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Multi-objective Trajectory Optimization to Improve
Ergonomics in Human Motion

Waldez Gomes1, Pauline Maurice1, Eloı̈se Dalin1, Jean-Baptiste Mouret1, Serena Ivaldi1

Abstract—Work-related musculoskeletal disorders are a major
health issue often caused by awkward postures. Identifying
and recommending more ergonomic body postures requires
optimizing the worker’s motion with respect to ergonomics
criteria based on the human kinematic/kinetic state. However,
many ergonomics scores assess different risks at different places
of the human body, and therefore, optimizing for only one
score might lead to postures that are either inefficient or that
transfer the risk to a different location. We verified, in two work
activities, that optimizing for a single ergonomics score may
lead to motions that degrade scores other than the optimized
one. To address this problem, we propose a multi-objective
optimization approach that can find better Pareto-optimal trade-
off motions that simultaneously optimize multiple scores. Our
simulation-based approach is also user-specific and can be used
to recommend ergonomic postures to workers with different
body morphologies. Additionally, it can be used to generate
ergonomic reference trajectories for robot controllers in human-
robot collaboration.

Index Terms—Human Factors and Human-in-the-Loop; Hu-
man and Humanoid Motion Analysis and Synthesis; Modeling
and Simulating Humans

I. INTRODUCTION

WORK-RELATED musculoskeletal disorders (WMSDs)
are among the first causes of occupational diseases

worldwide, representing a major health issue, with important
costs for companies and society. They develop when biome-
chanical demands repeatedly exceed the workers’ physical
capacities, and, along with force exertion, awkward postures
represent one of their major risk factors [1]. In many situations,
workers are able to choose among a variety of postural strate-
gies to execute a task. Yet, their natural choice does not always
match the best strategy with respect to long-term health. For
instance, several studies reported that novice workers can
adopt strategies that result in higher biomechanical loading in
comparison to experienced workers [2]. Recommending better
ergonomic postures for specific tasks is, therefore, a promising
avenue to help to reduce WMSDs among workers.

Posture recommendation requires a prior identification of
the best postural strategy for each task –taking into account
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Fig. 1: Ergonomics human motion optimization. The entire
motion is encoded into motion primitives that can be readily
optimized with respect to a single, or multiple, ergonomics
scores using a user-specific Digital Human Model (DHM)
Simulation for motion evaluation.

workplace constraints– adapted to the specific individual. The
best strategy usually depends on individual factors, such as
body morphology, or joint capacities. The question of identi-
fying ergonomic postural strategies is also pushed forward by
the growing interest for collaborative robotics as a potential
solution to improve work conditions in industry. In addition to
the direct physical assistance –such as weight compensation or
force amplification– that they can provide, collaborative robots
can be used to drive workers towards ergonomic postures
that minimize the risks of WMSDs [3]–[6]. This can be
achieved, for instance, through the positioning of the robot
end-effector that constrains the human hand position, which
in turn influences the human posture (assuming an interaction
at the human hand/robot end-effector [7]). However, such
assistance requires selecting a robot end-effector trajectory that
corresponds to an ergonomic human posture. Such a posture
needs to be determined beforehand.

State-of-the-art human-robot applications that improve the
human partner’s ergonomics usually take in consideration only
one ergonomics score [4]–[6], [8]. However, single-objective
optimization may not be sufficient to obtain ergonomically
adequate whole-body motions, since optimizing for only one
criterion often produces motions that are less ergonomic in
other body regions; e.g., minimizing only the back flexion
ignores the leg motion or efforts at the shoulder joints.

In this paper, we propose to use multi-objective optimization
to generate several Pareto-optimal motions that simultane-
ously optimize different ergonomics scores. A simulation-
based optimization approach generates ergonomic whole-body
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motions for different body morphologies and activities (Fig.
1). Initial demonstrations from motion capture are used as
feasible motions to warm-start the optimization process. The
motions are parameterized by probabilistic movement primi-
tives (ProMPs), that can encode several task demonstrations.
A user-specific Digital Human Model (DHM) simulates the
whole-body motion in a physics engine, and the simulation
is used to estimate several ergonomics scores based not only
on the body’s posture, but also on its joint torques. A multi-
objective optimization algorithm (NSGA-II [9]) is used to
generate several possible Pareto-optimal solutions (i.e., whole-
body motions) that represent trade-offs among the different er-
gonomics criteria. This approach is user- and activity-specific,
and generates a variety of different movements that promotes
the different ergonomics criteria, producing ergonomically
reasonable motions for the DHM.

After describing the method in detail (section III), we
empirically show that: 1) ergonomics optimization must be
user-specific (experiment 1 in section IV-V); 2) optimizing
for one single criteria may lead to non-ergonomic motions for
other criteria, which means ergonomics criteria can conflict
(experiment 2 in section IV-V); 3) optimizing simultaneously
for several criteria using multi-objective optimization leads to
a set of motions that are more adequate w.r.t. ergonomics.

II. RELATED WORK

Prior work used human models to automate whole-body
motion analysis for a given activity [10], [11]. There is a
recent trend in the human-robot interaction community to use
them to improve the human posture with respect to ergonomics
scores during physical interactions. For instance, Marin et
al. optimized a shared object’s position in order to minimize
the maximum muscle activation signal taken from a fast-to-
compute musculoskeletal surrogate model [5]. Van der Spaa et
al. optimized a discrete sequential plan of poses for a shared
object during its transportation by both human and robot, with
respect to the Rapid Entire Body Assessment (REBA) score,
a standard whole-body ergonomics score [12].

Other works continuously evaluated the human kinemat-
ics/kinetics to try to influence the human posture with different
robot actions. Shafti. et al. used wearable sensors to compute
the Rapid Upper-Limb Assessment (RULA) score and adapt
the robot’s end-effector accordingly until the ergonomics eval-
uation was considered satisfactory [6]. Kim et al. minimized
the human joint torque due to an external load [4]. Similar
optimization techniques were used to improve human operator
ergonomics during teleoperation [13], [14].

The examples above considered single ergonomics scores.
However, given the multi-factorial causes of WMSDs, optimiz-
ing the movement for one ergonomics score could deteriorate
other possible antagonistic scores. For this matter, there are
some examples of multi-objective ergonomics optimization
in the literature. For instance, Xiang et al. optimized a hu-
man’s posture w.r.t. ergonomics and stability scores [15], and
Iriondo et al. optimized a workstation setup parameter w.r.t
RULA, and the human’s upper-arm elevation angle [16]. In a
physical human-robot application, Maurice et al. optimized a

Fig. 2: Digital Human Model (DHM) joints description. The
axes are X=Red, Y=Green, Z=Blue.

robot’s design parameters to simultaneously improve multiple
ergonomics scores [17]. Figueredo et al. combined muscle
activation predictions and the REBA score to calculate a
comfortability index that can be used in a physical human-
robot interaction to guide the human partner towards postures
that minimize both types of scores [18].

In this work, we propose an approach to optimize user- and
activity-specific whole-body motions with respect to multiple
ergonomics scores. We also show that the resulting optimal
motions are sensitive to different body morphologies and
ergonomics scores. A major advantage of our approach is
that we do not aggregate the different ergonomics criteria in
a weighted sum, but instead we run a truly multi-objective
optimization, i.e. we generate a Pareto front of non-dominated
solutions [9]. Thereby, we do not preset weights for each cri-
terion prior to the optimization, which would likely be activity
or even user-specific (e.g., in case of a known user disability
or pathology) and require the expertise of an ergonomist.

III. METHODS
A. Digital Human Model Simulation

The DHM used in this work (Fig. 2) consists of 19 rigid
bodies linked together by 18 compound joints, for a total of
43 DoFs (11 for the back and neck, 9 for each arm including
the sternoclavicular joint, and 7 for each leg), plus 6 DoFs for
the free-floating base. Each DoF is a revolute joint controlled
by a single actuator. Different human morphologies are easily
generated from a desired body mass and height, by scaling
the geometric and inertial parameters of the human model
according to average anthropometric coefficients [19], [20].

The DHM is simulated in a physics engine (Dynamic
Animation and Robotics Toolkit, DART [21]) and controlled
by a multi-task quadratic programming (QP) controller [22]
that generates the motion that will be evaluated. The QP
controller takes reference Cartesian trajectories that define the
activity as input, and outputs desired joint velocities for the
DHM. The QP is set to minimize the tracking error of these
references while handling task priorities defined by the user.
The priorities are defined by hierarchical levels, and tasks
within the same level are further prioritized by their task
weights. At the first priority level of the QP controller, there
is a fixed Cartesian task for both feet that keeps the DHM
in double support, and a task for the DHM’s center of mass,
to balance the DHM. At the second priority level, there are
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Cartesian tasks for the hands, pelvis, and head, as well as a
task that defines reference body postures. Here, the weights of
all tasks are defined according to the work activity.

B. Ergonomics Evaluation

To obtain ergonomic motions from the optimization, we
need to define ergonomics scores as objective functions to
our formulation. There are many possible ergonomics scores
typically representing different physiological phenomena that
could increase the risk of developing WMSDs [23]. However,
there is no strict consensus on a single score to use for motion
optimization. Moreover, they might be antagonistic among
themselves, e.g. the same movement could produce results that
are ergonomically suitable for a score, and not for another.

For this reason, instead of using an aggregated score, that
is often activity-specific, we consider several scores, εobj ,
separately (Tab. I). In order to obtain an evaluation of the
entire trajectory execution, we use a cost proportional to the
squared RMS value of εobj for each score, for the entire
activity duration:

Jobj =
∑

t∈[0...T ]

ε2obj(t) (1)

where T ∈ R is the final simulation instant. Below, we
describe each of the selected scores εobj .

RULA-C or RULA Continuous: The Rapid Upper Limb
Assessment (RULA) tool [24] is often used by ergonomists
to evaluate work activities involving upper-body motion. It
consists of a score ranging from 1 to 7, calculated based on the
joint positions, the force/load applied at the worker’s arm, and
how many times the activity is repeated. RULA time evolution
during a work activity is likely to have discontinuities, and
plateaus that make its domain exploration less efficient for
many optimizers. To alleviate this problem, we propose a
continuous version of RULA instead: RULA-C, εrc ∈ R+. To
compute RULA-C, we fit second-degree polynomial functions
to calculate intermediate scores for the RULA joints. The joint
scores for each limb are combined with weighted sums whose
weights are computed from linear regressions of the standard
RULA tables. Moreover, differently from RULA, RULA-C
only takes into account the body posture.

Normalized whole-body Effort: The torques at every joint
are summed to quantify the whole-body effort (table I), where
all joint torques are normalized w.r.t. average maximum human
capacity [19] in order to handle the joint torque capabilities.

Local measurements: WMSDs at the shoulder and lumbar
areas are among the most common in the population [1],
therefore, we chose scores that target them. For the shoulder
joint, we monitor its absolute torque values, εtsh, and for the
lumbar joint, we monitor its absolute torque values, εtlb, and
the back flexion angle, εback.

C. Whole-body Trajectory Parameterization

The reference trajectories to the QP controller define the
whole-body movement, from which, a few of them are selected
to be optimized, and for this reason, parameterized by Prob-
abilistic Movement Primitives (ProMPs), which can represent

TABLE I: Ergonomic Evaluation Scores. εobj(t) is the instan-
taneous score.

Description Score εobj(t)
RULA-C Regression of RULA [24] εrc

Normalized
whole-body Effort 1

njoints

∑
i∈joints

(
τit

τimax

)2

εnwe

Torques Shoulder ‖τshoulder‖ εtsh
Torques Lumbar ‖τlumbar‖ εtlb

Back Flexion
∥∥θYL5S1

∥∥ εback

a set of movement demonstrations as Gaussian distributions
[25]. The mean of those distributions are represented as a
weighted sum of basis functions, φt, defined at the learning
of the ProMP. Therefore, a ProMP mean trajectory, ytrajt , can
be modulated by its weight vector, wtraj :

ytrajt = φ>t wtraj (2)

Similarly to [26], all ProMP trajectories can be stacked into
a single weight vector, that finally defines our parameters to
be optimized: w = [w1 . . .wntrajs

].
The initial ProMP trajectories are a result of estimating the

weights, w, according to the initial movement demonstrations
captured using a whole-body motion capture system.

D. Trajectory Optimization

We optimize a selection of the DHM body segment trajec-
tories, y(w), through its optimizable parameters, w, w.r.t. one
of the ergonomic scores in table I with a single-objective op-
timizer, or with multiple scores, simultaneously, with a multi-
objective optimizer. Given an episode k in the optimization
loop (Fig. 1), the point wk is considered feasible if, and only
if, the executions of the whole-body trajectories y(wk) respect
some nonlinear constraints.

Trajectory Constraints: The DHM limbs and reference tra-
jectories should always be within the environment workspace.
That is, each ProMP weight is constrained to box boundaries
that correspond to the DHM’s reach in the workspace. Ad-
ditionally, during the trajectories’ execution, the DHM must
never fall, and its hand(s) must reach all (activity-dependent)
points of interest that are relevant for the activity. In order
for the trajectory execution scores (1) to be comparable, the
duration of every trajectory execution is always fixed for every
episode. This trajectory optimization is, therefore, a derivative-
free problem with black-box non-linear constraints.

Single-Objective Trajectory Optimization (SOTO): We
bootstrap the optimization with the initial ProMP weights
learned from the demonstration set. To optimize each one
of the scores separately, we use single-objective optimization
with the optimizer COBYLA (Constrained Optimization BY
Linear Approximation) [27], a deterministic local optimizer
that directly takes black-box constraints as inputs alongside
any of the ergonomics scores accumulated by (1), and has
already been used for constrained motion optimization prob-
lems [26]. The COBYLA implementation is taken from the
C++ library NLopt [28].

Multi-Objective Trajectory Optimization (MOTO): To
optimize for multiple scores at the same time, we advocate
for multi-objective optimization. The goal becomes not to find
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one single optimal solution, but rather, a set of Pareto-optimal
solutions that provide trade-off trajectories for conflicting
ergonomics scores, i.e a Pareto front. By definition [9], within
the Pareto front, all solutions are said to be dominant: given
solutions w1 and w2, w1 is said to dominate w2 if and only
if w1 provides better results for all objective functions; if one
or more of w2’s objectives is better than in w1, then both are
dominant solutions with a trade-off between each other. We
used the Non-dominated Sorting Genetic Algorithm II (NSGA
II), a multi-objective evolutionary optimizer [9] implemented
in the C++ library Sferesv2 [29].

Objective Function Penalties: Differently from COBYLA,
NSGA-II’s implementation does not handle specifying fea-
sible/unfeasible points directly, so we modify the objective
function (1) to penalize the unfeasible points. Each ergonomics
score is penalized in case the DHM falls or it does not reach
the activity’s points of interest:

Jobj = TfallPfall
obj + Pvia

obj +
∑

t∈[0...T ]

ε2obj(t) (3)

where Tfall ∈ R+ is the period of time in which the DHM
has been fallen, Pfall

obj ∈ R+ is the fall penalty for a given
score, and Pvia

obj ∈ R+ is the point-of-interest penalty for a
given score. Each score is associated with a different penalty
value, for they have different orders of magnitude.

Bootstrapping Initial Demonstrations: NSGA-II’s imple-
mentation also does not allow defining initial trajectories
directly. Hence, we modify the initial population sampling in
order to bootstrap the human demonstrations. The i-th vari-
able, wi, of each initial individual is sampled using the initial
ProMP i-th variable, winitial

i using a Gaussian distribution:

wi = N (winitial
i , δiβ) (4)

where δi is the largest distance between winitial
i and any of

its box boundaries, and β ∈ R is a constant that modulates
how much of the boundaries we want to sample initially. For
instance, if β = 1

3 , then p(wi = boundaryi) ≤ 0.3%, i.e., we
would sample the entire workspace with very low probabilities
at each variable boundary. Here, we chose β = 1

12 , a low value,
to keep the initial sample close to the initial demonstrations.

IV. EXPERIMENTS

The proposed approach is used to optimize whole-body
motions under a variety of body morphologies, ergonomics
scores, and work activities. Two work activities commonly
related to movements that are risky in terms of ergonomics
are analyzed, A and B (Fig. 3), which are described hereafter.

Activity A - Pick and Place Object from a Shelf: The
human has to reach an object located on a shelf with his/her
right hand, take the object, and move it laterally toward the
right side to another point on the same shelf. If the worker’s
shoulder level is below the shelf, this activity requires overhead
work that could overload the worker’s right shoulder.

To execute this activity, the DHM QP controller includes an
additional task that commands the head to face the right hand.
The task weights in the QP controller are set as: 1.0 for the
feet position (X,Y,Z), center of mass (CoM) position (X,Y),

A B
Fig. 3: Demonstrations for work activities A and B captured
with the motion capture suit Xsens MVN. A: Pick and place
a weight on a high shelf. B: Lift a box from the floor.

and hand position (X,Y,Z); 0.5 for the hand orientation (roll,
pitch, yaw); 0.1 for Pelvis position (Z), and Head orientation
(roll, pitch, yaw); 0.05 for a reference body posture task; and
0.005 for a reference back lateral bending joint position task.

Activity B - Lift Box from the Floor: The human has to
reach a box situated on the ground, in front of her/him, and
with both hands, lift it to the waist level height. This activity
commonly requires a great amount of effort surrounding the
human’s lumbar area, which could be overloaded in the case of
excessive back flexion, and/or excessive manipulated weights.

To execute this activity, the weights in the QP controller
are set as: 1.0 for the feet position (X,Y,Z), CoM position
(X,Y), hand position and orientation (X,Y,Z, roll, pitch and
yaw); 0.05 for the pelvis position and orientation (Z, pitch),
and reference body posture task; and 0.05 for reference joint
positions at the ankles, knees, and back internal rotation and
abduction joint positions.

A. Experiment 1 - Effect of Varying Morphology

The goal of this experiment is to show that optimal er-
gonomic motions are user-dependent. We generated 9 different
DHM morphologies with 3 different body heights, and 3
different body mass indexes corresponding to underweight,
average weight, and overweight morphologies (Tab. II). In
this experiment, the right hand vertical position and the CoM
ground projection trajectories were optimized for an activity
A type of motion, in which the shelf is located at 1.5 m high
and the start and end points for the hand are 30 cm apart.
The initial hand trajectory was artificially generated as the
minimum jerk trajectory between the start and end points.
The hand trajectory was defined by a ProMP with 25 weights,
and the CoM trajectory by a ProMP with 5 weights for each
coordinate, X and Y, therefore, w ∈ R35.

For each morphology, we ran single-objective optimizations
with 2 ergonomics scores for the shoulder: the RULA-C
score (evaluates upper-body motions), and the shoulder torque
score. The optimizer was set so that the optimization stopped
after 1500 rollouts or when the improvement in cost function
between successive rollouts was below 10−5.

B. Experiment 2 - Effect of Ergonomics Scores

The goal of this experiment is to show that SOTO with
different ergonomics scores generates different optimal trajec-
tories with possible negative impact on the overall ergonomics
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due to conflicting criteria. We optimize the motion for both
types of activities, A and B, and for each activity we run one
SOTO for each ergonomics score listed in Tab. I. Differently
from experiment 1, here, the initial motion is captured from
real human demonstrations (Fig. 3). In activity A, the shelf is
located at 1.7 m high, and the start and end points are 0.64
m apart. The human demonstrator, as well as his DHM, are
1.85 m high, with 93 kg, therefore, here, activity A required
overshoulder work. For both activities, we instructed the hu-
man demonstrator to perfom a non-ergonomic demonstration
(keeping hand above shoulder level in activity A and bending
the back and not the knees in activity B), so that there was
always a path for improvement in the optimization process.
Additionally, weights of 1kg were used for both activities
to limit the risk of injuries. In the simulation, however, we
used a 5kg object (act. A) and a 10kg box (act. B) to assess
demanding tasks where the choice of postural strategies might
have a larger impact on ergonomics scores.

In activity A, the CoM (X,Y), hand (X,Y,Z), and Pelvis
(Z) QP reference trajectories are optimized with 10, 30, and
10 ProMP weights respectively, totaling 50 parameters to be
optimized. In activity B, the CoM (X,Y), and Pelvis (Z) QP
reference trajectories are optimized with 10, and 20 ProMP
weights respectively, totaling 30 parameters to be optimized.
For each parameterized trajectory, the initial values of the
ProMP weights are learned from 5 human demonstrations. In
both activities, the optimizer was set so that the optimization
stopped after 1500 rollouts or when the improvement in cost
function between successive rollouts was below 10−5.

C. Experiment 3 - Multi-Objective Optimization
In this experiment, our goal is to show that MOTO generates

motions with better trade-offs between multiple ergonomics
scores than SOTO. We ran the MOTO on the same activities as
in experiment 2, including the same constraints and parameters
for the DHM QP controller. Instead of including all the
ergonomics scores in the optimization, we selected the scores
that are most relevant for each activity. Activity A demands a
significant motion from the right shoulder, and it is mainly an
upper-body activity, so we chose to optimize the motion w.r.t
torques shoulder, normalized whole-body effort, and RULA-
C scores. For activity B, both the shoulder and the lumbar
joints are well demanded during the box lifting, so we chose
to optimize the motion w.r.t. torques shoulder, and torques
lumbar scores.

NSGA-II hyper-parameters are set as follows: cross rate =
0.5; population size = 100; number of generations = 600
(totalling 62000 rollouts per optimization execution). The
mutation rates are set to 0.2, and 0.4 for activities A and B
respectively. Since NSGA-II is a stochastic algorithm, we ran
the optimization, in parallel, 20 times.

V. RESULTS AND DISCUSSION

A. Experiment 1
The optimization generated motions with improved er-

gonomics scores for each morphology with a median improve-
ment of 16.9% and interquartile range (IQR) of 18.6% re-
garding the RULA-C score, as well as a median improvement

TABLE II: Improvement of the ergonomics score from the
initial movement after SOTO for different morphologies.

mi Height (m) B.M.I. Weight (kg) Jrc Jtsh
1 2.0 18 72 8.3% 29.3%
2 2.0 22 88 8.4% 31.6%
3 2.0 30 120 8.1% 29.0%
4 1.8 18 58 16.9% 26.1%
5 1.8 22 71 17.6% 25.2%
6 1.8 30 97 14.3% 21.4%
7 1.6 18 46 33.5% 19.1%
8 1.6 22 56 25.9% 17.9%
9 1.6 30 77 28.0% 16.8%
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Fig. 4: Optimized hand trajectories w.r.t. torques shoulder and
RULA-C scores for the morphologies mi|i ∈ [1 . . . 9] in Tab. II
in experiment 1. Tall in red, medium in blue, and short in
green.

of 25.2% and IQR of 10.7% for the torque shoulder score
(Tab. II. For both ergonomic scores, the hand trajectory of
the short morphologies (m7, m8 ,m9) were distinguishingly
lower than for the tall morphologies (m1, m2, m3), which is
consistent with reducing the arm elevation angle. For the tall
morphologies and the torque shoulder score, the hand vertical
trajectory did not deviate much from the initial trajectory
(straight line at 1.5m high). This was likely because the
initial hand trajectory was already below the tall morphologies’
shoulder level, and hence characterized a local minimum for
this score. Indeed, lowering the arm even more would reduce
the gravity torque at the shoulder, but it would require to move
faster (since the task duration was fixed) thereby increasing
the torque due to inertia. These results confirm that each
individual needs to have a custom motion optimization for
his/her body morphology.

B. Experiment 2

Each optimization improved the initial motion according to
its ergonomics score (Fig. 5). In activity A, each optimization
improved: back flexion by 99.37%, RULA-C by 4.52%, nor-
malized whole-body efforts by 12.92%, torques shoulder by
60.36%, and torques lumbar by 77.24%. In activity B, each
optimization improved: back flexion by 93.42%, RULA-C by
30.02%, normalized whole-body efforts by 87.67%, torques
shoulder by 64.97%, and torques lumbar by 67.32%.
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Each one of the ergonomics scores have had a unique
influence on the whole-body posture and efforts. For instance,
the DHM’s right elbow is more flexed during the optimal
motion w.r.t. the torques shoulder score in comparison to the
other motions during activity A (Fig. 6). This is likely due
to the fact that flexing the elbow brings the arm closer to the
torso, hence, decreasing the torques caused by gravity on the
shoulder. During activity B, the initial motion has excessively
high lumbar torques (Fig. 5) due to the large back flexion
(Fig. 6). This motion strategy was penalized by all ergonomics
scores, which in turn favored motions that reduce the back
torque decreasing the DHM’s back flexion, and increasing
the DHM’s knee flexion instead. Interestingly, this is the case
even for the torque shoulder optimal motion, where the lumbar
torque is not directly penalized, although with a lesser amount
of knee flexion than the others.

The results confirm that solutions optimized for a given
score may degrade other scores (Fig. 5). In activity A,
minimizing the torque shoulder score increases the whole-
body effort and back flexion, while in activity B, minimizing
back flexion increases the torque shoulder score. Additionally,
conflicting ergonomics scores could happen when optimizing
for scores that do not evaluate the activity’s main load require-
ments. For instance, in activity A, whose main load is at the
shoulder, optimizing for back flexion highly increased torques
at the shoulder, while optimizing for lumbar torques increased
the whole-body efforts in comparison to the initial motion.

According to these results, optimizing for a single
ergonomics score may not be advisable, and a more holistic
approach concerning different ergonomics criteria must be
sought for motion optimization.

C. Experiment 3

The Pareto front for both activities was computed for 20
MOTO replicates per activity (Fig. 7, and Fig. 8). The resulting
Pareto fronts presented much starker score diversity between
the Pareto-optimal solutions than the motions from the SOTO
in experiment 2 (Fig. 5). This likely happened because NSGA-
II is a global optimizer, therefore, it explores the optimization
space more efficiently than local optimizers. This diversity
gives more options, and flexibility for the user to choose a
Pareto-optimal solution according to given criteria.

To illustrate the advantage of using the MOTO approach,
we visually selected some motions from each Pareto front of
each activity with reasonable trade-offs between the scores
(Fig. 7, Fig. 8), and compared them to the single objective
solutions of the same scores (Table III). For activity A, w?

A3

had similar elbow flexion trajectory to the SOTO w.r.t. torque
shoulder score, as a matter of fact, this is a good solution if the
user does not care about the generalized increase in the whole-
body torques (indicated by Jnwe). On the other hand, if both
the whole-body torques and the torques at the shoulder are
important for the user, w?

A4 could be a more interesting choice.
Similarly for activity B, w?

B2 is a movement that optimizes
both shoulder and lumbar torques simultaneously, but if the
user would prefer the minimum shoulder torques from the
pareto front, then w?

B1, with less knee flexion, would be a

TABLE III: Improvement of the ergonomics scores w.r.t. the
initial motion after SOTO and MOTO. Worse performance in
red. The multi-objective solutions are indicated in the Pareto
fronts (Figs. 7 and 8).

(a) Activity A

Motion Jtsh Jnwe Jrc
Initial 100% 100% 100%

Single Obj. Jtsh 39.4% 146.2% 105.7%
Single Obj. Jnwe 99.1% 80.2% 102.4%
Single Obj. Jrc 77.6% 90.8% 95.5%
Multi-Obj. w?A1 83.9% 115.9% 93.4%
Multi-Obj. w?A2 72.9% 41.2% 102.7%
Multi-Obj. w?A3 50.1% 198.0% 100.5%
Multi-Obj. w?A4 35.8% 53.4% 97.0%

(b) Activity B

Motion Jtsh Jtlb
Initial 100% 100%

Single Obj. Jtsh 33.6% 70.6%
Single Obj. Jtlb 78.8% 32.8%
Multi-Obj. w?B1 16.0% 36.9%
Multi-Obj. w?B2 22.4% 26.0%
Multi-Obj. w?B3 73.4% 24.4%

better choice. Note that w?
B1, also has a greater reduction on

the lumbar torques than the SOTO solution for the shoulder
torques. Additionally, most solutions from the Pareto fronts
have improved their ergonomics scores, even for scores that
were not being optimized (Fig. 6). This is likely due to those
scores not being in conflict with the optimized ones.

Video: To show that Pareto-optimal solutions obtained by
MOTO are better ergonomics trade-offs than those obtained
by SOTO, we refer the reader to the video attachment where
we compare the different whole-body movements executed
by our DHM. Clearly, optimizing for a single criteria easily
produces unrealistic movements that one could actually refer
to as non ergonomic: e.g., we point out the solution in activity
A that minimizes the lumbar torques with a very awkward
non-ergonomic motion. Movements generated by our MOTO
approach are more plausible and ergonomically adequate.

In conclusion, generating whole-body motion with
MOTO provides better trade-offs among multiple er-
gonomics criteria; and because many solutions are gen-
erated, we obtain a tool that enables a user (i.e., an
ergonomist) to choose from a set of ergonomic motions
that are often better than the ones generated with SOTO.

VI. CONCLUSION

We showed that single-objective optimization may not be
sufficient to obtain satisfactory ergonomic motions, since
optimizing for only one criterion often produces motions that
are less ergonomic w.r.t. other criteria. Instead, in our approach
we generate a set of Pareto-optimal motions with respect to
multiple ergonomic scores. This allows us to simultaneously
consider several criteria without requiring an ergonomics
expert to preset weights for the different criteria prior to
the optimization, as would be the case if the criteria were
aggregated in a weighted sum. With our approach, solutions
corresponding to any specific trade-off between the different
ergonomic scores can be selected afterwards to match, for
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Fig. 5: Experiment 2 (SOTO) and Experiment 3 (MOTO) - The median of the ergonomics scores during the execution of the
initial and optimal motions. Lines of the same color represent one motion, and each axis represents one of the ergonomics
scores. The motions in experiment 2 are taken from 5 independent single-objective optimizations for each activity. The motions
in experiment 3 are taken from the respective Pareto fronts for each activity (Fig. 7 and 8).
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Fig. 7: Experiment 3 - Activity A - Pareto front. The scores
values are normalized by those of the initial motion. The
bottom image is a 2D projection of the 3D Pareto front, the
third objective is represented by a color scale on each point.

Fig. 8: Experiment 3 - Activity B - Pareto front. The scores
values are normalized by those of the initial motion.

instance, the user preferences, or medical condition or the
recommendations of an ergonomist. But importantly, this
selection does not require to re-run the optimization, which
represents a significant gain of time. Preliminary discussions
with occupational ergonomists confirmed the potential of our
tool, provided that we include learning implicit preferences
for the Pareto-optimal solutions. This will be object of future
work, possibly using preference learning algorithms [30].

Additionally, our approach has direct applications in human-
robot physical interaction: a collaborative robot could be used
to drive the human user towards an ergonomic posture when
performing a joint task. For example, from the output of our
optimization we can easily extract a user- and activity-specific
optimal human hand trajectory, and then use it as the reference
end-effector trajectory during a collaborative task.
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