, with ∼ 300 snapshots recorded over approximately
20 minutes, giving a standard error on the mean which is
smaller than the marker size. We repeat the full curve several
times over a duration of about 15 hours and observe a spread
ofmstag throughout the sweep. This is due to long-term insta-
bilities of the experimental machine. These are mainly drifts
in beam pointing and power of the Rydberg excitation lasers,
which slightly change the path of the sweep in the phase dia-
gram, thus affecting the quality of the prepared antiferromag-
netic order. The dashed line is a phenomenological fit to the
data and is indicative of the mean evolution of mstag regard-
ing the long-term drifts of the machine. We use the standard
deviation on the fit for the error bars shown on the final points
in Fig. 2c,d and Fig. 4b.

5. Growth of antiferromagnetic order

To further compare the MPS calculations to the experi-
mental results we use the snapshot technique, described in
Sec. B 2, to plot the connected correlation maps and themstag

histograms for each time step in the sweep on the 10× 10 ar-
ray. These are shown in Fig. 13. The Ck,l maps show that the
correlations are beginning to develop between 1.3 and 1.7 µs,



13

FIG. 13. Growth of antiferromagnetic ordering on a 10 × 10 array during the sweep. Maps of the connected correlations Ckl and
histograms of the staggered magnetisation for different times toff , defined in Fig. 2. The upper (lower) halfs of the plots show experimental
(MPS) results.

and are growing from nearest-neighbour across the array. By
3.8 µs the expected correlation pattern is filling the entire ar-
ray, and from then on the strength of the correlations contin-
ues to increase. The corresponding mstag histograms show
the growth in the number of Rydberg excitations as the dis-
tribution of points moves from ∼ (0, 0) to higher values of
nA + nB. As the correlations begin to grow across the array
we can see the distribution of points stretching along the diag-
onal and after 3.8 µs points start to conglomerate around the
corners (N/2, 0) and (0, N/2). The MPS results show qual-
itative agreement throughout the sweep for both observables,
with slight differences appearing at times which correspond
to disagreements in Fig. 9. This verifies that the dynamical
evolution of the atomic system is well approximated by the
MPS calculations, including known uncertainties, for all ob-
servables. This confirms that we understand and have good
control over our platform.

D. Quantum real-time evolution versus classical equilibrium

In this section we give details on the comparison between
the quantum real-time evolution and a classical equilibrium

description. We also show that the real-time evolution from
MPS simulations does not thermalise and cannot be described
by a classical equilibrium distribution, similar to the results
for the experiment presented in the main text.

1. Extracting a classical temperature

For a comparison with the classical Hamiltonian (Ω = 0)

Hclass[δ] =
∑
i<j

Uijninj −
∑
i

~δini , (5)

with ni ∈ {0, 1}, we perform Metropolis Monte Carlo sim-
ulations with single spin flip updates. Results are averaged
over 500 individually equilibrated samples of random atom
positions. We take interactions up to a Euclidean distance
of 5.2a, or couplings Uij ' 9.9 × 10−5 MHz into account.
Note that interactions up to a Euclidean distance of 3.3a, or
Uij ' 1.5 × 10−3 MHz produce nearly identical behaviour
on the scales considered here. The δi are chosen to reflect the
experimental setup, shown in Fig. 10d.

To assign a hypothetical temperature Thyp to the dynamical
state of the quantum system, we compute the classical energy
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FIG. 14. Assigning a classical temperature. Classical energy den-
sity for the instantaneous state |Ψ(toff)〉 of the experiment during the
last part of the state preparation protocol (left panel), and for the cor-
responding classical equilibrium system versus temperature T (right
panel). Here, δ = δf for all datasets. We assign a hypothetical tem-
perature Thyp at each time toff by matching the classical energy, as
illustrated by the red line. In the right panel, Tc denotes the critical
temperature in the thermodynamic limit N →∞.

for the instantaneous state |Ψ(toff)〉,

Eclass(toff) = 〈Ψ(toff)|Hclass [δ(toff)] |Ψ(toff)〉 (6)

from the corresponding classical Hamiltonian in Eq. (5).
Since we do not measure the atom positions for each individ-
ual experimental snapshot, we assign the interactions Uij =
Unnb/(rij/a)6 to compute Eclass, where Unnb is the atom-
position disorder averaged nearest-neighbour interaction (see
Fig. 10f). Using classical Monte Carlo we then estimate the
classical thermodynamic partition function and compute the
energy expectation value for the same classical Hamiltonian
for a temperature T

EMC
class(T ) =

∑
c

Hclass(c) e−βHclass(c)/Z , (7)

where we sum over all classical spin configurations c and have
defined β = 1/ (kBT ) and Z =

∑
c e−βHclass(c). The hypo-

thetical temperature Thyp(toff) during the sweep is then com-
puted by matching

Eclass(toff) ≡ EMC
class(Thyp(toff)), (8)

as illustrated in Fig. 14.
In Fig. 15 we show Thyp during the experimental state

preparation process for different system sizes. At t = 0 the
system is in the ground state of Hclass with Thyp = 0, since
we only consider arrays without any vacancies, and all atoms
are in their ground state. During the first parts of the proto-
col where Ω is turned on and δ is increased to its final value,
the hypothetical temperature strongly increases. This increase
is mainly related to Hclass not fully describing the quantum
driving Hamiltonian HRyd.

During the ramp-down process (toff > 1.5 µs, δ = δf) the
boundary to the AF phase is crossed, and we observe a strong
“cooling” of the system. At the end of the sweep, we reach
very low hypothetical temperatures close to or even below the
infinite system size critical temperature Tc (see following sub-

a b

FIG. 15. Evolution of the hypothetical temperature. a, Pro-
grammed state preparation protocol and b, corresponding hypothet-
ical temperature Thyp(toff) during the sweep for different system
sizes. The dashed line shows the classical critical temperature Tc for
an infinite system with disorder averaged U/~ = 2π × 1.86 MHz
for δf = 2π × 2 MHz.

section). The finite temperature at the end of the sweep re-
flects that the state preparation is not perfectly adiabatic with
the durations possible in the experiment.

2. Classical critical temperature

To provide a natural scale for Thyp we compute the critical
temperature for the Hamiltonian parameters at the end of the
considered sweep (Ω = 0), which is defined as the tempera-
ture below which the classical system is ordered in the ther-
modynamic limit. The critical temperature Tc/U = 0.298(1)
is extracted from the finite size extrapolation of the Binder
cumulant U2 = 3

2

(
1− 〈m4

stag〉/3〈m2
stag〉2

)
crossing points as

presented in Fig. 1659. Simulations to obtain the Binder cu-
mulant have been performed for systems with homogeneous
~δ/U = 1.075 (corresponding to δf = 2π × 2 MHz), again
using 500 samples of random atom positions with an aver-
age nearest neighbour interaction U/h = Unnb/h = 2π ×
1.86 MHz, a Euclidean interaction range of 5.2a and periodic
boundaries. Note that the scale Tc, which is only well defined
in the infinite-size system, is provided as a reference, but does
not preclude the emergence of long range order in finite size
systems as observed.

3. MPS time evolution versus classical equilibrium

We show in Fig. 3 in the main text, that the distribution
of AF domain sizes during the experimental time evolution
is strikingly different from a classical equilibrium distribu-
tion with an assigned hypothetical temperature Thyp. Here,
we support this result with an identical analysis for corre-
sponding MPS simulations. We compare the distributions
from MPS time evolutions to the corresponding classical equi-
librium distributions from MC simulations for both the pro-
grammed setup, see Fig. 17a, and the real setup, including
experimental imperfections, see Fig. 17b. For intermediate
times, shortly after entering the AFM dome (left panels), we
observe a similar behaviour as in the experiment for both se-
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FIG. 16. Calculating the critical temperature. The Binder cumu-
lant U2 and its (L, 2L) crossing points (black markers) for different
linear system dimensions L, which allow to estimate the critical tem-
perature in the thermodynamic limit. The solid (dotted) grey lines
indicate the finite size extrapolated Tc and its standard error.

a

b

FIG. 17. Classical versus quantum state preparation. Distribu-
tion of the largest Néel cluster sizes smax during (left panel) and at
the end (right panel) of the time evolution from MPS simulations
(blue) compared to the classical equilibrium results (yellow) on a
10 × 10 square lattice. a, Simulation in the setup without including
any experimental imperfections. b, Simulation including the known
experimental imperfections.

a b

FIG. 18. Hypothetical temperature evolution for MPS. Thyp(toff)
for the MPS simulations during the final part of the state prepara-
tion protocol. Different symbols/colours show different system sizes.
The panels show MPS simulations a, without, and b with experimen-
tal imperfections.

tups, where the distribution of the MPS simulations is gener-
ally shifted towards larger cluster sizes smax compared to the
classical distribution. At the end of the sweep (right panels)
we still observe that the simulations are not thermalised, since
the MPS distributions are not matched by the classical equi-
librium ones. Also, the probability of creating Néel states is
enhanced compared to the classical distribution, as was ob-
served in the experiment. This effect is very strong in the
programmed case, indicating that with experimental improve-
ments we will gain in ground state preparation fidelity.

In Fig. 18, we show the evolution of Thyp for the MPS sim-
ulations during the final part of the state preparation proto-
col for systems with up to 10 × 10 atoms for both protocols
(programmed, real). Similar to the experiment, we observe
a strong cooling of the system. At the end of the sweep, we
observe that the extracted temperatures from the MPS simula-
tions are somewhat lower than the ones from the experiment,
for both the programmed and real cases, pointing to possible
further imperfections not yet taken into account.

To conclude one might wonder why the high probability of
finding Néel states in the right panel of Fig. 17a does not trans-
late into a substantially lower hypothetical temperature Thyp

in the left panel of Fig. 18. The main reason is the tempera-
ture dependence of the specific heat of the equilibrium system.
In the gapped AF phase the specific heat is exponentially sup-
pressed at low temperature C(T ) ∼ exp(−U/kBT )60. On the
other hand the excess energy ∆E ≡ Eclass − EGS

class is related
to the integral of C(T ):

∆E =

∫ T

0

C(T ′)dT ′ .

Combining the two formulas, we infer that T ∼
1/ log(1/∆E), i.e. the matching temperature tends to zero
only logarithmically slowly with ∆E going to zero.

E. Triangular geometries

In this section we consider the peculiarity of the finite-sized
triangular array, leading to the observed reduction in themstag

histogram observed for the 2/3 phase. We also compare clas-
sical equilibrium calculations to experimental results on the
triangular lattice.

1. Triangular 2/3 plateau

The edge of the finite-sized clusters can have an impact on
the achievable ground states, which might differ from the ones
expected from the corresponding bulk phase diagram. In par-
ticular, the edge sites have fewer direct neighbours than the
bulk sites and, hence, they can be excited to Rydberg states at
lower δ/U . For the results in this paper, this effect is particu-
larly important for the 2/3 phase on the triangular clusters, as
we will now discuss.

In Fig. 19 we show MC results for a fixed ~δ/U = 4 in
the 2/3-filling regime at low temperature T/U = 0.1. It



16

ba

nA

nB

nC

1/3

2/3

FIG. 19. 2/3 mstag histogram for finite clusters. MC results for a
108-site triangular cluster in the 2/3 plateau with ~δ/U = 4 and
temperature T/U = 0.1. a, The real space Rydberg density ni

shows that the outermost shell becomes fully populated at low tem-
perature, as also illustrated in the inset which shows the Rydberg
density at the edge. b, The corresponding sublattice magnetisation
histogram does not reach its full potential width (outer hexagon),
since the edge sites cannot participate in the formation of the 2/3-
filling states. The dashed hexagon shows the maximal extend for the
histogram when only the sites of the system without the edge are
considered.

a b c

FIG. 20. Quantum real-time evolution versus classical equilib-
rium on the triangular lattice. a, b, The distribution of the triangu-
lar order parametermstag at the end of the state preparation protocols
entering the 1/3 (a) and 2/3 (b) regimes. c, Distribution of mstag

for a 10 × 10 square lattice at the end of the sweep entering the AF
phase, as a comparison. In all panels, the blue (yellow) bars show
experimental (corresponding classical) results. The dashed line in b
shows the maximal value of mstag in the 2/3 regime induced by the
cluster boundaries.

is clearly visible in the Rydberg density ni, that the edge
sites become completely filled with Rydberg states in the
ground state T → 0. In particular, the Rydberg density
on the edge nedge approaches one when the temperature is
reduced, see inset in Fig. 19a. Therefore, only the atoms in
the bulk can take part in the formation of the 2/3-filled states,
and the maximal order parameter is reduced. This can be
directly observed in the sublattice magnetisation histogram,
see Fig. 19b, which shows that the position of the three peaks
defining the 2/3 phase do not reach their maximal possible
value at the edge of the outer hexagon. Instead, they are
bounded by the dashed hexagon, which shows the maximal
extend of the histogram for the bulk system. The reduction
of the maximal radius is rather large, since it scales with the
number of sites on the boundary. In particular, for the here
shown 108-site cluster, the boundary consists of 33 sites,
leading to ∼ 30 % reduction of the maximal radius in the
histogram. This effect isn’t observed in the 1/3 regime as
δf is small enough that the boundary sites also obey the AF
ordering.

2. Time evolution vs classical equilibrium on the triangular lattice

Here, we demonstrate that on the triangular lattice the ex-
perimental state preparation protocol, again, cannot be repro-
duced by a classical equilibrium distribution. In Fig. 20a, b
we show the experimentally obtained distribution of the or-
der parameter, mstag, at the end of the sweep preparing the
(a) 1/3 and (b) 2/3 phases for the 108 atom array, and com-
pare them to the corresponding classical distribution with hy-
pothetical classical temperature Thyp, assigned as described
in Sec. D 1. The experimental distribution is centred at sub-
stantially larger values of mstag, demonstrating an increased
probability of finding highly ordered states compared to a cor-
responding classical annealing. In Fig. 20c we show, as a
comparison, the distribution of mstag for a 10 × 10 square
lattice at the end of the sweep preparing the AF phase, which
shows similar, but enhanced, features.
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