
HAL Id: hal-03281894
https://hal.science/hal-03281894v2

Preprint submitted on 27 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning structured approximations of combinatorial
optimization problems.

Axel Parmentier

To cite this version:
Axel Parmentier. Learning structured approximations of combinatorial optimization problems.. 2023.
�hal-03281894v2�

https://hal.science/hal-03281894v2
https://hal.archives-ouvertes.fr

Learning structured approximations of combinatorial
optimization problems.

Axel Parmentier
CERMICS, Ecole des Ponts, Marne-la-Vallée, France

axel.parmentier@enpc.fr

January 27, 2023

Abstract

Machine learning pipelines that include a combinatorial optimization layer can give
surprisingly efficient heuristics for difficult combinatorial optimization problems. Three
questions remain open: which architecture should be used, how should the parameters
of the machine learning model be learned, and what performance guarantees can we
expect from the resulting algorithms? Following the intuitions of geometric deep learn-
ing, we explain why equivariant layers should be used when designing such pipelines,
and illustrate how to build such layers on routing, scheduling, and network design ap-
plications. We introduce a learning approach that enables to learn such pipelines when
the training set contains only instances of the difficult optimization problem and not
their optimal solutions, and show its numerical performance on our three applications.
Finally, using tools from statistical learning theory, we prove a theorem showing the
convergence speed of the estimator. As a corollary, we obtain that, if an approximation
algorithm can be encoded by the pipeline for some parametrization, then the learned
pipeline will retain the approximation ratio guarantee. On our network design prob-
lem, our machine learning pipeline has the approximation ratio guarantee of the best
approximation algorithm known and the numerical efficiency of the best heuristic.

1 Introduction

In the last few years, more and more attention have been given to the construction of machine
learning algorithms which, given an input x, can predict an output y in a combinatorially
large set Y(x). An approach that is getting more popular to address this problem consists in
embedding a combinatorial optimization (CO) layer in a machine learning pipeline. As illus-
trated on Figure 1, the resulting pipeline typically chains a statistical model, a combinatorial
optimization problem, and possibly a post-processing algorithm.

1

axel.parmentier@enpc.fr

Statistical
model fw

CO algorithm
miny∈Y(x) g(y;θ)

Postproc.
h

Instance

x ∈ X
CO param.

θ ∈ Θ(x)

CO solution

y ∈ Y(x)

Output

z ∈ Z(x)

Figure 1: A machine learning pipeline with a combinatorial optimization (CO) layer

Such pipelines can be used as heuristics for difficult combinatorial optimization problems.
Let us consider a combinatorial optimization problem of interest

min
z∈Z(x)

C(z, x). (Pb)

Here x is an instance in a set of instance X , and Z(x) denotes the set of feasible solutions
of x. Contrary to what is usual in combinatorial optimization, we include the instance x in
the objective function c(z;x).

When we use our machine learning pipeline to solve (Pb), we use the statistical model
fw to obtain the parameter θ of the auxiliary combinatorial optimization problem

min
y∈Y(x)

g(y,θ), (CO-layer)

and then decode the solution y of this problem into a solution z ∈ Z(x) of the initial problem.
Such a pipeline is useful when we have much more efficient algorithms for our combinatorial
optimization layer problem (CO-layer) than for the problem of interest (Pb).

Since the preprocessing h is assumed deterministic, it will not play a major role on the
learning algorithm. It will therefore be convenient to bring back the cost on Y(x). For y in
Y(x), we define

c(y, x) = C(h(y), x).

Running example: Two stage spanning tree Let G = (V,E) be an undirected graph,
and S be a finite set of scenarios. The objective is to build a spanning tree on G of maximum
cost on a two stage horizon. Building edge e in the first stage costs ce ∈ E, while building it
in the second stage under scenario s costs des ∈ R. The decision maker does not know the
scenario s when it chooses which first stage edges to build. Denoting T the set of spanning
trees, we can formulate the problem as

min
{∑
e∈E1

ce +
1

|S|
∑
e∈Es

des : E1 ∩ Es = ∅ and (V,E1 ∪ Es) ∈ T for all s in S
}
. (1)

When we restrict ourselves to ce ≤ 0 and des ≤ 0, we obtain the two stage maximum
weight spanning tree. Escoffier et al. [2010] show that this restriction is APX-complete, and
introduce a 2-approximation algorithm for the maximization problem, which translates into
a 1/2-approximation algorithm for the minimization problem.

2

Running example pipeline Remark that an optimal solution of the single scenario ver-
sion of the problem

min
{∑
e∈E1

c̄e +
1

|S|
∑
e∈E2

d̄e : E1 ∩ E2 = ∅ and (V,E1 ∪ E2) ∈ T
}

(2)

is a minimum weight spanning tree on G with edge weights min(c̄e, d̄e). It can therefore be
easily solved using Kruskal’s algorithm, and we therefore suggest using (2) as combinatorial
optimization layer (CO-layer). Hence, we have θ = (ce, de)e∈E and Θ(x) = R2E.

Our decoder h rebuilds a solution z of (1) from a solution y = (Ē1, Ē2) of (2). It relies
on the following result. Given a forest F , Kruskal’s algorithm can be adapted to find a
minimum weight spanning tree containing F . We take Ē1 as the first stage solution of (1),
and use the variant of Kruskal’s algorithm with edge weights ds to rebuild the Es. We then
compare this solution to the optimal solution E1 = ∅ and return the best of the two as z.

Structure of the combinatorial optimization layer. When building a solution pipeline
for a combinatorial algorithm, we typically want our pipeline to be able to address instances
of very different size: Instances of our running example may have 20 or 1000 edges. It means
that the graph G used in the combinatorial optimization layer (2) depends on the instance
x of (1), and hence the parameter θ belongs to the set R2E which also depends on x. This
is the reason why, in our pipeline, the set of solutions Y(x) and the parameter space Θ(x)
both depend on x. On the contrary, since we want to use the same model and hence the
same fw on different instances, the space W does not depend on x. This raises the question
of how to build statistical model fw whose output dimension depends on the input dimension.
More generally, such an approach can work only if (CO-layer) retains most of the “structure”
of (Pb).

Learning algorithm. Finally, the purpose of the learning algorithm is to find a parameter
w ∈ W such that the pipeline outputs a good solution of (Pb). Approaches in the literature
typically use a learning by imitation approach, with a training set (x1, z1), . . . , (xn, zn) con-
taining instances of (Pb) and their hard problem solution. A drawback of such an approach
is that it requires another solution algorithm for (Pb) to compute the zi. In this paper, we
focus on the learning by experience setting where the training set contains only instances
x1, . . . , xn.

Related works. The interactions between combinatorial optimization and machine learn-
ing is an active research area [Bengio et al., 2021]. Combinatorial optimization layers in deep
learning belong to the subarea of end-to-end learning methods for combinatorial optimization
problems recently surveyed by Kotary et al. [2021]. This field can be broadly classified in
two subfields. Machine learning augmented combinatorial optimization uses machine learn-
ing to take heuristic decisions within combinatorial optimization algorithms. We survey
here combinatorial optimization augmented machine learning, which inserts combinatorial
optimization oracles within machine learning pipelines.

3

Structured learning approaches were the first to introduce these methods in the early
2000s [Nowozin, 2010] in the machine learning community. They mainly considered maxi-
mum a posteriori problems in probabilistic graphical models as combinatorial optimization
layers, with applications to computer vision, and sorting algorithms with applications to
ranking. They were generally trained using the structured Hinge loss or a maximum like-
lihood estimator. A renewed interest for optimization layers in deep learning pipeline has
emerged in the last few years has emerged in the machine learning community, and notably
continuous optimization layers [Amos and Kolter, Blondel et al., 2022]. Remark that these
pipelines are generally trained using a learning by imitation paradigm.

We focus here on combinatorial optimization layers. Among these, linear optimization
layers have received the most attention. Two challenges must be addressed. First, since
the mapping that associated to the objective parameter vector θ the output y is piecewise
constant, and deep learning networks are generally trained using stochastic gradient descent,
meaningful approximations of the must be proposed gradient [Vlastelica et al.]. Second a
loss quantifying the error between its target must be proposed. Blondel et al. address
these challenges with an elegant solution based on convex duality: the linear objective is
regularized with a convex penalization, which leads to meaningful gradients. Fenchel Young
inequality in convex duality then gives a natural definition of the loss function. Berthet
et al. [2020] have shown that this approach can be extended to the case where a random
perturbation is added to the objective instead of a convex regularization. When it comes to
integer linear programs, Mandi et al. [2020] suggest using the linear relaxation during the
learning phase.

The author recently introduced the idea of building heuristics for hard combinatorial
optimization problems with pipelines with combinatorial optimization layers [Parmentier,
2021]. The closest contribution to our learning by experience setting is the smart predict
then optimize method of Elmachtoub and Grigas [2021]. It considers the case where there
is no decoder and the cost function c(y, x) = θ∗x is actually the linear objective of the
combinatorial optimization layer g(y,θ) = θy for an unknown true parameter θ∗. They
propose a generalization of the structured Hinge loss to that setting.

However, to the best of our knowledge, two aspects of pipelines with combinatorial op-
timization layers have not been considered in the literature. First, the general learning by
experience setting where only instances of the hard optimization problems are available has
not been considered. Second, there is no guarantee on the quality of the solution returned
by the pipeline. The purpose of this paper is to address these two issues.

Contributions We make the following contributions.

1. The design of the learning pipelines, and notably the choice of (CO-layer) and fw is
critical for the performance of the resulting algorithm. We illustrate on three applica-
tions among which our running example how to build such pipelines.

2. A natural way of formulating the learning problem consists in minimizing the loss

4

defined average cost of the solution zi returned by our pipeline for instance xi

1

n

n∑
i=1

c
(

arg min
y∈Y(xi)

g
(
y, fw(xi)

)
, xi

)
We introduce a regularized version of this loss. And we show with extensive numerical
experiments that, despite the non-convexity of this loss, when the dimension of W
is moderate, i.e., non-greater than 100, solving this problem with a global black-box
solver leads to surprisingly efficient pipelines.

3. Leveraging tools from statistical learning theory, we prove the convergence of the learn-
ing algorithm toward the approximation with the best expected loss, and an upper
bound on the convergence speed.

4. We deduce from these statistical learning results that, under some hypotheses on the
pipeline, the learned algorithm is an approximation algorithm for (Pb). These hy-
potheses are notably satisfied by our solution pipeline for (1).

Remark that, in this paper, we do not try to approximate difficult constraint. We only try
to approximate difficult objectives. The paper is organized as follows. Section 2 introduce
two additional examples and explain how to build pipelines. Section 3 formulates the learning
by experience problem and introduces algorithms. Section 4 introduces the convergence
results and the approximation ratio guarantee. Finally, Section 5 details the numerical
experiments.

2 Designing pipelines with combinatorial optimization

layers

In this section, we give a methodology to build pipelines with combinatorial optimization
layers. We illustrate it on our running example and on two applications previously introduced
by the author. We start with the description of these applications, which follows the papers
which introduced them [Parmentier, 2021, Parmentier and T’Kindt, 2021].

2.1 Stochastic vehicle scheduling problem.

Stochastic vehicle scheduling problem Let V be a set of tasks that should be operated
using vehicles. For each task v in V , we suppose to have a scheduled start time tbv in Z+ and
a scheduled end time tev in Z+. We suppose tev > tbv for each task v in V . For each pair of
tasks (u, v), the travel time to reach task v from task u is denoted by ttr(u,v). Task v can be
operated after task u using the same vehicle if

tbv ≥ teu + ttr(u,v). (3)

5

We introduce the digraph D = (V,A) with vertex set V = T ∪ {o, d} where o and d are
artificial origin and destination vertices. The arc set A contains the pair (u, v) in T 2 if v can
be scheduled after task u, as well as the pairs (o, v) and (v, d) for all v in V . An o-d path P
represents a sequence of tasks operated by a vehicle. A feasible solution is a partition of V
into o-d paths. If we denote by c(P, x) the cost of operating the sequence corresponding to
the o-d path P , and by Pod the set of o-d paths, the problem can be modeled as follows.

min
z

∑
P∈Pod

c(P ;x)zP , (4a)

s.t.
∑
P3v

zP = 1, ∀v ∈ V (x)\{o, d}, (4b)

zP ∈ {0, 1}, ∀P ∈ Pod(x), (4c)

Up to now, we have described a generic vehicle scheduling problem. Let us now define
our stochastic vehicle scheduling problem by giving the definition of c(P, x). Let Ω be a set
of scenarios. For each task v, we have a random start time ξb

v and a random end time ξe
v, and

for each arc (u, v), we have a random travel time ξtr
(u,v). Hence, ξb

v (ω), ξe
v(ω), and ξtr

(u,v)(ω) are
respectively the beginning time of v, end time of v, and travel time between u and v under
scenario ω in Ω. We define ξe

o = 0 and ξb
d = +∞.

Given an o-v path P , we define recursively the end-time τP of P as follows.

τP =

{
0, if P is the empty path in o,
ξe
v + max(τQ + ξtr

a − ξb
v , 0), if P = Q+ a for some path Q and arc a.

(5)

Equation (5) models the fact that a task can be operated by a vehicle only when the vehicle
has finished the previous task: The vehicle finishes Q at τQ, and arrives in v at τQ + ξtr

a

with delay max(τQ + ξtr
a − ξb

v , 0). The total delay ∆P along a path P is therefore defined
recursively by

∆P =

{
0, if P is the empty path in o,
∆Q + max(τQ + ξtr

a − ξb
v , 0), if P = Q+ a for some path Q and arc a.

(6)

Finally, we define the cost of an o-d path P as

c(P ;x) = cveh + cdelE(τP) (7)

where cveh in Z+ is the cost of a vehicle and cdel in Z+ is the cost of a unit delay. Practically,
we use a finite set of scenarios Ω, and compute the expectation as the average on this set.

CO layer: usual vehicle scheduling problem The usual vehicle scheduling problem
can also be formulated as (4), the difference being that now the path can be decomposed as
the sum of the arcs cost

cP =
∑
a∈P

ca with ca ∈ R. (8)

It can be reduced to a flow problem on D and efficiently solved using flow algorithms or
linear programming. In Equation (8) and in the rest of the paper, we use an overline to
denote quantities corresponding to the easy problem.

6

2.2 Single machine scheduling problem.

Scheduling problem 1|rj|
∑

j Cj. n jobs must be processed in a single machine. Jobs
cannot be interrupted once launched. Each job has a processing time pj, and a release time
rj in R. That is, job j cannot be started before rj, and once started, it takes pj to complete
it. A solution is a schedule s = (j1, . . . , jn), i.e., a permutation of [n] that gives the order
in which jobs are processed. Using the convention Cj0 = 0, the completion time of jobs in s
are defined as

Cji = max(rj, Cji−1
) + pji .

The objective is to find a solution minimizing
∑

j Cj. This problem is strongly NP-hard.

Combinatorial optimization layer: 1||
∑

j Cj. The easy problem is obtained when there
is no release time, and only jobs processing times pj. Jobs completion times are therefore
given by

Cji = Cji−1
+ pji .

Again, we use an overline to denote quantities of the easy problem. An optimal schedule is
obtained using the shortest processing time first (SPT) rule, that is, by sorting the jobs by
increasing pj.

2.3 Constructing pipelines

In this section, we explain how to build our learning pipelines.

Combinatorial Optimization layer and decoder. The choice of the combinatorial
optimization layer and the decoder are rather applications dependent. Two practical aspects
are important. First, we must have a practically efficient algorithm to solve (CO-layer).
Second, it must be easy to turn solutions of (CO-layer) into solution of (Pb). That is,
either the solutions of (CO-layer) and (Pb) coincide, or we must have a practically efficient
algorithm h that turns a solution of (CO-layer) into a solution of (Pb).

Structure of x and generalized linear model. As we indicated in the introduction, a
practical difficulty in the definition of our statistical model fw is that the size of its output
θ in Θ(x) depends on the instance x. Unfortunately, statistical models generally output
vectors of fixed size. Let us pinpoint a practical way of addressing this difficulty with a
generalized linear model. Let I(x) be the structure x, i.e., the set of dimensions i of Θ(x).
We suggest defining a feature mapping

φ : (i, x) 7→ φ(i, x)

that associates to an instance and a dimension i in I(x) a feature vector φ(i, x) describing
the main properties of i as a dimension of x. We then define

fw : x 7→ θ with θ = (θi)i∈I(x) and 〈w|φ(i, x)〉.

7

Feature description φ
(
(e, first), x) φ

(
(e, second), x)

First stage cost ce 0
Second stage average cost 0

∑
s des/|S|

Quantiles of second stage cost 0 Q
[
(des)s

]
Quantiles of neighbors first stage
cost

Q
[
(ce′)e′∈δ(u)∪δ(v)

]
0

Quantiles of neighbors second
stage cost

0 Q
[
(de′s)e′∈δ(u)∪δ(v),s∈S

]
“Is edge in first stage MST ?” 1MST

(
e, (ce)e∈E

)
0

Quantiles of “Is edge in second
stage MST quantile ?”

0 Q
[(
1MST

(
e, (bes)e∈E

))
s∈S

]
Quantiles of “Is first stage edge
in best stage MST quantile ?”

Q
[(

1MST
(
e,(bes)e∈E

)
and ce≤des

)
s∈S

]
0

Quantiles of “Is second stage edge
in best stage MST quantile ?”

0 Q
[(

1MST
(
e,(bes)e∈E

)
and ce>des

)
s∈S

]
Note: MST stands for Minimum Weight Spanning Tree, bes = min(ce, des), Q[a] gives the quantiles of a vector a seen as a
sampled distribution, and 1MST(e, (c̃e)e) is equal to 1 if e is in the minimum spanning tree for edge weights (c̃e)e.

Table 1: Two stage spanning tree features of edge e = (u, v).

In summary, fw can output parameters θ whose dimension depends on x because it applies
the same predictor (i, x) 7→ 〈w|φ(i, x)〉 to predict the value for θi for the different dimensions
in I(x).

Illustration on our applications. For instance, let us consider our running example on
two stage spanning tree problem. Given an instance x, we must define the first and second
stage costs c̄e and d̄e for each edge e ∈ E. We can therefore define I(x) as

{
(e, stage) : e ∈

E, stage ∈ {first, second}
}

. The details of the features used is described in Table 1. For
the stochastic vehicle scheduling problem, all we have to do is to define the arc costs c̄a.
Hence, we can define I(x) = A. And for the single machine scheduling problem, we only
have to define the processing times p̄j. Hence, I(x) = {1, . . . , n}.

Encoding information on an element as part of an instance Let us finally introduce
two generic techniques to build interesting features. The features in Table 1 rely on these
two techniques. The first technique enables to compare dimension i to the other ones in
I(x). To that purpose, we define a statistic α : (i,X) 7→ α(i, x), and considers f(ρe) as a
realization of the random variable

A : I(x) → R
i 7→ α(i, x)

8

and take some relevant statistics on the realization A(i) of A, such as the value of the
cumulative distribution function of F in α(i, x). For instance, when considering a job j of
1|rj|

∑
j Cj with parameter (rj, pj), if we define α(j, x) = rj + pj, we obtain as feature the

rank (divided by n) of feature j in the schedule where we sort the jobs by increasing rj + pj,
a statistic known to be interesting and used in dispatching rules.

The second technique is to explore the role of i in the solution of a very simple optimiza-
tion problem. A natural way of building features is to run a fast heuristic on the instance
x and seek properties of i in the resulting solution. For instance, the preemptive version of
1|rj|

∑
j Cj, where jobs can be stopped, is easy to solve. Statistics such as the number of

times job j is preempted in the optimal solution can be used as features.

Equivariant layers. A lesson from geometric deep learning [Bronstein et al., 2021] is that
good neural network architecture should respect the symmetries of the problem. Let S be a
symmetry of the problem. A layer h in a neural network is said to be equivariant with respect
to S if h(S(x)) = S(h(x)). In our combinatorial optimization setting, there is one natural
symmetry. The solution predicted y should not depend on the indexing of the variables
using in the combinatorial optimization problem : Given a permutation of these variables in
the instance x, the solution y should be the permuted solution. Combinatorial optimization
layers are naturally equivariant with respect to this symmetry. The generalized linear model
above is a simple example of equivariant layer.

3 Learning by experience

We now focus on how to learn pipelines with a combinatorial optimization layer. Given a
training set composed of representative instances, the learning problem aims at finding a
parameter w such that the output z(w) of our pipeline has a small cost.

As we mentioned in the introduction, the literature focuses on the learning by imitation
setting. In that case, the training set (x1, y1), . . . , (xn, yn) contains instances and target
solution of the prediction problem (CO-layer), the learning problem can be formulated as

min
1

n

n∑
i=1

`(θi, yi) where θi = ϕ̃w(xi),

and `(θ, yi) is a loss function. Losses that are convex in θ and lead to practically efficient
algorithms have been proposed when (CO-layer) is linear on θ, which is the case on most
applications. Typical examples include the structured Hinge loss [Nowozin, 2010] or the
Fenchel-Young losses [Berthet et al., 2020]. The SPO+ loss proves successful when the
training set contains target θi instead of target yi [Elmachtoub and Grigas, 2021].

In this paper, we focus on the learning by experience setting, where the training set
(x1, . . . , xn) contains instances but not their solutions.

9

3.1 Learning problem and regularized learning problem

Let x1, . . . , xn be our training set composed of n instances of (Pb). Without loss of generality,
we suppose that c(y;x) ≥ 0 for all instances x and feasible solution y ∈ Y(x). We also
suppose to have a mapping u : x 7→ u(x) ≥ 0 that is a coarse estimation of the absolute
value of an optimal solution of x. We define the loss function as the weighted cost of the
easy problem solution as a solution of the hard problem.

`(w, x) :=
1

u(x)
max

{
c
(
y;x
)

: y ∈ arg min
ỹ∈Y(x)

g
(
ỹ, fw(x)

)}
. (9)

The learning problem consists in minimizing the expected loss on the training set

min
w∈W

1

n

n∑
i=1

`(w, xi). (10)

The instances in the training set may be of different size, leading to solutions costs which
different order of magnitudes. The weight 1

u(x)
enables to avoid giving too much importance

to large instances.
When the approximation is flexible and the training set is small, the solution of (10)

may overfit the training set, and lead to poor performance on instances that are not in
the training set. In that case, the usual technique to avoid overfitting is to regularize the
problem. One way to achieve this is to make the prediction “robust” with respect to small
perturbations: We want the solution returned to be good even if we use w + Z instead of
w, where Z is a small perturbation. Practically, we assume that Z is a standard Gaussian,
σ > 0 is a real number, and we define the perturbed loss

`pert(w, x) = EZ

[1

u(x)
max

{
c
(
y;x
)

: y ∈ arg min
ỹ∈Y(x)

g
(
ỹ, fw+σZ(x)

)}]
. (11)

This perturbation can be understood as a regularization of the easy problem [Berthet et al.,
2020]. The regularized learning problem is then formulated as follows.

min
w∈W

1

n

n∑
i=1

`pert(w, x) (12)

3.2 Algorithms to solve the learning problem

Proposition 1. If w 7→ fw(x) and θ 7→ g(y,θ) are piecewise linear for all y in Y(x), then
the objective of (10) is piecewise constant in x.

Proof. Since the composition of two piecewise linear functions is piecewise linear, w 7→
g(x; fw(x)) is piecewise linear. Hence, there exists a partition of the space into a finite

number of polyhedra such that the set
{
c
(
x;x
)

: x ∈ arg minx∈X (E) g
(
x;ϕw(x)

)}
is constant

on each polyhedron. The definition of `(w, x) then ensures that w 7→ `(w, x) is piecewise
constant on the interior of each polyhedron of the partition, and lower semi-continuous,
which gives the result.

10

Proposition 1 is bad news from an optimization point of view. We need a black-box
optimization algorithm that uses a moderate amount of function evaluations, does not rely
on “slope” (due to null gradient), and takes a global approach (due to non-convexity). We
therefore suggest using either a heuristic that searches the state space such as the DIRECT
algorithm [Jones et al., 1993], or a Bayesian optimization algorithm that builds a global
approximation of the objective function and uses it to sample the areas in the space of w
that are promising according to the approximation. The numerical experiments evaluate the
performance of these two kinds of algorithms.

Let us now consider the regularized learning problem (12). Since the convolution product
of two functions is as smooth as the most smooth of the two functions, w 7→ `pert(w, x) is
C∞. It can therefore be minimized using a stochastic gradient descent [Dalle et al., 2022]. On
our applications, and using a generalized linear model, we obtained better results by solving
a sample average approximation of this perturbed learning problem using the heuristics
mentioned above. This is not so surprising because in that case, the objective of the learning
problem is composed of several plateaus with smooth transition inbetween, which is not
much easier to solve in practice. Remark that stochastic gradient descent is the method of
choice when using a large neural network.

3.3 Practical remarks for a generic implementation

Perturbation strength. Section 4 provides a closed formula to set the perturbation
strength σ.

Skipping the bilevel optimization Using a bilevel optimization enables to define `(w, x)
unambiguously even when the easy problem (CO-layer) admits several optimal solutions.
Since the bilevel optimization is not easy to handle, we use in practice the loss

˜̀(w, x) =
1

u(x)
c
(
A ◦ ϕw(x)

)
that takes the solution returned by the algorithm A we use for (CO-layer). Its value may
therefore depend on A.

Post-processing On many applications, the post-processing h is time-consuming, and
there exists an alternative post-processing h̃ that is much faster, even if the resulting solution
z may have a larger cost. A typical example is our 1|rj|

∑
j Cj application, where Y(x) =

Z(x), and the post-processing is only a local descent. The post-processing is therefore not
mandatory, and we could use h̃ = Identity. In that context, using h̃ instead of h during the
learning phase leads to a much faster learning algorithm, while not necessarily hurting the
quality of the w learned.

Sampling in the prediction pipeline. If we are ready to increase the execution time,
the perturbation of w by Z can also be used to increase the quality of the solution returned

11

by our solution pipeline. We can draw several samples Zi of Z, apply the solution pipeline
with w + σZi instead of w, and return the best solution found across the samples at the
end. We provide numerical results with this perturbed algorithm on the 1|rj|

∑
j Cj problem

in Section 5.

4 Learning rate and approximation ratio

This section introduces theoretical guarantees on the average optimality gap of the solution
returned by the learned algorithm when w is chosen as in Section 3. Two conditions seem
necessary to obtain such guarantees. First, it must be possible to approximate the hard
problem by the easy one. That is, there must exist a w̃ such that an optimal solution
of ϕw̃(x) provides a good solution of x. And second, when such a w̃ exists, our learning
problem must be able to find it or another w′ that leads to a good approximation. Our proof
strategy is therefore in two steps. First, we show that the solution of our learning problem
converges toward the “best” w when the number of instances in the solution set increases.
And then we show that if there exists a w̃ such that the expected optimality gap of the
solution returned by our solution approach is bounded, then the expected optimality gap for
the learned w is also bounded. For statistical reasons discussed at the end of Section 4.2,
we carry this analysis using the regularized learning problem (12).

4.1 Background on learning with perturbed bounded losses

Let ξ be a random variable on a space Ξ and W a non-empty compact subset of Rd,
W ⊆ B∞(M) where B∞(M) is the ‖ · ‖∞ ball of radius M on R. Let ` : Ξ× Rd → [0, 1] be
a loss function, we define the perturbed loss as

`pert(ξ̄,w) = E
[
`(ξ̄,w + σZ)

]
with σ > 0. (13)

We suppose that `(·,w) is integrable for all w ∈W . We define the expected risk L(w) and
the expected risk minimizer w∗ as

w∗ ∈ arg min
w∈W

L(w) with L(w) = E
[
`pert(ξ,w)

]
. (14)

Let ξ1, . . . , ξn be n i.i.d. samples of ξ. We define the empirical risk L̂n(w) and the empirical
risk minimizer ŵn as

ŵn ∈ arg min
w∈W

L̂n(w) with L̂n(w) =
1

n

n∑
i=1

`pert(ξi,w). (15)

Note that both Ln(w) and ŵn are random due to the sampling of the training set ξ1, . . . , ξn.
The following result bounds the excess risk incurred when we use Ln(w) instead of L(w).

12

Theorem 2. Suppose that W ⊆ B∞(M) where B∞(M) is the ‖ · ‖∞ ball of radius M on R.
Given 0 < δ < 1, with probability at least 1 − δ, we have the following bound on the excess
risk.

L(ŵn)− L(w∗) ≤ C
Md

σ
√
n

+

√
2 log(2/δ)

n
(16)

with C = 48
∫ 1

0

√
− log xdx.

We believe that Theorem 2 is in the statistical learning folklore, but since we did not find
a proof, we provide one based on classical statistical learning results in Appendix A.

Learning rate of our structured approximation In order to apply Theorem 2 to the
learning problem of Section 3, we must endow the set X of instances with a distribution.
Recall that the loss ` and the perturbed loss `pert have been defined in Equations (9) and (11).
We assume that the instance x is a random variable with probability distribution µ on X ,
and that both `(·,w) and `pert(·,w) are integrable for all w. With these definitions, using
X as Ξ, instances x as random variables ξ, and if we suppose that the training set x1, . . . , xn
is composed of n i.i.d. samples of x, we have recast our regularized learning problem (12)
as a special case of (15). We can therefore apply Theorem 2 and deduce that the upper
bound (16) on the excess risk applies.

This result underlines a strength of the architectures of Section 2.3. Because they enable
to use approximations parametrized by w whose dimension is small and does not depend
on x, the bound on the excess risk only depends on the dimension of w and not on the size
of the instances used. Hence, a pipeline with these architectures enables to make predictions
that generalize (in expectation) on a test set whose instances structures I(x) are not neces-
sarily present in the training set. This is confirmed experimentally in Section 5, where the
structures of the instances in the test set of the stochastic VSP (the graph D) do not appear
in the training set.

Remark 1. Theorem 2 does not take into account the fact that, practically and in our
numerical experiments, we use a sample average approximation on Z of the perturbed loss
instead of the true perturbed loss. 4

4.2 Approximation ratio of our structured approximation

Let d(x) = |I(x)| and c∗(x) = arg miny∈Y(x) c(y, x) be the cost of an optimal solution of (Pb).

Theorem 3. Suppose that for all x in X (outside a negligible set for the measure on X),

1. fw(x) =
(
〈w|φ(i, x)〉

)
i∈I(x)

and ‖φ(i, x)‖2 ≤ κφ,

2. and there exists w̃, a > 0, b > 0, and β ∈ {1, 2} such that, for any p ∈ Rd(x),

c(y, x)− c∗(x) ≤ au(x) + b‖p‖β for any y ∈ arg min
ỹ∈Y(x)

g
(
ỹ, fw̃(x) + p

)

13

Then, under the hypotheses of Theorem 2, with probability at least 1− δ (on the sampling of
the training set)

L(ŵn)− E
[
c∗(x)

u(x)

]
︸ ︷︷ ︸

Perturbed prediction optimality gap

≤ C
Md

σ
√
n

+

√
2 log(2/δ)

n︸ ︷︷ ︸
Training set error

+ a︸︷︷︸
Appro−
ximation
error

+ bσκφ
√
dE

[
[d(x)]1/β

u(x)

]
︸ ︷︷ ︸

Perturbation error

Before proving the theorem, let us make some comments. First, we explain why the
hypotheses are meaningful. The first hypothesis only assumes that the model is linear, and
that, with probability 1 on the choice of x in X the features are bounded. Such a hypothesis
is reasonable as soon as we restrict ourselves to instances whose parameters are bounded.
Let us recall that u(x) is a coarse upper bound on c∗(x). When u(x) = c∗(x) and p = 0,
the second hypothesis only means that our non-perturbed pipeline with parameter w̃ is an
approximation algorithm with ratio 1 + a. With a p 6= 0, the second hypothesis is stronger:
It also ensures that this approximation algorithm guarantee does not deteriorate too fast.
Later in this section, we prove that this hypothesis is satisfied for our running example.

Approximation ratio guarantee Using u(x) = c∗(x) makes clear the fact that Theorem 3
provides an approximation ratio guarantee in expectation. Furthermore, it gives a natural
way of setting the strength σ of the perturbation: The bound is minimized when we use

σn =

√√√√ CM
√
d

√
nbκφE

[
[d(x)]1/β

u(x)

] . (17)

Using this optimal perturbation and δ = 1
n
, the upper bound on L(ŵn)− E

[c∗(x)
u(x)

]
is in

a+O
(
n−1/4

(
1 + log(n)

))
−−−−→
n→+∞

a.

In other words, in the large training set regime the learned ŵn recovers the approximation
ratio guarantee a of w̃.

Large instances Theorem 3 always provides guarantees when d(x) is bounded on X .

However, it may fail to give guarantees when d(x) is unbounded on X since E
[[d(x)]1/β

u(x)

]
may

not be finite. Since u(x) is a coarse upper bound on c∗(x), the term E
[[d(x)]1/β

u(x)

]
remains finite

when d(x) is unbounded only if the cost of an optimal solution c∗(x) grows at least as fast as
the number of parameters of the instance d(x) to the power 1/β. From that point of view, the
single machine scheduling problem 1|rj|

∑
Cj

is ideal. Indeed, in that case d(x) is the number

of job, and c∗(x) ∼ [d(x)]2, hence
[

[d(x)]1/β

u(x)

]
becomes smaller and smaller when the size of x

increases. On the two stage spanning tree problem, the situation is slightly less favorable.
Indeed, d(x) is equal to twice the number of edges. Since an optimal spanning tree contains

14

|V |−1 edges, we expect c∗(x) to be of the order of magnitude of d(x) on sparse graphs (graphs
such that |E| ∼ |V |, like grids for instance), and

√
d(x) on dense graphs (graph such that

|E| ∼ |V |2, like complete graphs). Later in this section, we prove that the second hypothesis
is satisfied for the two stage spanning tree problem with β = 1. Hence, Theorem 3 gives an
approximation ratio guarantee for sparse graphs. The situation is roughly the same for the

stochastic vehicle scheduling problem. A typical example where E [d(x)]1/β

u(x)
may not be finite

is the shortest path problem on a dense graph. On many applications such as finding an
optimal journey on a public transport system, the number of arcs tends to remain bounded,
say ≤ 10, while the number of arcs in the graph d(x) grows with the size of the instance.

Optimal resolution of the learning problem Theorem 3 applies for the optimal solu-
tion ŵn of the learning problem. We let it to future work to design an exact algorithm that
guarantees that the w returned is within an optimality gap γ with the optimal solution.
We would then obtain a variant of Theorem 3 proving the approximation ratio result for
the w returned, with an additional term in γ in the upper bound taking into account the
optimality gap.

Influence of the perturbation Since we have made very few assumptions on c, g, and
fw, we do not have control on the size of the family of functions {`w : w}, This family may
be very large, and therefore able to fit any noise, which would lead to slower learning rate.
Without additional assumptions, we therefore need to regularize the family. In particular, we
need to smooth the piecewise constant loss (Proposition 1). As we have seen in this section,
perturbing w does the job, but comes at a double cost in Theorem 3: a perturbation error,
and larger than hoped training set error in O(d/

√
n). The term in O(d/

√
n) is slightly

disappointing because the proof techniques used in statistical learning theory typically lead
to bounds in O(

√
d/
√
n). This is for instance the case for the metric entropy method

used to prove Theorem 2 when the gradient of the loss is Lipschitz in w. The Gaussian
perturbation restores the Lipschitz property for the perturbed loss, but it comes at the price
of an additional

√
d in the bound derived by the metric entropy method, as can be seen

in the proof of Lemma 9 in Appendix A. Designing a learning approach that avoids the
additional

√
d term is an interesting open question. An alternative would be to make more

assumptions on c, g, and ϕ with the objective of making the perturbation optional in the
proof.

Proof of Theorem 3 We have

L(ŵn)− E
[
c∗(x)

u(x)

]
= L(ŵn)− L(w∗)︸ ︷︷ ︸
≤C Md

σ
√
n

+
√

2 log(2/δ)
n

+L(w∗)− L(w̃)︸ ︷︷ ︸
≤0

+L(w̃)− E
[c∗(x)

u(x)

]

15

We therefore need to upper bound L(w̃)− E
[c∗(x)
u(x)

]
by a+ bσκφ

√
dE
[[d(x)]1/β

u(x)

]
. We have∥∥fw̃+σZ(x)− fw̃(x)

∥∥
β

=
∥∥∥σ(〈Z|φ(i, x)

)
i∈I(x)

∥∥∥
β

≤
∥∥∥σ(‖Z‖2‖φ(i, x)‖2

)
i∈I(x)

∥∥∥
β

≤
∥∥∥σ(‖Z‖2κφ

)
i∈I(x)

∥∥∥
β

= σκφ‖Z‖2[d(x)]1/β

Let y be in arg miny∈Y(x) g
(
y, fw̃+σZ(x)

)
. The second hypothesis of the theorem and the

previous inequality give

c(y, x)− c∗(x) ≤ au(x) + bκφ‖Z‖2[d(x)]1/β.

Since Z is a standard Gaussian, we get E‖Z‖ ≤
√
d (Equation (23) in Appendix A), and

the result follows by dividing the previous equality by u(x) and taking the expectation.

4.3 Existence of a w̃ with an approximation ratio guarantee

In this section, we prove that the hypotheses of Theorem 3 are satisfied for the maximum
weight two stage spanning tree problem. We then give a criterion which ensures that these
hypotheses are satisfied.

Maximum weight two stage spanning tree In this section, we restrict ourselves
to maximum weight spanning tree instances, that is, instances of the minimum weight
spanning tree with ce ≤ 0 and des ≤ 0 for all e in E and s in S. Given an instance,
let I(x) =

(
(e, stage) : e ∈ E, stage ∈ {1, 2}

)
, leading to c̄e =

〈
w|φ

(
(e, 1), x

)〉
and

d̄e =
〈
w|φ

(
(e, 2), x

)〉
. We define a feature

φ(e, 1) = ce and φ(e, 2) =
1

|S|
∑
s∈S

des,

and define w̃ to be equal to 1 for this feature and 0 otherwise. The following proposition
shows that the second hypothesis of Theorem 3 is then satisfied with a = 1/2 and b = 1.

Proposition 4. For any instance x of the maximum weight spanning tree problem, we have

c(y, x)− c∗(x) ≤ 1

2
|c∗(x)|+ ‖p‖1 for any y ∈ arg min

y′∈Y(x)

g
(
y, fw̃(x) + p

)
.

Our proof shows that the results stands for a = |S|−1
2|S|−1

when |S| is upper-bounded by M .
Combined with Theorem 3, Proposition 4 ensures that, when the training set is large, the
learned ŵn has the approximation ratio guarantee proved by Escoffier et al. [2010] for the
two stage maximum weight spanning tree. The proof of Proposition 4 is an extension of the
proof of Escoffier et al. [2010, Theorem 6] to deal with non-zero perturbations p.

16

Proof of Proposition 4. The proof will use the following well known result

Lemma 5. Let x 7→ f1(y) and y 7→ f2(y) be functions from compact set K to R, and let y∗1
and y∗2 be respectively minima of f1 and f2. If we have |f1(y) − f2(y)| ≤ γ for all y, then
f1(y∗2)− f1(y∗1) ≤ 2γ.

We fix an instance x. Let us first introduce some solutions of interest. Given a θ, let
us denote by ȳ(θ) = (Ē1(θ), Ē2(θ)) the result of the prediction problem (2). Let z̄(θ) =
(Ē1(θ), (Ēs(θ))) with Ēs(θ) = Ē2(θ). Let ẑ(θ) = (Ē1(θ), (Ês(θ))) where Es(θ) is the optimal
second stage decision for scenario s when the first stage decision is E1(θ)

Ês(θ) ∈ arg min
{∑
e∈Es

des : Es ⊆ E, Es ∩ Ē1(θ) = ∅, (V,Es ∪ Ē1(θ)) ∈ T
}
. (18)

We denote by z∅ = (∅, (E∅s)) the solution with no first stage: (V,E∅s) is a minimum weight
spanning tree for second stage weights (des)s of scenario s. And finally, we denote by z(θ) =
(E1, (Es)s∈S) the solution returned by our pipeline, which is the solution of minimum cost
among ẑ(θ) and z∅.

Let z∗ = (E∗1 , (E
∗
s)) be an optimal solution of (1), and ȳs,∗ = (E∗1 , E

∗
s) be the solution

of (2) obtained by taking E∗1 as first stage solution and E∗s as second stage solution.
First, consider solution z̄ = (Ēs, (Ēs)s) of (1) such that the second stage solution Ēs is

identical and equal to Ē2 for all scenarios s in S, and denote by ȳ = (Ē1, Ē2) the solution
of (2) obtained by taking Ē1 as first stage solution and Ē2 as second stage solution. It follows
from the definition of w̃ that

C(z̄) = g(ȳ, θ̃) where θ̃ = fw̃(x). (19)

Second, remark that, for any θ, y = (E1, E2), and p in Rd(x), we have

|g(y, θ)− g(y, θ + Z)| = |〈Z|y〉| =
∑
e∈E1

pe1 +
∑
e∈E2

pe2 ≤ ‖p‖1 (20)

where the last inequality comes from the fact that y is the indicator vector of a tree.
Let s be scenario in S. We have

C(ẑ(θ̃ + Z)) ≤ C(z̄(θ̃ + Z)) Optimal second stage

= g(ȳ(θ̃ + Z), θ̃) Equation (19)

≤ g(ȳ(θ̃), θ̃) + 2‖p‖1 Equation (20) + Lemma 5

≤ g(ȳs,∗, θ̃) + 2‖p‖1 Optimality of ȳ(θ̃)

=
∑
e∈Ē∗1

ce +
1

|S|
∑
e∈E∗s

∑
s′∈S

des′ + 2‖p‖1

≤
∑
e∈Ē∗1

ce +
1

|S|
∑
e∈E∗s

des + 2‖p‖1 d′es ≤ 0 for all e, s′.

17

Furthermore, since (V,E∅s) is a minimum spanning tree with (des)e edge weights,

C(z∅) =
1

|S|
∑
s∈S

∑
e∈E∅s

des ≤
1

|S|
∑
s∈S

[∑
e∈E∗1

des︸︷︷︸
≤0

+
∑
e∈E∗s

des

]
≤ 1

|S|
∑
s∈S

∑
e∈E∗s

des.

Summing the two previous inequalities, we get

C(z(θ)) = min(C(ẑ(θ̃ + Z)), C(z∅))

≤ |S|C(ẑ(θ̃ + Z)) + (|S| − 1)C(z∅)

2|S| − 1

≤
|S|
(∑

e∈E∗1
ce + 2‖p‖1

)
+
∑

s

∑
e∈E∗s

des

2|S| − 1

=
|S|

2|S| − 1
(C(z∗) + 2‖p‖1) ≤ 1

2
C(z∗) + ‖p‖1

Since C(z∗) ≤ 0, we get C(z(θ))−C(z∗) ≤ 1
2
|C(z∗)|+‖p‖1, which is the result searched.

Remark that we have proved the stronger bound c(y, x)− c∗(x) ≤ |M |−1
2|M |−1

|c∗(x)|+ ‖p‖1 when

|S| is upper bounded by M on X .

Objective function approximation Let us finally remark that the hypotheses of Theo-
rem 3 are satisfied when g(y, fw(x) is a good approximation of θ 7→ g(y,θ) for some w.

Lemma 6. Suppose that θ 7→ g(y,θ) is κg Lipschitz in ‖ · ‖β, and there exists w̃ ∈W and
α > 0 is such that, for all x ∈ X and y ∈ Y(x), we have

|c(y, x)− g(y, fw̃(x))|
u(x)

≤ α. (21)

Then the second hypothesis of Theorem 3 is satisfied with a = 2α and b = 2κg.

Proof. For any y in Y(x), we have

|c(y, x)− g(x, fw̃(x) + p)|
≤ |c(y, x)− g(x, fw̃(x))|+ |g(x, fw̃(x)− g(x, fw̃(x) + p)|
≤ αu(x) + κg ‖p‖β

The results therefore follows from Lemma 5 and the previous inequality.

5 Numerical experiments

This section tests the performance of our algorithms on our running example, the stochastic
vehicle scheduling problem, and the 1|rj|

∑
j Cj scheduling problem of Section 2. For the

18

two latter applications, we use the same encoding fw, easy problem solution algorithm,
and decoding ψ as in previous contributions [Parmentier, 2021, Parmentier and T’Kindt,
2021]. The only difference is that, instead of using the learning by demonstration approaches
proposed in these papers, we use the learning by experience approach of this paper. All the
numerical experiments have been performed on a Linux computer running Ubuntu 20.04
with an Intel® Core™ i9-9880H CPU @ 2.30GHz × 16 processor and 64 GiB of memory.
All the learning problem algorithms are parallelized: The value of the loss on the different
instances in the training set are computed in parallel. The prediction problem algorithms
are not parallelized.

5.1 Maximum weight two stage spanning tree

Let us now consider the performance of our pipeline on the maximum weight two stage
spanning tree. All the algorithms are implemented in julia. The code to reproduce the
numerical experiments is open source1.

Training, validation and test sets We use instances on square grid graphs of width
{10, 20, 30, 40, 50, 60}, i.e., with |V | in {100, 400, 900, 1600, 2500, 3600}. First stage weig-
hts are uniformly sampled on the integers in {−20, . . . , 0}. Second stage weights are uni-
formly sampled on the integers in {−K, . . . , 0} with K ∈ {10, 15, 20, 25, 30}. Finally, in-
stances have 5, 10, 15 or 20 second stage scenarios. Our training set, validation set, and test
set contain 5 instances for each grid width, weight parameter K, and number of scenarios.
The training, validation and test sets therefore each contain 600 instances.

Bounds and benchmarks On each instance of the training, validation, and test set, we
solve the Lagrangian relaxation problem using a subgradient descent algorithm for 50,000
iterations, which provides a lower bound on an optimal solution. We also run a Lagrangian
heuristic based on the final value of the duals.

We use three benchmarks to evaluate our algorithms: the Lagrangian heuristic, the
approximation algorithm of Escoffier et al. [2010], and our pipeline trained by imitation
learning using a Fenchel Young loss to reproduce the solution of the Lagrangian heuristic.
Remark that since the approximation algorithm, the pipeline learning by imitation, and the
pipeline learned with our loss are all instances of our pipeline, they take roughly the same
time. On the contrary the Lagrangian heuristic requires to solve the 50,000 iterations of the
subgradient descent algorithm, and is therefore 4 order of magnitude slower.

Hyperparameters tuning We use a sample average approximation of our perturbed loss
`pert with 20 scenarios. Figure 2.a provides the average value of the gap between the solution
returned by our pipeline and the Lagrangian lower bound on the validation set for the model
learned with different value of ε. Based on these results, we use ε = 0.001.

1https://github.com/axelparmentier/MaximumWeightTwoStageSpanningTree.jl

19

https://github.com/axelparmentier/MaximumWeightTwoStageSpanningTree.jl

ε Gap

0.0e+00 2.8%
1.0e-04 2.7%
3.0e-04 2.7%
1.0e-03 2.7%
3.0e-03 2.7%
1.0e-02 2.7%
3.0e-02 3.9%
1.0e-01 5.5%
3.0e-01 59.5%

(a)

|V|
0 1000 2000 3000

G
ap

 to
 L

ag
ra

ng
ia

n
B

ou
nd

 (
%

)

0

1

2

3

4

5

6

Pipeline (Regret) average gap
Pipeline (Regret) worst gap
Pipeline (FYL) average gap
Pipeline (FYL) worst gap
Lagrangian heuristic average gap
Lagrangian heuristic worst gap
Approx algorithm average gap
Approx algorithm worst gap

(b)

Figure 2: Maximum weight spanning tree. (a) Hyperparameters tuning on the validation
dataset for the model learned on the training set. b, Gap with respect to the Lagrangian
relaxation bound as a function of (b) the number of vertices |V | with ε = 0.001.

Results Figure 2.b illustrates the average and worst gap with respect to the Lagrangian
bound obtained on the test set for our pipeline and the different benchmarks. The pipeline
learning by imitation of by experience enable to match the performance of the Lagrangian
heuristic, while being 4 order of magnitude faster. These three algorithms significantly
outperform the approximation algorithm. In summary, our pipeline learned by experience
enables to retrieve the performance of the best algorithms as well as the theoretical guarantee
of the approximation algorithm.

5.2 Stochastic VSP

5.2.1 Setting: Features, post-processing, and instances

For the numerical experiments on the stochastic VSP, we use the exact same settings as in
our previous work [Parmentier, 2021]. We use the same linear predictor with a vector φ
containing 23 features. And we do not use a post-processing ψ. The easy problem is solved
with Gurobi 9.0.3 using the LP formulation based on flows.

We also use the same instance generator. This generator takes in input the number of
tasks |V |, the number of scenarios |Ω| in the sample average approximation, and the seed
of the random number generator. We say that an instance is of moderate size if |V | ≤ 100,
of large size if 100 ≤ |V | ≤ 750, and of huge size if 1000 ≤ |V |. Table 2 summarizes the
instances generated. The first two columns indicate the size of the instances. A X in the
next five columns |Ω| indicates that instances with |Ω| scenarios are generated for instance
size |V | considered. The last five columns detail the composition of the different sets of
instances: Three training sets, one validation set (Val), and a test set (Test). The table can
be read as follows: The training set (small) contains 10 × |{50, 100, 200, 500, 1000}| = 50
instances, each of these having 50 tasks in V , but no larger instances. The test set contains

20

Size |V |
50 100

|Ω|
200 500 1000 Train

(sm
all)

Train
(m

odera
te)

Train
(all)

Val
Test

Moderate
50 X X X X X 10 5 1 2 8
75 X X X X X 5 1 2 8

100 X X X X X 5 1 2 8

Large
200 X X X X X 5 1 2 8
500 X X X X X 1 2 8
750 X X X X X 1 2 8

Huge
1000 X X X X X 1 2 8
2000 X 2 8
5000 X 2 8

Table 2: Instances considered for the stochastic VSP.

instances of all size. For instance, it contains 8 × |{50, 100, 200, 500, 1000}| = 40 instances
of size 50 and 8 instances of size 5000. For the largest sizes, we use only instances with 50
scenarios for memory reasons: The instances files already weigh several gigabytes.

The small training set, the validation set, and the test set are identical to those previously
used [Parmentier, 2021]. The validation set, which is used in the learning by demonstration
approach, is not used on the learning by experience approach, since we do not optimize on
classifiers hyperparameters. This previous contribution considers only the “small” training
set, with 50 instances with 50 tasks, it uses a learning by demonstration approach and exact
solvers cannot handle larger instances. This is no more a constraint with the learning by
experience approach proposed in this paper. We therefore introduce two additional training
sets: one that contains 100 instances of moderate size, and one containing 35 instances of
all sizes. These training sets are relatively small in terms of number of instances, but they
already lead to significant learning problem computing time and good performance on the
test set.

5.2.2 Learning algorithm

On each of the three training sets, we solve the learning problem (10) and the regularized
learning problem (12). We use the number of tasks |V | as u(x). It is not an upper bound
on the cost, but the cost of the optimal solution scales almost linearly with |V |. In both
case, we solve the learning problem on the L∞ ball of radius 10. For the regularized learning
problem, we use a perturbation strength of intensity σ = 1, and we solve the sample averaged
approximation of the problem with 100 scenarios. We evaluate two heuristic algorithms: The
DIRECT algorithm [Jones et al., 1993] implemented in the nlopt library [Johnson], and the
Bayesian optimization algorithm as it is implemented in the bayesopt library [Martinez-
Cantin]. We run each algorithm on 1000 iterations, which means that they can compute the
objective function 1000 times. Both algorithms are launched with the default parameters of
the libraries. In particular, the Bayesian optimization algorithm uses the anisotropic kernel

21

Learning problem DIRECT Bayes Opt
Obj. Train. set pert CPU time Obj CPU time Obj

(hh:mm:ss) (days, hh:mm:ss)

`
small – 0:01:20 290.39 0:09:06 287.48
moderate – 0:10:56 256.39 0:18:35 259.88
all – 2:56:40 231.66 3:56:18 235.04

`pert

small 100 0:11:52 286.11 0:37:22 287.95
moderate 100 1:58:50 258.76 2:09:17 259.13
all 100 22:44:03 233.84 1 day, 5:35:30 235.10

Table 3: Performance of the DIRECT [Johnson] and Bayesian optimization [Martinez-
Cantin] on the learning problems (10) and (12) for the stochastic VSP.

with automatic relevance determination kSum(kSEARD,kConst) of the library.
Table 3 summarizes the result obtained with both algorithms. The first column contains

the loss used: ` for the non-regularized problem (10) and `pert for the regularized problem.
The next one provides the training set used. And the third column provides the number
of samples used in the sample average approximation of the perturbation. The next four
columns give the total computing time for the 1000 iterations and the value of the objective
of the learning problem obtained at the end using the DIRECT algorithm and the Bayesian
optimization algorithm.

The DIRECT algorithm approximates the value of the function based on a division of
the space into hypercubes. At each iteration, the function is queried in the most promising
hypercube, and the result is used to split the hypercube. The algorithm leverages a tractable
lower bound to identify the most-promising hypercube and the split with few computations.
Hence, the algorithm is very fast if the function minimized is not computationally intensive.
The Bayesian optimization algorithm builds an approximation of the function minimized: It
seeks the best approximation of the function in a reproducing kernel Hilbert space (RKHS)
given the data available. At each iteration, it minimizes an activation function to identify
the most promising point according to the model, evaluate the function at that point, and
updates the approximation based on the value returned. Each of these steps are relatively
intensive computationally. Hence, if the function minimized is not computationally intensive,
the algorithm will be much slower than the DIRECT algorithm. This is what we observe
on the first line of Table 3. Furthermore, in bayesopt, the DIRECT algorithm of nlopt

is used to minimize the activation function. Our numerical experiments tend to indicate
that the approximation in a RKHS does not enable to find a better solution than the simple
exploration with DIRECT after 1000 iterations. Using Bayesian optimization may however
be useful with a smaller iteration budget. Figure 5.2.2 provides the evolution of the objective
function along time for the Bayesian optimization algorithm and the DIRECT algorithm on
the learning problem corresponding to the last line of Table 3.

Since the DIRECT algorithm gives the best performance on most cases, we keep the w
returned by this algorithm for the numerical experiments on the test set. The performance

22

0 20000 40000 60000 80000 100000
CPU time (s)

240

250

260

270

280

290

300

Le
ar

ni
ng

 p
ro

bl
em

 o
bj

ec
tiv

e
va

lu
e

DIRECT-BOBYQA
Bayesian Optimization

Figure 3: Learning problem objective value evolution as a function of time on stochastic
VSP learning problem with perturbed loss `pert on training set “all”.

Learning problem w Moderate Large Huge All
Obj Train. set Pert T avg Tmax

T avg δavg δmax T avg Tmax

T avg δavg δmax T avg Tmax

T avg δavg δmax T avg Tmax

T avg δavg δmax

CRF small – 0.03 2.14 9.47% 20.47% 1.21 1.47 2.58% 6.77% 27.69 1.09 1.27% 1.88% 5.74 2.14 5.13% 20.47%
FYL small 100 0.03 2.02 1.67% 4.23% 0.97 1.52 0.70% 2.10% 19.20 1.15 0.26% 1.06% 4.04 2.02 1.01% 4.23%

`
small – 0.03 2.33 4.37% 10.35% 0.82 1.47 3.65% 5.56% 20.42 1.26 3.29% 4.90% 4.21 2.33 3.88% 10.35%

moderate – 0.03 1.77 0.31% 3.24% 0.86 1.39 1.09% 2.92% 17.48 1.13 2.85% 6.18% 3.67 1.77 1.10% 6.18%
all – 0.03 1.56 0.52% 1.98% 0.84 1.33 0.07% 0.86% 18.10 1.14 0.07% 0.66% 3.78 1.56 0.25% 1.98%

`pert

small 100 0.03 1.81 2.90% 6.71% 0.84 1.53 2.55% 4.48% 16.29 1.99 2.04% 3.61% 3.44 1.99 2.59% 6.71%
moderate 100 0.03 1.98 1.56% 5.00% 0.86 1.42 0.77% 2.12% 16.79 1.09 0.90% 1.82% 3.54 1.98 1.11% 5.00%

all 100 0.03 1.63 1.05% 3.57% 0.87 1.45 1.10% 2.83% 18.08 1.30 1.16% 2.22% 3.79 1.63 1.09% 3.57%

The best results are in bold. CRF = Conditional Random Field

Table 4: Performance of our solution algorithm with different w on the stochastic VSP test
set.

of the DIRECT algorithm could be improved using the optimization on the seed that will
be introduced in Section 5.3.2.

5.2.3 Algorithm performance on test set

We now evaluate the performance of our solution pipeline with the w learned. It has been
shown [Parmentier, 2021] that, using solution pipeline with the w learned by the structured
learning approach with a conditional random field (CRF) loss on the small training set
gives a state-of-the-art algorithm for the problem (the paper uses the maximum likelihood
terminology instead of CRF loss). We therefore use it as a benchmark of the problem.
We have also introduced a new learning by demonstration approach on the problem: We
implement the Fenchel Young loss (FYL) structured learning approach [Berthet et al., 2020,
Parmentier and T’Kindt, 2021] to obtain a second benchmark.

Table 4 summarizes the results obtained. The first three columns indicate how w has
been computed: They provide the loss minimized as objective of the learning problem (Obj),
the training set used, and for the approaches that use a perturbation, the number of scenarios

23

used in the sample average approximation (SAA).
The next columns provide the results on the test set. These columns are divided into

four blocks giving results on the subsets moderate, large, huge instances of the test set and
on the full test set. On each of these subsets of instances, we provide four statistics. The
statistic T avg provides the average computing time for our full solution pipeline on the subset
of instances considered, which includes the computation of the features and ϕw(x), and the
resolution of the easy problem with the LP solver (no decoding ψ is used). Most of this time
is spent in the LP solver. Then, for each instance in the training set, we compute the ratio
of the computing time for the instance divided by the average computing time for all the
instances of the test set with the same number of tasks |V |. Indeed, we expect instances
with the same |V | to be of comparable difficulty. The column Tmax

T avg gives the maximum value
of this ratio on the subset of instances considered. Since we do not have an exact algorithm
for the problem, for each instance x we compute the gap

cw − cbest

cbest
(22)

between the cost cw of the solution returned by our solution pipeline with the w evaluated
and the cost of the best solution found for these instances using all the algorithms tested.
The columns δavg and δmax respectively provide the average and the maximum value of this
gap on the set of instances considered. The two first lines provide the result obtained with the
learning by demonstration benchmarks, and the next six ones obtained with the w obtained
with the learning algorithms of Table 3.

We can conclude from these experiments that:

1. When using the learning by demonstration approach, the Fenchel Young loss leads to
better performances than the conditional random field loss.

2. Our learning by experience formulation gives slightly weaker performances than the
learning by demonstration approach with a Fenchel Young loss when using the same
training set.

3. Our learning by experience approach enables to use a more diversified training set,
which enables it to outperform all the previously known approaches. The more diver-
sified the training set, the better the performance.

4. The regularization by perturbation used tends to decrease the performance of the
algorithm. This statement may no longer hold if we optimized the strength of the
perturbation using a validation set.

5.3 Single machine scheduling problem 1|rj|
∑

j Cj

5.3.1 Setting

We use the exact same setting as the previous contribution on this problem [Parmentier
and T’Kindt, 2021]. In particular, that paper introduces a vector of 66 features, and a

24

Subsets of instances
Moderate Large Huge

Size n of instances in subset {50, 75, 100, 150} {200, 300, 500, 750} {1000, 1500, 2000, 3000}

Table 5: Size of the 1|rj|
∑

j Cj instances in the subsets of the test set.

subset of 27 features that leads to better performances. With the objective of testing what
our learning algorithm can do on a larger dimensional problem, we focus ourselves on the
problem with 66 features. And we also use the four kinds of decoding algorithms in that
paper: no decoding (no ψ), a local search (LS), the same local search followed by release date
improvement (RDI) algorithm (RDI ◦ LS), and the perturbed versions of the last algorithm,
(pert RDI ◦ LS) where the solution pipeline is applied with w+Z for 150 different samples
of a standard Gaussian Z, and keep the best solution found. RDI is a classic heuristic for
scheduling problems, which is more time consuming but more efficient than the local search.

We use the same generator of instances as previous contributions [Della Croce and
T’kindt, 2002, Parmentier and T’Kindt, 2021]. For a given instance with n jobs, process-
ing times pj are drawn at random following the uniform distribution [1; 100] and release
dates rj are drawn at random following the uniform distribution [1; 50.5nρ]. Parameter ρ
enables to generate instances of different difficulties: We consider ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0,
1.25, 1.5, 1.75, 2.0, 3.0}. For each value of n and ρ, N instances are randomly generated lead-
ing for a fixed value of n to 10N instances. For the learning by demonstration approach, we
use the same training set as [Parmentier and T’Kindt, 2021] with n ∈ {50, 70, 90, 110} and
N = 100, leading to a total of 4000 instances. We do not use larger instances because we
do not have access to optimal solutions for larger instances. For the learning by experience
approach, we use n ∈ N := {50, 75, 100, 150, 200, 300, 500, 750, 1000, 1500, 2000, 3000} and
N = 20, leading to 2400 instances. In the test set, we use a distinct set of 2400 instances
with n ∈ N and N = 20. This test set is almost identical to the one used in the litera-
ture [Parmentier and T’Kindt, 2021], the only difference being that instances with n = 2500
have been replaced by instance with n = 3000 to get a more balanced test set. Table 5 shows
how we have partitioned this test set by number of jobs n in the instances, to get sets of
instances of moderate, large, and huge size.

5.3.2 Learning algorithm

We use n(n+ 1) as u(x). It is not an upper bound on the cost, but the cost of the optimal
solution scales roughly linearly with u(x). We draw lessons from the stochastic VSP and
use only a diverse training set of 4000 instances of all size in the training set. And because
our solution pipeline for 1|rj|

∑
j Cj is much faster than the one for the stochastic vehicle

scheduling problem, we can use a larger training set. And we introduce two new perspec-
tives. First, the DIRECT algorithm uses a random number generator. We observed that its
performance is very dependent on the seed of the random number generator, and that using

25

obj iter pert ψ Tot. CPU Avg L̂ Best L̂

` 1000 – – 0:05:46 36.71 35.19
` 2500 – – 0:12:31 36.64 35.29

`pert 1000 100 – 9:09:06 36.76 35.27
`pert 2500 100 – 20:45:52 36.69 35.25
` 1000 – LS 0:52:54 35.13 35.06
` 2500 – LS 1:47:42 35.12 35.06

`pert 1000 100 LS 3 days, 15:14:42 35.12 35.06
`pert 2500 100 LS 7 days, 15:24:08 35.11 35.06

Tot. CPU is given in days, hh:mm:ss.

Table 6: Learning algorithm results on 1|rj|
∑

j Cj.

a larger number of iterations does not necessarily compensate for the poor performance that
would come from a bad seed. We therefore launch the algorithm with 10 different seeds,
each time with a 1000 iterations budget, and report the best result. Second, as underlined
in Section 3.3, it can be natural to use the loss `ψ where, instead of using the output of the
easy problem, we use the output of the post-processing ψ. In our case, the post-processing is
in two steps: first the local search, second the RDI heuristic. Since RDI is time-consuming,
using it would lead to very large computing times on the training set used. We therefore
take the solution at the end of the local search.

Table 6 summarizes the results obtained. The first column indicate if the perturbed loss
or the non-perturbed loss has been used. The second indicates the number of iterations
of DIRECT used. The third column indicates the number of scenarios used in the sample
average approximation when the perturbed loss is used. And “–” (resp. LS) in the fourth
column indicates if no (resp the local search) post-processing has been applied to the solution
used in the loss. The column Tot. CPU then provides the total CPU time of the 10 runs of
DIRECT with different seeds. Finally, the columns Avg L̂ and Best L̂ give respectively the
average and the best loss value of the best solution found by DIRECT algorithm on the 10
seeds used.

We can conclude from these results that optimizing on the seed seems a good idea. We
also observe that the loss function after the local search is smaller, which is natural given
that the local search improves the solution found by the easy problem.

5.3.3 Algorithm performance on test set

Table 7 summarizes the results obtained with the different w on the full test set. The first
line corresponds to the Fenchel young loss (FYL) of the learning by demonstration approach
previously proposed [Parmentier and T’Kindt, 2021], and serves as a benchmark. The next
eight ones correspond to the parameters obtained solving the learning problem described in
this paper with the settings of Table 6. The first four columns describe the parameters of
the learning problems used to obtained w and are identical to those of Table 6. The next
columns indicate the average results on the full test set for the four kind of post-processing

26

Learning problem w Test set results (with several ψ)
no ψ LS RDI ◦ LS pert RDI ◦ LS

obj iter pert ψ δavg δmax δavg δmax δavg δmax δavg δmax

FYL – – – 1.81% 8.57% 1.10% 6.88% 0.07% 3.41% 0.02% 0.46%

` 1000 – – 0.63% 24.53% 0.34% 4.59% 0.06% 1.65% 0.02% 1.53%
` 2500 – – 1.08% 21.19% 0.30% 6.33% 0.07% 1.71% 0.04% 1.71%

`pert 1000 100 – 0.83% 23.61% 0.38% 3.64% 0.06% 1.65% 0.03% 1.37%
`pert 2500 100 – 0.75% 19.54% 0.33% 3.98% 0.06% 1.69% 0.02% 1.37%

` 1000 – LS 10.51% 54.67% 0.02% 1.30% 0.01% 1.12% 0.01% 1.12%
` 2500 – LS 10.16% 55.70% 0.02% 1.30% 0.01% 1.12% 0.01% 1.12%

`pert 1000 100 LS 10.54% 55.22% 0.03% 2.26% 0.02% 2.26% 0.02% 2.26%
`pert 2500 100 LS 10.51% 53.64% 0.03% 2.26% 0.02% 2.26% 0.02% 2.26%

Table 7: Performance of our solution algorithms with different w on the 1|rj|
∑

j Cj test set.

described in Section 5.3.1. Again, we provide the average δavg and the worse δmax values of
the gap (22) between the solution found by the algorithm and the best solution found by all
the algorithms.

Two conclusions can be drawn from these results:

1. The solution obtained with our loss by experience approach tend to outperform on
average those obtained using the Fenchel Young loss, but tend to have a poorer worst
case behavior.

2. Using the loss with post-processing tend to improve the performance on the test set
with the pipelines that use this preprocessing, and possibly other after. But it decreases
the performance on the pipeline which do not use it.

Finally, Table 8 details the results for the fastest (no ψ) and the most accurate one (pert
RDI ◦ LS) pipeline on the subsets of instances of moderate, large, and huge size. In addition
to the gaps, the average computing time T avg is provided. Again, we can observe that:

3. Because the learning by experience approach enables to use a diversified set of instances
in the training set, it outperforms the learning by demonstration approach on large
and huge instances.

6 Conlusion

We have focused on heuristic algorithms for hard combinatorial optimization problems based
on machine learning pipelines with a simpler combinatorial optimization problem as layer.
Previous contributions in the literature required training sets with instances and their opti-
mal solutions to train such pipelines. We have shown that the solutions are not necessarily
needed, and we can learn such pipelines by experience if we formulate the learning problem

27

Pred. w Moderate Large Huge
ψ obj iter |Ω| ψ T avg δavg δmax T avg δavg δmax T avg δavg δmax

no ψ

FYL – – – 0.01 1.13% 8.57% 0.40 1.80% 6.06% 102.82 2.50% 6.47%
` 1000 – – 0.01 1.38% 24.53% 0.20 0.39% 2.33% 25.03 0.11% 0.54%
` 2500 – – 0.01 2.59% 21.19% 0.15 0.52% 3.61% 22.85 0.14% 0.96%

`pert 1000 100 – 0.01 1.51% 23.61% 0.25 0.66% 4.27% 31.95 0.33% 2.23%
`pert 2500 100 – 0.01 1.25% 19.54% 0.18 0.59% 3.46% 15.91 0.41% 2.00%
` 1000 – LS 0.01 10.19% 54.67% 0.07 10.64% 51.23% 2.04 10.70% 46.99%
` 2500 – LS 0.01 10.31% 55.70% 0.07 10.24% 50.63% 2.20 9.93% 43.87%

`pert 1000 100 LS 0.01 10.28% 55.22% 0.07 10.64% 49.59% 2.47 10.70% 46.04%
`pert 2500 100 LS 0.01 10.01% 53.64% 0.07 10.63% 49.27% 2.45 10.90% 46.36%

pert
RDI ◦ LS

FYL – – – 0.36 0.02% 0.46% 2.58 0.02% 0.24% 208.72 0.02% 0.16%
` 1000 – – 0.48 0.05% 1.53% 2.49 0.02% 0.62% 50.98 0.00% 0.10%
` 2500 – – 0.50 0.09% 1.71% 2.44 0.02% 0.34% 45.37 0.00% 0.10%

`pert 1000 100 – 0.49 0.05% 1.37% 2.61 0.02% 0.66% 65.53 0.00% 0.11%
`pert 2500 100 – 0.48 0.05% 1.37% 2.54 0.02% 0.61% 40.28 0.00% 0.10%
` 1000 – LS 0.48 0.03% 1.12% 2.34 0.01% 0.27% 14.06 0.00% 0.02%
` 2500 – LS 0.49 0.03% 1.12% 2.32 0.00% 0.14% 14.19 0.00% 0.01%

`pert 1000 100 LS 0.48 0.05% 2.26% 2.36 0.01% 0.27% 14.44 0.00% 0.05%
`pert 2500 100 LS 0.49 0.05% 2.26% 2.39 0.01% 0.27% 14.59 0.00% 0.05%

T avg is given in seconds.

Table 8: Influence of instances size on the performance of our solution algorithms with
different w on the 1|rj|

∑
j Cj test set.

as a regret minimization problems. This widens the potential applications of such methods
since it removes the need of an alternative algorithm for the hard problem to build the
training set. Furthermore, even when such an algorithm exits, it may not be able to handle
large instances. The learning by experience approach can therefore use larger instances in
its training set, and can take into account the effect of potential post-processings. These
two ingredients enable to scale better on large instances. Finally, we have shown that, if an
approximation algorithm can be encoded in the pipeline with a given parametrization, then
the parametrization learned by experience retains the approximation guarantee while giving
a more efficient algorithm in practice.

Future contributions may focus on providing richer statistical models in the neural net-
work, which would require to adapt the learning algorithm. Furthermore, the approximation
ratio guarantee could be extended to more general settings.

Acknowledgements

I am grateful to Yohann de Castro and Julien Reygnier for their help on Section 4, and to
Vincent T’Kindt for his help on the scheduling problem.

28

References

Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning, pages
136–145. PMLR. URL https://proceedings.mlr.press/v70/amos17a.html.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, April 2021. doi: 10.1016/j.ejor.2020.07.063.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and
Francis R. Bach. Learning with differentiable pertubed optimizers. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Mathieu Blondel, André F. T. Martins, and Vlad Niculae. Learning with Fenchel-Young
losses. 21(35):1–69. ISSN 1533-7928. URL http://jmlr.org/papers/v21/19-021.html.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe
Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and Modular Im-
plicit Differentiation. In Advances in Neural Information Processing Systems, October
2022.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to Statistical Learn-
ing Theory. In Advanced Lectures on Machine Learning, volume 3176, pages 169–207.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-23122-6 978-3-540-
28650-9. doi: 10.1007/978-3-540-28650-9 8.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

Guillaume Dalle, Léo Baty, Louis Bouvier, and Axel Parmentier. Learning with Combina-
torial Optimization Layers: A Probabilistic Approach, July 2022.

F. Della Croce and V. T’kindt. A recovering beam search algorithm for the one-machine
dynamic total completion time scheduling problem. Journal of the Operational Research
Society, 53:1275–1280, 2002.

Adam N. Elmachtoub and Paul Grigas. Smart “Predict, then Optimize”. Management
Science, March 2021.

Bruno Escoffier, Laurent Gourvès, Jérôme Monnot, and Olivier Spanjaard. Two-stage
stochastic matching and spanning tree problems: Polynomial instances and approxima-
tion. European Journal of Operational Research, 205(1):19–30, August 2010.

29

https://proceedings.mlr.press/v70/amos17a.html
http://jmlr.org/papers/v21/19-021.html

Steven G. Johnson. The NLopt nonlinear-optimization package. URL http://github.com/

stevengj/nlopt. Accessed on 2021-07-04.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181,
October 1993. doi: 10.1007/BF00941892.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-End
Constrained Optimization Learning: A Survey. In Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, pages 4475–4482. International Joint
Conferences on Artificial Intelligence Organization, 2021. ISBN 978-0-9992411-9-6. doi:
10.24963/ijcai.2021/610. URL https://www.ijcai.org/proceedings/2021/610.

Jayanta Mandi, Peter J Stuckey, Tias Guns, et al. Smart predict-and-optimize for hard
combinatorial optimization problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 1603–1610, 2020.

Ruben Martinez-Cantin. BayesOpt: A Bayesian Optimization Library for Nonlinear Opti-
mization, Experimental Design and Bandits. page 5.

Sebastian Nowozin. Structured Learning and Prediction in Computer Vision. Foundations
and Trends® in Computer Graphics and Vision, 6(3-4):185–365, 2010. doi: 10.1561/
0600000033.

Axel Parmentier. Learning to Approximate Industrial Problems by Operations Research
Classic Problems. Operations Research, April 2021. doi: 10.1287/opre.2020.2094.

Axel Parmentier and Vincent T’Kindt. Learning to solve the single machine scheduling
problem with release times and sum of completion times. arXiv:2101.01082 [cs, math],
January 2021.

Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differen-
tiation of Blackbox Combinatorial Solvers. URL https://openreview.net/forum?id=

BkevoJSYPB.

Michael M. Wolf. Mathematical Foundations of Supervised Learning. https://www-
m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MA4801 2018S/ML notes main.pdf, 2018.

30

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://www.ijcai.org/proceedings/2021/610
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB

A Proof of Theorem 2

A.1 Background on Rademacher complexity and metric entropy
method

This section introduces some classical tools of statistical learning theory [Bousquet et al.,
2004]. The lecture notes of [Wolf, 2018] contain detailed proofs.

We place ourselves in the setting of Section 4.1. Let F be the family of functions
{
ξ 7→

`(ξ,w) : w ∈W
}

. The Rademacher complexity of F is

Rn(F) = Eξi,σi
[

sup
w∈W

1

n

n∑
i=1

σi`(ξi,w)

]
where the σi are i.i.d. Rademacher variables, i.e., variables equal to 1 with probability 1/2,
and to −1 otherwise. The following well-known result bounds the excess risk based on the
Rademacher complexity.

Proposition 7. With probability at least 1− δ, we have

L(ŵn)− L(w∗) ≤ 4Rn(F) +

√
2 log(2/δ)

n
.

The metric entropy method enables to bound the Rademacher complexity. The empirical
Rademacher complexity of F is obtained when we replace the expectation over ξi by its values
for the training set used ξ1, . . . , ξn.

R̂n(F) = E
[

sup
w∈W

1

n

n∑
i=1

σi`(ξi,w)|ξ1, . . . , ξn

]
and we have Rn(F) = E[R̂n(F)].

Given n instances ξ1, . . . , ξ2 and the corresponding distribution µ̂n on Ξ, the pseudometric
L2(µ̂n) on F is the L2 norm induced by µ̂n on F

‖`(·,w)− `(·,w′)‖2,µ̂n
=

√√√√ 1

n

n∑
i=1

(`(ξi,w)− `(ξi,w′))2

We denote by Bε,L2(µ̂n)(`(·,w)) the ball of radius ε centered in `(·,w). The set covering
number of F with respect to L2(µ̂n) is

N(ε,F , L2(µ̂n)) = min
{
m : ∃{w1,wm} ⊆ Rd,F ⊆

m⋃
j=1

Bε,L2(µ̂n)(`(·,wm))
}
.

The following result bounds the empirical Rademacher complexity from the covering number.

Proposition 8. (Dudley’s theorem) Let F be a family of mapping from Z to [−1, 1], then

R̂n(F) ≤ 12

∫ ∞
0

√
logN(ε,F , L2(µ̂n))

n
dε

31

A.2 Proof of Theorem 2

The proof is as follows. We show that the Gaussian perturbation turns any bounded function
in a Lipschitz function. Hence, the perturbed loss is Lipschitz. This implies an upper bound
on the covering number, and Dudley’s theorem enables to conclude.

Let Z be a centered standard Gaussian vector on Rd. It is well known that

E(‖Z‖) ≤
√
d. (23)

Indeed, applying u ≤ (1+u2)/2 with u =
√

1
d

∑
Z2
i gives 1√

d
‖Z‖ ≤ 1

2
(1+ 1

d

∑d
i=1 Z

2
i). Taking

the expectation and using E(Z2
i) = 1 gives (23).

Lemma 9. Let g : Rd → [0, 1] be an integrable function, Z a standard normal random
vector on Rd, σ > 0 a positive real number, and G(w) = Eg(w + σZ). Then w 7→ G(w) is√
d
σ

-Lipchitz.

Proof. Let h be the density of Z̃ = σZ. We have

G(w) =

∫
h(z)g(z +w) =

∫
h(z −w)g(z)

By dominated convergence, we have

∇G(w) = −
∫
∇h(z −w)g(z) = −

∫
∇h(z)g(z +w)

From there, using the facts that |g(w)| ≤ 1 and Z is a standard Gaussian, we get

‖∇G(w)‖ ≤
∫
‖∇h(z)‖ =

∫
‖ z

σ2(
√

2πσ)n
e−
‖z‖2

2σ2 ‖ =
E(‖Z̃‖)
σ2

=
1

σ
E(‖Z‖) ≤

√
d

σ

which gives the result.

Given an arbitrary element ξ in Ξ, Lemma 9 applied with g = `(ξ, ·) gives

|`(ξ,w)− `(ξ,w′)| ≤
√
d

σ
‖w −w′‖2

Hence

‖`(·,w)− `(·,w′)‖2,µ̂n
=

√√√√ 1

n

n∑
i=1

(`(ξi,w)− `(ξi,w′))2 ≤
√
d

σ
‖w −w′‖.

As a consequence, if w1, . . . ,wm is an εσ√
d

covering of W endowed with the Euclidean norm,

then `(·,w1), . . . , `(·,wm) is an ε covering of F . Hence, if W is contained in the Euclidean
ball of radius M , we get

N(ε,F , L2(µ̂n)) ≤ N(
εσ√
d
,W = Bd(M), ‖ · ‖2) ≤

(
M
√
d

εσ

)d

32

for ε ≤ M
√
d

σ
and N(ε,F , L2(µ̂n)) = 1 otherwise. And we obtain

logN(ε,F , L2(µ̂n)) ≤ d
(
log(M

√
d/σ)− log ε)

)
for ε ≤ M

√
d

σ
and logN(ε,F , L2(µ̂n)) = 0 otherwise.

Proposition 8 then gives

R̂n(F) ≤ 12

∫ M
√
d

σ

0

√
d

log(M
√
d

σ
)− log ε

n
dε = 12

√
d

n

∫ M
√
d

σ

0

√
− log

(ε

M
√
d/σ

)
dε =

C

4

Md

σ
√
n

with C = 48
∫ 1

0

√
− log xdx. Remark that the bound on R̂n(F) we obtain does not depend

on the sample ξ1, . . . , ξn, and is therefore also valid for Rn(F) = E
(
R̂n(F)

)
. Proposition 7

then gives Theorem 2.

33

	Introduction
	Designing pipelines with combinatorial optimization layers
	Stochastic vehicle scheduling problem.
	Single machine scheduling problem.
	Constructing pipelines

	Learning by experience
	Learning problem and regularized learning problem
	Algorithms to solve the learning problem
	Practical remarks for a generic implementation

	Learning rate and approximation ratio
	Background on learning with perturbed bounded losses
	Approximation ratio of our structured approximation
	Existence of a with an approximation ratio guarantee

	Numerical experiments
	Maximum weight two stage spanning tree
	Stochastic VSP
	Setting: Features, post-processing, and instances
	Learning algorithm
	Algorithm performance on test set

	Single machine scheduling problem 1|rj|j Cj
	Setting
	Learning algorithm
	Algorithm performance on test set

	Conlusion
	Proof of Theorem 2
	Background on Rademacher complexity and metric entropy method
	Proof of Theorem 2

