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ABSTRACT
In the domain of partial classification, recent studies about multi-

objective local search (MOLS) have led to new algorithms offering

high performance, particularly when the data are imbalanced. In

the presence of such data, the class distribution is highly skewed

and the user is often interested in the least frequent class. Making

further improvements certainly requires exploiting complementary

solving techniques (notably, for the rule mining problem). As Con-

straint Programming (CP) has been shown to be effective on various

combinatorial problems, it is one such promising complementary

approach. In this paper, we propose a new hybrid combination,

based on MOLS and CP that are quite orthogonal. Indeed, CP is a

complete approach based on powerful filtering techniques whereas

MOLS is an incomplete approach based on Pareto dominance. Ex-

perimental results on real imbalanced datasets show that our hybrid

approach is statistically more efficient than a simple MOLS algo-

rithm on both training and tests instances, in particular, on partial

classification problems containing many attributes.
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• Computing methodologies → Search methodologies; Ma-
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KEYWORDS
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1 INTRODUCTION
In the domain of partial binary classification, predicting the class of

new data has been studied extensively during the last decade [17].

As an illustration of such classification tasks, one can wish to pre-

dict whether a new patient is ill or not (i.e., to determine the class

of this patient), according to known observations from previous

patients, which are made up of several attributes (fever, age, . . . ).

The classification is said to be partial because one just wants to

know if an observation belongs to a specific class, even if many of

them exist. In this paper, we deal with the classification rule mining

problem, which is a problem over (discrete and) imbalanced data

whose distribution greatly varies over the classes. For instance, a

partial classification task can be executed in a medical diagnosis

context, where less than 10% of patients are actually ill. This form

of classification can be considered as a multi-objective optimiza-

tion problem where each objective represents a different quality

measure.

Learning classifier systems (LCS) are popular approaches to solve

such problems. They often combine a genetic algorithmwith a learn-

ing component (supervised learning, reinforcement learning, or

unsupervised learning). Moreover, LCS deals with multi-objective

optimization using an aggregating function that is often a simple

sum [31]. This kind of reduction to mono-objective optimization

has unfortunately some drawbacks. To overcome them, an efficient

approach was proposed in [23] where a supervised partial classi-

fication task is solved by MOCA-I (Multi-Objective Classification

Algorithm for Imbalanced data), based on a multi-objective local

search algorithm (MOLS) and a dominance-based multi-objective

local search (DMLS). Statistically better results are obtained this

way than with single objective approaches like, for example, the

famous C4.5 algorithm [24]. More recently, some works have ex-

ploited the robustness of automatic algorithm configuration (AAC)

approaches in order to tune the parameters of MOCA-I, and thus

to improve performances [36].

On the other hand, Constraint Programming (CP) is a framework

that has been shown quite effective for modeling and solving vari-

ous forms of optimization problems, by means of highly efficient

inference and search algorithms [7, 25, 34]. It is not coincidence that

some data mining problems have been studied in CP. For example,

in [32], it is shown that constraint programming techniques can be

applied to various pattern mining and rule learning problems as the

frequent or discriminative itemset mining problems. More recently,

a constraint-based declarative model [3] has been proposed to solve

the association rules problem, showing good results compared to

the data mining state-of-the-art.
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The main goal of this paper is to exploit CP for the partial classi-

fication rule mining problem. To the best of our knowledge, this

is the first time that such an approach is used to solve this spe-

cific problem. Several reasons motivated us to adopt a CP approach.

Firstly, modeling the rule mining problemwith CP is rather easy and

natural, and besidesMOLS and CP share the concept of discrete vari-

ables (actually, finite domains containing integer values). Secondly,

contrary to MOLS, the search conducted by CP (solvers) is strongly

guided by the objective, which can be seen as a special dynamic

constraint. Lastly, the MOLS and CP paradigms are rather com-

plementary: while CP solving is based on depth-first exploration

combined with strong deductions (inferences made by constraint

propagation), MOLS handles a Pareto set (of non-dominated solu-

tions) that continually evolves by exploring neighbourhoods. More

generally, CP and MOLS search algorithms carry out different kinds

of exploration of the search space: one is (typically) complete while

the other is incomplete. Thus, using the orthogonality of these two

approaches is an appealing option.

In a first step of this work, we noticed that the number of vari-

ables and constraints in a pure CP model, for the partial classifica-

tion rule mining problem, could be huge and memory expensive,

resulting in memory overflow on instances containing numerous

observations. This is why we have designed and implemented a

hybrid CP/MOLS algorithm to counteract this problem. This hy-

bridization is composed of two phases, respectively handled by CP

and MOLS. Basically, CP is applied on rather small sub-problems, in

order to avoid memory issues, before exploiting solutions delivered

by CP during the MOLS phase. Experimental results on real imbal-

anced datasets show that our approach is statistically more efficient

than MOLS or CP, when applied stand-alone, on both training and

tests instances.

The paper is organized as follows. In the next section, the su-

pervised imbalanced classification problem is introduced. Then,

Section 3 introduces the MOLS and CP approaches for this problem.

Next, Section 4 introduces the hybridisation of both approaches.

Experimental results are described in Section 5, before concluding.

2 THE SUPERVISED IMBALANCED
CLASSIFICATION PROBLEM

In this section, we introduce the supervised partial classification

problem and the manner the rule mining problem can be encoded.

We also define some solution quality metrics for multi-objective

optimization of both MOLS and CP.

2.1 Presentation
The goal of classification is to predict the class of an observation

that is unlabeled (unknown). For this purpose, the classification pro-

cess is based on observations that have already been encountered

before, called labeled observations. Each observation is composed

of several attributes that represent a variety of information concern-

ing the problem under consideration. An attribute is defined by a

continuous or discrete variable value. As an illustration, a classifica-

tion task could aim at predicting the illness of new patients among

(the classes) {flu, diabetic, healthy} by using their symptoms and

personal information (fever, cough, age, weight) as attributes. Note

that when an attribute is continuous, a discretization technique can

be applied.

In this paper, we deal with the partial classification problem.

On the one hand, complete classification aims at discriminating

between the target classes and consists in forming a partition of

the set of observations (necessarily classifying a patient in one of

the classes flu, diabetic or healthy. On the other hand, partial classi-

fication is restricted to a subset of the target classes and consists

in dividing the observations into two complementary parts (for

example, determining whether a patient has the flu or not).

From labeled observations, the outcome of a classification task is

a classifier of the form 𝐴𝑇 ⇒ 𝑃 . Each such rule indicates that 𝑃 , a

target class, is the logical consequence of the conjunction of some

conditions denoted by 𝐴𝑇 , each of them representing a test on an

attribute. For example, if the classifier is « {fever > 39 and cough =

true} ⇒ 𝑖𝑙𝑙 », then the classifier answers « positive » to the pre-

diction « patient is ill? » when the attribute values for a given

patient logically validate the attribute tests. Otherwise, it returns

« negative ».

Numerous metrics have been proposed in the literature to evalu-

ate the efficiency of classifiers, and most of them are based on the

confusion matrix presented in Table 1. For each observation, the

confusion matrix reports a value among {TP, TN, FN, FP} according
to the prediction made by the classifier and the actual class of the

observation. The actual class is the known correct class of the obser-

vation, and this information is required to check the efficiency of a

classifier. Consequently, True Positives (TPs) and True Negatives (TNs)
count well-classified observations, whereas False Positives (FPs) and
False Negatives (FNs) count misclassified observations. As an illustra-

tion, the classifier rule {fever > 39 and cough = true} ⇒ ill is not
activated if the patient attribute values are {fever = 40 and cough =

false}. However, if the patient is really ill (i.e. the actual class is

« ill »), this is a False Negative.

Table 1: Confusion Matrix

Predicted Class

positive negative

Actual positive TP FN
Class negative FP TN

Usually, in order to fairly evaluate the ability of a classifier, data

are divided into two parts: the training instances representing la-

beled observations and the test instances corresponding to un-

labeled observations. In this way, a solving method exploits the

training data set to produce a classifier, and then, confusion matrix-

based measures are employed to evaluate this classifier on both

training and test instances. Thus, this makes it possible to take into

account the efficiency of the solving method to produce a good

classifier (using training instances) and the classifier effectiveness

on unknown data (using test instances).

This evaluation protocol is significant because a classifier can

be effective on training instances but not on testing instances. In

practice, this phenomenon is called overfitting and means that the

classifier is too closely tied to the training data set. This can also

mean that the training and test data sets are not similar enough.

2
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Another issue to be addressed by solving methods is the han-

dling of imbalanced data. They are characterised by a number of

observations that varies greatly between classes. On top of that,

on most datasets, the class to predict is often less frequent than

the opposite class. For instance, in a medical context, the diagnosis

can be positive on less than 10% of patients. To address this issue,

several multi-objective techniques using confusion matrix-based

measures and based on a solution encoding have been introduced

in the literature [23].

A solution encoding represents the form of the propositional

formula encoding the attribute tests𝐴𝑇 of a classifier (the prediction

𝑃 is omitted). In the literature concerning the rule mining problem,

several encodings of solutions exist: the tree encoding [33], the

Michigan encoding [39], and the Pittsburgh encoding [2]. Later,

in this paper, we use the variable-length Pittsburgh encoding [23]

which allows a large number of attributes to be handled.

In this encoding, a solution is called a ruleset: this is a disjunction

of rules, where each rule is a conjunction of terms. Each term corre-

sponds to an attribute test (𝐴𝑇 ) which is defined by an attribute, an

operator and a value, i.e., a triplet of the form (attribute, operator,

value). Classically, the operator is relational (<, >, or =), because

data (values) are assumed to be discretized and subject to a total

order. For example, (fever, >, 39) is a term representing the test

fever > 39. This solution encoding is used to predict the class

by using the terms and the logical operators or and and constitut-

ing the ruleset. The predicted class of the classifier is determined

by the interpretation of a ruleset with the attribute values of an

observation.

2.2 A Multi-Objective Model
The goal of Multi-Objective Optimisation (MOO) is to jointly op-

timize several criteria (objective functions) that directly affect the

solution quality of a given problem. More precisely, a solution to

a MOO problem is ideally one such that all objective functions

𝑓𝑖 (𝑥) reach their optimal values. From now on, without any loss of

generality, we consider minimization:

argmin

𝑥∈𝐷
(𝑓1 (𝑋1), 𝑓2 (𝑋2), . . . , 𝑓𝑛 (𝑋𝑛)) (1)

In Equation 1, 𝑛 denotes the number of objectives (𝑛 ≥ 2), 𝐷 is the

set of feasible solutions 𝑥 represented by the vector of 𝑘 decision

variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘 ). Moreover, the sets 𝑋𝑖 ⊆ 𝑥 represent

several vectors of decision variables which can be different depend-

ing on the associated objective function. Note that mixed MOO

problems, consisting of both some objective functions to maximize

and minimize, can easily be transformed into minimization MOO

problems by changing their sign, 𝑓 ′
𝑖
(𝑥) = −𝑓𝑖 (𝑥).

The concept of Pareto dominance is used to distinguish between

solutions according to the involved criteria. A solution 𝑠1 dominates

another solution 𝑠2 if, and only if, (i) 𝑠1 is better than or equal to 𝑠2
for all criteria, and (ii) 𝑠1 is strictly better than 𝑠2 for at least one

criterion. A set of non-dominated solutions {𝑠1, 𝑠2, . . . , 𝑠𝑚}, where
there is no pair of distinct solutions (𝑠𝑖 , 𝑠 𝑗 ) such that 𝑠𝑖 dominates

𝑠 𝑗 , is called a Pareto set, a Pareto front, or an archive in the context

of multi-objective local search algorithms. Solving a MOO problem

consists in finding a Pareto optimal set 𝑆∗ ⊂ 𝐷 , i.e., a Pareto set

such that no other feasible solution 𝑥 ′ ∈ 𝐷 dominates any 𝑥 ∈ 𝑆∗.

For multi-objective local search (MOLS), introduced later, objec-

tives are defined as (following the model described in [23]):

• maximizing the sensitivity 𝑇𝑃
𝑇𝑃+𝐹𝑁 ∈ [0, 1];

• maximizing the confidence 𝑇𝑃
𝑇𝑃+𝐹𝑃 ∈ [0, 1];

• minimizing the number of terms in the ruleset.

The sensitivity corresponds to the proportion of samples detected

by the ruleset that are positive with respect to the class under inves-

tigation. In contrast, the confidence corresponds to the probability

that an observation detected as positive by the ruleset is a true

positive. Minimizing the number of terms helps to reduce com-

plexity and avoid the bloat effect caused by rulesets containing

over-specific rules without any improvement of their quality. More-

over, note that these two metrics are highly susceptible to variation

in the distribution of observations.

As almost none of the CP solvers deal with multi-objective opti-

mization, in the CP approach, we use an aggregation based on the

F-Measure (𝐹1), a machine learning metric computed as follows:

𝐹1 =
2 × Confidence × Sensitivity
Confidence + Sensitivity

𝐹1 corresponds to the harmonic mean, and thus a trade-off, between

confidence and sensitivity. Thus, the closer the F-measure is to 1,

the better the quality of the classifier (i.e. the ruleset). Moreover,

as the F-Measure is recommended in partial classification [22], the

experimental evaluation of this work uses this measure.

3 MODELING AND SOLVING METHODS
In this section, we introduce MOLS and CP.

3.1 Multi-objective Local Search
Multi-objective local search (MOLS) algorithms are most often

based on Pareto local search (PLS) [30] that gradually improves

a Pareto set. In the literature, numerous extensions to PLS have

emerged, such as the iterated PLS [10], the stochastic PLS [11], the

anytime PLS [12] and the dominance-based multi-objective local

search (DMLS) [5]. As opposed to single-objective local search,

focusing on only one solution, DMLS maintains multiple candi-

dates and non-dominated solutions. First, this algorithm starts by

creating an archive of several initial solutions. Note that this ini-
tialization phase is exploited later in our hybridisation. Thereafter,

these solutions are improved by iteratively executing four distinct

phases: selection, exploration, archiving and perturbation.
Specifically, at each iteration, the first step of DMLS selects the

solutions from the archive that will be explored (selection phase).

Thereafter, the exploration phase seeks new candidate solutions to

add to the archive by successively exploring the neighborhoods

of the selected solutions. Such additions are realized according to

the improving and/or non-dominated criteria. Once new solutions

have been added to the archive, a filtering (i.e. the archiving phase)

is performed to keep only non-dominated solutions. However, in

some cases, no new improved solution can be added to the archive,

meaning that solutions of the current archive are local optima. To

remedy this problem, one aims at escaping from these local optima

by moving to another area of the search space. The last phase, called

perturbation, is dedicated to this task by generating new random

solutions, or by carrying out some kick moves.

3
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This paper takes up the MOLS algorithm of [23], specially de-

signed for imbalanced data. It should be noted that, in this previous

work, the MOLSmethod used (MOCA-I) has already been compared

against 13 other classification methods using the KEEL software.

MOCA-I has shown its superiority on all the compared algorithms.

As with any local search algorithm, it is based on a neighborhood

relation, which implicitly associates a set of neighbors with each

solution [4]. For the classification rule mining problem, the neigh-

borhood of a ruleset 𝑟 is the set of rulesets having one test attribute

that differs from 𝑟 . More precisely, this difference can be one fewer

or more term, or a term with a different value or operator.

Moreover, each phase of MOLS accepts various parameters (per-

turbation methods, selection and exploration strategies, the maxi-

mal archive size, . . . ). Thus, some works have exploited this param-

eter variety, as e.g., in [36, 37], where optimized versions of MOLS

have been proposed for the imbalanced classification problem by

means of the automatic algorithm configuration (AAC) paradigm.

Note that we have chosen the best identified parameters for MOLS

from this literature, i.e., a initial population of solution of size 100,

an archive of max size 500, a restart strategy, a random selection of

solution and an exploration of all neighbors. The sequential MOLS

algorithms have been rewritten from [23] into a new library called

MH-builder.

3.2 Constraint Programming
In this section, we present a CP model for the partial classification

rule mining problem, under the form of a constraint optimization

problem (COP) [25], before giving a few details about the solving

process. Concerning related work, note that other data mining prob-

lems have already been studied in CP. The authors of [32] show

that constraint programming techniques can be applied to various

pattern mining and rule learning problems (itemset mining, maxi-

mal frequent itemset mining, discriminative itemset mining, and so

on). More recently, in [3], a constraint-based declarative model has

been introduced to solve the association rules (AR) problem and

show good results compared to the data mining state-of-the-art. For

interested readers, others pattern mining problems are processed

with CP in [20].

3.2.1 Modeling Phase. Algorithm 1 depicts a simplified version

of the CPmodel we propose for the partial classification rule mining

problem. To develop this model, we have used PyCSP
3
[27], a recent

Python modeling library. Roughly speaking, this model allows us

to extract a ruleset while maximizing the F-measure. For simplicity,

the number of rules and the number of terms, nRules and nTerms,
constituting the target ruleset are considered as pre-defined. Each

problem instance is then characterized by the following data:

• some information concerning the labeled observations:

nObservations, their actual classes (actual) and their at-

tribute values;

• the number of attributes nAttributes;
• the number of values nValues w.r.t. the attributes.

First, the variables of the model are introduced. Six multi-

dimensional arrays of variables are declared by using the func-

tion VarArray while specifying, as parameters, the size of each

dimension (the size parameter) and the domain of each variable

(the dom parameter). The three first arrays will represent the terms

attributes, operators, values forming each rule of the ruleset.

The three next arrays will permit to determine, for each observation,

whether each attribute test, each rule and the ruleset is positive

(satisfied) or not. Note that each such variable can be assigned to

either 0 (negative) or 1 (positive). Two stand-alone variables are also

introduced, tp and fp, by calling the Var function: they represent

the number of true positives and false negatives, respectively.

Second, the constraints of the model are introduced. This is

made possible by calling the satisfy function, passing constraints

as parameters. A first global constraint allDifferent is posted

(line 21) to ensure that all attributes in any rule are distinct. Next, at

lines 23 and 24, a list (group) of table constraints is introduced. Due

to lack of space, the auxiliary function aux_table is not described

here, but its role is to return the list of 4-tuples that can be accepted

for a given sequence of four variables. In other words, this allows

us to establish a link between a specific observation and a specific

term. Then, the two next lists of constraints (lines 25 to 28) encode,

for each observation, the value of the ith rule (resp. the value of the
ruleset) as a conjunction of terms (resp. as a disjunction of rules).
For example, in any solution of the model, ruleset[0] is equal to 1
(resp. 0) when the first observation (with index 0) is identified as

being positive (resp. negative). The two last constraints count,
respectively, the number of tp and fp, according to the actual

classes of observations (actual) and the values of the ruleset.
Third, the objective of the model is introduced. This objective

consists in maximizing an expression denoting the F-measure (at

lines 33 to 36).

3.2.2 Solving Phase. Solving a CP model involves the use of a

constraint solver (or a SAT solver, after translating the model in

propositional form). Typically, such solvers are complete, perform-

ing a depth-first exploration with backtracking, taking a decision

(usually, a variable assignment) at each step and running a filtering

process called constraint propagation. To address the issue of heavy-

tailed runtime distributions [18], the search is restarted regularly,

following a geometric progression (or the Luby sequence). The or-

der in which variables are chosen during the depth-first traversal of

the search space is decided by a variable ordering heuristic; a classi-

cal generic heuristic is dom/wdeg [6], combined with a mechanism

simulating a certain form of intelligent backjumps [26]. The order

in which values are chosen when assigning variables is decided

by a value ordering heuristic; for COPs, it is highly recommended

to use first the value present in the last found solution, which is a

technique known as solution(-based phase) saving [8, 38].

Backtrack search for COP relies on Branch and Bound (B&B)

whose principle is equivalent, assuming a minimization problem,

to adding a special objective constraint obj < ∞ to the constraint

network (although it is initially trivially satisfied), and to update the

limit of this constraint whenever a new solution is found. It means

that any time a solution S is found with cost 𝐵 = obj(𝑆), the objec-
tive constraint becomes obj < 𝐵. Hence, B&B provides a sequence

of better and better solutions until no more exist, guaranteeing that

the last found solution is optimal.

For our experiments, we have used the ACE constraint solver,

which is the new avatar of AbsCon
1
.

1
http://www.cril.univ-artois.fr/software/abscon.html
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1 from pycsp3 import *

2 ... # first , data are loaded (code not inserted here , for simplicity)

3 # attributes[i][j] is the attribute involved in the j𝑡ℎ term of the i𝑡ℎ rule

4 attributes = VarArray(size=[nRules , nTerms], dom=range(nAttributes ))

5 # operators[i][j] is the operator involved in the j𝑡ℎ term of the i𝑡ℎ rule

6 operators = VarArray(size=[nRules , nTerms], dom={EQ, LT, GT})

7 # values[i][j] is the value involved in the j𝑡ℎ term of the i𝑡ℎ rule

8 values = VarArray(size=[nRules , nTerms], dom=range(nValues ))

9 # terms[k,i,j] is 1 iff the k𝑡ℎ observation satisfies the j𝑡ℎ term of the i𝑡ℎ rule

10 terms = VarArray(size=[ nObservations , nRules , nTerms], dom={0, 1})

11 # rules[k,i] is 1 if the k𝑡ℎ observation satisfies the i𝑡ℎ rule

12 rules = VarArray(size=[ nObservations , nRules], dom ={0 ,1})

13 # ruleset[k] is 1 if the k𝑡ℎ observation satisfies the ruleset (i.e., at least one of the rules)

14 ruleset = VarArray(size=nObservations , dom ={0 ,1})

15 # tp is the number of true positives

16 tp = Var(dom=range(nObservations ))

17 # fp is the number of false positives

18 fp = Var(dom=range(nObservations ))

19 satisfy(

20 # in each rule , involved attributes must be different

21 [AllDifferent(attributes[i]) for i in range(nRules)],

22 # determining if observations satisfy terms

23 [(terms[k][i][j], attributes[i][j], operators[i][j], values[i][j]) in aux_table(k,i,j)

24 for k in range(nObservations) for i in range(nRules) for j in range(nTerms)],

25 # determining if observations satisfy rules

26 [rules[k][i] == conjunction(terms[k][i]) for k in range(nObservations) for i in range(nRules)],

27 # determining if observations satisfy the ruleset

28 [ruleset[k] == disjunction(rules[k]) for k in range(nObservations )],

29 # computing the values of variables tp and fp

30 Count([ ruleset[k] for k in range(nbObservations) if actual[k] == POSITIVE], value =1) == tp,

31 Count([ ruleset[k] for k in range(nbObservations) if actual[k] == NEGATIVE], value =1) == fp,

32 )

33 maximize(

34 # maximizing the F-measure

35 (2×(tp/(tp+fp))×(tp/(tp+fn)))/((tp/(tp+fp))+(tp/(tp+fn)))
36 )

Algorithm 1: A PyCSP3 Model for the Partial Classification Rule Mining Problem

4 HYBRIDIZATION
In this section, the hybrid CP/MOLS approach we propose, HYB

in short, is presented. Of course, some forms of hybridization be-

tween CP and LS (Local Search) have already been proposed in

the literature. For example, LS has been used to guide local explo-

ration by minimizing, at each step, the total number of conflicts

when solving constraint satisfaction problems [28]. The original

constraint-based local search proposed in [16, 29] also combines

CP and LS: constraints are used to describe and control LS [16, 29].

The hybridization we propose consists in considering the (partial)

solutions computed by CP, during a limited time period, as an

initial population for MOLS. Note that this kind of hybridization

technique has already been applied between mixed integer linear

programming (MILP) and CP for the airline planning problem [19].

Our hybrid approach is composed of two main phases. First, CP

is applied on some relevant sub-problems in order to collect a set

of partial solutions. These solutions are then used to establish an

initial population, on which MOLS can be started.

4.1 CP Phase
This phase exploits the ability to deal with the classification rule

mining problem by considering different ruleset sizes. Hereafter,

the specific instance derived from our CP model where a ruleset of

𝑖 rules, each one composed of 𝑗 terms, is encoded, will be denoted

by𝑚(𝑖, 𝑗). Our approach consists in solving incrementally several

related instances over time by starting from𝑚(1, 1) until an instance
of maximal size𝑚(𝑖𝑚𝑎𝑥 , 𝑗𝑚𝑎𝑥 ) is reached, where 𝑖𝑚𝑎𝑥

and 𝑗𝑚𝑎𝑥

denote the maximal values used to stop the process (e.g., 6 rules of

5 terms). The incremental nature of this approach permits to solve

a current instance while using the solution(s) found just earlier

(e.g., using the solution obtained for𝑚(1, 1) as a partial solution
for𝑚(1, 2)).

The entire process is composed of three steps. First, as mentioned

above, we solve a sequence of related instances. Note that any

instance of the sequence (except the first one) is built from the

previous one by increasing, either the number of rules 𝑖 or the

number of terms 𝑗 . More precisely, this sequence is defined by the

equation:
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𝑚(𝑖, 𝑗) =
{
𝑚(𝑖, 𝑗 + 1), if 𝑖 + 𝑗 is even

𝑚(𝑖 + 1, 𝑗), if 𝑖 + 𝑗 is odd
(2)

Hence, the first elements of the sequence are: 𝑚(1, 1), 𝑚(1, 2),
𝑚(2, 2),𝑚(2, 3), . . .

It is important to note that, by construction, the quality (i.e., the

F-measure) of solutions can only increase. Since we solve instances

under assumptions (i.e., from assignments corresponding to pre-

vious solutions), the solution obtained for the last instance of the

sequence is not necessarily optimal. This is why, in a second step,

we solve this instance without any assumption (but we use the last

solution that has been found for this instance, as a soft guide for

the value ordering heuristic [38]).

Finally, from the best found solution, whose F-measure is 𝑓 ,

we build a final instance while constraining the objective to be

around 𝑓 . By solving it, we hopefully obtain a certain number of

diverse solutions.

4.2 MOLS Phase
The initialization step of MOLS involves generating an initial pop-

ulation of solutions. This step is simply replaced by considering

the output (set of solutions) of the CP phase. Note that for our

experiments, we use the same parameter values as in [23], that is

to say, a production of 100 rulesets with a maximal size of 2 rules

of 2 terms each.

5 EXPERIMENTAL RESULTS
In this section, the performance of the CP, MOLS and hybrid ap-

proaches are compared using a proper statistical test, executed on

several data sets.

5.1 Protocol
This work follows the recommendations made by Demsar to com-

pare several learning algorithms over multiple data sets [9]. The

principle is to get a solid measure of the overall performance of

any algorithm over several independent data sets. For this purpose,

we can use the Friedman statistical test [15] in order to detect the

differences existing between various algorithms over several prob-

lems. More precisely, this test is based on the ranking positions of

algorithms over all problems. A post-hoc all pairwise comparison

of algorithms is performed using the Wilcoxon statistical test on

all computed F-Measures. Specifically, the Wilcoxon test allows

us to determine whether two series of numbers are equivalent or

not, from a pairwise comparison. Therefore, a solving method is

considered as better than another one if its rank is better and if

the two series of numbers are not equivalent in the Wilcoxon’s

sense. In contrast, two solving methods are equivalent if the series

of numbers are equivalent, regardless of their rank.

As we deal with the supervised classification problem, the prod-

uct classifier must be evaluated on unknown data, which are dif-

ferent from the training data. Recall that it permits to recognize an

overfitting issue. Since it is almost impossible to find multiple and

distinct datasets from the same classification problem, datasets are

split into training and test sets as for classical machine learning

algorithms [22], by following the 𝑘-fold cross-validation protocol.

The 𝑘-fold cross validation produces 𝑘 training sets and 𝑘 test

sets by splitting the dataset (i.e. the observations) into 𝑘 same-size

folds. Each training set is simply a combination of 𝑘 − 1 folds while

the remaining fold becomes the test set. Classifiers are built from

training data sets, but importantly, their evaluations are realized

on both training and test instances. This way, the effectiveness of

apparently good classifiers can be demonstrated on unknown data.

In our case, experiments have been carried on the basis of 5-fold

cross validation. Moreover, in order to analyze the behavior of

algorithms as fairly as possible, MOLS and HYB have been run from

30 distinct seeds, on each of the 5 folds, leading to 150 measures for

each algorithm and each dataset. Note that the pure CP algorithm

only needs one run, on each fold, to be launched because it is

deterministic (i.e., the same result is always computed, with the

same performance, as no random process is involved). Finally, to

make sure that each algorithm has a chance to reach local optima,

the timeout has been set to 20 minutes. Experiments have been

conducted on two Intel XEON E5-2687W computers of 24 cores of

3.0GHz with 64GB of RAM each.

5.2 Datasets
The datasets come from various sources [14, 21, 35] and represent

several supervised classification problems with various degrees of

imbalance (27.85% to 2.90%). Table 2 exposes the main features of

each dataset and confirms their imbalanced aspect in the column

𝑑𝑎𝑠𝑦 , which denotes the proportion of observations to be expected

in the target class. These datasets come from the UCI repository
2
,

except for the lucap0 dataset coming from a Machine Learning

Challenge [21]. The last three datasets a1a, lucap0 and w1a are

binary (i.e., the number of possibles values for any attribute is al-

ways 2), and, are more challenging because they contain a higher

number of observations and attributes. Because we are interested

in the partial classification problem, these datasets have been con-

verted into partial classification datasets using the methodology

presented in [13], and discretized using the 10-bin discretization

method of the KEEL software [1].

Table 2: Description of the datasets (number of observations,
attributes, numerical attributes and degree of asymmetry).

Name #obs #att #num 𝑑𝑎𝑠𝑦 ref

haberman 306 3 3 27.42% [14]

ecoli2d 336 7 7 15.48% [14]

ecoli1d 336 7 7 22.92% [14]

yeast3d 1484 8 8 10.35% [14]

abalone9-18d 731 8 7 5.65% [14]

yeast2vs8d 482 8 8 4.85% [14]

a1a 1605 123 0 24.61% [35]

lucap0 2000 144 0 27.85% [21]

w1a 2477 300 0 2.90% [35]
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Figure 1: F-measure of the training instances by dataset. The hybrid and MOLS methods are respectively represented by the left
(red) and right (blue) box-and-whisker plots (150 runs each) while the CP method is represented by the green lines (median of 5
runs).

5.3 Results
Figure 1 reports the quality of the classifiers produced by the three

approaches (CP, MOLS and HYB) on the nine training datasets.

The quality directly depends on the performance of the underlying

optimization methods, and is given in term of F-measure. For each
dataset, we have two box-and-whisker plots: the methods HYB

and MOLS are respectively represented by the left (red) and right

(blue) box-and-whisker plots, each one based on 150 F-measure
values. The bottom and top of each box represent the first and third

quartiles, while the band inside the box corresponds to the second

quartile (the median). The ends of the whiskers represent minimum

and maximum values. Note that, per dataset, there is also a green

line segment indicating the median of the 5 F-measure values (for
the 5 folds per dataset) obtained with CP.

On the one hand, it is clear that CP alone is far less effective

than both MOLS and HYB. Indeed, green lines are often quite low,

and always underneath the medians of the box-and-whisker plots.

On the other hand, one can observe that hybridization can pay off:

CP combined with MOLS, i.e., HYB, globally outperforms MOLS.

More precisely, whereas MOLS and HYB seem to be somewhat

equivalent on the first 6 datasets, there are some significant differ-

ences on the last 3 datasets in favor of the hybridization method.

It is worthwhile to recall that these last datasets (a1a, lucap0 and

w1a) are challenging (due to their large number of attributes and

observations; see Table 2).

As explained in Section 5.1, we use the Friedman statistical

test [15] to emphasize significant differences between several algo-

rithms over various datasets. Here, this statistical test has two main

objectives: firstly, to confirm the previous results, given by Figure 1,

about MOLS and HYB (on the training dataset) and, secondly, to

check whether the best method on training instances is always the

best one on unknown data (i.e., on test instances).

Table 3 depicts the result of this statistical test per dataset (first

column) on both training and test instances, respectively in the

2
http://archive.ics.uci.edu/ml/index.php

Table 3: Friedman statistical test with 𝛼 = 0.01

Name Training Test

haberman EQUIVALENT EQUIVALENT
ecoli2d EQUIVALENT EQUIVALENT
ecoli1d EQUIVALENT EQUIVALENT
yeast3d EQUIVALENT EQUIVALENT
abalone9-18d EQUIVALENT EQUIVALENT
yeast2vs8d EQUIVALENT EQUIVALENT
a1a HYBRID HYBRID
lucap0 HYBRID HYBRID
w1a HYBRID HYBRID

second and third columns. The Friedman statistical test can output

EQUIVALENT, MOLS or HYBRID according to the two specific series

of numbers and ranks that are associated with the two methods. Of

course, these series represent the 150 F-measure values for MOLS

and HYB. The Wilcoxon signed rank test is used with a significance

level of 𝛼 = 0.01. We obtain EQUIVALENT when the Wilcoxon test

ensures that the probability of having MOLS F-measures greater
than HYB F-measures is equal to the probability of having HYB F-
measures greater thanMOLS F-measures. But we obtain eitherMOLS

or HYB when the two series are not equivalent in the Wilcoxon’s

sense; in that case, the best method is the one with the best ranking

according to the Friedman statistical test.

On the training instances, the statistical tests clearly confirm the

results presented in Figure 1. Interestingly, on the test instances,

they prove that the hybrid method is the most robust approach,

because either HYB is equivalent to MOLS or HYB outperforms

MOLS. The latter case is true for the datasets a1a, lucap0 and w1a
that have the particularity of involving binary attributes, which,

technically, reduces the size of the table constraints in the CP model

(and consequently, improve the performance of the CP phase of the

hybridization).
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Table 4: Average values and standard deviations (given be-
tween parentheses) of F-measures obtained with the hybrid
approach.

Name Training Test

haberman 0.661 (0.026) 0.389 (0.122)

ecoli2d 0.959 (0.007) 0.794 (0.094)

ecoli1d 0.928 (0.008) 0.755 (0.075)

yeast3d 0.817 (0.009) 0.725 (0.043)

abalone9-18d 0.226 (0.029) 0.344 (0.236)

yeast2vs8d 0.924 (0.019) 0.528 (0.194)

a1a 0.683 (0.006) 0.647 (0.022)

lucap0 0.953 (0.001) 0.945 (0.009)

w1a 0.610 (0.032) 0.407 (0.138)

Table 4 displays the F-measures obtained by HYB on both the

training and test datasets. This allows us to assess the effectiveness

of HYB on unknown data. The F-measures remain rather similar

(when passing from training to test instances), except for haberman,
yeast2vs8d and w1a which are subject to overfitting. For such

datasets, one may then try to refine the k-fold cross-validation

protocol.

6 CONCLUSION
In this paper, we have presented an original form of hybridization

mixing Constraint Programming (CP) and Multi-Objective Local

Search (MOLS), for solving the partial classification rule mining

problem. More precisely, we have shown that it was interesting to

apply CP on particular sub-problems in order to build a relevant

initial population for MOLS. Experimental results on real imbal-

anced datasets show that our hybrid approach is statistically better

than MOLS or CP, when applied stand-alone, on both training and

tests instances.

In the near future, we plan to build upon this work, exploring a

few perspectives. Firstly, we intend to improve the CP model by,

e.g., compressing the table constraints (using various techniques

from the literature). Secondly, as hybridization seems to provide

a substantial advantage on large instances, we project to analyse

the reasons (e.g., features of the datasets) behind this observable

efficiency.
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