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A neural network approach to solve linear programs with joint probabilistic constraints
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This paper studies a dynamical neural network approach for solving linear programs with joint Probabilistic Constraints (LPPC) with normally distributed random variables and independent matrix row vectors. We show that the proposed neural network is stable in the sense of Lyapunov and globally convergent. Finally, numerical results are given using randomly generated data.

Introduction

In the paper, we study the following stochastic linear programming problem:

min c T x s.t. P(T x ≤ D) ≥ 1 -α (1) 
x ∈ X

Where X ⊂ R n + is a polyhedron, c ∈ R n , D = (D 1 , ......., D k ) ∈ R K , T = [T 1 , ....T K ] T is a K × n random vector in R n and 0 < α < 1 is a specified confidence parameter.

Chance constrained programming with joint chance constraints was first introduced in 1965 by Miler and Wagner [START_REF] Bruce | Chance-constrained programming with joint constraints[END_REF]. They propose a deterministic equivalent of the joint constrained problem and show its concavity. Prékopa [START_REF] Prékopa | On probabilistic constrained programming[END_REF] shows that in the case of the multivariate normal probability distribution with right hand side random variable, the constraints set is convex. [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF] [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF] propose an approximate solution approach to solve a joint probabilistic linear program where the only random variable is the confidence level parameter. The proposed method relies on Monte Carlo sampling of the random variables. To solve the same problem, Luedtke and Nemhauser (2010) [START_REF] Luedtke | An integer programming approach for linear programs with probabilistic constraints[END_REF] study an integer programming approach. Adam et al. (2020) [START_REF] Lukáš Adam | Solving joint chance constrained problems using regularization and benders' decomposition[END_REF] introduce a discrete regularised approach for solving stochastic programs with joint chance constraints with discrete random distribution.

Chen et al. [START_REF] Chen | From cvar to uncertainty set: Implications in joint chance-constrained optimization[END_REF] propose an approach based on a classical worst case bound to approximate the joint constraints even in the case where the constraints are correlated. Zymler and Rustem [START_REF] Steve Zymler | Distributionally robust joint chance constraints with second-order moment information[END_REF] use Worst-Case Conditional Value-at-Risk to approximate both individual and joint probabilistic constraints. D.Reich [START_REF] Reich | A linear programming approach for linear programs with probabilistic constraints[END_REF] develops two linear programming based heuristic methods, greedy and dual heuristics, for solving linear programs with joint probabilistic constraints, where the random variable is the right-hand side vector. Ackooij and Henrion [START_REF] Van Ackooij | Joint chance constrained programming for hydro reservoir management[END_REF] propose joint probabilistic models to deal with hydraulic valley optimization. González et al. [START_REF] González Grandón | A joint model of probabilistic/robust constraints for gas transport management in stationary networks[END_REF] propose an optimization problem with a joint probabilistic constraint over an infinite system of random inequalities to assist gas network operators in managing uncertainty. Hyunhee and Eheart [START_REF] Hyunhee | A screening technique for joint chanceconstrained programming for air-quality management[END_REF] present a screening technique to solve joint chance constrained programs for air quality managment problems. To solve power management problems, Arnold et al. [START_REF] Arnold | A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints[END_REF] model the demand of the generation of the wind energy by a joint probabilistic constraint. Cheng and Lisser [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF] propose two piecewise approximation approaches to give an upper and a lower bounds for the exact optimal solution of problem [START_REF] Bruce | Chance-constrained programming with joint constraints[END_REF].

Ordinary Differential Equations (ODE) systems and machine learning techniques have been used for solving optimization problems. Arrow et al. [START_REF] Arrow | Studies in Linear and Non-Linear Programming[END_REF] propose ODE methods to solve equality constrained optimization problems. Jin et al. [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF] introduce a differential equation approach to solve nonlinear programming problems. [START_REF] Adam | Machine learning approach to chance-constrained problems: An algorithm based on the stochastic gradient descent[END_REF] study an approach based on the stochastic gradient descent method to solve chance constrained problems with discrete random distribution. Zhao and You [START_REF] Zhao | Distributionally robust chance constrained programming with generative adversarial networks (gans)[END_REF] use unsupervised learning with generative adversarial network in data generation and sampling for chance constrained problems.

Adam and Branda

Nazemi et al. [START_REF] Nazemi | A high performance neural network model for solving chance constrained optimization problems[END_REF] introduce a dynamical neural network for solving indi-vidual chance constrained optimization problems. Earlier, He [START_REF] Nazemi | A dynamical model for solving degenerate quadratic minimax problems with constraints[END_REF] proposed a neural network for solving the minimax problem. Nazmi et al. [START_REF] Nazemi | Solving a class of geometric programming problems by an efficient dynamic model[END_REF] solved geometric programming problem using the same approach and used this dynamical neural network to solve the maximum flow problem [START_REF] Nazemi | A capable neural network model for solving the maximum flow problem[END_REF] and the shortest path problem [START_REF] Nazemi | An efficient dynamic model for solving the shortest path problem[END_REF]. This paper is organised as follows. In Section 2 we study the partial KKT system of an equivalent deterministic problem of (1). In Section 3 a neural network approach is proposed. Section 4 discusses the stability and the convergence of the proposed neural network. Finally, numerical results are given in Section 5.

Deterministic reformulation

We consider the special case where T k , k = 1, ....., K are multivariate normally distributed independent row vectors with known mean vector µ k = (µ k1 , ...., µ kn ) and covariance matrix Σ k . Problem (1) can be written as follows:

min c T x s.t. K k=1 P(T k x ≤ D k ) ≥ K k=1 (1 -α) y k K k=1 y k = 1
(2)

y k ≥ 0, k = 1, ....., K (3) 
By the independence of the vectors T k , k = 1, .., K an equivalent nonlinear program for problem (1) is given by [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF][START_REF] Cheng | A second-order cone programming approximation to joint chance-constrained linear programs[END_REF]:

min c T x s.t. µ T k x + F -1 (p y k )||Σ 1 2 k x|| ≤ D k , k = 1, ....., K K k=1 y k = 1 (4) 
y k ≥ 0, k = 1, ....., K x ∈ X
In the the rest of the paper, we consider the following deterministic equivalent problem:

65 min c T x s.t. µ T k x + F -1 (p y k )||Σ 1 2 k x|| -D k ≤ 0, k = 1, ....., K K k=1 y k -1 ≤ 0 (5) 1 - K k=1 y k ≤ 0 -y k ≤ 0, k = 1, ....., K -x ≤ 0
Notice that problem ( 5) is nonlinear and a biconvex problem. We introduce the biconvex function g defined as follows:

g(x, y) =                              g 1 (x, y) = µ T 1 x + F -1 (p y 1 ) √ x T Σ 1 x -D 1 . . . g k (x, y) = µ T k x + F -1 (p y k ) √ x T Σ k x -D k g k+1 (x, y) = K k=1 y k -1 g k+2 (x, y) = 1 -K k=1 y k g k+3 (x, y) = -y 1 . . . g 2k+2 (x, y) = -y k g 2k+3 (x, y) = -x 1 . . . g 2k+n+2 (x, y) = -x n                             
Problem (4) becomes :

70 min c T x s.t. g(x, y) ≤ 0 (6) Let (x * , y * ) ∈ R n × R k , if there exists u (1) i , u (2) 
i , i = 1, .., 2K + n + 2 such that:

∇f (x * ) + 2K+n+1 i=1 u (1) i ∇ x g i (x * , y * ) = 0 (7) 2K+n+1 i=1 u (2) i ∇ y g i (x * , y * ) = 0 (8) u (1) i g i (x * , y * ) = 0, u (2) 
i ≥ 0, i = 1, .., 2K + n + 1 (9) u (2) i g i (x * , y * ) = 0, u (1) 
i ≥ 0, i = 1, .., 2K + n + 1 [START_REF] González Grandón | A joint model of probabilistic/robust constraints for gas transport management in stationary networks[END_REF] then (x * , y * ) is a partial KKT point of (5) [START_REF] Jiang | Partial exactness for the penalty function of biconvex programming[END_REF].

Definition 1. We consider the following problem:

min f (x 1 , x 2 ) s.t. g(x 1 , x 2 ) ≤ 0 (P 1)
Where f, g : R n 1 ×R n 2 -→ R are differentiable and biconvex. We denote:

X(x 1 ) = {x 2 ∈ R n 2 |g(x 1 , x 2 ) ≤ 0} and X(x 2 ) = {x 1 ∈ R n 1 |g(x 1 , x 2 ) ≤ 0} (x * 1 , x * 2 ) is a partial optimum of (P1) if : f (x * 1 , x * 2 ) ≤ f (x 1 , x * 2 ), ∀x 1 ∈ X(x * 2 ) f (x * 1 , x * 2 ) ≤ f (x * 1 , x 2 ), ∀x 2 ∈ X(x * 1 )
Definition 2.

[24] Let (x * , y * ) ∈ R n × R k , the constraint of ( 5) is called a partial Slater constraint qualification at (x * , y * ), if there exists (x, ỹ) ∈ R n × R k such that:

g i (x * , ỹ) < 0, g i (x, y * ) < 0, i = 1, .., 2K + n + 2 Theorem 1. [24] Let (x * , y * ) ∈ R n × R k . if (x * , y * ) is a feasible solution
for problem [START_REF] Lukáš Adam | Solving joint chance constrained problems using regularization and benders' decomposition[END_REF] with respect to partial slater constraints qualification, then (x * , y * ) is a partial optimum of (5) if and only if (x * , y * ) is a partial KKT point of (5) .

Theorem 2.

[24] Let (x * , y * ) ∈ R n × R k be a partial solution of ( 5), with respect to partial slater constraints qualification at (x * , y * ), then (x * , y * ) is 80 a partial KKT point of ( 5) if and only if ( 6), ( 7) and ( 8) hold with u

(1) i = u (2) 
i , i = 1, ..., 2K + n + 1.

In the the following, we write the partial KKT System of (5) as follows: 5) if and only if there exists

(x * , y * ) ∈ R n × R k is a partial optimum of (
u * i , i = 1, .., 2K + n + 1 such that: ∇f (x * ) + 2K+n+1 i=1 u * i ∇ x g i (x * , y * ) = 0 (11) 2K+n+1 i=1 u * i ∇ y g i (x * , y * ) = 0 (12) 
u * i g i (x * , y * ) = 0, u * i ≥ 0, i = 1, .., 2K + n + 1 (13)

Dynamical neural network approach

In this section, we propose a recurrent neural network model for solving problem [START_REF] Bruce | Chance-constrained programming with joint constraints[END_REF]. The dynamical equation of the neural network is given by:

85 dx dt = -(∇f (x) + ∇ x g(x, y) T (u + g(x, y)) + ) ( 14 
)
dy dt = -(∇ y g(x, y) T (u + g(x, y)) + ) ( 15 
)
du dt = (u + g(x, y)) + -u (16) 
We denote z = (x, y, u) and define Φ

(z) =      -(∇f (x) + ∇ x g(x, y) T (u + g(x, y)) + ) -(∇ y g(x, y) T (u + g(x, y)) + ) (u + g(x, y)) + -u     
We can rewrite the neural network defined in ( 13)-( 15) as :

   dz dt = κΦ ( z) z(t 0 ) = z 0 ( 17 
)
where κ is a scale parameter and indicates the convergence rate of the neural network ( 13)- [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF]. For the sake of simplicity we take κ = 1. The architectural construction of the neural network is detailed in Figure 1. Each line of the block implements an equation of the neural network ( 11)-( 12). We take the first line for example :

. From left side to right side, we have g(x, y) and u as inputs of the operator sum. As output we have g(x, y)+u which is an input of the operator () + which results in (g(x, y)+u) + .

Later, the inputs of the second sum operator are (g(x, y)+u) + and -u. In the output we have the expression cited in equation ( 14). Finally u is obtained using an integration operator.

Convergence and stability of the neural network

In this section we study the convergence and the stability of the proposed neural network [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF].

Theorem 3. Let (x * , y * , u * ) an equilibrium point of the neural network defined by ( 13)- [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF], then (x * , y * ) is a partial KKT point of [START_REF] Lukáš Adam | Solving joint chance constrained problems using regularization and benders' decomposition[END_REF]. On the other Proof. Let (x * , y * , u * ) be an equilibrium point of ( 13)-( 15), then:

dx * dt = 0, dy * dt = 0 and du * dt = 0 and we have that:

         ∇f (x * ) + ∇ x g(x * , y * ) T (u * + g(x * , y * )) + = 0 ∇ y g(x * , y * ) T (u * + g(x * , y * )) + = 0 (u * + g(x * , y * )) + -u * = 0
We also have (u * + g(x * + y * )) + = u * if and only if u * ≥ 0, g(x * , y * ) ≤ 0 110 and u * T g(x * , y * ) = 0 Furthermore, by substitution we have : ∇f (x * ) + ∇ x g(x * , y * ) T u * = 0 and ∇ y g(x * , y * ) T u * = 0. Therefore, (x * , y * ) is a partial KKT point of (5).

Now let (x * , y * ) be a partial KKT point of ( 5), by the system (10)- [START_REF] Arnold | A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints[END_REF] there exists u * such that:

         ∇ x f (x * ) + ∇ x g(x * , y * ) T u * = 0 ∇ y g(x * , y * ) T u * = 0 u * ≥ 0, u * T g(x * , y * ) = 0
It is obvious that (x * , y * , u * ) is an equilibrium point for the neural network ( 13)- [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF].

Theorem 4. For any initial point (x(t 0 ), y(t 0 ), u(t 0 )), there exists an unique continuous solution (x(t), y(t), u(t)) for ( 13)- [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF].

Proof. Since ∇f (x), ∇ x g(x, y) and ∇ y g(x, y) are continuously differentiable on open sets, then -(∇f (x) + ∇ x g(x, y) T (u + g(x, y)) + ), -(∇ y g(x, y) T (u + g(x, y)) + ) and ((u + g(x, y)) + -u) are locally Lipschitz continuous. According to the local existence of ordinary differential equations also known as Picard-Lindelöf Theorem [START_REF] Miller | Ordinary Differential Equations[END_REF], the neural network ( 13)-( 15) has a unique continuous solution (x(t), y(t), u(t)) [START_REF] Nazemi | A high performance neural network model for solving chance constrained optimization problems[END_REF].

Before proving the stability and the convergence of the proposed neural network, we show that the matrix ∇Φ is negative semidefinite.

Theorem 5. The jacobian matrix ∇Φ(z) defined in (4.1) is negative semidefinite matrix.

Proof. We consider the dynamical neural network ( 13)- [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF].

We assume that there exist 0 < p < n + 2k + 2 such that (u + g) + = (u 1 + g 1 (x, y), u 2 + g 2 (x, y), ....., u p + g p (x, y), 0, ...., 0 n+2k+2-p

)

The jacobian matrix of Φ is given by:

∇Φ(z) =      A B -∇ x g p (x, y) T C D -∇ y g p (x, y) T ∇ x g p (x, y) ∇ y g p (x, y) -S p     
Where:

A = -(∇ 2 f (x) + p i=1 ((u i + g i )∇ 2 x g p i (x, y)) + ∇ x g p (x, y) T ∇ x g p (x, y)) B = -( p i=1 ((u i + g i )∇ y ∇ x g p i (x, y)) + ∇ x g p (x, y) T ∇ y g p (x, y)) C = -( p i=1 ((u i + g i )∇ x ∇ y g p i (x, y)) + ∇ y g p (x, y) T ∇ x g p (x, y)) D = -( p i=1 ((u i + g i )∇ 2 y g p i (x, y)) + ∇ y g p (x, y) T ∇ y g p (x, y)) S p =   O p×p O p×(n+2k+2-p) O (n+2k+2-p)×p I (n+2k+2-p)×(n+2k+2-p)   and ∇ x g p (x, y) =               ∇g 1 ∇x 1 (x, y) . . . ∇g 1 ∇x n (x, y) . . . . . . . . . ∇gp ∇x 1 (x, y) . . . ∇gp ∇x n (x, y) 0 . . . 0 . . . . . . . . . 0 . . . 0              
Since g is twice differentiable, by Schwarz's theorem, we have ∇ y ∇ x g p i (x, y) = ∇ x ∇ y g p i (x, y), ∀i ∈ [1, p]. Therefore B = C T ∇Φ(z) can be written as follows:

∇Φ(z) =      A C T -∇ x g p (x, y) T C D -∇ y g p (x, y) T ∇ x g p (x, y) ∇ y g p (x, y) S p      We first proof that M =   A C T C D   is negative semidefinite matrix.
It's easy to see that the matrices ∇ x g p (x, y) T ∇ x g p (x, y) and ∇ y g p (x, y) T ∇ y g p (x, y) are positive semidefinite. Since the function f is convex and twice differentiable and g is biconvex and twice differentiable [START_REF] Gorski Jochen | Biconvex sets and optimization with biconvex functions: a survey and extensions[END_REF], then matrices ∇ 2 f (x) , ∇ 2 x g p i (x, y) and ∇ 2 y g p i (x, y), i = 1, ...p are positive semidefinite matrices. We conclude that A and D are negative semidefinite matrices, and M is a negative semidefinite matrix [START_REF] Foias | Positive Definite Block Matrices[END_REF].

Then, we have

∇Φ(z) =   M -Q T Q -S p   when Q =   ∇ x g p (x, y) ∇ y g p (x, y)  
-S p is negative semidefinite and M is negative semidefinte, then ∇Φ(z) is negative semidefinite. and Lemma 6, we have (z -z * ) T Φ(z) = (z -z * ) T (Φ(z) -Φ(z * )) ≤ 0 then:

dE(z(t)) dt ≤ 0 (19)
E(z) is positive and dE(z(t)) dt ≤ 0 then the neural network ( 13)-( 15) is globally stable in the sense of Lyapunov [START_REF] Murray | A Mathematical Introduction to Robotic Manipulation[END_REF].

As E(z) ≥ 1 2 z -z * 2 , then there exists a convergent subsequence

{z(t k )|t 0 < t 1 < .. < t k < t k+1 } where t k -→ ∞ when k -→ ∞, such that lim k-→∞ z(t k ) = ẑ, where ẑ satisfies dE(z(t)) dt = 0.
Notice that ẑ is a w-limit point of {z(t)} t≥t 0 . By LaSalle's invariant set theorem [START_REF]Applied nonlinear control / Jean[END_REF], there exists a certain L such that z(t) -→ L when t -→ ∞. From ( 10)-( 12) and ( 18), it follows that :

         dx dt = 0 dy dt = 0 du dt = 0 ⇔ dE(z) dt = 0
Therefore, ẑ is an equilibrium point for the neural network ( 13)- [START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF].

We define now a new Lyapunov function:

Ê(z) = Φ(z) 2 + 1 2 z -ẑ 2 (20) 
Ê(z) is continuously differentiable, Ê(ẑ) = 0 and lim k-→∞ z(t k ) = ẑ then lim k-→∞ Ê(z(t k )) = Ê(ẑ). We have also d Ê(z) dt ≤ 0, then 1 2 z -ẑ 2 ≤ Ê(z(t))
. Hence, lim t-→∞ z -ẑ = 0 and lim t-→∞ z(t) = ẑ. Therefore, the neural network ( 13)-( 15) is globally convergent in the sense of Lyupanov problem (5) [START_REF] Nazemi | A high performance neural network model for solving chance constrained optimization problems[END_REF].

Numerical Study

We first solve the problem cited in [START_REF] Nazemi | A high performance neural network model for solving chance constrained optimization problems[END_REF], using a joint probabilistic approach. The original problem is defined as follows

max 50x 1 + 100x 2 (21) s.t. 
               P (a 11 x 1 + a 12 x 2 ≤ 2500) ≥ 0.99 P (a 21 x 1 + a 22 x 2 ≤ 2000) ≥ 0.99 P (a 31 x 1 + a 32 x 2 ≤ 450) ≥ 0.99 x 1 , x 2 ≥ 0
We solve the following joint probabilstic problem using the neural network ( 13)-( 15)

max 50x 1 + 100x 2 (22) s.t. 
         P (a 11 x 1 + a 12 x 2 ≤ 2500, a 21 x 1 + a 22 x 2 ≤ 2000, a 31 x 1 + a 32 x 2 ≤ 450) ≥ 0.99 x 1 , x 2 ≥ 0 A.Nazemi et al.
show that an optimal solution for problem [START_REF] Nazemi | Solving a class of geometric programming problems by an efficient dynamic model[END_REF] is equal to 6199.99 with x * = (42.07, 40.96). Using our approach we find 6199.38 with

x * = (42.11, 40.93).

The following table recapitulates the results obtained using the two approaches using different values for the confidence level. From table 1, we can see that the joint chance constrained model is more conservative than the individual chance constrained model which is consistent with the probabilistic constraint theoretical results are larger than the ones obtained using the joint constraints. Although, using the joint constraints enables a better covering for the risk zone. Now to evaluate properly the quality and the robustness of our neural network ( 13)-( 15), we compare the results obtained by the neural network on various randomly generated data for several instance sizes with the results obtained using individual and joint chance constraints and the expected value approach which consists in replacing the random variables T k , k = 1, .., K by their respective mean values.

We generate randomly different instances of problem [START_REF] Lukáš Adam | Solving joint chance constrained problems using regularization and benders' decomposition[END_REF] with α = 0.05. Table 2 shows our numerical experiments where column one gives the size of the problem, i.e., the number of variables and the number of constraints.

Columns two and three show the optimal value obtained by the expected value approach and the corresponding CPU time, respectively. Columns four, five and six present the optimal value obtained by individual chance constraints, the relative CPU time and the gap with the expected value approach. The gap is defined by the following formula: (objective value of the first method -objective value of the second method) / objective value of the first method * 100. The last three columns give the optimal value obtained by the neural network, the corresponding CPU time and the gap with the expected value approach.

We implement our algorithms in python. We use the function uniform of the package numpy.random to generate the random instances of problem [START_REF] Lukáš Adam | Solving joint chance constrained problems using regularization and benders' decomposition[END_REF]. For our numerical expriments we choose the values of the mean vectors randomly in the interval [START_REF] González Grandón | A joint model of probabilistic/robust constraints for gas transport management in stationary networks[END_REF][START_REF] Jin | Two differential equation systems for equality-constrained optimization[END_REF], the values of the standard deviation vectors in [START_REF] Bruce | Chance-constrained programming with joint constraints[END_REF][START_REF] Luedtke | An integer programming approach for linear programs with probabilistic constraints[END_REF], the values of the vector β in [600, 700], and the values of the vector c in [55, 65]. We use Gekko, a Python package for machine learning and optimization, to solve the deterministic problem. To solve the ODE system of the neural network we use the solve ivp function of the scipy.integrate library, using the backward differentiation formula as an integration method.

The stopping criteria for our neural network is e = 10 -6 . The gradient and the partial derivatives in the the matrix Φ(z) of the neural network are computed by the functions grad and jacobian of the package autograd. We run our algorithms on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz. Table 2 shows that the solution obtained using the expected value approach is the lowest compared to the approaches involving individual or joint 245 chance constraints. We remark that the gaps between the objective function values obtained decrease as the problem becomes large. Even if the approach using joint constraints is more conservative, it covers better the risk region.

We then generate 100 scenarios for each problem of Table 2 with 10 independent normal vectors T k , k = 1, .., 10 of mean µ k and covariance matrix Σ k . Those vectors are generated using the function normal of the package numpy.random. We note how many times the constraints were violated for the two approaches. The results are given in Table 3.

We remark that the number of violated scenarios is the largest in the case of the expected value approach and the lowest for the approach with joint constraints.

Now, we check that the solution obtained by the neural network is partial KKT feasible. Figure 5 shows that the increase of the number of iterations leads to more tight partial KKT feasibility. Furthermore, we remark that the convergence towards the partial KKT solution becomes faster in terms of the number of iterations as the problem size increases. Although the neural network approach converges to a near optimal solution, it remains a time consuming method. As the size of the problem increases, the matrix Φ(z) of the neural network becomes large and the ODE solver takes more time to find the solution. Faster ODE solvers might de-265 crease significantly the total CPU time.

Conclusion

We propose a dynamical neural network to solve a joint chance constrained problem with multivariate normal distribution. We show the convergence and the stability of such an approach. 270

Figure 1 :

 1 Figure 1: A diagram by block of the neural network (5), (6) and[START_REF] Steve Zymler | Distributionally robust joint chance constraints with second-order moment information[END_REF] 
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 234 Figure 2: Out of 100 scenarios the constraints were violated 100 times

Figure 5 :

 5 Figure 5: The mean value of the partial KKT system in function of the number of iterations

Table 1 :

 1 Individual vs joint constraints

	The confidence level Individual constraints Joint constraints
	0.05	8006.59	7955.12
	0.10	9480.90	9212.95
	0.15	10828.02	10168.41
	0.20	12209.51	11007.80

Table 2 :

 2 Computational results with different sizes for problem[START_REF] Luedtke | An integer programming approach for linear programs with probabilistic constraints[END_REF] 

	Data	Expected value approach	Individual constraints	Joint constraints
		Obj value CPU Time	Obj value CPU Time GAP Obj value CPU Time GAP
	(3,2)	3500.00	0.01	4358.30	0.06	24 % 4542.46	10.72	29%
	(5,3)	3230.76	0.01	3949.64	0.26	22 % 4036.69	22.91	25%
	(7,5)	3150.00	0.01	3731.69	0.56	18 % 3859.12	43.61	22%
	(10,5) 3292.60	0.02	3779.02	0.75	15 % 3893.12	41.40	18%
	(20,10) 3187.05	0.02	3573.50	5.84	12 % 3701.69	110.75	16%
	(30,20) 3224.22	0.02	3563.18	30.66	10% 3682.52	2454.31	14 %
		Data	Expected value approach Individual constraints Joint constraints
		(3,2)	80		8	4		
		(5,3)	75		15	3		
		(7,5)	95		25	5		
		(10,5) 94		16	5		
		(20,10) 100		26	4		
		(30,20) 100		34	2		

Table 3 :

 3 Number of violated scenarios

to an equilibrium point ẑ = (x, ŷ, û) where (x, ŷ) is a partial KKT point of

We compare the results of our algorithm with those obtained by the expected value model and the individual chance constrained optimization problem. We show that the joint chance constrained approach outperforms individual chance constraint and expected value models.

To study the stability and the convergence of the dynamical network, we introduce a monotonic map defined as follows Definition 3. A mapping F : R n -→ R n is said to be monotonic if:

only if the jacobian matrix ∇F (x), ∀x ∈ R n , is positive semidefinite [START_REF] Tyrrell Rockafellar | Variational Analysis[END_REF].

Theorem 7. The neural network ( 13)-( 15) is globally stable in the Lyapunov sense and is globally convergent to (x * , y * , u * ), where (x * , y * ) is a partial KKT point of problem [START_REF] Lukáš Adam | Solving joint chance constrained problems using regularization and benders' decomposition[END_REF].

Proof. We consider the following Lyapunov function:

we have

By Theorem 5, we have Φ T (∇Φ(z) T + ∇Φ(z))Φ ≤ 0. By Theorem 5