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Abstract
The design of algorithms that leverage machine learning alongside combinatorial

optimization techniques is a young but thriving area of operations research. If trends
emerge, the literature has still not converged on the proper way of combining these
two techniques or on the predictor architectures that should be used. We focus on
operations research problems for which no efficient algorithms are known, but that are
variants of classic problems for which ones efficient algorithm exist. Elaborating on
recent contributions that suggest using a machine learning predictor to approximate
the variant by the classic problem, we introduce the notion of structured approximation
of an operations research problem by another. We provide a generic learning algorithm
to fit these approximations. This algorithm requires only instances of the variant in
the training set, unlike previous learning algorithms that also require the solution
of these instances. Using tools from statistical learning theory, we prove a result
showing the convergence speed of the estimator, and deduce an approximation ratio
guarantee on the performance of the algorithm obtained for the variant. Numerical
experiments on a single machine scheduling and a stochastic vehicle scheduling problem
from the literature show that our learning algorithm is competitive with algorithms
that have access to optimal solutions, leading to state-of-the-art algorithms for the
variant considered.

Keywords. Machine learning for combinatorial optimization, structured approximation,
approximation algorithm, stochastic vehicle scheduling problem, single machine scheduling
problem.

1 Introduction

Bengio et al. [2021] survey the young but thriving literature on operations research algorithms
that leverage machine learning. Part of the literature uses machine learning to improve ex-
isting algorithms. For instance, recent contributions learn to tune solvers hyperparameters
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or to take heuristic decision within OR algorithms, and notably branching decision in mixed
integer linear programming (MILP) solvers. A growing literature also aims at building en-
tirely new algorithms with machine learning at their core [Bello et al., 2017, Kool et al., 2018,
Vinyals et al., 2015]. Bengio et al. [2021] call them end-to-end learning algorithms. They
are typically in two steps. A machine learning predictor ϕθ extracts relevant information
on the instance solved, and a constructive heuristic then rebuild a solution based on the
information extracted.

Practically, ϕθ is chosen in a parametrized family {ϕθ : θ ∈ Θ}. The goal is to have a
flexible algorithm that can be tailored to an application of interest by choosing a suitable
θ. The idea is to use the available data to “learn” θ. Practically, this data is used to refor-
mulate the problem of choosing θ as an optimization problem called the learning problem.
We call the algorithm parametrized by the learned θ the learned algorithm. The learning
problem is solved only once offline, which allows the use of computationally intensive meth-
ods. Parameter θ is then known and the learned algorithm can then be used online to find
quickly solution on new instances. Such methods therefore enable to deport offline most of
the computing time.

On many classic operations research problems, these end-to-end learning based algo-
rithms are still largely outperformed by efficient algorithms on which the community has
converged after decades of research, because the constructive heuristic does not exploit the
structure of the problem as well as the specialized algorithm. However, such machine learning
algorithms remain appealing because they are flexible. Indeed, if the specialized operations
research algorithm are generally very efficient on the problem they are designed for, they
often cannot be applied to variants. On the contrary, constructive heuristics are easy to
adapt to many variants of an operations research problem because they are simple. And the
learning problem enables to customize them for a specific variant, making them reasonably
efficient.

The author recently proposed a structured learning approach [Parmentier, 2021] with
the objective of building algorithms as generic as the constructive heuristics and as efficient
as the specialized algorithm. Suppose that we are interested in solving a hard operations
research problem

min
x∈X (Γh)

fh(x; Γh) (h)

that is variant of a classic operations research problem

min
x∈X (Γe)

f e(x; Γe) (e)

for which a practically efficient algorithm Ae is available in the literature. The letters h
and e stand for hard and easy. Γh and Γe respectively denote the instances considered. We
indicate the instance Γ in the definition of the objective function and the set of admissible
solution because several instances of the same problem will be considered simultaneously
in the learning algorithm. The approach proposed is illustrated on Figure 1. A machine
learning predictor ϕθ is used to encode the hard problem instance Γh into an instance of
Γe. Algorithm Ae then finds an optimal solution xe. Finally, a decoding algorithm ψ is
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Figure 1: ML to approximate hard problems by well-solved ones

used to rebuild a solution xh for Γh from xe. The encoder ϕθ is a statistical predictor and
its computation is very fast. The easy problem (e) is chosen because even large instances
are tractable with a (potentially advanced) algorithm Ae from the literature. For instance,
Ae can involve the resolution of a tractable MILP formulation with a solver. Finally, the
decoder ψ is not mandatory and is typically a descent heuristic. Hence, the learned algorithm
is sufficiently fast to be applied online (on a single instance). And it can be applied many
times (∼ 1000 times) to several instances during the CPU intensive but offline learning
phase.

Previous contributions [Parmentier, 2021, Parmentier and T’Kindt, 2021] show the prac-
tical advantage of this approximation paradigm: appropriate ϕθ and (e) retain most of the
structure of (h) and make the hard problem instance tractable with Ae. And their numerical
experiments show that the learned algorithm is practically efficient and that it meets the
scaling challenge [Bengio et al., 2021, Section 6.2]. But they underline two challenges that
must be met to make the approach work. First, we must design ϕθ in such a way that
the solution returned has a small objective fh(xh,Γh). And second, we must formulate the
learning problem and propose a learning algorithm. The initial contributions illustrate on
specific applications how to build and learn approximations, but do not provide a generic
method to address these challenges. In this paper, we formalize the notion of structured
approximation of one problem by another, propose generic methods to design and learn
such approximations, provide theoretical guarantees on their performances, and show their
practical performance through numerical experiments.

We make the following contributions:

1. We formalize the notion of structure of a problem in order to introduce the notion of
structured approximation of an operations research problem (h) by another one (e).
Practically, such an approximation of (h) is given by an easy problem (e) sharing the
same structure, as well as an encoder ϕθ and a decoder ψ that satisfy several properties.

2. We provide classifier architectures that mutualize the use of several generalized linear
models within ϕθ, which enables to obtain flexible models with a parameter vector θ
of moderate dimension (≤ 100).

3. We introduce a formulation of the learning problem and algorithms to solve it. We
expect them to work on any structured approximation such that the dimension of θ is
moderate (≤ 100) and the solution pipeline can be applied several hundred to several
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thousand times during the learning phase. Contrarily to previous formulations of the
learning problem which required a training set containing instances of (h) as well as
an optimal (or at least a good) solution of each instance, this formulation requires only
instances of (h) but no solution. This is a practical advantage because no algorithm
for the hard problem is required.

4. We demonstrate the practical performance of our learning algorithm on the applica-
tions of the literature [Parmentier, 2021, Parmentier and T’Kindt, 2021]: Our learned
algorithm (which has no access to optimal solutions of instances in the training set)
matches the performance of those of the literature (which have access to optimal solu-
tions), and are therefore state-of-the-art heuristics for the problems considered.

To the best of our knowledge, the literature on end-to-end learning algorithms for combi-
natorial optimization problems has focused on the practical efficiency of these heuristics and
no theoretical guarantees on the learning algorithms have been proposed. More precisely,
convergence results for the estimator of θ they use may exist in the statistical learning liter-
ature, but the consequences of these results in terms guarantees on the optimality gap of the
solution returned by the learned algorithm have not been studied. Since we propose struc-
tured approximations, it is natural to wonder if and at which speed our learning algorithm
converges towards the best approximation.

5. Leveraging tools from statistical learning theory, we prove the convergence of the learn-
ing algorithm toward the approximation with the best expected loss, and an upper
bound on the convergence speed that does not depend on the diversity instances struc-
tures.

6. We also prove that, if ϕθ is sufficiently regular and there exists a parameter θ̃ such that
the easy problem objective approximate well the hard problem objective, then with
high probability on the training sample, the learned algorithm is an approximation
algorithm for the hard problem (h) whose approximation ratio improves with the size
of the training set.

The paper is organized as follows. Section 2 introduces the easy and hard problems of
the literature [Parmentier, 2021, Parmentier and T’Kindt, 2021] that will be used as run-
ning examples in the paper. Section 3 formalizes the notion of structured approximation
and provide a practical guide on how to build such approximations. Section 5 details the
theoretical analysis of the learning algorithm and the convergence to an approximation al-
gorithm. Finally, Section 6 provides extensive numerical results showing the performance of
the learning algorithm on instances from the literature.

2 Easy and Hard problems used as running examples

This section introduces two hard problems (h) considered in previous contributions [Par-
mentier, 2021, Parmentier and T’Kindt, 2021], as well as the easy problem (e) used to
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approximate them. We will use them as running examples of structured approximation and
as benchmark in the numerical experiments. The problem description follows these papers.

2.1 Stochastic vehicle scheduling problem.

Hard problem: stochastic vehicle scheduling problem Let V be a set of tasks that
should be operated using vehicles. For each task v in V , we suppose to have a scheduled
begin time tbv in Z+ and a scheduled end time tev in Z+. We suppose tev > tbv for each task
v in V . For each pair of tasks (u, v), the travel time to reach task v from task u is denoted
by ttr(u,v). Task v can be operated after task u using the same vehicle if

tbv ≥ teu + ttr(u,v). (1)

We introduce the digraph D = (V,A) with vertex set V = T ∪ {o, d} where o and d are
dummy origin and destination vertices. The arc set A contains the pair (u, v) in T 2 if v can
be scheduled after task u, as well as the pairs (o, v) and (v, d) for all v in V . An o-d path P
represents a sequence of tasks operated by a vehicle. A feasible solution is a partition of V
into o-d paths. If we denote by c(P,Γh) the cost of operating the sequence corresponding to
the o-d path P , and by Pod the set of o-d paths, the problem can be modeled as follows.

min
z

∑
P∈Pod

c(P ; Γh)zP , (2a)

s.t.
∑
P3v

zP = 1, ∀v ∈ V (Γh)\{o, d}, (2b)

zP ∈ {0, 1}, ∀P ∈ Pod(Γh), (2c)

Let Ω be a set of scenarios. For each task v, we have a random begin time ξb
v and a

random end time ξe
v, and for each arc (u, v), we have a random travel time ξtr

(u,v). Hence,

ξb
v (ω), ξe

v(ω), and ξtr
(u,v)(ω) are respectively the beginning time of v, end time of v, and travel

time between u and v under scenario ω in Ω. We define ξe
o = 0 and ξb

d = +∞.
Given an o-v path P , we define recursively the end-time τP of P as follows.

τP =

{
0, if P is the empty path in o,
ξe
v + max(τQ + ξtr

a − ξb
v , 0), if P = Q+ a for some path Q and arc a.

(3)

Equation (3) models the fact that a task can be operated by a vehicle only when the vehicle
has finished the previous task: The vehicle finishes Q at τQ, and arrives in v at τQ + ξtr

a

with delay max(τQ + ξtr
a − ξb

v , 0). The total delay ∆P along a path P is therefore defined
recursively by

∆P =

{
0, if P is the empty path in o,
∆Q + max(τQ + ξtr

a − ξb
v , 0), if P = Q+ a for some path Q and arc a.

(4)

Finally, we define the cost of an o-d path P as

c(P ) = cveh + cdelE(τP ) (5)
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where cveh in Z+ is the cost of a vehicle and cdel in Z+ is the cost of a unit delay. Practically,
we use a finite set of scenarios Ω, and compute the expectation as the average on this set.

Easy problem: usual vehicle scheduling problem The usual vehicle scheduling prob-
lem can also be formulated as (2), the difference being that now the path can be decomposed
as the sum of the arcs cost

cP =
∑
a∈P

ca with ca ∈ R. (6)

It can be reduced to a flow problem on D and efficiently solved using flow algorithms or
linear programming. In Equation (6) and in the rest of the paper, we use an overline to
denote quantities corresponding to the easy problem.

2.2 Single machine scheduling problem.

Hard problem: 1|rj|
∑

j Cj. n jobs must be processed in a single machine. Jobs cannot
be interrupted once launched. Each job has a processing time pj and a release time rj in
R. A solution is a schedule s = (j1, . . . , jn), i.e., a permutation of [n] that gives the order
in which jobs are processed. Using the convention Cj0 = 0, the completion time of jobs in s
are defined as

Cji = max(rj, Cji−1
) + pji .

The objective is to find a solution minimizing
∑

j Cj. This problem is strongly NP-hard.

Easy problem: 1||
∑

j Cj. The easy problem is obtained when there is no release time,
and only jobs processing times pj. Jobs completion times are therefore given by

Cji = Cji−1
+ pji .

Again, we use an overline to denote quantities of the easy problem. An optimal schedule is
obtained using the shortest processing time first (SPT) rule, that is, by sorting the jobs by
increasing pj.

3 Structured approximations of Operations Research

problems

We can now introduce the notion of structured approximation of a problem by another, and
illustrate it on the examples of the previous section.

3.1 Instances structure and parameters.

To that end, we begin with a definition of the structure of an operations research problem.
Consider a generic operations research problem

min
x∈X (E)

f(x,Γ) with Γ = (E ,%).
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Problem Structure E Parameters %

Shortest path Digraph D = (V,A) Arc costs ca
Spanning tree Graph G = (V,E) Edge weights wa

1|rj|
∑

j Cj Tasks ([n]) (rj, pj)j∈[n]

1||
∑

j Cj Tasks ([n]) (pj)j∈[n]

Table 1: Structure and parameters of several operations research problems.

An instance Γ is a pair (E ,%), with E the structure of Γ and % its vector of parameters.
The structure is a finite collection E = {Ek : k ∈ K} containing several finite sets Ek called
substructures. For each k in K, we have a parameter space Rk ⊆ Rdk . And for each k in
K and e ∈ Ek, we have a vector of parameters ρe ∈ Rk. And we denote by R(E) the set∏

k∈K R
Ek
k to which belongs the parameter % of any instance with structure E . We suppose

that the set of solutions X (E) of Γ depends only on its structure. This does not prevent
us from modeling parameter dependent constraints within the objective function f , that is
equal to +∞ when such a constraint is violated.

For instance, if the problem considered is a b-flow problem, an instance of the problem is
given by a digraph D = (V,A), a vector (bv)v ∈ RV giving the inflows-outflows at each vertex
v, and vectors (`a)a∈A ∈ RA

+, (ua)a∈A ∈ RA
+, and (ca)a∈A ∈ RA giving arcs lower capacities,

upper capacities, and costs. In that case, we can use K = {1, 2}, E1 = V , E2 = A, ρv = (bv),
and ρa = (`a, ua, ca).

The substructures index set K and parameter spaces Rk ⊆ Rdk are properties of the
problem: They do not change from one instance to another. For the b-flow example, R1 = R
while R2 = R2

+ × R. On the contrary, the sets Ek change and typically have different
cardinal from one instance to another. When the instance is not clear from context, we use
the notation Ek(Γ

h). The number of vertices and of arcs of a b-flow problem change from
one instance to another. Table 1 provides the structures E and parameters % of some classic
operations research problems.

Consider the stochastic vehicle scheduling problem of Section 2.1. The structure E is
given by the digraph D = (V,A). And the parameters by ρh

v = (ξb
v , ξ

e
v) and ρh

a = ξtr
a ,

which we can store as vectors containing the value taken by these random variables for each
scenario. We approximate it by the usual vehicle scheduling problem on the same structure
D = (V,A), but where vertices no more have parameters, and arcs have parameters ρe

a = (ca).
The structure E of the scheduling problem 1|rj|

∑
j Cj of Section 2.2 is the set of jobs [n].

The parameter vector of a job j is ρh
j = (rj, pj). The easy problem 1||

∑
j Cj has the same

structure, but the parameter of a job is then ρe
j = (pj).

3.2 Structured approximations

We suggest approximating hard problem instances Γh with structure E and parameters %h

by instances of an easy problem with the same structure E , the same solutions X (E) but
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simpler parameters %e and objective function.

Approximate min
x∈X (E)

fh
(
x, (E ,%h)︸ ︷︷ ︸

Γh

)
by min

x∈X (E)
f e
(
x, (E ,%e)︸ ︷︷ ︸

Γe

)
(7)

Let ℵh and ℵe denote the sets of instances of (h) and (e). In practice, we use the encoder

ϕθ : ℵh −→ ℵe

Γh = (E ,%h) 7−→ (E ,%e)
with %e = ϕ̃θ(Γ

h) ∈ Re(Γh) (8)

and want to learn the predictor ϕ̃θ giving the parameters %e of the approximation Γe = (E ,%e)
of an instance Γh = (E ,%h).

We now explain how to build ϕ̃θ. The main difficulty comes from the fact that the size of
the output ϕθ(Γ

h) changes from one instance to another. We handle it by using a predictor
ϕθk,k for each substructure Ek in E .

ϕθk,k : Pk → Rk

(e,Γh) 7→ ρe
e

with Pk =
{

(e,Γh) : e ∈ Ek(Γh), Γh ∈ ℵh
}

(9)

The predictor ϕθk,k takes in input an instance Γh = (E ,%h) and an element e of Ek, and
returns the parameter ρe

e of e in the instance ϕθ(Γ
h). The full predictor is obtained by

applying the substructure predictors to each element of the structures.

ϕ̃θ(Γ
h) = %e with %e =

((
ϕθk,k(e,Γ

h)
)
e∈Ek

)
k∈K

(10)

and its parameter vector θ = (θk)k ∈ K is the concatenation of the substructures predictors
parameters. In summary, we handle variable size output by using a shared predictor for
all the elements of a substructure Ek. We can now define a structured approximation of a
problem (h) by a problem (e) to be an encoder ϕθ such that Equations (7), (8), (9), and (10)
are satisfied.

Figure 2 illustrates the full approximation on our two running examples. In learning
algorithms, it is handful to consider all the elements of substructures together. We therefore
denote by e ∈ E the fact that e ∈ Ek for some k ∈ K, and by ϕθ(e,Γ

h) the quantity
ϕk,θk(e,Γ

h).

3.3 Building structured approximations: Encoding instances in-
formation

A second difficulty comes from the fact that ϕθ takes in input instances Γh of different sizes,
while machine learning predictors generally take in input vectors of fixed size. We therefore
need to define, for each substructure k ∈ K, an encoding of the information on (e,Γh) for e
in Ek.
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Structure E
Elements e ∈ E

Parameters ρh
e

Same feature
map φ(·, ·)

for all e and Γh

Elements
features

Dot prod-
uct 〈θ|·〉

with the same θ
for all e

Parameters ρh
e

Same struc-
ture E

Elements e ∈ E

j1

(p1, r1)

j2

(p2, r2)

. . . jk

(pk, rk)

φ(j1,Γ
h) φ(jk,Γ

h)

p1:
〈θ|φ(j1,Γ

h)〉
pk:

〈θ|φ(jk,Γ
h)〉

j1 j2 . . . jk

1|rj|
∑

j Cj instance Γh

1||
∑

j Cj instance Γe

. . .
a1

a2 ak

ξa1 ξak

φ(ξa1) φ(ξak)

ca1 :
〈θ|φ(ξa1)〉

cak :
〈θ|φ(ξak)〉

. . .
a1

a2 ak

Stochastic VSP instance Γe

VSP instance Γh

ϕθ(e,Γ
h)

Figure 2: Examples of encoding using linear predictors ϕ : (e,Γh) 7→
〈
θ|φ(e,Γh)

〉
Generalized linear model A simple approach is to use a generalized linear model. In
such an approach, for each substructure k, we build a feature mapping

φj : (e,Γh) −→ φj(e,Γ
h)

that maps (e,Γh) to a feature space Fk, which will typically be Rfk . The predictor then
makes a linear combination of the components of φi(e,Γ

h).

ρe
e = ϕθk,k(e,Γ

h) = θTk φ(e,Γh) (11)

In Equation (11), the parameter θk can be seen as a matrix in Rdk×fk . When ρe
e is in R, it

is a simple dot product 〈θk|φ(e,Γh)〉, which is the case for our running examples illustrated
on Figure 2.

On a given problem, we still need to define the different features f in [fk]. The simplest
approach is to define φf (e,Γ

h) as a function of ρe
e only. For instance, on the stochastic VSP,

the parameter ρe
a of an arc a = (u, v) is the random travel time ξtr

a . We can for instance take
as a feature φ(a,Γh) its median. Such features that consider solely an element parameter
ρh
e are unfortunately blind to the relations between the different elements of an instance.

For instance, on the stochastic VSP, the slack ξb
v − (ξe

u + ξtr
a ) between u and v, i.e., the

time that a vehicle operating u and then v if there was no delay propagating gives a much
more interesting information on how promising a is, and we can take its quantiles as features
[Parmentier, 2021].
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Encoding information on an element as part of an instance We now introduce two
generic techniques that enable to take such relations between an element and the rest of the
structure into account. The first technique enables to compare ρh

e to ρh
e′ for e′ ∈ Ek. It

defines a statistic f : Rdhe → R, and consider f(ρh
e) as a realization of the random variable

F : Ek → R
e′ 7→ f(ρh

e′)

and take some relevant statistics on the realization F (e) of F , such as the value of the
cumulative distribution function of F in f(ρh

j ). For instance, when considering a job j of
1|rj|

∑
j Cj with parameter ρh

j = (rj, pj), we can define f(ρh
j ) = rj + pj, we obtain as feature

the rank (divided by n) of feature j in the schedule where we sort the jobs by increasing
rj + pj, a statistic known to be interesting and used in dispatching rules.

The second technique is to explore the role of e in the solution of a very simple optimiza-
tion problem. A natural way of building features is to run a fast heuristic on the instance
Γh and seek properties of e in the resulting solution. For instance, the preemptive version
of 1|rj|

∑
j Cj, where jobs can be stopped, is easy to solve. Statistics such as the number of

times job j is preempted in the optimal solution can be used as features.

Features free encoding Of course, more advanced model could be used instead of gen-
eralized linear models, and we believe that using kernel methods or deep neural networks
to build these classifiers ϕθk,k is a promising direction. The design of deep neural networks
adapted to combinatorial optimization problems is indeed an active area of research [Bengio
et al., 2021, Joshi et al., 2019, Vinyals et al., 2015]. When the structure is a graph, using a
graph convolutional network [Kipf and Welling, 2017] seems natural. However, the learning
algorithm proposed in the next section is tailored for model with parameter θ of moderate
dimension, typically ≤ 100. As deep neural networks typically have orders of magnitude
more parameters, they would require another learning algorithm.

3.4 Discussion

The structured approximations introduced in this section have two main properties. First,
they can be applied on instances of very different size. And second, elements Ek of a given
structure share the same predictors ϕθk,k, and hence the same parameters θk. This enables to
handle large instances with moderate size parameter vector θ, as we illustrated in Section 3.3.
Let us now see how these properties can be exploited in the learning phase.

4 Learning structured approximations without opti-

mal solutions

Having defined these structured approximations, we now focus on the problem of learning
such approximations. Given a training set composed of representative instances, the learning
problem aims at finding a parameter θ such that ϕθ(Γ

h) is a good approximation of Γh.
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4.1 Learning problem and regularized learning problem

Let Γh
1, . . . ,Γ

h
n be our training set composed of n instances of the learning problem. We place

ourselves in the setting of Section 3: Γh = (E ,%h) and Γe = (E ,%e) with %e = ϕθ(Γ
h) have

the same set of solutions X (E). Without loss of generality, we suppose that f(x; Γh) ≥ 0
for all instances Γh = (E ,%h) and feasible solution x ∈ X (E). We also suppose to have a
mapping u : E 7→ u(E) > 0 that is a coarse estimation of the value of an optimal solution of
an instance with structure E . We define the loss function as the weighted cost of the easy
problem solution as a solution of the hard problem.

`(θ,Γh) :=
1

u(E)
min

{
fh
(
x; Γh

)
: x ∈ arg min

x∈X (E)

f e
(
x;ϕθ(Γ

h)
)}
. (12)

The learning problem consists in minimizing the expected loss on the training set

min
θ∈Θ

1

n

n∑
i=1

`(θ,Γh
i ). (13)

The instances in the training set may be of different size, leading to solutions costs which
different order of magnitudes. The weight 1

u(E)
enables to avoid giving too much importance

to large instances.
When the approximation is flexible and the training set is small, the solution of (13) may

overfit the training set, and lead to poor performance on instances that are not in the training
set. In that case, the usual technique to avoid overfitting is to regularize the problem. One
way to achieve this is to make the prediction “robust” with respect to small perturbations
of θ: We want the solution returned to be good even if we use θ +Z instead of θ, where Z
is a small perturbation. Practically, we assume that Z is a standard Gaussian, σ > 0 is a
real number, and we define the perturbed loss

`pert(θ,Γh) = EZ`(θ + σZ,Γh). (14)

The regularized learning problem is then formulated as follows.

min
θ∈Θ

1

n

n∑
i=1

`pert(θ,Γh) (15)

Remark 1. If we are ready to increase the CPU time, the perturbation of θ by Z can also be
used to increase the quality of the solution returned by our solution pipeline. We can draw
several samples Zi of Z, apply the solution pipeline with θ + σZi instead of θ, and return
the best solution found across the samples at the end. We provide numerical results with
this perturbed algorithm on the 1|rj|

∑
j Cj problem in Section 6. 4

4.2 Algorithms to solve the learning problem

Proposition 1. Given Γh = (E ,%h), if θ 7→ ϕθ(e,Γ
h) is piecewise linear for any e in E, ρh

and Γh, and %e 7→ f e(x, (E ,%e)) is piecewise linear for all x, E, then the objective of (13) is
piecewise constant in Γh.
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Proof. Since the composition of two piecewise linear functions is piecewise linear, θ 7→
f e(x; E , ϕθ(Γh)) is piecewise linear. Hence, there exists a partition of the space into a fi-

nite number of polyhedra such that the set
{
fh
(
x; Γh

)
: x ∈ arg minx∈X (E) f

e
(
x;ϕθ(Γ

h)
)}

is constant on each polyhedron. The definition of `(θ,Γh) then ensures that θ 7→ `(θ,Γh)
is piecewise constant on the interior of each polyhedron of the partition, and lower semi-
continuous, which gives the result.

Proposition 1 is bad news from an optimization point of view. We need a derivative free
optimization algorithm that uses a moderate amount of function evaluations and does rely
on “slope”. We therefore suggest using either a heuristic that searches the state space such
as the DIRECT algorithm [Jones et al., 1993], or a Bayesian optimization algorithm that
builds a global approximation of the objective function and use it to sample the space in θ
that are promising according to the approximation. The numerical experiments evaluate the
performance of these two kinds of algorithms.

Let us now consider the regularized learning problem (13). Since the convolution product
of two functions is as regular as the most regular of the two functions, θ 7→ `pert(θ,Γh) is
C∞ in that case. In theory, it can therefore be solved using a stochastic gradient descent.
We tested it and obtained poor results, which is not so surprising because in that case, the
objective of the learning problem is composed of several plateaus with smooth transition
inbetween, which is not much easier to solve in practice. We obtained much better results
by solving a sample average approximation of this perturbed learning problem using the
algorithms of Section 4.2.

4.3 Practical remarks for a generic implementation

Perturbation strength. Section 5 provides a closed formula to set the perturbation
strength σ. We observed in the numerical experiments that using no perturbation or σ = 1
leads to good results in practice on our problems.

Skipping the bilevel optimization Using a bilevel optimization enables to define `(θ,Γh)
unambiguously even when the easy problem (e) admits several optimal solutions. Since the
bilevel optimization is not easy to handle, we use in the numerical experiments the loss

˜̀(θ,Γh) =
1

u(E)
fh
(
Ae ◦ ϕθ(Γh)

)
that takes the solution returned by algorithm Ae. Its value may therefore depend on Ae.

Post-processing As an alternative, we can use in the learning problem the solution re-
turned by the solution pipeline after the post-processing ψ instead of the solution of the easy
problem. The loss becomes

`ψ(θ,Γh) :=
1

u(E)
fh
(
ψ ◦ Ae ◦ ϕθ(Γh)

)
. (16)

The resulting learning algorithm may be much more time-consuming depending ψ.
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4.4 Comparison to the structured learning formulations

Bengio et al. [2021, Section 3.1] distinguish two approaches to formulate learn a predictor
taking some given decisions in a combinatorial optimization context. The learning by demon-
stration approach supposes to have a training set containing instances and good decisions,
and trains the predictor to take the same decision. The learning by experience approach
does not require examples with good decisions, but computes some objective on the result
returned with a given parameter, and seeks a parameter leading to a good objective. For
instance, when a predictor is used to take branching decision in a branch-and-bound al-
gorithm [Lodi and Zarpellon, 2017], a learning by demonstration approach typically learn
to imitate strong branching [Alvarez et al., 2017] while the experience approaches can for
instances try to minimize the total running time [Khalil et al., 2016]. With the objective
of selecting subroutines in a quadratic optimization solver, Karapetyan et al. [2017] use a
learning approach relatively similar to our one, where the relevance of a parametrization is
evaluated by launching the solution pipeline

In our structured approximation context, the learning by demonstration approach uses
a training set with hard problem (h) instances and their optimal solution, and train the
prediction problem to output these solutions. The author [Parmentier, 2021] has previously
shown that the learning by demonstration problem can be reformulated as a structured learn-
ing problem [Nowozin, 2010]. The most generic algorithm [Parmentier and T’Kindt, 2021] is
based on Fenchel Young losses with perturbed differentiable optimizers [Berthet et al., 2020].
It is however less generic than the learning by experience approach proposed in this paper :
It requires to have a training set that contains instances Γh and their optimal solutions, and
that f e(x, (E ,%e)) is linear in %e. An advantage of the structured learning approach is that,
if ϕθ is linear, the learning problem is convex (in θ) and therefore easier to solve. We will see
in the numerical experiments that, on examples where all these assumptions are satisfied,
we do not lose much by using (13) instead of the structured learning approach.

5 Learning rate and approximation ratio

This section introduces theoretical guarantees on the average optimality gap of the solution
returned by the learned algorithm when θ is chosen as in Section 4. Two conditions seem
necessary to obtain such guarantees. First, it must be possible to approximate the hard
problem by the easy one. That is, there must exist a θ̃ such that an optimal solution of
ϕθ̃(Γ

h) provides a good solution of Γh. And second, when such a θ̃ exists, our learning
problem must be able to find it or another θ′ that leads to a good approximation. Our proof
strategy is therefore in two steps. First, we show that the solution of our learning problem
converges toward the “best” θ when the number of instances in the solution set increases.
And then we show that if there exists a θ̃ such that the expected optimality gap of the
solution returned by our solution approach is bounded, then the expected optimality gap for
the learned θ is also bounded. For statistical reasons discussed in Section 5.4, we carry this
analysis using the regularized learning problem (15).
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5.1 Background on learning with perturbed bounded losses

Let Y be a random variable on a space Y and Θ a non-empty compact subset of Rd Θ ⊆
B∞(M) where B∞(M) is the ‖ · ‖∞ ball of radius M on R. Let ` : Y × Rd → [0, 1] be a loss
function, we define the perturbed loss as

`pert(y,θ) = E
[
`(y,θ + σZ)

]
with σ > 0. (17)

We suppose that `(·,θ) is integrable for all θ ∈ Θ. We define the expected risk L(θ) and the
expected risk minimizer θ∗ as

θ∗ ∈ arg min
θ∈Θ

L(θ) with L(θ) = E
[
`pert(Y,θ)

]
. (18)

Let Y1, . . . , Yn be n i.i.d. samples of Y . We define the empirical risk L̂n(θ) and the empirical
risk minimizer θ̂n as

θ̂n ∈ arg min
θ∈Θ

L̂n(θ) with L̂n(θ) =
1

n

n∑
i=1

`pert(Yi,θ). (19)

Note that both Ln(θ) and θ̂n are random due to the sampling of the training set Y1, . . . , Yn.
The following result bounds the excess risk incurred when we use Ln(θ) instead of L(θ).

Theorem 2. Suppose that Θ ⊆ B∞(M) where B∞(M) is the ‖ · ‖∞ ball of radius M on R.
Given 0 < δ < 1, with probability at least 1 − δ, we have the following bound on the excess
risk.

L(θ̂n)− L(θ∗) ≤ C
Md

σ
√
n

+

√
2 log(2/δ)

n
(20)

with C = 48
∫ 1

0

√
− log xdx.

We believe that Theorem 2 is in the statistical learning folklore, but since we did not find
a proof, we provide one based on classical statistical learning results in Appendix A.

5.2 Learning rate of our structured approximation

In order to apply Theorem 2 to the learning problem of Section 4, we must endow the set ℵh

of instances with a distribution. Recall that the loss ` and the perturbed loss `pert have been
defined in Equations (12) and (14). We assume that the instance Γh is a random variable
with probability distribution µ on ℵh, and that both `(·,θ) and `pert(·,θ) are integrable for
all θ. With these definitions, using ℵh as Y , instances Γh as random variables Y , and if
we suppose that the training set Γh

1, . . . ,Γ
h
n is composed of n i.i.d. samples of Γh, we have

recast our regularized learning problem (15) as a special case of (19). We can therefore apply
Theorem 2 and deduce that the upper bound (20) on the excess risk applies.

This result underlines a strength of the structured approximations of Section 3. Because
they enable to use approximations parametrized by θ whose dimension is small and does
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not depend on E , the bound on the excess risk only depend on the dimension of θ and not
on the structure of the instances used. Hence, a structured approximation enables to make
predictions that generalize (in expectation) on a test set whose instances structures are not
necessarily present in the training set. This is confirmed experimentally in Section 6, where
the structures of the instances in the test set of the stochastic VSP do not appear in the
training set.

Remark 2. Theorem 2 does not take into account the fact that, practically and in our
numerical experiments, we use a sample average approximation on Z of the perturbed loss
instead of the true perturbed loss. 4

5.3 Approximation ratio of our structured approximation

We now suppose that the approximation ratio of (h) by (e) is small: We suppose that there
exists θ̃ ∈ Θ and a > 0 such that, for all x ∈ X and Γh ∈ ℵh such that

‖fh(x,Γh)− f e(x, ϕθ(Γ
h))‖

u(Γh)
≤ a. (21)

We suppose that Γh 7→ E
[minx fh(x,Γh)

u(E)

]
is integrable on ℵh. Taking the expectation gives a

bound on the expected loss E`(θ̃,Γh). We would like to apply Theorem 2 to deduce a bound
on the approximation ratio with θ̂n. This is not possible in general because the perturbation
may lead to a perturbed expected loss L(θ∗) much larger than a. However, the following
theorem shows that this work if the structured predictor used is sufficiently regular in θ.

Theorem 3. Suppose that there exists θ̃ such that (21) is satisfied, the predictor ϕθ(e,Γ
h)

is such that θ 7→ ϕθ(e,Γ
h) is κϕ Lipschitz, and %e 7→ f e

(
θ, (E ,%e)

)
is κe Lipschitz. Then,

under the hypotheses of Theorem 2, with probability at least 1 − δ (on the sampling of the
training set)

L(θ̂n)− E
[

minx f
h(x,Γh)

u(E)

]
︸ ︷︷ ︸
Perturbed prediction optimality gap

≤ C
Md

σ
√
n

+

√
2 log(2/δ)

n︸ ︷︷ ︸
Training set error

+ 2a︸︷︷︸
Appro−
ximation
error

+ 2σκeκϕ
√
dE

[√
|E|

u(E)

]
︸ ︷︷ ︸

Perturbation error

where |E| denotes the number of elements
∑

i |Ek| in the structure E.

Theorem 3 gives a natural way of setting the strength σ of the perturbation: The bound
is minimized when we use

σ =

√√√√ CM
√
d

√
n2κeκϕE

[√|E|
u(E)

] .
Note that the hypothesis that ϕθ(e,Γ

h) is Lipschitz is satisfied when ϕθ(e,Γh) is the dot
product 〈θ|φ(e,Γh)〉 and the feature map is bounded |φ(e,Γh)| ≤ κϕ. Let us recall that
u(E) is an upper bound on the cost of an instance with structure E . On many operations
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research problems, we there expect to scale linearly with |E|. In this case, the perturbation

error is therefore in O
(
E[1/

√
|E|]
)

and its impact on the gap decreases with the size of the

instance. Remark that
√
|E| and u(E) both measure the size of the instance.

Theorem 3 is an immediate consequence of Theorem 2 and the following lemma.

Lemma 4. Under the hypotheses of Theorem 3,

L(θ∗)− E
[

minx f
h(x,Γh)

u(E)

]
≤ 2a+ 2σκeκϕ

√
dE

[√
|E|

u(E)

]
.

Proof. Given an instance Γh = (E ,%h), we have ϕθ(Γ
h) =

(
ϕθ(e,Γ

h)
)
e∈E and∥∥ϕθ̃(Γh)− ϕθ̃+σZ(Γh)

∥∥ =
∥∥∥(ϕθ̃(e,Γh)− ϕθ̃+Z(e,Γh)

)
e∈E

∥∥∥
≤
∥∥∥(σκϕ‖Z‖)

e∈E

∥∥∥ ≤ ‖Z‖√|E|σκϕ.
We have ∣∣fh(x,Γh)− f e(x, ϕθ̃+σZ(Γh))

∣∣
≤
∣∣fh(x,Γh)− f e(x, ϕθ̃(Γ

h))
∣∣+
∣∣f e(x, ϕθ̃(Γ

h)− f e(x, ϕθ̃+σZ(Γh))
∣∣

≤ au(Γh) + κe
∥∥ϕθ̃(Γh)− ϕθ̃+σZ(Γh)

∥∥
≤ au(Γh) + σκeκϕ‖Z‖

√
|E|.

Let x 7→ f1(x) and x 7→ f2(x) be functions from compact set K to R, and let x∗1 and
x∗2 be respectively minima of f1 and f2. If we have |f1(x) − f2(x)| ≤ β for all x, then
f1(x∗2)− f1(x∗1) ≤ 2β. It therefore follows from the previous inequality that

u(E)`(θ +Z,Γh)− min
x∈X (E)

fh(x,Γh) ≤ 2au(Γh) + 2σκeκϕ‖Z‖
√
|E|.

Since Z is a standard Gaussian, we get E‖Z‖ ≤
√
d (see Equation (23) in Appendix A), and

the results follows by dividing the previous equality by u(Γh) and taking the expectation.

Remark 3. In Theorem 3 and Lemma 4, we don’t need the constant a and κe and κϕ to be
uniform in Γh. It then suffices to replace them by their expectation in the bounds. 4

5.4 Influence of the perturbation

Since we have made very few assumptions on fh, f e, and ϕ, we do not have control on the
size of the family of functions {`θ : θ}, This family may be very large, and therefore able
to fit any noise, which would lead to slower learning rate. Without additional assumptions,
we therefore need to regularize the family. In particular, we need to smooth the piecewise
constant loss (Proposition 1). As we have seen in this section, perturbing θ does the job,
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but comes at a double cost in Theorem 3: a perturbation error, and larger than hoped
training set error in O(d/

√
n). The term in O(d/

√
n) is slightly disappointing because the

proof techniques used in statistical learning theory typically lead to bounds in O(
√
d/
√
n).

This is for instance the case for the metric entropy method used to prove Theorem 2 when
the gradient of the loss is Lipschitz in θ. The Gaussian perturbation restores the Lipschitz
property for the perturbed loss, but it comes at the price of an additional

√
d in the bound

derived by the metric entropy method, as can be seen in the proof of Lemma 7 in Appendix A.
Designing a learning approach that avoids the additional

√
d term is an interesting open

question. An alternative would be to make more assumptions on fh, f e, and ϕ with the
objective of making the perturbation facultative in the proof.

6 Numerical experiments

This section tests the performance of our algorithms on the stochastic vehicle scheduling
problem and on the 1|rj|

∑
j Cj scheduling problem of Section 2. We use the same encoding

ϕθ, easy problem solution algorithm, and decoding ψ as in previous contributions [Parmen-
tier, 2021, Parmentier and T’Kindt, 2021]. The only difference is that, instead of using the
learning by demonstration approaches proposed in these papers, we use the learning by ex-
perience approach of this paper. All the numerical experiments have been performed on a
Linux computer running Ubuntu 20.04 with an Intel® Core™ i9-9880H CPU @ 2.30GHz ×
16 processor and 64 GiB of memory. All the learning problem algorithms are parallelized:
The value of the loss on the different instances in the training set are computed in parallel.
The prediction problem algorithms are not parallelized.

6.1 Stochastic VSP

6.1.1 Setting: Features, post-processing, and instances

For the numerical experiments on the stochastic VSP, we use the exact same settings as in
our previous work [Parmentier, 2021]. We use the same linear predictor with a vector φ
containing 23 features. And we do not use a post-processing ψ. The easy problem is solved
with Gurobi 9.0.3 using the LP formulation based on flows.

We also use the same instance generator. This generator takes in input the number of
tasks |V |, the number of scenarios |Ω| in the sample average approximation, and the seed
of the random number generator. We say that an instance is of moderate size if |V | ≤ 100,
of large size if 100 ≤ |V | ≤ 750, and of huge size if 1000 ≤ |V |. Table 2 summarizes the
instances generated. The first two columns indicate the size of the instances. A X in the
next five columns |Ω| indicates that instances with |Ω| scenarios are generated for instance
size |V | considered. The last five columns detail the composition of the different sets of
instances: Three training sets, one validation set (Val), and a test set (Test). The table can
be read as follows: The training set (small) contains 10 × |{50, 100, 200, 500, 1000}| = 50
instances, each of these having 50 tasks in V , but no larger instances. The test set contains
instances of all size. For instance, it contains 8 × |{50, 100, 200, 500, 1000}| = 40 instances
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of size 50 and 8 instances of size 5000. For the largest sizes, we use only instances with 50
scenarios for memory reasons: The instances files already weigh several gigabytes.

Size |V |
50 100

|Ω|
200 500 1000 Train

(sm
all)

Train
(m

odera
te)

Train
(all)

Val
Test

Moderate
50 X X X X X 10 5 1 2 8
75 X X X X X 5 1 2 8

100 X X X X X 5 1 2 8

Large
200 X X X X X 5 1 2 8
500 X X X X X 1 2 8
750 X X X X X 1 2 8

Huge
1000 X X X X X 1 2 8
2000 X 2 8
5000 X 2 8

Table 2: Instances considered for the stochastic VSP.

The small training set,
the validation set, and
the test set are identi-
cal to those previously
used [Parmentier, 2021].
The validation set, which
is used in the learning by
demonstration approach,
is not used on the learning
by experience approach,
since we do not opti-
mize on classifiers hyper-
parameters. This previ-
ous contribution consid-
ers only the “small” train-
ing set, with 50 instances
with 50 tasks, it uses a
learning by demonstration approach and exact solvers cannot handle larger instances. This
is no more a constraint with the learning by experience approach proposed in this paper.
We therefore introduce two additional training sets: one that contains 100 instances of mod-
erate size, and one containing 35 instances of all sizes. These training sets are relatively
small in terms of number of instances, but they already lead to significant learning problem
computing time and good performance on the test set.

6.1.2 Learning algorithm

On each of the three training sets, we solve the learning problem (13) and the regularized
learning problem (15). We use the number of tasks |V | as u(Γh). It is not an upper bound
on the cost, but the cost of the optimal solution scales almost linearly with |V |. In both
case, we solve the learning problem on the L∞ ball of radius 10. For the regularized learning
problem, we use a perturbation strength of intensity σ = 1, and we solve the sample averaged
approximation of the problem with 100 scenarios. We evaluate two heuristic algorithms: The
DIRECT algorithm [Jones et al., 1993] implemented in the nlopt library [Johnson], and the
Bayesian optimization algorithm as it is implemented in the bayesopt library [Martinez-
Cantin]. We run each algorithm on 1000 iterations, which means that they can compute the
objective function 1000 times. Both algorithms are launched with the default parameters of
the libraries. In particular, the Bayesian optimization algorithm uses the anisotropic kernel
with automatic relevance determination kSum(kSEARD,kConst) of the library.

Table 3 summarizes the result obtained with both algorithms. The first column contains
the loss used: ` for the non-regularized problem (13) and `pert for the regularized problem.
The next one provides the training set used. And the third column provides the number
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of samples used in the sample average approximation of the perturbation. The next four
columns give the total computing time for the 1000 iterations and the value of the objective
of the learning problem obtained at the end using the DIRECT algorithm and the Bayesian
optimization algorithm.

Learning problem DIRECT Bayes Opt
Obj. Train. set pert CPU time Obj CPU time Obj

(hh:mm:ss) (days, hh:mm:ss)

`
small – 0:01:20 290.39 0:09:06 287.48
moderate – 0:10:56 256.39 0:18:35 259.88
all – 2:56:40 231.66 3:56:18 235.04

`pert

small 100 0:11:52 286.11 0:37:22 287.95
moderate 100 1:58:50 258.76 2:09:17 259.13
all 100 22:44:03 233.84 1 day, 5:35:30 235.10

Table 3: Performance of the DIRECT [Johnson] and Bayesian
optimization [Martinez-Cantin] on the learning problems (13)
and (15) for the stochastic VSP.

The DIRECT algo-
rithm approximates the
value of the function
based on a division of
the space into hyper-
cubes. At each iteration,
the function is queried in
the most promising hy-
percube, and the result
is used to split the hy-
percube. The algorithm
leverages a tractable lower
bound to identify the
most-promising hypercube
and the split with few
computations. Hence, the
algorithm is very fast if the function minimized is not computationally intensive. The
Bayesian optimization algorithm builds an approximation of the function minimized: It
seeks the best approximation of the function in a reproducing kernel Hilbert space (RKHS)
given the data available. At each iteration, it minimizes an activation function to identify
the most promising point according to the model, evaluate the function at that point, and
updates the approximation based on the value returned. Each of these steps are relatively
intensive computationally. Hence, if the function minimized is not computationally intensive,
the algorithm will be much slower than the DIRECT algorithm. This is what we observe
on the first line of Table 3. Furthermore, in bayesopt, the DIRECT algorithm of nlopt

is used to minimize the activation function. Our numerical experiments tend to indicate
that the approximation in a RKHS does not enable to find a better solution than the simple
exploration with DIRECT in 1000 iterations. Using Bayesian optimization may however be
useful with a smaller iteration budget. Figure 6.1.2 provides the evolution of the objective
function along time for the Bayesian optimization algorithm and the DIRECT algorithm on
the learning problem corresponding to the last line of Table 3.

Since the DIRECT algorithm gives the best performance on most cases, we keep the θ
returned by this algorithm for the numerical experiments on the test set. The performance
of the DIRECT algorithm could be improved using the optimization on the seed introduced
in Section 6.2.2.

6.1.3 Algorithm performance on test set
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Learning problem θ Moderate Large Huge All
Obj Train. set Pert T avg Tmax

T avg δavg δmax T avg Tmax

T avg δavg δmax T avg Tmax

T avg δavg δmax T avg Tmax

T avg δavg δmax

CRF small – 0.03 2.14 9.47% 20.47% 1.21 1.47 2.58% 6.77% 27.69 1.09 1.27% 1.88% 5.74 2.14 5.13% 20.47%
FYL small 100 0.03 2.02 1.67% 4.23% 0.97 1.52 0.70% 2.10% 19.20 1.15 0.26% 1.06% 4.04 2.02 1.01% 4.23%

`
small – 0.03 2.33 4.37% 10.35% 0.82 1.47 3.65% 5.56% 20.42 1.26 3.29% 4.90% 4.21 2.33 3.88% 10.35%

moderate – 0.03 1.77 0.31% 3.24% 0.86 1.39 1.09% 2.92% 17.48 1.13 2.85% 6.18% 3.67 1.77 1.10% 6.18%
all – 0.03 1.56 0.52% 1.98% 0.84 1.33 0.07% 0.86% 18.10 1.14 0.07% 0.66% 3.78 1.56 0.25% 1.98%

`pert

small 100 0.03 1.81 2.90% 6.71% 0.84 1.53 2.55% 4.48% 16.29 1.99 2.04% 3.61% 3.44 1.99 2.59% 6.71%
moderate 100 0.03 1.98 1.56% 5.00% 0.86 1.42 0.77% 2.12% 16.79 1.09 0.90% 1.82% 3.54 1.98 1.11% 5.00%

all 100 0.03 1.63 1.05% 3.57% 0.87 1.45 1.10% 2.83% 18.08 1.30 1.16% 2.22% 3.79 1.63 1.09% 3.57%

The best results are in bold. CRF = Conditional Random Field)

Table 4: Performance of our solution algorithm with different θ on the stochastic VSP test
set.

0 20000 40000 60000 80000 100000
CPU time (s)

240

250

260

270

280

290

300

Le
ar

ni
ng

 p
ro

bl
em

 o
bj

ec
tiv

e 
va

lu
e

DIRECT-BOBYQA
Bayesian Optimization

Figure 3: Learning problem objective
value evolution as a function of time
on stochastic VSP learning problem with
perturbed loss `pert on training set “all”.

We now evaluate the performance of our solution
pipeline with the θ learned. It has been shown
[Parmentier, 2021] that, using solution pipeline
with the θ learned by the structured learning
approach with a conditional random field (CRF)
loss on the small training set gives a state-of-the-
art algorithm for the problem (the paper uses the
maximum likelihood terminology instead of CRF
loss). We therefore use it as a benchmark of the
problem. We have also introduced a new learning
by demonstration approach on the problem: We
implement the Fenchel Young loss (FYL) struc-
tured learning approach [Berthet et al., 2020,
Parmentier and T’Kindt, 2021] to obtain a sec-
ond benchmark.

Table 4 summarizes the results obtained. The
first three columns indicate how θ has been com-
puted: They provide the loss minimized as objec-
tive of the learning problem (Obj), the training
set used, and for the approaches that use a per-
turbation, the number of scenarios used in the sample average approximation (SAA).

The next columns provide the results on the test set. These columns are divided into
four blocks giving results on the subsets moderate, large, huge instances of the test set and
on the full test set. On each of these subsets of instances, we provide four statistics. The
statistic T avg provide the average computing time for our full solution pipeline on the subset
of instances considered, which includes the computation of the features and ϕθ(Γ

h), and the
resolution of the easy problem with the LP solver (no decoding ψ is used). Most of this time
is spent in the LP solver. Then, for each instance in the training set, we compute the ratio
of the computing time for the instance divided by the average computing time for all the
instances of the test set with the same number of tasks |V |. Indeed, we expect instances
with the same |V | to be of comparable difficulty. The column Tmax

T avg gives the maximum value
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of this ratio on the subset of instances considered. Since we do not have an exact algorithm
for the problem, for each instance Γh we compute the gap

cθ − cbest

cbest
(22)

between the cost cθ of the solution returned by our solution pipeline with the θ evaluated and
the cost of the best solution found for these instances using all the algorithms tested. The
columns δavg and δmax respectively provide the average and the maximum value of this gap
on the set of instances considered. The two first lines provide the result obtained with the
learning by demonstration benchmarks, and the next six ones obtained with the θ obtained
with the learning algorithms of Table 3.

We can conclude from these experiments that:

1. When using the learning by demonstration approach, the Fenchel Young loss leads to
better performances than the conditional random field loss.

2. Our learning by experience formulation gives slightly weaker performances than the
learning by demonstration approach with a Fenchel Young loss when using the same
training set.

3. Our learning by experience approach enables to use a more diversified training set,
which enables it to outperform all the previously known approaches. The more diver-
sified the training set, the better the performance.

4. The regularization by perturbation used tends to decrease the performance of the algo-
rithm. This statement may turn false if we optimized the strength of the perturbation
using a validation set

6.2 Single machine scheduling problem 1|rj|
∑

j Cj

6.2.1 Setting

We use the exact same setting as the previous contribution on this problem [Parmentier
and T’Kindt, 2021]. In particular, that paper introduces a vector of 66 features, and a
subset of 27 features that leads to better performances. With the objective of testing what
our learning algorithm can do on a larger dimensional problem, we focus ourselves on the
problem with 66 features. And we also use the four kinds of decoding algorithms in that
paper: no decoding (no ψ), a local search (LS), the same local search followed by the RDI
algorithm (RDI ◦ LS), and the perturbed versions of the last algorithm, (pert RDI ◦ LS)
where the solution pipeline is applied with θ + Z for 150 different samples of a standard
Gaussian Z, and keep the best solution found.

We use the same generator of instances Γh of 1|rj|
∑

j Cj as previous contributions
(Della Croce and T’kindt [2002], Parmentier and T’Kindt [2021]). For a given instance
with n jobs, processing times pj are drawn at random following the uniform distribu-
tion [1; 100] and release dates rj are drawn at random following the uniform distribution
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Subsets of instances
Moderate Large Huge

Size n of instances in subset {50, 75, 100, 150} {200, 300, 500, 750} {1000, 1500, 2000, 3000}

Table 5: Size of the 1|rj|
∑

j Cj instances in the subsets of the test set.

[1; 50.5nρ]. Parameter ρ enables to generate instances of different difficulties: We con-
sider ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0}. For each value of n and ρ, N in-
stances are randomly generated leading for a fixed value of n to 10N instances. For the
learning by demonstration approach, we use the same training set as [Parmentier and
T’Kindt, 2021] with n ∈ {50, 70, 90, 110} and N = 100, leading to a total of 4000 in-
stances. We do not use larger instances because we do not have access to optimal solu-
tions for larger instances. For the learning by experience approach, we use n ∈ N :=
{50, 75, 100, 150, 200, 300, 500, 750, 1000, 1500, 2000, 3000} and N = 20, leading to 2400 in-
stances. In the test set, we use a distinct set of 2400 instances with n ∈ N and N = 20.
This test set is almost identical to the one used in the literature [Parmentier and T’Kindt,
2021], the only difference being that instances with n = 2500 have been replaced by instance
with n = 3000 to get a more balanced test set. Table 5 shows how we have partitioned this
test set by number of jobs n in the instances, to get sets of instances of moderate, large, and
huge size.

6.2.2 Learning algorithm

obj iter pert ψ Tot. CPU Avg L̂ Best L̂

` 1000 – – 0:05:46 36.71 35.19
` 2500 – – 0:12:31 36.64 35.29

`pert 1000 100 – 9:09:06 36.76 35.27
`pert 2500 100 – 20:45:52 36.69 35.25
` 1000 – LS 0:52:54 35.13 35.06
` 2500 – LS 1:47:42 35.12 35.06

`pert 1000 100 LS 3 days, 15:14:42 35.12 35.06
`pert 2500 100 LS 7 days, 15:24:08 35.11 35.06

Tot. CPU is given in days, hh:mm:ss.

Table 6: Learning algorithm results on 1|rj|
∑

j Cj.

We use n(n + 1) as u(Γh). It is
not an upper bound on the cost,
but the cost of the optimal solu-
tion scales roughly linearly with
u(Γh). We draw lessons from the
stochastic VSP and use only a di-
verse training set of 4000 instances
of all size in the training set. And
because our solution pipeline for
1|rj|

∑
j Cj is much faster than

the one for the stochastic vehicle
scheduling problem, we can use a
larger training set. And we intro-
duce two new perspectives. First,
the DIRECT algorithm uses a ran-
dom number generator. We observed that its performance is very dependent on the seed of
the random number generator, and that using a larger number of iterations does not neces-
sarily compensate for the poor performance that would come from a bad seed. We therefore
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Learning problem θ Test set results (with several ψ)
no ψ LS RDI ◦ LS pert RDI ◦ LS

obj iter pert ψ δavg δmax δavg δmax δavg δmax δavg δmax

FYL – – – 1.81% 8.57% 1.10% 6.88% 0.07% 3.41% 0.02% 0.46%

` 1000 – – 0.63% 24.53% 0.34% 4.59% 0.06% 1.65% 0.02% 1.53%
` 2500 – – 1.08% 21.19% 0.30% 6.33% 0.07% 1.71% 0.04% 1.71%

`pert 1000 100 – 0.83% 23.61% 0.38% 3.64% 0.06% 1.65% 0.03% 1.37%
`pert 2500 100 – 0.75% 19.54% 0.33% 3.98% 0.06% 1.69% 0.02% 1.37%

` 1000 – LS 10.51% 54.67% 0.02% 1.30% 0.01% 1.12% 0.01% 1.12%
` 2500 – LS 10.16% 55.70% 0.02% 1.30% 0.01% 1.12% 0.01% 1.12%

`pert 1000 100 LS 10.54% 55.22% 0.03% 2.26% 0.02% 2.26% 0.02% 2.26%
`pert 2500 100 LS 10.51% 53.64% 0.03% 2.26% 0.02% 2.26% 0.02% 2.26%

Table 7: Performance of our solution algorithms with different θ on the 1|rj|
∑

j Cj test set.

launch the algorithm with 10 different seeds, each time with a 1000 iterations budget, and
report the best result. Second, as underlined in Section 4.3, it can be natural to use the
loss `ψ where, instead of using the output of the easy problem, we use the output of the
post-processing ψ. In our, case, the post-processing is in two steps: first the local search,
second the RDI heuristic. Since RDI is time-consuming, using it would lead to very large
computing times on the training set used. We therefore take the solution at the end of the
local search.

Table 6 summarizes the results obtained. The first column indicate if the perturbed loss
or the non-perturbed loss has been used. The second indicates the number of iterations
of DIRECT used. The third column indicates the number of scenarios used in the sample
average approximation when the perturbed loss is used. And “–” (resp. LS) in the fourth
column indicates if no (resp the local search) post-processing has been applied to the solution
used in the loss. The column Tot. CPU then provides the total CPU time of the 10 runs of
DIRECT with different seeds. Finally, the columns Avg L̂ and Best L̂ give respectively the
average and the best loss value of the best solution found by DIRECT algorithm on the 10
seeds used.

We can conclude from these results that optimizing on the seed seems a good idea. We
also observe that the loss function after the local search is smaller, which is natural given
that the local search improves the solution found by the easy problem.

6.2.3 Algorithm performance on test set

Table 7 summarizes the results obtained with the different θ on the full test set. The first
line corresponds to the Fenchel young loss (FYL) of the learning by demonstration approach
previously proposed [Parmentier and T’Kindt, 2021], and serves as a benchmark. The next
eight ones correspond to the parameters obtained solving the learning problem described in
this paper with the settings of Table 6. The first four columns describe the parameters of
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Pred. θ Moderate Large Huge
ψ obj iter |Ω| ψ T avg δavg δmax T avg δavg δmax T avg δavg δmax

no ψ

FYL – – – 0.01 1.13% 8.57% 0.40 1.80% 6.06% 102.82 2.50% 6.47%
` 1000 – – 0.01 1.38% 24.53% 0.20 0.39% 2.33% 25.03 0.11% 0.54%
` 2500 – – 0.01 2.59% 21.19% 0.15 0.52% 3.61% 22.85 0.14% 0.96%

`pert 1000 100 – 0.01 1.51% 23.61% 0.25 0.66% 4.27% 31.95 0.33% 2.23%
`pert 2500 100 – 0.01 1.25% 19.54% 0.18 0.59% 3.46% 15.91 0.41% 2.00%
` 1000 – LS 0.01 10.19% 54.67% 0.07 10.64% 51.23% 2.04 10.70% 46.99%
` 2500 – LS 0.01 10.31% 55.70% 0.07 10.24% 50.63% 2.20 9.93% 43.87%

`pert 1000 100 LS 0.01 10.28% 55.22% 0.07 10.64% 49.59% 2.47 10.70% 46.04%
`pert 2500 100 LS 0.01 10.01% 53.64% 0.07 10.63% 49.27% 2.45 10.90% 46.36%

pert
RDI ◦ LS

FYL – – – 0.36 0.02% 0.46% 2.58 0.02% 0.24% 208.72 0.02% 0.16%
` 1000 – – 0.48 0.05% 1.53% 2.49 0.02% 0.62% 50.98 0.00% 0.10%
` 2500 – – 0.50 0.09% 1.71% 2.44 0.02% 0.34% 45.37 0.00% 0.10%

`pert 1000 100 – 0.49 0.05% 1.37% 2.61 0.02% 0.66% 65.53 0.00% 0.11%
`pert 2500 100 – 0.48 0.05% 1.37% 2.54 0.02% 0.61% 40.28 0.00% 0.10%
` 1000 – LS 0.48 0.03% 1.12% 2.34 0.01% 0.27% 14.06 0.00% 0.02%
` 2500 – LS 0.49 0.03% 1.12% 2.32 0.00% 0.14% 14.19 0.00% 0.01%

`pert 1000 100 LS 0.48 0.05% 2.26% 2.36 0.01% 0.27% 14.44 0.00% 0.05%
`pert 2500 100 LS 0.49 0.05% 2.26% 2.39 0.01% 0.27% 14.59 0.00% 0.05%

T avg is given in seconds.

Table 8: Influence of instances size on the performance of our solution algorithms with
different θ on the 1|rj|

∑
j Cj test set.

the learning problems used to obtained θ and are identical to those of Table 6. The next
columns indicate the average results on the full test set for the four kind of post-processing
described in Section 6.2.1. Again, we provide the average δavg and the worse δmax values of
the gap (22) between the solution found by the algorithm and the best solution found by all
the algorithms.

Two conclusions can be drawn from these results:

1. The solution obtained with our loss by experience approach tend to outperform on
average those obtained using the Fenchel Young loss, but tend to have a poorer worst
case behavior.

2. Using the loss with post-processing tend to improve the performance on the test set
with the pipelines that use this preprocessing, and possibly other after. But it decreases
the performance on the pipeline which do not use it.

Finally, Table 8 details the results for the fastest (no ψ) and the most accurate one (pert
RDI ◦ LS) pipeline on the subsets of instances of moderate, large, and huge size. In addition
to the gaps, the average computing time T avg is provided. Again, we can observe that:

3. Because the learning by experience approach enables to use a diversified set of instances
in the training set, it outperforms the learning by demonstration approach on large
and huge instances.
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7 Conlusion

Elaborating on previous contributions, we have introduced the notion of structured approx-
imation of an operations research problem by another, which enables to leverage efficient
algorithms of the literature on difficult variants of the problem they are designed for. This
notion makes the elaboration of such approximations straightforward, and turn the Fenchel
Young loss formulation learning [Parmentier and T’Kindt, 2021] into a generic learning by
demonstration approach to fit these approximations. Furthermore, we introduce a generic
learning by experience approach to learn these structured approximations. Using arguments
at the crossroad of statistical learning theory and approximation algorithm theory, we prove
that, provided that the problem can be approximated by the approximations considered,
the approximation learned leads to an approximation algorithm. Extensive numerical ex-
periments show that the learning by experience approach matches or outperforms the per-
formance of the learning by demonstration approach on the stochastic vehicle scheduling
problem and on the 1|rj|

∑
j Cj problems. Finally, the fact that no solution of the instances

in the training set is needed enables to use a more diversified training set, which leads to
algorithms that scale better on large instances.

Several possible directions are possible to improve algorithms based on structured approx-
imations. Features free approximations, and constraints approximations, would extend the
scope of possible applications. Algorithms tailored to the specific structure of the learning
problem may improve its resolution and give theoretical guarantees. Or alternative formula-
tion of the learning problem may improve its tractability. Such contributions could improve
the quality of the approximation ratio of the resulting algorithm.
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A Proof of Theorem 2

A.1 Background on Rademacher complexity and metric entropy
method

This section introduces some classical tools of statistical learning theory [Bousquet et al.,
2004]. The lecture notes of [Wolf, 2018] contain detailed proofs.

We place ourselves in the setting of Section 5.1. Let F be the family of functions
{
Y 7→

`(Y,θ) : θ ∈ Θ
}

. The Rademacher complexity of F is

Rn(F) = EΓi,σi

[
sup
θ∈Θ

1

n

n∑
i=1

σi`(Yi,θ)

]
where the σi are i.i.d. Rademacher variables. The following well-known result bounds the
excess risk based on the Rademacher complexity.

Proposition 5. With probability at least 1− δ, we have

L(θ̂)− L(θ∗) ≤ 4Rn(F) +

√
2 log(2/δ)

n
.

The metric entropy method enables to bound the Rademacher complexity. The empirical
Rademacher complexity of F is obtained when we replace the expectation over Yi by its values
for the training set used Y1, . . . , Yn.

R̂n(F) = E
[

sup
θ∈Θ

1

n

n∑
i=1

σi`(Yi,θ)|Y1, . . . , Yn

]
and we have Rn(F) = E[R̂n(F)].

Given n instances Y1, . . . , Y2 and the corresponding distribution µ̂n on Y , the pseudomet-
ric L2(µ̂n) on F is the L2 norm induced by µ̂n on F

‖`(·,θ)− `(·,θ′)‖2,µ̂n
=

√√√√ 1

n

n∑
i=1

(`(Yi,θ)− `(Yi,θ′))2

We denote by Bε,L2(µ̂n)(`(·,θ)) the ball of radius ε centered in `(·,θ). The set covering
number of F with respect to L2(µ̂n) is

N(ε,F , L2(µ̂n)) = min
{
m : ∃{θ1,θm} ⊆ Rd,F ⊆

m⋃
j=1

Bε,L2(µ̂n)(`(·,θm))
}
.

The following result bounds the empirical Rademacher complexity from the covering number.

Proposition 6. (Dudley’s theorem) Let F be a family of mapping from Z to [−1, 1], then

R̂n(F) ≤ 12

∫ ∞
0

√
logN(ε,F , L2(µ̂n))

n
dε
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A.2 Proof of Theorem 2

The proof is as follows. We show that the Gaussian perturbation turns any bounded function
in a Lipschitz function. Hence, the perturbed loss is Lipschitz. This implies an upper bound
on the covering number, and Dudley’s theorem enables to conclude.

Let Z be a centered standard Gaussian vector on Rd. It is well known that

E(‖Z‖) ≤
√
d. (23)

Indeed, applying u ≤ (1+u2)/2 with u =
√

1
d

∑
Z2
i gives 1√

d
‖Z‖ ≤ 1

2
(1+ 1

d

∑d
i=1 Z

2
i ). Taking

the expectation and using E(Z2
i ) = 1 gives (23).

Lemma 7. Let g : Rd → [0, 1] be an integrable function, Z a standard normal random
variable, σ > 0 a positive real number, and G(θ) = Eg(θ + σZ). Then θ 7→ G(θ) is√
d
σ

-Lipchitz.

Proof. Let h be the density of Y = σZ. We have

G(θ) =

∫
h(y)g(y + θ) =

∫
h(y − θ)g(y)

By dominated convergence, we have

∇G(θ) = −
∫
∇h(y − θ)g(y) = −

∫
∇h(y)g(y + θ)

From there, using the facts that |g(θ)| ≤ 1 and Z is a standard Gaussian, we get

‖∇G(θ)‖ ≤
∫
‖∇h(y)‖ =

∫
‖ y

σ2
√

2πσ
e−
‖y‖2

2σ2 ‖ =
E(‖Y ‖)
σ2

=
1

σ
E(‖Z‖) ≤

√
d

σ

which gives the result.

Given an arbitrary instance Y in Y , Lemma 7 applied with g = `(Y, ·) gives

|`(Y,θ)− `(Y,θ′)| ≤
√
d

σ
‖θ − θ′‖2

Hence

‖`(·,θ)− `(·,θ′)‖2,µ̂n
=

√√√√ 1

n

n∑
i=1

(`(Yi,θ)− `(Yi,θ′))2 ≤
√
d

σ
‖θ − θ′‖.

As a consequence, if θ1, . . . ,θm is an εσ√
d

covering of Θ endowed with the Euclidean norm,

then `(·,θ1), . . . , `(·,θm) is an ε covering of F . Hence, if Θ is contained in the Euclidean
ball of radius M , we get

N(ε,F , L2(µ̂n)) ≤ N(
εσ√
d
,Θ = Bd(M), ‖ · ‖2) ≤

(
M
√
d

εσ

)d
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for ε ≤ M
√
d

σ
and N(ε,F , L2(µ̂n)) = 1 otherwise. And we obtain

logN(ε,F , L2(µ̂n)) ≤ d
(
log(M

√
d/σ)− log ε)

)
for ε ≤ M

√
d

σ
and logN(ε,F , L2(µ̂n)) = 0 otherwise.

Proposition 6 then gives

R̂n(F) ≤ 12

∫ M
√
d

σ

0

√
d

log(M
√
d

σ
)− log ε

n
dε = 12

√
d

n

∫ M
√
d

σ

0

√
− log

( ε

M
√
d/σ

)
dε =

C

4

Md

σ
√
n

with C = 48
∫ 1

0

√
− log xdx. Remark that the bound on R̂n(F) we obtain does not depend

on the sample Y1, . . . , Yn, and is therefore also valid for Rn(F) = E
(
R̂n(F)

)
. Proposition 5

then gives Theorem 2.
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