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1. Introduction

In the paper, we study the following stochastic linear programming prob-

lem:

min cTx

s.t. P(Tx ≤ D) ≥ 1− α (1)

x ∈ X

Where X ⊂ Rn
+ is a polyhedron, c ∈ Rn, D = (D1, ......., Dk) ∈ RK , T =

[T1, ....TK ]T is a K × n random vector in Rn and 0 < α < 1 is a specified5

confidence parameter.

Chance constrained programming with joint chance constraints was first

introduced in 1965 by Miler and Wagner [1]. They propose a deterministic

equivalent of the joint constrained problem and show its concavity. Prékopa

[2] shows that in the case of the multivariate normal probability distribution10

with right hand side random variable, the constraints set is convex.

Luedtke and Ahmed (2008) [3] propose an approximate solution approach

to solve a joint probabilistic linear program where the only random variable

is the confidence level parameter. The proposed method relies on Monte

Carlo sampling of the random variables. To solve the same problem, Luedtke15

and Nemhauser (2010) [4] study an integer programming approach. Adam et

al. (2020) [5] introduce a discrete regularised approach for solving stochastic

programs with joint chance constraints with discrete random distribution.

Chen et al. [6] propose an approach based on a classical worst case bound

to approximate the joint constraints even in the case where the constraints20

are correlated. Zymler and Rustem [7] use Worst-Case Conditional Value-
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at-Risk to approximate both individual and joint probabilistic constraints.

D.Reich [8] develops two linear programming based heuristic methods, greedy

and dual heuristics, for solving linear programs with joint probabilistic con-

straints, where the random variable is the right-hand side vector. Ackooij and25

Henrion [9] propose joint probabilistic models to deal with hydraulic valley

optimization. González et al. [10] propose an optimization problem with a

joint probabilistic constraint over an infinite system of random inequalities to

assist gas network operators in managing uncertainty. Hyunhee and Eheart

[11] present a screening technique to solve joint chance constrained programs30

for air quality managment problems. To solve power management problems,

Arnold et al. [12] model the demand of the generation of the wind energy by

a joint probabilistic constraint. Cheng and Lisser [13] propose two piecewise

approximation approaches to give an upper and a lower bounds for the exact

optimal solution of problem (1).35

Ordinary Differential Equations (ODE) systems and machine learning

techniques have been used for solving optimization problems. Arrow et al.

[14] propose ODE methods to solve equality constrained optimization prob-

lems. Jin et al. [15] introduce a differential equation approach to solve

nonlinear programming problems.40

Adam and Branda [16] study an approach based on the stochastic gradient

descent method to solve chance constrained problems with discrete random

distribution. Zhao and You [17] use unsupervised learning with generative

adversarial network in data generation and sampling for chance constrained

problems.45

Nazemi et al. [18] introduce a dynamical neural network for solving indi-
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vidual chance constrained optimization problems. Earlier, He [19] proposed

a neural network for solving the minimax problem. Nazmi et al. [20] solved

geometric programming problem using the same approach and used this dy-

namical neural network to solve the maximum flow problem [21] and the50

shortest path problem [22].

This paper is organised as follows. In Section 2 we study the partial

KKT system of an equivalent deterministic problem of (1). In Section 3 a

neural network approach is proposed. Section 4 discusses the stability and

the convergence of the proposed neural network. Finally, numerical results55

are given in Section 5.

2. Deterministic reformulation

We consider the special case where Tk, k = 1, ....., K are multivari-

ate normally distributed independent row vectors with known mean vector

µk = (µk1, ...., µkn) and covariance matrix Σk. Problem (1) can be written as60

follows:

min cTx

s.t.
K∏
k=1

P(Tkx ≤ Dk) ≥
K∏
k=1

(1− α)yk

K∑
k=1

yk = 1 (2)

yk ≥ 0, k = 1, ....., K

(3)

By the independence of the vectors Tk, k = 1, .., K an equivalent nonlinear
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program for problem (1) is given by [13, 23]:

min cTx

s.t. µT
k x+ F−1(pyk)||Σ

1
2
k x|| ≤ Dk, k = 1, ....., K

K∑
k=1

yk = 1 (4)

yk ≥ 0, k = 1, ....., K

x ∈ X

In the the rest of the paper, we consider the following deterministic equiv-

alent problem:65

min cTx

s.t. µT
k x+ F−1(pyk)||Σ

1
2
k x|| −Dk ≤ 0, k = 1, ....., K

K∑
k=1

yk − 1 ≤ 0 (5)

1−
K∑
k=1

yk ≤ 0

−yk ≤ 0, k = 1, ....., K

−x ≤ 0

Notice that problem (5) is nonlinear and a biconvex problem. We introduce

the biconvex function g defined as follows:
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g(x, y) =



g1(x, y) = µT
1 x+ F−1(py1)

√
xTΣ1x−D1

...

gk(x, y) = µT
k x+ F−1(pyk)

√
xTΣkx−Dk

gk+1(x, y) =
∑K

k=1 yk − 1

gk+2(x, y) = 1−
∑K

k=1 yk

gk+3(x, y) = −y1

...

g2k+2(x, y) = −yk
g2k+3(x, y) = −x1

...

g2k+n+2(x, y) = −xn


Problem (4) becomes :70

min cTx

s.t. g(x, y) ≤ 0 (6)

Let (x∗, y∗) ∈ Rn×Rk, if there exists u
(1)
i , u

(2)
i , i = 1, .., 2K+n+2 such that:

∇f(x∗) +
2K+n+1∑

i=1

u
(1)
i ∇xgi(x

∗, y∗) = 0 (7)

2K+n+1∑
i=1

u
(2)
i ∇ygi(x

∗, y∗) = 0 (8)

u
(1)
i gi(x

∗, y∗) = 0, u
(2)
i ≥ 0, i = 1, .., 2K + n+ 1 (9)

u
(2)
i gi(x

∗, y∗) = 0, u
(1)
i ≥ 0, i = 1, .., 2K + n+ 1 (10)
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then (x∗, y∗) is a partial KKT point of (5) [24].

Definition 1. We consider the following problem:

min f(x1, x2)

s.t. g(x1, x2) ≤ 0 (P1)

Where f, g : Rn1×Rn2 −→ R are differentiable and biconvex. We denote:

X(x1) = {x2 ∈ Rn2|g(x1, x2) ≤ 0} and X(x2) = {x1 ∈ Rn1 |g(x1, x2) ≤ 0}

(x∗1, x
∗
2) is a partial optimum of (P1) if :

f(x∗1, x
∗
2) ≤ f(x1, x

∗
2), ∀x1 ∈ X(x∗2)

f(x∗1, x
∗
2) ≤ f(x∗1, x2), ∀x2 ∈ X(x∗1)

Definition 2. [24] Let (x∗, y∗) ∈ Rn × Rk, the constraint of (5) is called

a partial Slater constraint qualification at (x∗, y∗), if there exists (x̃, ỹ) ∈

Rn ×Rk such that:

gi(x
∗, ỹ) < 0, gi(x̃, y

∗) < 0, i = 1, .., 2K + n+ 2

Theorem 1. [24] Let (x∗, y∗) ∈ Rn × Rk. if (x∗, y∗) is a feasible solution75

for problem (5) with respect to partial slater constraints qualification, then

(x∗, y∗) is a partial optimum of (5) if and only if (x∗, y∗) is a partial KKT

point of (5) .
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Theorem 2. [24] Let (x∗, y∗) ∈ Rn × Rk be a partial solution of (5), with

respect to partial slater constraints qualification at (x∗, y∗), then (x∗, y∗) is80

a partial KKT point of (5) if and only if (6), (7) and (8) hold with u
(1)
i =

u
(2)
i , i = 1, ..., 2K + n+ 1.

In the the following, we write the partial KKT System of (5) as follows:

(x∗, y∗) ∈ Rn × Rk is a partial optimum of (5) if and only if there exists

u∗i , i = 1, .., 2K + n+ 1 such that:

∇f(x∗) +
2K+n+1∑

i=1

u∗i∇xgi(x
∗, y∗) = 0 (11)

2K+n+1∑
i=1

u∗i∇ygi(x
∗, y∗) = 0 (12)

u∗i gi(x
∗, y∗) = 0, u∗i ≥ 0, i = 1, .., 2K + n+ 1 (13)

3. Dynamical neural network approach

In this section, we propose a recurrent neural network model for solving

problem (1). The dynamical equation of the neural network is given by:85

dx

dt
= −(∇f(x) +∇xg(x, y)T (u+ g(x, y))+) (14)

dy

dt
= −(∇yg(x, y)T (u+ g(x, y))+) (15)

du

dt
= (u+ g(x, y))+ − u (16)
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We denote z = (x, y, u) and define Φ(z) =


−(∇f(x) +∇xg(x, y)T (u+ g(x, y))+)

−(∇yg(x, y)T (u+ g(x, y))+)

(u+ g(x, y))+ − u


We can rewrite the neural network defined in (13)-(15) as : dz

dt
= κΦ(z)

z(t0) = z0

(17)

where κ is a scale parameter and indicates the convergence rate of the neural

network (13)-(15). For the sake of simplicity we take κ = 1. The architectural

construction of the neural network is detailed in Figure 1. Each line of the90

block implements an equation of the neural network (11)-(12). We take the

first line for example : . From left side to right

side, we have g(x, y) and u as inputs of the operator sum. As output we have

g(x, y)+u which is an input of the operator ()+ which results in (g(x, y)+u)+.

Later, the inputs of the second sum operator are (g(x, y)+u)+ and −u. In the95

output we have the expression cited in equation (14). Finally u is obtained

using an integration operator.

3.1. Convergence and stability of the neural network

In this section we study the convergence and the stability of the proposed

neural network (15).100

Theorem 3. Let (x∗, y∗, u∗) an equilibrium point of the neural network de-

fined by (13)-(15), then (x∗, y∗) is a partial KKT point of (5). On the other

9



Figure 1: A diagram by block of the neural network (5), (6) and (7)

hand, if (x∗, y∗) ∈ Rn ×Rk is a partial KKT point of (5), then there exists

u∗ ≥ 0 such that (x∗, y∗, u∗) is an equilibrium point of the Neural Network

(13)-(15).105

Proof. Let (x∗, y∗, u∗) be an equilibrium point of (13)-(15), then:

dx∗

dt
= 0, dy∗

dt
= 0 and du∗

dt
= 0 and we have that:


∇f(x∗) +∇xg(x∗, y∗)T (u∗ + g(x∗, y∗))+ = 0

∇yg(x∗, y∗)T (u∗ + g(x∗, y∗))+ = 0

(u∗ + g(x∗, y∗))+ − u∗ = 0

We also have (u∗ + g(x∗ + y∗))+ = u∗ if and only if u∗ ≥ 0, g(x∗, y∗) ≤ 0110

and u∗Tg(x∗, y∗) = 0
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Furthermore, by substitution we have : ∇f(x∗) + ∇xg(x∗, y∗)Tu∗ = 0 and

∇yg(x∗, y∗)Tu∗ = 0. Therefore, (x∗, y∗) is a partial KKT point of (5).

Now let (x∗, y∗) be a partial KKT point of (5), by the system (10)-(12)

there exists u∗ such that:115


∇xf(x∗) +∇xg(x∗, y∗)Tu∗ = 0

∇yg(x∗, y∗)Tu∗ = 0

u∗ ≥ 0, u∗Tg(x∗, y∗) = 0

It is obvious that (x∗, y∗, u∗) is an equilibrium point for the neural network

(13)-(15).

Theorem 4. For any initial point (x(t0), y(t0), u(t0)), there exists an unique120

continuous solution (x(t), y(t), u(t)) for (13)-(15).

Proof. Since ∇f(x), ∇xg(x, y) and ∇yg(x, y) are continuously differentiable

on open sets, then −(∇f(x) +∇xg(x, y)T (u + g(x, y))+), −(∇yg(x, y)T (u +

g(x, y))+) and ((u + g(x, y))+ − u) are locally Lipschitz continuous. Ac-

cording to the local existence of ordinary differential equations also known125

as Picard–Lindelöf Theorem [25], the neural network (13)-(15) has a unique

continuous solution (x(t), y(t), u(t)) [18].

Before proving the stability and the convergence of the proposed neural

network, we show that the matrix ∇Φ is negative semidefinite.

Theorem 5. The jacobian matrix∇Φ(z) defined in (4.1) is negative semidef-130

inite matrix.
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Proof. We consider the dynamical neural network (13)-(15).

We assume that there exist 0 < p < n+ 2k + 2 such that

(u+ g)+ = (u1 + g1(x, y), u2 + g2(x, y), ....., up + gp(x, y), 0, ...., 0︸ ︷︷ ︸
n+2k+2−p

)

The jacobian matrix of Φ is given by:135

∇Φ(z) =


A B −∇xg

p(x, y)T

C D −∇yg
p(x, y)T

∇xg
p(x, y) ∇yg

p(x, y) −Sp


Where:

A = −(∇2f(x) +
∑p

i=1((ui + gi)∇2
xg

p
i (x, y)) +∇xg

p(x, y)T∇xg
p(x, y))140

B = −(
∑p

i=1((ui + gi)∇y∇xg
p
i (x, y)) +∇xg

p(x, y)T∇yg
p(x, y))

C = −(
∑p

i=1((ui + gi)∇x∇yg
p
i (x, y)) +∇yg

p(x, y)T∇xg
p(x, y))

D = −(
∑p

i=1((ui + gi)∇2
yg

p
i (x, y)) +∇yg

p(x, y)T∇yg
p(x, y))

145

Sp =

 Op×p Op×(n+2k+2−p)

O(n+2k+2−p)×p I(n+2k+2−p)×(n+2k+2−p)



and ∇xg
p(x, y) =



∇g1
∇x1

(x, y) . . . ∇g1
∇xn

(x, y)
...

. . .
...

∇gp
∇x1

(x, y) . . . ∇gp
∇xn

(x, y)

0 . . . 0
...

. . .
...

0 . . . 0


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Since g is twice differentiable, by Schwarz’s theorem, we have∇y∇xg
p
i (x, y) =150

∇x∇yg
p
i (x, y), ∀i ∈ [1, p]. Therefore B = CT

∇Φ(z) can be written as follows:

∇Φ(z) =


A CT −∇xg

p(x, y)T

C D −∇yg
p(x, y)T

∇xg
p(x, y) ∇yg

p(x, y) Sp

155

We first proof that M =

 A CT

C D

 is negative semidefinite matrix.

160

It’s easy to see that the matrices∇xg
p(x, y)T∇xg

p(x, y) and∇yg
p(x, y)T∇yg

p(x, y)

are positive semidefinite. Since the function f is convex and twice differen-

tiable and g is biconvex and twice differentiable [26], then matrices ∇2f(x) ,

∇2
xg

p
i (x, y) and ∇2

yg
p
i (x, y), i = 1, ...p are positive semidefinite matrices.

We conclude that A and D are negative semidefinite matrices, and M is a165

negative semidefinite matrix [27].

Then, we have

∇Φ(z) =

 M −QT

Q −Sp

 when Q =

 ∇xg
p(x, y)

∇yg
p(x, y)


170

−Sp is negative semidefinite and M is negative semidefinte, then ∇Φ(z) is

negative semidefinite.
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To study the stability and the convergence of the dynamical network, we

introduce a monotonic map defined as follows

Definition 3. A mapping F : Rn −→ Rn is said to be monotonic if:175

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn

Lemma 6. A differentiable mapping F : Rn −→ Rn is monotonic, if and

only if the jacobian matrix ∇F (x), ∀x ∈ Rn, is positive semidefinite [28].

180

Theorem 7. The neural network (13)-(15) is globally stable in the Lyapunov

sense and is globally convergent to (x∗, y∗, u∗), where (x∗, y∗) is a partial KKT

point of problem (5).

Proof. We consider the following Lyapunov function:185

E(z) = ‖Φ(z)‖2 +
1

2
‖z − z∗‖2 (18)

we have dΦ
dt

= ∇Φ
∇z

dz
dt

= ∇Φ(z)Φ(z), then

dE(z(t))
dt

= (dΦ
dt

)TΦ + ΦT dΦ
dt

+ (z − z∗)T dz
dt

= ΦT (∇Φ(z)T +∇Φ(z))Φ + (z − z∗)TΦ(z)

By Theorem 5, we have ΦT (∇Φ(z)T + ∇Φ(z))Φ ≤ 0. By Theorem 5
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and Lemma 6, we have (z − z∗)TΦ(z) = (z − z∗)T (Φ(z)− Φ(z∗)) ≤ 0 then:

dE(z(t))

dt
≤ 0 (19)

E(z) is positive and dE(z(t))
dt

≤ 0 then the neural network (13)-(15) is globally

stable in the sense of Lyapunov [29].

As E(z) ≥ 1
2
‖z − z∗‖2, then there exists a convergent subsequence {z(tk)|t0 <

t1 < .. < tk < tk+1} where tk −→∞ when k −→∞, such that limk−→∞z(tk) =

ẑ, where ẑ satisfies dE(z(t))
dt

= 0.

Notice that ẑ is a w-limit point of {z(t)}t≥t0 . By LaSalle’s invariant set the-

orem [30], there exists a certain L such that z(t) −→ L when t −→∞. From

(10)-(12) and (18), it follows that :
dx
dt

= 0

dy
dt

= 0

du
dt

= 0

⇔ dE(z)
dt

= 0

Therefore, ẑ is an equilibrium point for the neural network (13)-(15).

We define now a new Lyapunov function:

Ê(z) = ‖Φ(z)‖2 +
1

2
‖z − ẑ‖2 (20)

Ê(z) is continuously differentiable, Ê(ẑ) = 0 and limk−→∞z(tk) = ẑ then

limk−→∞Ê(z(tk)) = Ê(ẑ). We have also dÊ(z)
dt
≤ 0, then 1

2
‖z − ẑ‖2 ≤

Ê(z(t)). Hence, limt−→∞ ‖z − ẑ‖ = 0 and limt−→∞z(t) = ẑ. Therefore,

the neural network (13)-(15) is globally convergent in the sense of Lyupanov190

to an equilibrium point ẑ = (x̂, ŷ, û) where (x̂, ŷ) is a partial KKT point of

15



problem (5) [18].

4. Numerical Study

We first solve the problem cited in [18], using a joint probabilistic ap-195

proach. The original problem is defined as follows

max 50x1 + 100x2 (21)

s.t.



P (a11x1 + a12x2 ≤ 2500) ≥ 0.99

P (a21x1 + a22x2 ≤ 2000) ≥ 0.99

P (a31x1 + a32x2 ≤ 450) ≥ 0.99

x1, x2 ≥ 0

We solve the following joint probabilstic problem using the neural network

(13)-(15)

200

max 50x1 + 100x2 (22)

s.t.


P (a11x1 + a12x2 ≤ 2500, a21x1 + a22x2 ≤ 2000,

a31x1 + a32x2 ≤ 450) ≥ 0.99

x1, x2 ≥ 0

A.Nazemi et al. show that an optimal solution for problem (20) is equal to

6199.99 with x∗ = (42.07, 40.96). Using our approach we find 6199.38 with

x∗ = (42.11, 40.93).

The following table recapitulates the results obtained using the two ap-

proaches using different values for the confidence level.205
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The confidence level Individual constraints Joint constraints

0.05 8006.59 7955.12

0.10 9480.90 9212.95

0.15 10828.02 10168.41

0.20 12209.51 11007.80

Table 1: Individual vs joint constraints

From table 1, we can see that the joint chance constrained model is more

conservative than the individual chance constrained model which is consistent

with the probabilistic constraint theoretical results are larger than the ones

obtained using the joint constraints. Although, using the joint constraints

enables a better covering for the risk zone.210

Now to evaluate properly the quality and the robustness of our neural

network (13)-(15), we compare the results obtained by the neural network

on various randomly generated data for several instance sizes with the results

obtained using individual and joint chance constraints and the expected value

approach which consists in replacing the random variables Tk, k = 1, .., K by215

their respective mean values.

We generate randomly different instances of problem (5) with α = 0.05.

Table 2 shows our numerical experiments where column one gives the size

of the problem, i.e., the number of variables and the number of constraints.

Columns two and three show the optimal value obtained by the expected220

value approach and the corresponding CPU time, respectively. Columns

four, five and six present the optimal value obtained by individual chance

constraints, the relative CPU time and the gap with the expected value
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approach. The gap is defined by the following formula: (objective value of

the first method - objective value of the second method) / objective value225

of the first method * 100. The last three columns give the optimal value

obtained by the neural network, the corresponding CPU time and the gap

with the expected value approach.

We implement our algorithms in python. We use the function uniform

of the package numpy.random to generate the random instances of problem230

(5). For our numerical expriments we choose the values of the mean vectors

randomly in the interval [10, 15], the values of the standard deviation vectors

in [1, 4], the values of the vector β in [600, 700], and the values of the vec-

tor c in [55, 65]. We use Gekko, a Python package for machine learning and

optimization, to solve the deterministic problem. To solve the ODE system235

of the neural network we use the solve ivp function of the scipy.integrate li-

brary, using the backward differentiation formula as an integration method.

The stopping criteria for our neural network is e = 10−6. The gradient and

the partial derivatives in the the matrix Φ(z) of the neural network are com-

puted by the functions grad and jacobian of the package autograd. We run240

our algorithms on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz.
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Data Expected value approach Individual constraints Joint constraints

Obj value CPU Time Obj value CPU Time GAP Obj value CPU Time GAP

(3,2) 3500.00 0.01 4358.30 0.06 24 % 4542.46 10.72 29%

(5,3) 3230.76 0.01 3949.64 0.26 22 % 4036.69 22.91 25%

(7,5) 3150.00 0.01 3731.69 0.56 18 % 3859.12 43.61 22%

(10,5) 3292.60 0.02 3779.02 0.75 15 % 3893.12 41.40 18%

(20,10) 3187.05 0.02 3573.50 5.84 12 % 3701.69 110.75 16%

(30,20) 3224.22 0.02 3563.18 30.66 10% 3682.52 2454.31 14 %

Table 2: Computational results with different sizes for problem (4)

Data Expected value approach Individual constraints Joint constraints

(3,2) 80 8 4

(5,3) 75 15 3

(7,5) 95 25 5

(10,5) 94 16 5

(20,10) 100 26 4

(30,20) 100 34 2

Table 3: Number of violated scenarios
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Figure 2: Out of 100 scenarios the con-

straints were violated 100 times

Figure 3: Out of 100 scenarios the con-

straints were violated 26 times

Figure 4: Out of 100 scenarios the constraints were violated 4 times

Table 2 shows that the solution obtained using the expected value ap-

proach is the lowest compared to the approaches involving individual or joint245

chance constraints. We remark that the gaps between the objective function
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values obtained decrease as the problem becomes large. Even if the approach

using joint constraints is more conservative, it covers better the risk region.

We then generate 100 scenarios for each problem of Table 2 with 10

independent normal vectors Tk, k = 1, .., 10 of mean µk and covariance matrix250

Σk. Those vectors are generated using the function normal of the package

numpy.random. We note how many times the constraints were violated for

the two approaches. The results are given in Table 3.

We remark that the number of violated scenarios is the largest in the case

of the expected value approach and the lowest for the approach with joint255

constraints.

Now, we check that the solution obtained by the neural network is partial

KKT feasible. Figure 5 shows that the increase of the number of iterations

leads to more tight partial KKT feasibility. Furthermore, we remark that

the convergence towards the partial KKT solution becomes faster in terms260

of the number of iterations as the problem size increases.
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Figure 5: The mean value of the partial KKT system in function of the number of

iterations

Although the neural network approach converges to a near optimal so-

lution, it remains a time consuming method. As the size of the problem

increases, the matrix Φ(z) of the neural network becomes large and the ODE

solver takes more time to find the solution. Faster ODE solvers might de-265

crease significantly the total CPU time.

5. Conclusion

We propose a dynamical neural network to solve a joint chance con-

strained problem with multivariate normal distribution. We show the con-

vergence and the stability of such an approach.270

22



We compare the results of our algorithm with those obtained by the

expected value model and the individual chance constrained optimization

problem. We show that the joint chance constrained approach outperforms

individual chance constraint and expected value models.
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