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1College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
2Bioinformatics Research Centre, Aarhus University, C.F. Møllers All 8, DK-8000 Aarhus C, Denmark
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Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, F–35000 Rennes, France
4Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre,

Uppsala University, 75236 Uppsala, Sweden
∗Corresponding author: E-mail: Martin.Lascoux@ebc.uu.se

Associate Editor: XXX

Abstract

The Distribution of Fitness Effects (DFE) of new mutations is a key parameter of molecular evolution.

The DFE can in principle be estimated by comparing the Site Frequency Spectra (SFS) of putatively

neutral and functional polymorphisms. Unfortunately the DFE is intrinsically hard to estimate, especially

for beneficial mutations since these tend to be exceedingly rare. There is therefore a strong incentive to

find out whether conditioning on properties of mutations that are independent of the SFS could provide

additional information. In the present study, we developed a new measure based on SIFT scores. SIFT

scores are assigned to nucleotide sites based on their level of conservation across a multi species alignment:

the more conserved a site, the more likely mutations occurring at this site are deleterious and the lower

the SIFT score. If one knows the ancestral state at a given site, one can assign a value to new mutations

occurring at the site based on the change of SIFT score associated with the mutation. We called this

new measure δ. We show that properties of the DFE as well as the flux of beneficial mutations across

classes covary with δ and, hence, that SIFT scores are informative when estimating the fitness effect of

new mutations. In particular, conditioning on SIFT scores can help to characterize beneficial mutations.

Key words: SIFT, DFE, beneficial mutations

Significance statement

The distribution of fitness effects of new mutations

(DFE) plays a key role in evolution but is

difficult to estimate. This is particularly true for

beneficial mutations that are exceedingly rare.

Classically, the DFE is estimated by comparing

the distribution of allele frequencies at sites

putatively under selection and at neutral sites.

In the present study we show, using genomic

data from an array of plant species, that adding

information on site conservation improves the

estimation of the DFE and, more specifically,

beneficial part of the distribution.
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Introduction

Surprisingly, given their pivotal role in evolution,

many aspects of mutations and of the mutation

process remain poorly known. Uncertainty

prevails, even regarding mutation rates, a

property that is often taken for granted (Moorjani

et al., 2016). Another crucial aspect of mutations

where knowledge remains insufficient is their

effect on fitness.

Depending on their effect on fitness mutations

can be classified as deleterious, neutral, or

beneficial. While it is widely accepted that most

new mutations are neutral, the exact proportions

of deleterious, neutral or beneficial mutations

remain highly contentious (Galtier, 2016). This is

far from anecdotal as the distribution of fitness

effect of new mutations (DFE) is at the heart of all

theories of molecular evolution and comparative

genomics. The fitness effect of a new mutation will

influence the frequency at which it segregates in a

population and therefore the amount and nature

of genetic variation present in a given species. This

in turn will condition the evolutionary trajectory

of the species. It is therefore crucial to be able to

estimate the DFE accurately and to understand

the factors that influence it. For instance, to what

extent does the DFE reflect the biology of the

organism and to what extent is it influenced by

its recent demographic history?

Unfortunately, the DFE is far from trivial to

estimate even though there have been major

improvements in available methods (Huang and

Siepel, 2019; Keightley and Eyre-Walker, 2007;

Tataru et al., 2017) since the seminal work

of Eyre-Walker et al. (2006). These advances,

combined with the surge in available genomic

data and the widespread availability of multi-

species genome alignments, as well as full genome

re-sequencing datasets across many species,

offer a unique opportunity to learn more about

mutation effects.

There are various approaches to characterize

the fitness effect of mutations from sequence

data. Two groups of methods that have been

particularly popular over the last two decades are

based on site conservation across species and on

analysis of the site frequency spectrum (SFS),

respectively.

The key idea behind the first group of methods

is that mutations at sites that are highly conserved

across species are likely to be deleterious

(Davydov et al., 2010; Ng and Henikoff, 2003).

Many methods were developed to classify sites

based on this principle and they use different

data and have different merits (Adzhubei et al.,

2010; Davydov et al., 2010; Huang et al., 2017; Ng

and Henikoff, 2003; Rentzsch et al., 2018). This

approach has recently been used to characterize

the impact on fitness of amino acid changing

mutations in humans (Henn et al., 2016), sorghum

(Valluru et al., 2019) or mammals, in particular

endangered species (Grossen et al., 2020; van der
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Valk et al., 2020). In the present article we will

use the program SIFT4G (Sorting Intolerant From

Tolerant For Genomes) (Ng and Henikoff, 2003;

Vaser et al., 2016) and also relate our work to a

recent simulation study carried out by Huber et al.

(2020) that was based on another conservation

measure, GERP (Genomic Evolutionary Rate

Profiling) (Davydov et al., 2010). Both methods

assign a score to the site that measures how

much the site departs from the variation that

would be observed in an alignment if the sites

were evolving neutrally. Hence the resulting score

indirectly measures how deleterious mutations at

the site are. The pros of this general approach are

that it makes single sites predictions, is readily

available for an increasing number of species, can

easily incorporate additional covariates from in

depth functional genomic studies and does not

depend on elusive population genetics parameters

(e.g. effective population size, Ne). However, it can

be misleading for predictions on extant variation

and does not directly estimate fitness effects.

Methods from the second group are based on

polymorphism within species and estimate the

DFE of new mutations from comparisons of the

SFS of putatively neutral and selected sites,

for instance synonymous and nonsynonymous

sites. Since the SFS can also be affected by

demography one needs to correct for it and

different ways of doing so have been devised (Eyre-

Walker et al., 2006; Galtier, 2016; Keightley and

Eyre-Walker, 2007; Tataru and Bataillon, 2019;

Tataru et al., 2017). The latest implementations

of this approach are not confined to deleterious

mutations and allow the consideration of both

deleterious and beneficial mutations, although

it should be noted that estimating the fraction

of beneficial mutations is intrinsically more

difficult than estimating deleterious ones, simply

because beneficial mutations are exceedingly rare.

Estimation of the DFE has often been carried

out, for instance to test predictions of the nearly

neutral theory of molecular evolution (Castellano

et al., 2019; Chen et al., 2020; Galtier and

Rousselle, 2020; Rousselle et al., 2020). In contrast

to the methods of the first group, methods

based on the DFE make inference about current

patterns of variation, and are based on minimal

assumptions on the conservation of effects across

species. Recent implementations also allow testing

for invariance or change of the DFE across species

(Tataru and Bataillon, 2019). However, all DFE

estimation methods require a neutral baseline that

accounts for biasing effects of demography and

population structure and do not provide inference

at single sites since the SFS is built upon (many)

exchangeable nucleotide sites.

Three major differences between the two

approaches have a direct impact on the way they

can be combined. First, SFS-based methods rely

on population genetics assumptions and directly

provide estimation of (population-scaled) fitness

distribution, whereas methods like SIFT4G only

provide a conservation score that cannot directly
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be related to fitness, even if qualitative inference

are proposed (typically the tolerated/deleterious

classification). Second, SFS-based approaches,

only provide a statistical characterization of the

distribution of fitness effects (DFE) of a set of

mutations in a given population. The set can

be the whole genome or only a class of genes

(e.g.: with a specific genomic location, a specific

expression level, a specific gene ontology and etc.).

So nothing can be said about a specific variant

(in theory, the posterior probability of having

a given selection coefficient could be obtained,

however there is almost no information for a single

mutation). In contrast, SIFT4G (and related

methods) does not provide a statistical description

of the DFE but attributes a score to every single

position and nucleotide state in a gene, including

non variable positions and allelic states that are

not observed. In addition, it is not population–

dependent as scores are given for a focal species

and are supposed to be valid for all individuals of

the species. The third and last difference relates to

the second one but has more subtle and technical

implications. As already explained, SIFT4G gives

a score to every possible state (nucleotide) at every

site. It is thus an absolute property of a site and

we could replace A,C, G and T letters by SIFT

scores, or more practically by discrete categories,

such as Tolerated (TOL) and Deleterious (DEL).

SFS-based methods, on the other hand, do not

consider states but mutations, so changes between

two states. Accordingly, the information used

for inference is synonymous and non-synonymous

changes, not states. A change can be synonymous

or non-synonymous but a state at a given position

cannot. This leads to the problem of counting

the number of sites in such methods, where what

can be counted (or more properly, estimated)

is not the number of synonymous and non-

synonymous sites but the number of opportunities

of synonymous and non-synonymous mutations

(see extensive discussion of this problem in Bierne

and Eyre-Walker (2003)). A way to avoid this

issue is to use mutations at nucleotide sites that

can be classified without ambiguity, such as 0-fold

and 4-fold degenerated codon positions, for which

there is only a single possibility of mutation so the

state can be characterized by the opportunity of

mutation without ambiguity.

Given these notable differences, making

informed comparisons between these two groups

of methods and predicting when they will make

converging predictions is challenging. Recently,

Huber et al. (2020) used computer simulations of

population genetics models of purifying selection

to compare the two approaches. More specifically

they related GERP scores to the strength of

purifying selection (measured as the product of

effective population size and selection coefficient,

Nes). The GERP score is defined as the reduction

in the number of substitutions observed on the

multi-species sequence alignment compared to

the neutral expectation. A high GERP score

means that the observed number of substitutions
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is much less than expected and therefore that the

site is highly conserved. Mutations appearing at

highly conserved sites are accordingly given a high

GERP score and this agrees with the assumption

that these mutations are strongly deleterious.

We would therefore expect high GERP scores

to be associated to highly negative values of

Nes and low GERP scores to be associated to

values of Nes closer to zero. What was observed,

however, is that very highly negative values of

Nes are indeed associated to high GERP scores

but values closer to zero can basically take all

possible GERP score values. So the GERP score

may not be useful to detect selection acting

on individual mutations but it may be useful

to separate sites with moderately to strongly

deleterious mutations from mildly deleterious

and nearly neutral ones. The study by Huber

et al. (2020) is important as it emphasizes the

limits of using methods based on evolutionary

conservation to identify deleterious mutations in

extant populations.

Here, we argue that while attempting to

establish equivalence of both approaches is not

sensible, combining estimates of the deleterious

load obtained through both SIFT4G and a DFE

from SFS data is informative. We show that

previous approaches for inferring DFE conditional

on certain type of mutations (e.g. AT to GC)

can be leveraged to build valid SFS for DFE

estimation using SIFT score as covariates. To

test the robustness and range of applicability

of our approach we apply it to an array of

plant species varying in effective population

size and life history traits. In particular, DFE

estimation can be done for distinct classes of

non synonymous mutations defined from SIFT

scores to quantify heterogeneity in DFE within

genomes. Conditioning the DFE on a measure, δ,

that captures the change in SIFT scores associated

with a mutation characterizes well the expected

effect of the mutation. We illustrate that changes

in SIFT scores is a powerful covariate to capture

the expected effect of mutations and we show

that conditioning DFE on δ leads to an improved

characterization of the properties of beneficial

mutations and may even allow us to identify

mutations that are likely to be beneficial.

Results

Combining DFE and SIFT scores: principle

How to properly combine the two kinds of

information given the differences between SIFT

and DFE noted in the introduction? An overview

of the different steps of our approach is given in

Fig 1. SFS-based methods require the comparison

of at least two SFS, one serving as a neutral

reference (typically the synonymous SFS) and

the other corresponding to the mutations for

which we want to infer fitness (typically the

non-synonymous SFS). We may want to extend

the approach to other categories of mutations,

for example, to take into account the nature

of nucleotides (A,T vs G,C) to control for the

possible impact of GC-biased gene conversion
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(Rousselle et al., 2019). If we want to infer the

DFE for different SIFT categories, the approach

will be very similar. The example below is given

for two SIFT categories (TOL/DEL) as it is

simpler but this can be extended to any number of

categories, as shown in the next section. Variation

at 0-fold and 4-fold sites, respectively, is also

used to avoid additional complications of counting

synonymous and non-synonymous ”positions”.

As a toy example we consider a sequence

with only three codons and 4 individuals and a

sequence representing the ancestral states, so that

mutations in the SFS can be polarized as needed

in PolyDFE (Tataru et al., 2017) (Table 1).

The SIFT scores corresponding to this

alignment and to all possible alternative alleles

are given in Table 2. From this table and the

alignment, we can deduce the SFS (minimalist

here) for the different categories of SNPs. There

are only four SNPs in this example in positions

1, 3, 5 and 8, which can be classified as follows:

• Position 1 : C→ A : non-synonymous TOL→

TOL mutation

• Position 3 : A → G : synonymous TOL →

TOL mutation

• Position 5 : G → T : non-synonymous TOL

→ DEL mutation

• Position 8 : A→ C : non-synonymous DEL→

TOL mutation

Then we need to compute the total length

for each category of mutations, which is

required for SFS-based methods. To make

the parallel with classical methods this total

length corresponds to the total number of

non-synonymous and synonymous ”positions”.

However, as already noted above, these lengths

do not correspond to physical positions but

to mutational opportunities. For example, in

classical methods a site at third codon position

can typically be counted as 1/3 synonymous and

2/3 non-synonymous (for a two-fold degenerate

amino acid). The same philosophy applies here

but for SIFT categories. To fully exemplify our

counting procedure, calculations of the total

length for the data in Table 1 are given in the

lower part of Table 2.

It is important to note that in this example,

the three mutations are equally likely, but

transition/transversion ratio or other bias can

be incorporated if needed (as it is the case

for synonymous/non-synonymous counts). In the

above example, eight SFSs can be defined. The

natural choice is to used the synonymous TOL →

TOL SFS as the neutral reference and the seven

others SFS as potentially non-neutral categories

for which we want to infer separately a different

DFE category. Some SFS are likely to be empty

or to contain very few counts: typically, most

synonymous mutations will be TOL → TOL, and

categories DEL → TOL or TOL → DEL will be

empty for synonymous mutations. However, to be

more accurate it is worth properly counting the

length for each category.
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Genome-wide characterization of
polymorphism, DFE, and SIFT scores

For all species, the distributions of SIFT scores

are highly bimodal: sites are enriched at SIFT

scores equal to 0 and 1 and there is a dearth

of intermediate values (Fig. S1). Counts of

polymorphisms, nucleotide diversity at 0-fold

and 4-fold sites, π0 and π4, respectively, their

ratio, π0/π4, and P0/P4, the ratio of the counts

P0 and P4 per class of change in SIFT score

(see Material and Methods), as well as DFE

parameters estimated with PolyDFEv2 are given

for the 24 species in Supplementary file S1.

Because of the diversity of life history traits and

mating systems represented by the 24 species

there is a large range of synonymous nucleotide

diversity values and π0/π4 ratios. Classically

πN/πS gives the proportion of effectively neutral

mutations and, as predicted by the nearly neutral

theory, πN/πS is negatively related to the effective

population size (Castellano et al., 2018; Chen

et al., 2020; Welch et al., 2008). It is therefore a

very informative quantity which tends to covary

strongly with the proportion of mutations that

fall in the class [-1,0] of Nes values in the DFE.

Throughout we shall use P0/P4, measured from

counts and scaled according to their ”lengths” as

a proxy for πN/πS (see M&M for details). Except

for a few species, the shape parameter of the

gamma distribution of deleterious mutations is

lower than 1, as already observed in many other

studies (Chen et al., 2020; Galtier, 2016).

Conditioning on SIFT score change, δ

To combine SIFT score and polymorphism data,

we introduced a new statistics. First, instead of

considering the two SIFT scores categories (TOL

and DEL), we further divided the scores into four

discrete categories: fully conserved (FC, score =

0), partly conserved (PC, score ∈ (0, 0.05]), partly

diverse (PD, score ∈ (0.05, 1) ) and fully diverse

(FD, score = 1). Note that the same principle can

be applied to any numbers of categories. Then,

we attributed the values, 0, -1, -2 and -3 for

categories FD to FC. From this we can define

the change in SIFT categories by simply taking

the difference between these values. For example,

δ=−2 for change from FD to PC, δ=+1 from

PC to FD, and δ=0 if the two alleles belongs to

the same category. We then analyzed the P0/P4

ratio and DFE characteristics for the different

categories of mutations defined by the change in

SIFT categories (δ).

To avoid having too much noise in the data, we

filtered out subsets with less than 100 0-fold SNPs

and for which the estimated polarization error rate

was higher than 10%. We also checked visually

that the estimated polarization error rate did

not co-vary with the number of non-synonymous

SNPs in the SFS or δ (Fig. S2 and S3). This

left us with 23 species spanning n=322 SFS

distributed in the different δ categories. P0/P4

ratio was significantly correlated with δ (p-value
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=9.44e−9). For mutations in category 0-fold and

δ=−3 P0/P4 ranges from 0.043 to 0.1 at the

25% to 75% quantiles (0.078 at the 50% quantile)

and increases with δ. Especially for beneficial

mutations P0/P4 increases much faster, from 0.92

((0.59, 1.50) for 25% to 75% quantiles) for slightly

beneficial mutations (0-fold and δ=1) to 53.74

((31.44, 131.7) for 25% to 75% quantiles) for the

most beneficial ones (0-fold and δ=3) (Table 3).

The relationship between P0/P4 and δ is given in

Fig 2. We used a series of linear mixed models

to quantify how much of the variation in P0/P4

can be accounted for by variation in δ. A linear

model with δ as predictor accounts for ca. 72% of

the variation in P0/P4 and a linear mixed model

with a random slope provides the best fit to the

data (as compared by AIC) although the gain

in terms of R2 remains very modest. We tested

for the impact of the polarization error, ε, which

was minimal (see supplementary file S3). Note

that these analyses remain naive in the sense that

they assume no phylogenetic inertia among species

included in our dataset.

DFE classes and δ

We divided the deleterious portion of the DFE

in four Nes classes ([0, -1], (-1, -10], (-10, -100],

and (-100, −∞)) (Table 4). Figure 3 provides

an overview of the relationship between the

proportion of mutations in the different DFE

classes and δ. The proportion of mutations

belonging to the strongly deleterious category

falls regularly as δ increases while the proportion

from the beneficial class follows the opposite

pattern. Mutations in the effectively neutral class

[0, -1] are mostly confined to negative δ values

as are mutations belonging to the (-1, -10] DFE

class. In all three classes of negative Nes a non

negligible proportion is still able to become more

beneficial, i.e. be associated with a positive δ,

especially for the most deleterious class ((-100,

−∞))).

The flux of beneficial mutations

Detecting beneficial mutations is notoriously

difficult as they are expected to be generally quite

rare and therefore make a modest contribution

to SFS counts. δ as a covariate is helpful. The

proportion of beneficial mutations (pb) increases

with δ with a linear relationship for δ ranging

from -1 to 1 (pb, Fig 4A). Among the classes

of mutations categorized as likely deleterious

(negative δ) we have virtually zero flux of

beneficial mutations; however, as δ increases, so

does the flux of beneficial mutations (pb∗Sb,

Fig 4B). For intermediate values of δ the flux of

beneficial mutations increases almost linearly with

δ.

We used a series of generalized linear mixed

models to quantify how much of the variation

in the proportion of beneficial mutations can be

accounted for by variation in δ (see supplementary

text/report). To do so we recorded whether each

estimated DFE had a proportion of beneficial

mutation estimated to be above 10%, and used
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this as binary response variable (yes/no). A

logistic regression model with δ as predictor

provided the best fit to the data (as compared

by AIC) and it accounted for ca. 65% of the

variation (as measured with the ratios of model

deviance). Here too, we tested for the impact

of the polarization error, ε, which was minimal

(see supplementary file S3). We note again that

the gain in fit provided by the random slope

or random intercept in terms of (pseudo) R2

remains modest. Note that this analysis - as

for the P0/P4 ratio variation- also assumes no

phylogenetic inertia among species comprising our

data.

Discussion

In the present study we have explored the extent

to which conditioning SFS data on a measure

of SIFT score change, δ, helps to parse further

the variation in DFEs. Below we discuss the

salient features we uncovered, relate our findings

to earlier work and sketch a few directions where

our new measure, δ, might be a useful covariate

to further explore what drives differences in DFE

both among species and across genes or types of

mutations within species.

We have shown that our new measure based

on SIFT scores difference, δ, explained up to

72% of the variation in P0/P4 and up to 65%

of the variation in properties of the DFE such

as the probability that the DFE will include

more than 10% of beneficial mutations. The

fact that a sizeable amount of variation is

explained by δ is well illustrated by the substantial

co-variation between δ and the DFE classes.

Because SIFT scores reflect conservation across

species and therefore long-term evolution while

the DFE is built on SFSs and reflects the selective

effect of mutations in extant populations, it

was not obvious that the two would be closely

related. It suggests that the DFE may well be

altogether rather stable and somewhat immune

to the stochasticities of population demography

and environment, but instead constrained by

intrinsic properties of a species such as genome

characteristics or life-history traits. This is in line

with the results recently obtained by Huang et al.

(2021) showing that DFEs are highly correlated

between populations of the same species or of

closely related ones, or by Chen et al. (2017)

showing that πN/πS is almost constant across

populations of the same species or between

domesticated species and their wild relatives.

Nevertheless, a large amount of variation

remains unexplained and the δ=0 category still

contains, depending on the species considered,

a large variation in the DFE. Our results are,

in this respect, reminiscent of those obtained

by Huber et al. (2020) when they investigated

via simulations the expected relationship between

GERP scores and DFE categories. Huber et al.

(2020) observed that very highly negative values

of Nes are associated with high GERP scores

(corresponding to low SIFT scores) but values

of Nes closer to zero can basically take all
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possible GERP score values. They concluded

that GERP scores may not be useful to detect

selection acting on individual mutations although

they may be useful to separate sites with

moderately to strongly deleterious mutations

from mildly deleterious and nearly neutral ones.

Our analysis relies on examining the DFE of

subsets of mutations characterised by the same

δ scores, whereas Huber simulated the range

of scores obtained given a range of Nes values

(essentially the converse of what we did), so a

direct comparison is difficult. Nonetheless, our

results are consistent and confirm the simulation

based intuition of Huber et al. (2020): very

highly negative values of Nes are associated

with negative δ, and positive values of Nes are

associated with positive δ, while intermediate

values of Nes dominated δ values around zero

and below zero. Methods based on conservation

such as SIFT or GERP implicitly assume that

evolutionary forces have been constant through

deep evolution, something that can be questioned

and this puts a limit the utility of these

methods for inferring sites that are currently

under selection. In particular, Huber et al. (2020)

show that a model with functional turnover

under which sites oscillate between functional and

nonfunctional states fits the distribution of GERP

scores across the genome better than a model

without turnover. Hence, many factors may limit

the power of conservation scores to predict current

selection. Yet, as shown here, measures derived

from these scores have a non negligible predictive

power. In particular, mutations with delta ≥ 2

have 93% chance of being beneficial, which makes

the delta statistics an efficient way to individually

identify beneficial mutation candidates.

Our study is not the first attempt to combine

DFE and predictive genome features such as SIFT

scores. For instance, the method implemented in

the program LASSIE (Huang and Siepel, 2019)

relies on two components, an estimation of the

DFE via a Poisson Random Field framework,

which is very similar in essence to the polyDFE

method used here, and a neural network to

exploit numerous predictive genomic features,

including SIFT scores. Our approach differs from

that of Huang and Siepel (2019) in three major

ways. First, our aim was to use SIFT scores

to aid in the estimation of the DFE rather

than in the prediction of mutations associated

with diseases. Second, as it stands LASSIE was

developed for species like humans and other model

organisms for which there is a large amount of

local genomic features data. Our aim was to

develop a flexible method that could be applied

to a large array of species. Hence our choice

of SIFT scores, which can easily be obtained

for new species as a covariate of interest to

condition SFS counts. Third, by focusing on SIFT

scores and their relation to the selective values

of mutations instead of using a large number

of genomic features and machine learning, an

approach primarily geared towards prediction, we
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may gain in intuition what we loose in predictive

power.

Perhaps more similar in spirit to our approach

are the studies by Bergman and Eyre-Walker

(2019) that conditioned the SFS on Amino

Acids properties or by Moutinho et al. (2019),

which conditioned on protein structure covariates.

Bergman and Eyre-Walker (2019) showed that the

rate of adaptive evolution, as well as the rate

of neutral evolution, is highest among the pool

of non-synonymous mutations that entail changes

towards amino acids that are more similar. In our

case, the flux of beneficial mutations was highest

for δ≥−1 values but the variation was rather large

within each category. As for conservation scores,

the predictive power of any of these genomic

features, taken on their own, remains limited.

Examining the DFE properties conditional on δ

reveals that ancestral mutations that were fixed

in the past (and deemed deleterious via their

SIFT score) create a genomic context where new

mutations that can reach a higher SIFT score,

are very likely to contain a sizeable number of

beneficial mutations. In that respect the sizeable

amount of beneficial mutations that we detect

with our SFS based methods reveal that the flux of

beneficial mutations in a population might depend

on its current load of fixed mutations. A change of

status of a population might come from a shift in

environmental conditions or a shift of the position

of the species with respect to its fitness optimum.

This could then lead to an increase in beneficial

mutations that can mitigate the effect of the fixed

mutation load without requiring the presence of

compensatory mutations (Bataillon and Bailey,

2014; Castellano et al., 2019; Poon and Otto,

2000) that revert deleterious alleles back to their

original, fitter versions.

Material and methods

Species used and Inference of ancestral state

In this study, we selected 24 plant genomes

(8 herbaceous and 16 woody species) and

polymorphic sites at 4 to 20 chromosomes within

each species were identified (see Supplementary

File S1). As noted above we wanted a diverse

array of species varying in effective population

size and life history traits but the aim of the

present study was not to compare them. This will

be done in a subsequent study. For 11 species,

the ancestral state for each polymorphic site was

inferred with two or three outgroup sequences

using the program est-sfs (Keightley et al., 2016).

For the remaining 13 species, the ancestral state

was inferred using the fixed sites of the outgroup.

Classification of sites based on degeneracy
and SIFT score

We used the Uniref database (Suzek et al., 2014),

to build a database of SIFT scores for each of

the 24 plant genomes. SIFT scores were assigned

to each of the four states (A,T,G,C) at every

position in the genome, which can be calculated

based on the conservation of clustered amino

acid alignments of high similarity. Default settings

recommended by the authors were used (Vaser
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et al., 2016). A score equal to 0 corresponds

to the most conserved sites and a score equal

to 1 to the least constrained sites. Classically,

and as in the toy example above, the sites are

classified as Deleterious if the score ∈ (0, 0.05]

and Tolerated otherwise (Ng and Henikoff, 2003;

Vaser et al., 2016). Here, we further divided the

scores into four discrete categories: fully conserved

(FC, score = 0), partly conserved (PC, score

∈ (0, 0.05]), partly diverse (PD, score ∈ (0.05,

1) ) and fully diverse (FD, score = 1). For

every site at which the ancestral state has been

inferred, one can then assign 16 “changes in

conservation status” to all potential state changes

from the ancestral state to the derived state (e.g.

FC → FD, PC →PD, and so on). Combining

these “changes in conservation status” with the

degeneracy (0-fold and 4-fold) and considering

those that are possible one obtains a total of

20 possible mutation directions (hereafter callled

“MD”, see Table S1 for details) at each site

in the coding regions of the genome (Sift score

is based on amino acid so once one finds that

the category changes, e.g. from FD → PD, only

non-synonymous changes are possible). Like other

SFS-based methods, PolyDFE requires a ”length”

for each category of mutation,so we thus defined

the MD weights of each site as their counts across

all three possible changes from ancestral state (e.g.

a site can be assigned with 1/3 to 0-fold FC→FD

and 2/3 to FC→FC). Then to obtain the total

”length” of each MD category i, Li, we summed

weights up over all k positions in the genome

Li =
∑

kWi,k.

Estimation of DFE and P0/P4

For each genome, we counted the number of

polymorphic sites of each frequency class to

generate SFS for all MDs. We estimated the

distribution of fitness effects for new mutations

in the genome using polyDFEv2 (Tataru and

Bataillon, 2019, 2020; Tataru et al., 2017).

Estimation of the DFE in polyDFEv2 assumes

a mixture model for the underlying DFE. A

proportion, pb, of beneficial mutations is drawn

from an exponential distribution of mean Sb

and a proportion 1−pb of mutations have a

negative selection coefficient drawn from a gamma

distribution with shape parameter β and mean

Sd. The SFS of 4-fold FD → FD was used as

the neutral category and the SFS of the other 19

MD was used to estimate 19, potentially different,

DFEs separately. We used the total ”length” of

each MD category (the Li defined above) to scale

the SFS of the neutral category (4-fold FD→ FD)

and that of the other 19 categories. To insure that

sites with different delta scores are comparable

in terms of possible confounding factors we took

SNPs with a given delta SIFT score, say +1,

and then calculated their DFE with the SFS of

synonymous SNPs located in the same genes,

rather than SNPs elsewhere in the genome. Hence

the two types of SNPs have the same background

and this should minimize the possibility that the

relationship between SIFT score and the DFE,
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or statistics derived from it, is caused by other

factors. The effect of using only synonymous SNPs

from the same genes or from all genes on the main

results was minor as shown, for instance, by the

comparison of the results obtained with the two

approaches in Tables 3 and 4 where synonymous

sites from the same genes were used and in Table

S2 and Table S3 where synonymous sites from all

genes where used.

Finally, we also defined the ratio P0/P4 by

calculating P0 and P4 and scaling them by Li for

each MD class, respectively. More specifically we

have P0 =(n0+1)/L0, where n0 is the number of

0-fold polymorphic sites counted along a sequence

of length L0, and P4 =(n4+1)/L4, where n4 is the

number of 4-fold polymorphic sites counted along

a sequence of length L4. We added 1 to the count

of polymorphic site to avoid possible dividing by

0 (see for instance Welch (2006)).

SIFT δ scores

In order to study the dynamics of changes in

SIFT scores and relate it to the DFE, we further

assigned four values (-3 to 0) to the four SIFT

categories defined previously: FC (-3), PC (-2),

PD (-1) and FD (0). All 20 MD can then be

ranked with a SIFT “δ” score, that is obtained

by calculating the difference between the values

assigned to two mutation states (for instance, FC

→ FD will have a “δ” score of +3). Mutations with

higher δ values are more likely to be beneficial

(i.e. less deleterious) and mutations entailing low

δ score values are more likely to be deleterious.

The effectively neutral part of the DFE is expected

to harbour mutations characterized by δ scores of

mixed sign and close to 0, so typically between -1

and +1. In theory we could also study selection

on synonymous mutations by leveraging δ scores

but we decided to focus our analyses on non-

synonymous mutations.

The flux of beneficial mutations

When it comes to estimating the effect of

beneficial mutations, focus has often been on α,

the proportion of amino acid changing mutations

that are beneficial (Galtier, 2016; Smith and Eyre-

Walker, 2002). Most published estimates of α are

obtained by contrasting observed patterns of non-

synonymous divergence with the ones expected

given the deleterious DFE and the observed

synonymous divergence. Doing so implies that

one assumes that the intensity of purifying

selection remains constant during divergence.

Violation of the assumption of constant intensity

of purifying selection during divergence with

the outgroup will automatically inflate or bias

downward the estimate of the contribution of

beneficial mutations (see Eyre-Walker (2002);

Rousselle et al. (2018); Tataru and Bataillon

(2019)). Testing for the presence of beneficial

mutations without relying on divergence counts is

theoretically feasible (see for example Moutinho

et al. (2020); Schneider et al. (2011); Tataru and

Bataillon (2019)) but has seldom been done.

Likelihood ratio tests for the occurrence of

beneficial mutations relying solely on counts
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in the SFS and not divergence counts are

available but have limited power, unless large

amounts of SNPs are available in SFS data.

How to increase the power of these tests? One

possibility is to focus on sets of genes or genomic

regions that are known to harbor more beneficial

mutations. These include, among others, genes

involved in immunity, sex-linked genes or genes

encoding proteins that contain proportionally

more exposed residues ((Moutinho et al., 2020)

and references therein). However, by doing so

there is a risk of circularity because we search

for beneficial mutations where we think we should

find beneficial mutations. Here, instead of first

focusing on specific gene sets, we propose to

use SFS conditioned on δ. In particular, we test

whether the DFEs estimated for each δ co-vary

with pb, the proportion of beneficial mutations

(irrespective of mutation effect Sb), and with the

product pb∗Sb that corresponds to the flux of

(usable) beneficial mutations. The rationale for

using this composite product is twofold: under

strong selection-weak mutation (SSWM) limit it

scales with the amount of new mutations that

are not lost early on through drift and therefore

are available for adaptation. Second the product

pb∗Sb is statistically better behaved than pb

and Sb taken separately as pb and Sb tend to

strongly covary (Schneider et al., 2011; Tataru and

Bataillon, 2019).

All statistical analyses were carried out using

the statistical language R (R Core Team,

2013). To examine the co-variation between DFE

properties and δ, we used linear or generalized

(mixed) models where we used P0/P4 ratios or

properties of the DFE as response variables. We

used R2 and pseudo R2 of models to quantify the

amount of variation in DFE properties explained

by δ. We also checked that the amount of variation

explained by δ was not confounded by ε, the rate

of SNPs mis-orientation when building derived

SFS, and by GC3 content. To do so, both

variables were used as predictors in the models

and variance inflation factors were computed

using the vif() function of the R car package

(Fox and Weisberg, 2011) to check for co-linearity

between δ and ε or GC3 content. Overall, models

selection was insensitive to including/excluding

ε or GC3 content in predictors along with δ.

Moreover the (pseudo) R2 of the best models

were barely affected by including ε or GC3

content and variance inflation factors where low

(<1.2), so for simplicity we only report the

effect of δ in the main text. A supplementary

text describing the full statistical analysis of the

data, is available as commented R markdown

documents (Supplementary file S4).

Data availability

Data and code are deposited on a Github site,

https://github.com/tbata/delta-sift-polydfe
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TABLES

Table 1. Sequences for the ”toy example” three-codon
sequence.

Ancestral seq C C A G G T C A G

Ind 1 - - G - - - - - -

Ind 2 A - - - - - - C -

Ind 3 - - G - - - - C -

Ind 4 A - - - T - - - -
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Table 2. Sequences and SIFT scores for the toy example
three-codon sequence. For each position the SIFT score
of the four possible nucleotides is given. The nucleotides
present in the alignement are in bold, with the score
in italics corresponding to the derived alleles. From this,
each polymorphism can be assigned to a degeneracy
category (0 or 4) and a delta SIFT score category
(TOL→TOL,TOL→DEL,DEL→TOL,DEL→DEL). In the
example, SNPs are thus classified as follows: 0-TOL→TOL
(pos 1), 4-TOL→TOL (pos 3), 0-TOL→DEL (pos5) and
0-DEL→TOL (pos 8). Each position also contributes to
the length of the eight possible categories depending on
the opportunity of mutations at this site. For example, at
position 1, starting from the ancestral nucleotide C (TOL),
one possible mutation is TOL→TOL and the two others
are TOL→DEL, so this position contributes 1/3 the length
of 0-TOL→TOL category and 2/3 to the 0-TOL→DEL
category. The contribution of all positions is then summed
across the ancestral sequence to obtain the total length of
each category.

.

Codon 1 Codon 2 Codon 3

Nucleotides C C A G G T C A G

Degeneracy 0 0 4 0 0 4 0 0 4

SIFT for A TOL DEL TOL TOL DEL TOL TOL DEL TOL

SIFT for C TOL TOL TOL TOL DEL DEL TOL TOL TOL

SIFT for G DEL DEL TOL TOL TOL TOL TOL DEL TOL

SIFT for T DEL TOL TOL TOL DEL TOL DEL DEL TOL

Total

0 TOL → TOL 1/3 1/3 0 1 0 0 2/3 0 0 2.33

0 TOL → DEL 2/3 2/3 0 0 1 0 1/3 0 0 2.66

0 DEL → TOL 0 0 0 0 0 0 0 1/3 0 0.33

0 DEL → DEL 0 0 0 0 0 0 0 2/3 0 0.66

4 TOL → TOL 0 0 1 0 0 2/3 0 0 1 2.66

4 TOL → DEL 0 0 0 0 0 0 0 0 0 0

4 DEL → TOL 0 0 0 0 0 1/3 0 0 0 0.33

4 DEL → DEL 0 0 0 0 0 0 0 0 0 0
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Table 3. P0/P4 as a function of the change in SIFT score,
δ

P0/P4

fold δ 25% 50% 75%

0 -3 0.043 0.078 0.10

0 -2 0.062 0.10 0.14

0 -1 0.14 0.18 0.29

0 0 0.20 0.34 0.51

0 1 0.59 0.92 1.50

0 2 1.55 3.75 8.25

0 3 31.44 53.74 131.70

Table 4. Distribution of the DFE categories, Nes, as a
function of site (0-fold vs 4-fold) and changes in SIFT score,
δ. pb is the proportion of beneficial mutations

Nes

fold δ pb [0,−1] (−1,−10] (−10,−100] (−100,−∞)

0 -3 2.3e-6 3e-2 6.4e-2 0.18 0.70

0 -2 3.2e-5 4.8e-2 8.5e-2 0.18 0.66

0 -1 1.5e-4 0.12 0.13 0.21 0.42

0 0 0.11 2.3e-3 1.8e-2 9.2e-2 0.52

0 1 0.60 1.5e-12 5.8e-9 9.9e-6 0.30

0 2 0.99 9.3e-3 2.8e-6 3.3e-5 2.3e-4

0 3 0.99 9.8e-3 8.6e-5 5.4e-6 1.3e-8

FIGURES
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Ancestral sequence    CCA GGT CAG
Individual 1          --G --- ---
Individual 2          A-- --- -C- 
Individual 3          --G --- -C-
…
Individual n          --G --- -C-

1.  Call	and	polarize		SNPs	as	ancestral/	derived	
2.  Calculate	degeneracy		&	SIFT	scores	
3.			Define	evolutionary	transitions		
by	score	changes	δ  =  Sderived	-	Sancestral	

4.	Build	SFS	conditional	on	δ		

5.	Estimate	mutation	effects:		
 P0/P4	,	distribution	of	effects.	
	

δ  =		-1		
δ  =		+1		
δ  =		0		
δ  =		0		
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FIG. 1. Conceptual overview of the approach developed
in the present study and of the steps (1-5) we take for
conditioning SFS data on genomic features. Here our
genomic feature is the change in SIFT scores, δ.
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FIG. 2. log(P0/P4) as a function of the change in SIFT
scores, δ: the orange line denotes a least square regression,
the blue curve a local regression (loess). Data point are
jittered horizontally for graphical convenience. Shaded grey
areas around the curves denote confidence bands around
each regression lines. Point size is proportional to the
sample size of each SFS (number of non-synonymous SNPs)
.
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FIG. 3. Overview of the proportion of DFE classes versus
δ. Shown are the local regression (loess) curves depicting
the trend in the observed proportion of mutations falling
in each Nes class in the inferred DFE versus δ. In orange,
the class of beneficial mutations (Nes>0), in red, strongly
and very strongly deleterious (Nes within (-10, to −∞), in
light grey, slightly deleterious, (Nes within (-1, 0)) and in
darker grey, mildly deleterious mutations (Nes within (-1 ,-
10)). Note that the data points underlying the fitted curves
are not pictured in the figure.
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(b) Flux
FIG. 4. The proportion(pb) (a) and flux (pbSb) (b) of

beneficial mutations covary with δ. The curve in (b)
is a loess regression line indicating the local trend in
the data. The grey shaded area represents the 95%
confidence interval around the regression lines. Point size is
proportional to the sample size of each SFS (number of non-
synonymous SNPs) used for estimating DFE parameters
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