
HAL Id: hal-03281816
https://hal.science/hal-03281816

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric Surface Fitting on Airborne Lidar Point
Clouds for Building Reconstruction

Guillaume Coiffier, Justine Basselin, Nicolas Ray, Dmitry Sokolov

To cite this version:
Guillaume Coiffier, Justine Basselin, Nicolas Ray, Dmitry Sokolov. Parametric Surface Fitting on Air-
borne Lidar Point Clouds for Building Reconstruction. Computer-Aided Design, 2021, 140, pp.103090.
�10.1016/j.cad.2021.103090�. �hal-03281816�

https://hal.science/hal-03281816
https://hal.archives-ouvertes.fr

Parametric surface fitting on airborne Lidar point clouds for building reconstruction

Guillaume Coiffiera,∗, Justine Basselina,∗, Nicolas Raya, Dmitry Sokolova

aUniversité de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France

Abstract

Surface reconstruction is an essential step in most processing pipelines involving point clouds. By constructing a surfacic
or volumetric model of the cloud, it is possible to infer large-scale semantic and geometric information required for most
applications in computer graphics, simulation and virtual reality. Among the different types of point cloud and the variety
of possible problems, we are interested in airborne Lidar data and the problem of building reconstruction for urban planning
ranging from flood and light exposure simulation to virtual touristic visits.

While most existing reconstruction methods are based on characteristic features extraction in point clouds such as
planes, ridges, contours and their combination into a more complex model, we instead adopt a template-based approach
relying on a library of complex primitives developed in an industrial context.

This is formulated as a global fitting problem between a constrained triangulated mesh (our template) and the point
cloud. More precisely, we design an energy function that takes into account the distance between both objects while
integrating outliers rejection directly in our numerical optimization through the use of an M-estimator. This energy function
being smooth everywhere, it can be efficiently minimized by quasi-Newtonian methods like the L-BFGS algorithm.

We demonstrate the reliability of our approach on a collection of diverse roof models and several publicly available Lidar
datasets, as well as its robustness and limits in function of initialization, point cloud quality and presence of outliers. By
only fitting onto relevant points, this method allows a precise fitting as well as a correct outlier segmentation in a unique
step, providing a reasonable initialization close to the barycenter of the cloud.

Keywords: Surface fitting, Lidar point clouds, Roof & building reconstruction, Energy minimization, Voronoi diagrams

1. Introduction

Thanks to recent advances in acquisition technologies,
point cloud data have become a precise and widespread
digital representation of real-world objects, providing the
opportunity to perform a large range of numerical treat-
ments on such objects. While they allow an easy visual-
ization by a human-being, these raw acquisitions, however,
lack the geometrical semantic required by most applications
in computer graphics. A pre-processing step, where the
point cloud is segmented and reconstructed from geometri-
cal primitives (planes, cylinders, spheres, etc.) or more com-
plex templates, is needed in order to obtain a more suited,
higher level representation.

In this work, we are interested in this reconstruction
phase in the context of LIDAR point clouds of city districts.
These data are acquired via an airplane and contain every
object present in the city: cars, trees, building roofs, roads,
ground features, etc..

Applications of these data, ranging from city visualiza-
tion for tourism to flood and wind simulation, require the
reconstruction of buildings as geometrical objects. As LI-
DAR point cloud are acquired from the sky, buildings are
most often represented by their roofs and extruded down to

∗Corresponding author
Email addresses: guillaume.coiffier@inria.fr (Guillaume

Coiffier), justine.basselin@inria.fr (Justine Basselin)

ground level. Hence, determining the polygonal surfaces of
roofs enables the reconstruction of the whole city.

Most existing roof reconstruction methods are made of
two steps. First, a feature detection pipeline, based on
statistic tools (as RANSAC or regression), is applied on the
point cloud: for instance, planes and ridges are computed
from the point cloud to produce features of higher levels of
abstractions, such as contour edges and graphs of adjacent
planes. Then, features are combined to generate a complete
roof template under specific constraints.

We propose an alternative that considers the roof recon-
struction as a unique optimization problem. The advantage
of this approach is that the determination of each feature
directly takes into account that the object we are looking
for is an instance of a given roof template, which we assume
to be known. In our case, the roof template is a polygo-
nal surface subject to some constraints like the planarity
of roof panes, alignment of gutters, or horizontality of the
roof’s ridge (Figure 2). Our idea consists in minimizing a
distance function that we have defined between the roof and
the point cloud: we want the surface to be as close as pos-
sible to every point of the point cloud and vice versa. Such
an energy function is presented in this article as well as its
optimization, exploiting an efficient evaluation of its value
and gradient.

This article is organized as follows: after a brief overview
of related work (§2), we formulate the template fitting as an

Preprint submitted to Elsevier July 8, 2021

Figure 1: Left: example of roof templates (bottom frame) and a typical airborne LIDAR point cloud from the Strasbourg dataset [1]. Right:
Our methods fit the parametric roof templates onto corresponding locations in the point cloud, effectively detecting them. Each template was
selected and roughly initialized by a human operator near a roof of the point cloud and finally fitted on the whole cloud. Points belonging to
non-roof objects like ground areas or trees are considered as outliers by our method.

optimization problem (§3) and then, develop our resolution
method (§4). Finally, the behavior of the method is exten-
sively evaluated (§5) to properly estimate its limitations.

Figure 2: A roof template is a polygonal surface (in this example it has
triangular faces ABE and CDF, and quad faces BCFE and DAEF),
that can fit different roofs by changing the geometry of its vertices,
subject to a set of constraints.

2. Related work

We focus on a surface reconstruction problem, where we
have strong prior on the roof geometry, making it closer to
surface fitting. We also need to consider the particulari-
ties of roof reconstruction problems. An overview of surface
reconstruction is presented in [2]. For objects with large
smooth regions, detecting them provides important infor-
mation [3].

For surfaces with analytic expression (planes, spheres,
cylinders, cones and tori) a robust reconstruction is possi-
ble with RANSAC algorithm [4]. RANSAC is not robust to
noise in general [5] but works quite well in our case where
the primitives are large planar regions. It is then possi-
ble to discover global constraints [6], that are introduced
in a second step of optimization. The same idea was ap-
plied to interactive architecture modeling [7], with vertex,
edge and face snapping as global constraints. Our prob-
lem is quite different because we exploit constraints that
are defined in advance to find the best possible match. In
our case, we expect the final roof surface to correspond to
a roof template, making it relevant to explore the litera-
ture of the surface fitting community. To find the position

and deformation of a model, most work [8] rely on the It-
erative Closest Point (ICP) optimization algorithm. The
basic problem is to minimize the distance between a surface
and a point cloud, by finding the optimal rigid transfor-
mation of the surface [9, 10]. It is also possible to con-
sider deformations of the surface [11], but it often requires
correspondence landmarks to be placed by a user or auto-
matically detected [12]. A non-rigid transformation has to
preserve the overall shape of the surface; so the deforma-
tion should be locally close to an isometry, i.e. it can be
locally considered as a rigid transformation of the original
surface [13, 14, 15]. This approach works pretty well for
dense meshes (e.g. issued from scans), but minimizing the
deformation of the surface is not a valid objective for every
application (including roof reconstruction). For articulated
models, a rigid per-bone transformation is instead consid-
ered [16] and, for CAD models, [17] works with a shape
described by a set of parameters (hole radius, edge length,
etc.). This is very close to our problem, our templates and
constraints are very similar, but our method is working well
in presence of noise and outliers, and is designed for using
efficient solvers. Another way to fit a surface is presented
in [18]: it minimizes a symmetric distance between two sur-
faces that is defined as an integral over all points of the
model w.r.t a restricted Voronoi diagram. It gives a distance
function that is smooth and can be directly optimized by
L-BFGS [19], instead of alternating between projection and
minimization as it is done in ICP. Our method is quite simi-
lar, but supports roof model constraints as well as rejection
of outliers thanks to a robust M-estimator approach. The
problem of roof reconstruction is also well studied. Most
works [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] use different
pipelines where each step detects and/or combines features
[31, 32] extracted from the point cloud. The final mesh is
then given by combining faces, edges, ridges, etc.. In [33],
the final roof geometry is optimized under the constraints
discovered when combining the different elements e.g. edge
alignment or vertex at the same height. Instead of start-

2

ing from planes with RANSAC, [34] is similar to ours in
the sense that they directly fit a roof model with a robust
method, albeit it requires a tight 2D bounding box of the
roof as input. Another approach [35, 36] directly matches
roof templates from a fair footprint approximation. Their
objective function minimizes distances in the Z axis and
relies on information entropy to tune the size of the roof.
Their optimization is based on Markov chain Monte Carlo,
which allows to change the roof model during the optimiza-
tion. Our solution exploits less application-specific prior
(footprint and using only the z coordinate for the distance)
and our smooth objective function strongly improves the
converge rate near local minima. They also propose a solu-
tion to combine basic roofs into more complex structures,
that is an interesting way to improve our results in the fu-
ture.

3. Problem formulation

We consider the problem of fitting a parametric tem-
plate onto a point cloud. In this article, we call template a
user-defined triangulated mesh subject to various geometri-
cal constraints. While this framework is broad and can fit a
variety of problems, we will restrain ourselves to the study of
building reconstruction in airborne data. Our templates will
therefore be roof templates and their associated mesh will
be topological disks. Examples of some of those templates
can be found on Figure 1 (bottom left frame). The geo-
metrical constraints on these models reflect the planarity of
roof planes, alignment of gutters, horizontality of the roof’s
ridge, etc., and can be expressed as equalities or inequalities
linking the coordinates of the template’s vertices. The data
we use are raw LIDAR acquisitions over regions of interest.
In addition to the roof we want to fit, the point clouds con-
tain other structures ranging from chimneys and antennas
to trees, ground areas or even neighboring roofs. The fit-
ting method is therefore required to be robust whatever the
presence of outliers.

In this section, we describe our problem as the mini-
mization of an energy function. This function takes the
form of a sum of two terms, which are respectively defined
in subsections § 3.2 and § 3.3.

3.1. A distance between a point cloud and a surface
To be able to state the problem as an optimization, the

very first thing we need is to define a distance between the
point cloud P and a surface S. One natural quantity to con-
sider when dealing with distance between two geometrical
objects P and S is the Hausdorff distance defined as:

H(S, P) := max

(
sup
q∈S

inf
p∈P
||p− q||, sup

p∈P
inf
q∈S
||p− q||

)
The Hausdorff distance is a maximum over two terms:

its minimization ensures that every point of S is not too
far from the point cloud, but also that every point of P is
close to the surface. This behavior is however not robust to
outliers as a single outlier point in P can make the distance

arbitrarily large. We additionally require that our objec-
tive function is smooth for the sake of being able to use an
efficient optimizer, which is not the case of the Hausdorff
distance here.

Since the point cloud P corresponding to the data is
fixed in our case, we propose a variation of the Hausdorff
distance in the form of an energy E(S), function of the
(moving) surface S. The underlying idea is the same as in
the Hausdorff distance (refer to Figure 3), but we replace
the max by a sum to obtain a smooth energy:

E(S) := F(S) + γ G(S), (1)

where F quantifies the distance from the point cloud to
the surface, G is the distance from the surface to the point
cloud, and the parameter γ tunes relative weights of F and
G (more details are given in Section 3.3).

Figure 3: We need both terms F(S) and G(S) in the energy E(S),
otherwise the fitting does not produce the expected result. Left:
argminF ; middle: argminG; right: argminE.

To define the terms F(S) and G(S), we need to introduce
two projection functions. Let q ∈ S be a point on the surface
S, and p ∈ P a point from the 3D point cloud P .

• πP (q) := argminp∈P ||p− q|| is the projection of q to
the point cloud, i.e. the closest point of P from q;

• πS(p) := argminq∈S ||q − p|| is the projection of p to
the surface, i.e. the closest point of S from p.

Figure 4 illustrates the projection functions. We will define
shortly both terms F(S) and G(S) as integrals of these pro-
jections, they can be computed in a very efficient manner
with aid of restricted Voronoi diagrams.

3.2. F(S): distance from P to S
Fitting a surface primitive onto a point data set is a

problem that can be seen as a special three-dimensional case
of a more general regression problem. Unlike more simple
primitives like planes or spheres, our roof templates do not
allow for the computation of a closed form of the optimal
result. Yet, the sum of squared distances from points of P
to S is still a natural thing to consider. The issue of robust-
ness to outliers for a regression problem has been extensively
studied in various works on M-estimators and robust least-
square regression [37]. As this part of our problem shares
many characteristics with the framework of M-estimators,
we introduce a potential function σ and define our first en-
ergy term F as follows:

F(S) :=
∑
p∈P

σ
(
||p− πS(p)||2

)
(2)

3

p

πP (q)

q

πS(p)

S

P

Figure 4: Our energy measures the distance between the point cloud P
(in orange) and a surface S (the gable roof). To compute the distance,
we need projection functions πP and πS that give the closest point
of the point cloud and the surface, respectively. Then, we integrate
the functions for each point of the surface (resp. point cloud), and
this computation is very efficient due to a restricted Voronoi diagram
calculation (shown in color).

where σ is Tukey’s biweight function [38] defined as follows:

σ : x 7→

{
1− (1− (x/δ)2)3 if |x| < δ

1 otherwise
(3)

In contrast to many other functions used for M-estimators,
Tukey’s biweight is of class C2 and thus matches our re-
quirements for a smooth energy function. The biweight
function σ presents several properties of interest in our case.
First, σ(0) = 0 and σ′(0) = 0, which means that the energy
associated with points that are near the surface is low and
has low gradient. Second, σ(x) = 1 and σ′(x) = 0 for any
x > δ, which means that δ naturally defines a threshold for
points to be considered outliers and not contributing to the
evolution of the energy. In practice, δ is estimated as the
mean distance between points and their k-closest neighbors
in the point cloud, with k = 10. Minimization of the term
F(S) guarantees that the model is stretched to capture the
full extent of the roof points without being sensible to irrel-
evant points that are too far away.

3.3. G(S): distance from S to P
While minimizing the F term allows to finding satisfac-

tory position and orientation of the surface S, the regression
approach does not allow to fit the boundary of the surface
to feature lines in the point cloud (see Figure 3). Indeed,
large portions of the surface area far away from the points
are not penalized by F . To avoid this situation, we add a
second term G to our energy function, defined as:

G(S) :=

∫
S

||q − πP (q)||2dS(q) (4)

This energy term is inspired by the Voronoi Square Distance
Minimization (VSDM) algorithm [18], where a similar en-
ergy is used for fitting a surface onto another surface. As
depicted in Figure 3, G alone could not be considered as an
energy function, since points of P that are not considered
as the closest point by a point in S have no influence on the
energy, and thus will never be considered in a minimization

process. As a consequence, it would not correctly capture
the edges of the roof inside the point cloud, and could even
reach a global minima G = 0 by moving the roof to a sin-
gle point of P . Both terms therefore play a different but
complementary role in the overall solution.

The parameter γ tunes relative weights of F and G. To
be independent of global scaling or the point set density, we
set γ = 1 for our point cloud of resolution 30 pts/m2, and
preserve the same ratio for decimated point clouds. This
value was used to generate all results, except in Figure 8
and the last line of Figure 12 where tuning it allows to
capture the step edge of the roof.

It is interesting to notice that although both terms of
the energy defined as sums of distances over every point of
P (for F) and S (for G), their expression differs naturally
in the same way that P and S are two different objects,
one being a discrete set of points and the other one being
a continuous surface. It is also worth noting that we are
placing ourselves in a context where outliers can only appear
in P while the whole surface of S should be considered a
relevant part to be fitted onto the points. This logically
implies that the outlier robustness is only expressed in F
and not in G.

4. Constrained optimization

In summary, given a (mobile) surface S and a (constant)
point cloud P , we have defined the energy E(S), whose
minimization fits S onto a part of P .

In practice, S is a fixed connectivity triangular mesh,
and its geometry is defined by the position of the vertices.
We define the position of the i-th vertex as Si := RXi + T ,
whereXi = (xi, yi, zi)

T ∈ R3 is the coordinates of the vertex
in a local template basis and R, T represent a rigid transfor-
mation, i.e. a rotation matrix R ∈ R3x3 and a translation
vector T ∈ R3 of this local basis to the canonical basis of
R3.

Our objective is to fit the template onto the most suit-
able position inside the point cloud via optimizing for these
coordinates X ∈ R3n (template deformation), i.e. the con-
catenation of the Xi as well as for the rigid transformation
(R, T) of the template. We then rewrite Equation (1) as
follows:

E(X,R, T) := F(X,R, T) + γ G(X,R, T) (5)

Recall that we have yet to incorporate geometrical con-
straints put on the template to fit, so our optimization prob-
lem can be written as:

argmin
X,R,T

E(X,R, T) subject to constraints on X. (6)

In this section, we first show how we deal with the ge-
ometrical constraints (§ 4.1) via a reduction of variables,
then we detail the computation of the energy (5) as well as
its gradient using restricted Voronoi diagrams (§ 4.2), which
enables us to call a quasi-Newtonian solver.

4

4.1. Constraints
As depicted in Figure 2, our roof models have to comply

to a variety of constraints put on their vertices (planarity
of the roof panes, alignment of gutters, horizontality of the
roof’s ridge, etc.). These conditions can be expressed as
equations that link the coordinates of X. In our optimiza-
tion we support linear constraints on X that take the form∑
i,j αijXij = 0 or

∑
i,j βijXij > 0.

Note that some constraints are readily linear in terms
of vertex coordinates of our surface S (e.g. equality of the
gutter vectors), whereas others are not (e.g. orthogonality
or collinearity). Separating the local basis rigid transfor-
mation R, T from the mesh deformation X is a common
practice [35, 13, 14] for managing such non linearities. This
gives to all the considered constraints a linear form when
expressed in the local basis.

Let us show how we model the constraints shown in Fig-
ure 2. First we define the local basis so that

−−→
AD is collinear

to the axis Ox, namely yA = yD. The constraints can then
be expressed as follows (refer to Figure 5):

•
−−→
AD =

−−→
BC translates into xD = xC and yB = yC ;

•
−−→
AD ·

−−→
AB = 0 can be developed as the two equations

xA = xB and yA = yD;

• The collinearity
−−→
EF = λ

−−→
AD, 0 ≤ λ ≤ 1 as yE = yF

and xA < xE < xF < xD.

Figure 5: Roof model of Figure 2 where constraints have been ex-
pressed as equalities and inequalities between coordinates in the local
basis.

Linear Equalities. The m linear constraints expressed onto
the 3n variables in X can be written in a m × 3n matrix
C such that CX = 0 (for example, in Figure 5, m = 5).
From this, our goal is to compute a set of 3n −m reduced
variables Y that are independent from each other, as well as
a transformation between Y and X such that for any Y , the
X obtained through this transformation satisfies CX = 0.
To this end, we seek a linear relationship of form:

X = MY (7)

where M is a 3n × (3n −m) full rank matrix. This yields
CMY = 0 which has to be true for all Y ∈ R3n−m. A
sensible choice for M is therefore to take an orthonormal
basis of the null space of C arranged in columns. This
makes it easily computable through a QR decomposition of
C.

Linear Inequalities. In addition to the linear equalities, we
want to prevent the roof template from getting into unreal-
istic positions, for instance where triangular faces intersect
each other. Those positions are often the result of two vari-
ables switching the order of their values. Given our roof ini-
tialization and parametrization, such a flip is never required
in order to reach to global minima of the energy. This is
where inequality constraints of general form

∑
i,j βijXij > 0

come into place. While they are not strictly necessary, they
act as a regularization on the energy by removing local min-
ima associated with non-realistic positions of the template.
As we are not interested in solutions where two vertices co-
incide, those inequalities are not thought to be tight, but
more as a guideline where

∑
i,j βijXij should be sufficiently

large.
It is unfortunately impossible to enforce this type of con-

straints in the same way as equalities. Since inequality ex-
pressions only have to be loosely positive, we choose to han-
dle them by adding an extra term to the energy function.

For a constraint of form
∑
i,j βijXij > 0, we add to the

energy E a logarithmic-exponential barrier term I defined
as:

I(X) = a log(1 + exp(−b
∑
i,j

βijXij)), where a, b > 0 (8)

Tweaking hyperparameters a and b allows us to control
the slope and the magnitude of the barrier term. Having a
large value for a allows to efficiently suppress local minima
of E that present flipping or unacceptable positions. The
value of b controls the magnitude of the gradient of I. If b
is too large, solutions with vertices very close to each other
are not effectively discarded, but with b too low, the slope
of the gradient when variables do not respect the constraint
might not be enough to enforce it. In practice, we take
a = 105 and b = 3.

In conclusion, taking into account both equality and in-
equality constraints in the system, our constrained mini-
mization problem (6) can be fully stated as follows:

argmin
Y,R,T

{
F(MY,R, T) + γ G(MY,R, T) +

∑
k

Ik(MY)

}
(9)

4.2. Energy Minimization
All the terms F , G and I in Equation (9) are of class

C2, which is a non-trivial result for G [39]. We propose to
minimize it using second-order quasi-Newtonian methods
like L-BFGS algorithm [19]. This implies a computation of
both the energy E and its gradient ∇E.

Throughout this section, we adopt the following conven-
tion for partial derivatives: if u = (ux, uy, uz) is a point of
R3 and f is a real-valued function depending on variables
ui, we will note ∂f

∂u the vector
(
∂f
∂ux

, ∂f∂uy
, ∂f∂uz

)
.

We start by computing the gradient according to the
coordinates Si = RXi + T of vertices of S expressed in the
global basis. By an abuse of notations, we will denote by
S the vector made from the concatenation of the Si when

5

it does not introduce an ambiguity. Namely, we start by
computing ∇SE, and the gradient of E according to the
relevant variables will be later obtained via the chain rule.

Computation of F . The computation of the first energy
term F (Equation (2)) is straightforward: the squared dis-
tance ||p−πS(p)||2 can be computed with a point-to-triangle
distance looping over every triangle in S, before being fed
inside the σ function (Equation (3)).

For the gradient ∇SF , given a point p ∈ P , we obtain
the vector

∂F
∂πS(p)

= 2(p− πS(p))σ′
(
||p− πS(p)||2

)
∈ R3

where σ′ is the derivative of σ. Noting by C(c1, c2, c3)
the triangular face of S containing πS(p) (c1, c2 and c3 being
three triplets of variables Si), and (λ1, λ2, λ3) the barycen-
tric coordinates of πS(p) in C, the contribution of p to the
gradient ∇SF concerns only the coordinates of the ci with:

∂F
∂ci

= 2λi(p− πS(p))σ′
(
||p− πS(p)||2

)
, (10)

and these expressions need to be summed for each p ∈ P .

Computation of G. For the second term G (Equation (4)),
we follow [18] and compute Voronoi diagram of P restricted
to S. Let us denote by Ωp the Voronoi cell of p ∈ P , the
diagram partitions S into polygonal regions Ωp ∩ S where
the closest point πS(p) is constant. The integral therefore
can be decomposed as follows:

G =

∫
S

||q − πP (q)||2dS(q) =
∑
p∈P

∫
Ωp∩S

||p− q||2dS(q)

(11)
For a given p ∈ P , we partition again the region Ωp ∩

S into triangles T (v1, v2, v3) (see Fig. A.15) and we can
express the analytical value of the integral over each triangle
using Theorem 2.1 of [40]:

GT =
area(T)

6

∑
1≤i≤j≤3

(vi − p)(vj − p) (12)

The computation of ∂GT
∂vk
∈ R3, ∇SGT and finally ∇SG

are detailed in Appendix Appendix A.
For the penalty terms I, values and gradients need to

be computed using coordinates X in the local basis. Their
expressions are straightforward.

Computing gradients along the rigid transformation (R,T)
and local variables X. Coordinates Xi in the local basis are
defined from the global basis coordinates Si through a rigid
transformation:

Si = R(θ)Xi + T ∈ R3 (13)

For the sake of clarity, we restrict our attention only
to rotations around the vertical axis Oz. This is sufficient

to handle our main application case (roofs fitted into air-
borne LIDAR acquisition), and the generalization to an
arbitrary rotation parametrized by three Euler angles is
straightforward. Let θ be the angle of rotation along Oz
and T = (Tx, Ty, Tz) the translation vector. We obtain:

∂E

∂Xi
= Rz(−θ)

∂E

∂Si
(14)

which yields the gradient ∇XE given the previously
computed gradient ∇SE. Additionally, we are interested
in the derivatives ∂E

∂θ and ∂E
∂T according to the rigid trans-

formation. For the rotation component, we get:

∂E

∂θ
=
∑
i

∂E

∂Si
·Rz(

π

2
)(Si − T) (15)

and for the translation component, we have:

∂E

∂T
=
∑
i

∂E

∂Si
(16)

Details for the computation of ∂E∂θ and ∂E
∂T are given in

Appendices Appendix B and Appendix C.

Computing gradients along reduced variables Y . With the
above expressions, we have all the ingredients to minimize
the energy w.r.t the variables (X, θ, T), which is only a half
of the problem since it does not take into account the linear
equality constraints (7). While the computation of ∇SE
and ∇XE are necessary steps, we are really interested in
the partial derivatives along the real 3n−m degrees of free-
dom Y (assuming m is the number of distinct equality con-
straints) along the derivatives corresponding to the rotation
R and the translation T . Given Equation (7) ∇Y E can be
easily computed using the chain rule as follows:

∇Y E = M>∇XE (17)

which concludes on the computation of E and its gradi-
ents according to the relevant variables.

5. Results and Applications

Evaluating the quality of our method is challenging for
two reasons. Firstly, the fitting of a roof template on a point
cloud dataset is an ill-posed problem since the ground-truth
information has been lost during acquisition and is not easy
to retrieve.

Secondly, no clear and global quantitative metric has
been established in the state of the art to evaluate the qual-
ity of a fitting, and therefore objectively compared to exist-
ing methods.

Our energy E (defined by Equation (6)) is an attempt
at defining such a metric. In order to test the quality of our
metric, we define as our reference position either a manually
fitted template or the result of the fitting on data that has
been manually cleaned (like in Tables 1 and 2). We then
evaluate the final position of a fitting by computing the
Hausdorff distance between its set of vertices and the set of

6

100% Noisy 100% 50% Noisy 50% 10% Noisy 10%

Gabble roof

Reference d = 0.27m d = 6.80× 10−2m d = 0.20m d = 0.53m d = 0.44m

Gabble roof
with trees

Reference d = 2.94m d = 1.93m d = 2.13m d = 0.53m d = 0.66m

Hipped roof

Reference d = 0.44m d = 2.84m d = 4.24m d = 2.40m d = 2.24m

Cross hipped
roof

Reference d = 0.43m d = 0.34m d = 0.46m d = 0.95m d = 0.87m

Table 1: Experiment showing the robustness of our method to poor quality point clouds. Noisy indicates the presence of uniform distribution
of noise of amplitude 30cm added to the position of each points. Percentages indicate the proportion of points remaining in the cloud. Point
clouds are shown in orange and we represent the final position of the roof model on the point cloud. The initial position of the roof is defined by
aligning the cloud barycenter with the model barycenter, and translating the model 3m upwards. Rotation was the same for all test cases, but
arbitrary. The error d is estimated quantitatively as the Hausdorff distance between the fitted template and a reference template that is either
human generated or the result of a fit on the cleaned point cloud.

vertices of this reference, called d. Although this distance
only takes into account vertices of the roof template and
not the whole surface, areas of interest will often be edges
of the roof, which this metric correctly captures. In all this
section, distance and numerical scores given in text and
figures will correspond to this Hausdorff distance and will
be given in meters (m).

Our point clouds have been selected from Lidar acqui-
sitions of the towns of Breuschwickersheim and Strasbourg
in France that are freely available online [1]. In order to
isolate the effect of various defects on the point clouds, we
extract by hand some reference point clouds and manually
get rid of different layers of outliers in order to generate
different distributions admitting the same optimal solution
for the roof placement. In addition to that, test cases were
selected for semi-detached roofs for the purpose of testing
different types of junctions for composite roofs (Figure 8
and supplementary materials).

We base ourselves on a pre-built library of roof templates
(Figure 6) available as triangulated mesh on which we man-
ually define geometrical constraints (Figure 7). These mod-
els cover the majority of the real world detached roofs, with
the exception of flat roofs, which can be handled with a flat
rectangular model. For more complicated roof shapes, say

in dense urban areas, our method considers the connected
roof as a cluster of those models and aims at fitting them
separately.

Figure 6: Our method utilizes a library of diverse roof models, allowing
us to cover the majority of real world cases.

In this section, we evaluate the robustness and quality of
our method over two families of parameters. We first focus
on the behavior of the fitting with relation to the quality
of the point cloud. Secondly, we perform experiments on
the initial position of the templates, and the ability of the

7

Figure 7: Example of a Dutch roof fitting.

method to converge to a good solution when this initializa-
tion is far away from the optimal. Finally, we will discuss
the performance, the advantages and the failure cases of the
method.

5.1. Robustness to quality of the point cloud
We start by testing the convergence behavior of the

method against the quality of the point cloud. Recall that
we designed the energy function to be robust to outliers
(Section 3.2), that is to say large portions of the point cloud
that do not correspond to the specific roof shape we want to
fit. This has to be true even if the outliers are coherent, for
instance in the case of a tree or a neighboring roof. In ad-
dition to that, we test our method on altered data, to check
that it is fairly independent on points cloud density, as well
as robust against acquisition noise. Tests are therefore split
into three categories:

• Point cloud alteration (noise and decimation)

• Presence of other structures (antennas, shutters, chim-
neys, ground, trees, etc.)

• Presence of other roofs

Noisy acquisition and point cloud resolution. The first test
we run can be seen as a sanity check where we assess that
the result obtained by our method does not change much
when the density of the point cloud is changed and when
noise is added to the point cloud. To this end, we compare
in Table 1 the fitting results of the same model with the
same initialization on a point cloud that has been artifi-
cially altered. Three setups of point cloud decimation are
considered: full point cloud, randomly pruning 50% and
randomly pruning 90% of the points. The artificial noise
added follows a uniform distribution with zero mean and a
maximal amplitude of 30cm.

The initial position of the template was obtained by
matching the barycenters of both the point cloud and the
template, and then applying a fixed (but arbitrary) rota-
tion of 0.2 radians and an upwards translation of 3 meters.
This ensures that the convergence does not benefit from an
initial position that is too well-aligned nor too close from
the optimal position. Starting from above the point cloud is
also a common practice in our tests, since most outliers are
laid beneath or next to the area of interest. Experiments
shown in Table 1 have been run on three different mod-
els of roofs (a gabble roof, a rectangular hipped roof and a
cross-hipped roof) and three corresponding points clouds.
In the case of the gabble roof, we run the experiment on a
cloud that presents trees and on the same cloud where trees

were manually deleted. We observe that in the first case,
the noisy points of the trees are captured by the model,
which leads to a great imprecision on the edges of the roof.
In a context with fewer outliers near the roof (Gabble roof
without trees and cross-hipped roof), we observe that the
deviation ranges from a few centimeters to a few dozen cen-
timeters even with 90% of the point cloud pruned, which
is acceptable given the range of the perturbation. On the
hipped roof, however, scores of the Hausdorff distance are
high as we observe that perturbing the point cloud leads to
the roof being placed at a right angle as its ridge becomes
perpendicular. This leads to visually close results but we
consider these cases as failed ones.

Robustness to coherent outliers. In most real world airborne
Lidar point cloud, the acquisition is made over every object
present in the landscape. While modern Lidar technology
gives a form of segmentation, the presence of non-relevant
object for our uses is still the norm. When fitting a roof
model, structures on the roof like antennas or windows as
well as adjacent structures like trees and cars should be
ignored.

Given point clouds that were manually cut into differ-
ent layers of outliers, we perform an optimization with our
method on those different versions, thus comparing the per-
formance with and without certain classes of non-relevant
structures. We consider four cases in addition to the per-
fectly segmented reference: small additional structures on
the roof (chimneys, antennas, etc.), large additional struc-
tures, ground and finally ground and trees. Results are pre-
sented in Table 2. Initialization was similar for all test cases
and set like in the previous experiment: 3m up the barycen-
ter of the point cloud and arbitrarily rotated of 0.2 radians.
For every case, we measure the Hausdorff distance from the
perfectly segmented case. We observe that in the large ma-
jority of cases, the influence of outliers remains small, with
an observed deviation in our metric of the order of the cen-
timeter. On the hipped roof, we observe that the presence
of an adjacent structure (like a porch or a veranda) leads to
imprecision on the edge. The most remarkable failure cases
happen on the hipped and the L-shaped hipped roofs with
presence of both trees and ground, where a tree directly
touching the edge of the roof makes the algorithm consider
those points as valid, which also lead to a great offset.

Roof clusters and adjacencies. In dense areas where build-
ing are adjacent to one another, we can use our method to
fit one roof at a time. Other roofs present in the point cloud
have to be considered as outliers, but the only prior telling
which roof point cloud should be fitted is the template ini-
tialization. In Figure 8, we present the result we obtained
on some selected configurations of interest, presenting re-
sults for both a gabble roof and a cross hipped roof. While
correct results can be obtained by tuning the parameter
γ and starting close from the wanted position, we conclude
that these configurations remain especially hard to optimize
with our method, since they can lead to acceptable solutions
that do not correspond to the reality (see Figure 12). They,

8

Segmented Small Structures Large Structures Ground Ground & Trees

Gabble Roof

Reference d = 2.73× 10−5m d = 2.96× 10−3m d = 2.06× 10−5m d = 2.91× 10−5m

Hipped Roof

Reference d = 8.37× 10−2m d = 9.30× 10−1m d = 1.93m d = 2.60m

Cross
Hipped Roof

Reference d = 2.31× 10−2m d = 9.42× 10−2m d = 1.48× 10−2m d = 1.01m

Table 2: Experiment showing the robustness of our method to various outlier distributions present in real world data. Point clouds are shown in
orange and we represent the final position of the roof model on the point cloud. The initial position of the roof is defined by aligning the cloud
barycenter with the model barycenter, and translating the model 3m upwards. Rotation was the same for all test cases, but arbitrary. The error
d is defined as in the Table 1.

however, can greatly benefit from preprocessing steps such
as plane segmentation.

Figure 8: Fitting results obtained on adjacent roofs. Left : two gabble
roofs. Right : a gabble T-shaped roof and a simple gabble roof. When
fitting onto a specific roof, the other one is considered as part of the
outlier distribution.

5.2. Impact of initialization
Until now, experiments were performed using an arbi-

trary initialization roughly registered to the given point
cloud. Yet, minimizing our energy function is a task that
is highly dependent on the starting position in our variable
space. After evaluating our method against variations in
the point cloud, we present here a series of tests in order to
validate that the method is able to find the correct position
of the roof for a range of reasonable initializations.

Recall that in Equation (9), we optimize our energy
function along three sets of variables: translation T , ro-
tation R and reduced variables Y obtained after subjecting
vertex positions to linear constraints. We present here a
protocol to evaluate the optimization quality in function
of the initial values of those three sets of variables indepen-
dently. Namely, we consider variations of the initial position

of the roof in terms of translation, rotation and stretching
of the model.

Translation. We initialize the roof model by applying a
translation to the reference position. We test twelve dif-
ferent directions evenly distributed on a sphere for three
different magnitudes of translation: 1, 3, and 5 meters from
the optimal position (see Figures 9). Next to the point
cloud used, we represent the translation as twelve vectors
of corresponding length. Colors match the computed Haus-
dorff distance, with 0m being fully green and 2m being fully
red. We observe that in practice, translations of small mag-
nitude pose no problem optimizing, while translations of
greater magnitude tend to fail. When the template is far
from the cloud, it considers only a part of the cloud as most
points are considered outliers and thus may converge to only
a partial fitting (see Figure 12).

Rotation. For the rotation component, we initialize the model
with ten different angles around the Z axis, centered on
the middle of the optimal roof position. The layout of
the results is depicted in Figure 10, where the initial po-
sitions form the inner ring of templates, and the final posi-
tions correspond to the outer ring. We observe that for
the gabble roof, the optimization is able to retrieve the
correct orientation whatever the orientation, while on non-
symmetrical roofs like a cross-hipped roof, the best position
is only achieved for an angle of 2iπ/n from the optimal, with
i ∈ [0, n− 1] and n = 10. A greater angle usually leads to a
local minimum where the roof is inverted (see Figure 12).

Stretching. Finally, we carry out tests by stretching the ref-
erence model. Stretching is applied by a factor of [0.5, 1.,

9

Gabble roof with small structures.

Cross-hipped roof with ground.

Figure 9: Translation experiments on a gabble roof with small struc-
tures and a cross-hipped roof with ground. Arrow color represents
the success of our method when initialized to the reference position,
translated by the corresponding vector.

1.5] in the x, y and z directions, leading to 27 different
cases. On Figure 11, we present the results for a cross-
hipped roof with ground. We observe that failure cases
occur for shrinked models, which tend to converge to only
a part of the point cloud.

5.3. Discussion and future work
Running time. Our algorithm is implemented in C++, and
uses the restricted Voronoi diagram and HL-BFGS present
in the Geogram library [41]. The experiments were carried
out on an Intel(R) Xeon(R) E-2276M CPU (clocked at 2.8
GHz). Time to convergence can take up to 20 seconds for
initializations that are far from the optimal position since
the solver needs more steps to achieve convergence, and the
restricted Voronoi diagram also takes longer to be computed
when the model also spans the cells of outliers. When a good
initialization is available, the timing drops to 2− 3 seconds
per fit. The most time-consuming part of our algorithm
is the computation of the restricted Voronoi diagram (80%
of runtime) needed to evaluate G and ∇SG. Typical point
cloud in our data contains 1k to 10k points depending on
the considered distribution of outliers.

From these observations, we consider as a future work
an approximate computation of this energy where the re-
stricted Voronoi diagram is no longer necessary. This could
be done for instance by sampling the surface of the model
and making the energy pointwise only.

Typical failure cases. We presented successful as well as
failed cases in all of this section. From our experiments,
we observed that failures occur when:

1. The roof model fits a part or the integrity of the outlier
distribution. This especially happens when the initial-
ization is too close from the said distribution (for in-
stance, for a model initialized in the ground), or if the
minimal distance between an outlier and a relevant

Gabble roof with small structures.

Cross-hipped roof with ground.

Figure 10: Rotation experiments. The point cloud is shown in orange
in the middle. The first roof on the right of the point cloud is the
ground truth. Other roofs in the inner ring (gray) are obtained by
rotation of the ground truth. The second ring of roofs shows our
result for each initialization. Whatever the initial rotated position of
the template, the minimization scheme is converging to the correct
position. Top ring : gabble roof with rotation. Bottom ring : cross-
hipped roof.

point is small and the biweight function (Equation 3)
is no longer able to distinguish the one from the other.

2. The roof model is initialized in a bad orientation that
sticks the optimization in a local minima.

3. The point cloud presents an adjacent roof that is easily
fitted by the template. While this gives a very low
energy and good visual results, this is not wanted in
most use cases.

Those three cases are shown in order in Figure 12. Fortu-
nately, they can be easily avoided for the most part by:

1. Considering initializations that are above the point
cloud (or more fine-tuned initialization that could be
available in a processing pipeline, while out of the
scope of this paper)

2. Testing the best of two initializations where we con-
sidered two initial angles α and α+ π

3. Tuning the hyperparameter γ and thus decrease the
sensibility to neighboring points.

As expected, outliers that are close to the surface are
hard to classify using only a function of the distance to the

10

Figure 11: Stretching experiments on a crossed-hipped roof with floor. From left to right each set of 9 roofs has an increasing z stretch factor
of [0.5, 1., 1.5]. The x stretch factor increases inside each line, and the y stretch increases in each row. Consequently, the center result is not
stretched at all and represents our reference. Templates shown are the roof initialization and not its final position. Color map ranges from 0m
(green) to 2m (red). The point cloud used is depicted on the right.

roof. In our future work, we expect a better behavior with
energy functions that would be anisotropic in the normal
direction of the plane. Another future direction is to fit
more than a roof at once, in order to automatically segment
a set of adjacent roofs.

Better initialization. Experiments detailed in Subsection 5.2
show that the basin of attraction of the best fit is pretty
large in general, even in the presence of noise and outliers.
However, it is important to notice that a full automatic re-
construction algorithm would require a fair initial guess to
start with, which could for instance be computed with foot-
prints or cadastral data, plane fitting, etc. or given by a
human operator in a human-machine interaction context.

Initialized to the solid white roof, our algorithm finds a local
minimum (transparent roof) that includes ground points.

The cross-hipped roof (left), initialized by a rotation of π (middle),
found a local minimum that mismatches the faces.

The step edge (left) is not detected by our algorithm (middle), but
dividing γ by 10 solves the problem (right).

Figure 12: Typical failure cases of our algorithm.

Future works. Our method is designed to be as general as
possible, opening three research opportunities. It can be ap-
plied to similar problems such as partial CAD object match-

ing as in Figure 13. However, since CAD models are more
complex than roofs (higher number of vertices), it would
be more efficient to compute the constraints automatically
and optimize the algorithm to decrease its execution time.
We can also improve the performance of roof reconstruc-
tion by using more sources of information such as cadas-
tral data (example provided in Figure 14), colors, LIDAR
reflexing intensity, or even results of other algorithms (seg-
mentation, plane detection, etc.). This can simply provide
good initializations for our method, or have a deeper impact
by modifying the objective function. Finally, an automatic
template selection based on the estimation of high level ge-
ometrical properties of the point cloud could also be a great
improvement towards a fully automated pipeline.

Figure 13: Our template fitting can be used for other applications,
like partial CAD fitting. The initialization of the template is shown
in red, the result in green.

Conclusion

The fast improvement of real-world acquisition technolo-
gies enabled the massive availability of point cloud data of
all sorts, making the challenging task of structuring them a
problem of first importance. In this work, we show that fit-
ting a roof endowed by geometrical constraints onto LIDAR-
acquired point clouds could be done efficiently through the
optimization of an energy function, using quasi-Newton op-
timizers like L-BFGS and the fast computation of a re-
stricted Voronoi diagram. Partial fitting of the point cloud,

11

Figure 14: Our matching method can be used with cadastral data,
allowing to treat more complex cases such as streets of the city center
of Strasbourg [1].

that is, fitting in the presence of outliers, can also be per-
formed. Our method yields satisfactory results as a stan-
dalone fitting procedure over a diverse panel of real world
cases, especially for detached roofs. In more dense areas,
embedding this method into a pipeline with state-of-the-
art methods for finding fair initialization and/or applying
segmentation pre-processing is far from being irrelevant.

Acknowledgements

We thank the company RhinoTerrain for supporting our
research and providing us with roofs models. We also thank
Philippe Slisse for the various point cloud datasets present
in this article.

References

[1] Lidar data, Ville et Eurometropole de Strasbourg https://data.
strasbourg.eu/explore/dataset/odata3d_lidar/information
(Nov. 2016).

[2] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guen-
nebaud, J. A. Levine, A. Sharf, C. T. Silva, A survey of surface
reconstruction from point clouds, Comput. Graph. Forum 36 (1)
(2017) 301–329. doi:10.1111/cgf.12802.
URL https://doi.org/10.1111/cgf.12802

[3] S. Fleishman, D. Cohen-Or, C. T. Silva, Robust moving least-
squares fitting with sharp features, ACM Trans. Graph. 24 (3)
(2005) 544–552. doi:10.1145/1073204.1073227.
URL https://doi.org/10.1145/1073204.1073227

[4] R. Schnabel, R. Wahl, R. Klein, Efficient ransac for point-cloud
shape detection, Computer Graphics Forum 26 (2) (2007) 214–
226.

[5] T. Le, Y. Duan, A primitive-based 3d segmentation algorithm
for mechanical cad models, Computer Aided Geometric Design
52 (2017) 231–246.

[6] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, N. J. Mi-
tra, Globfit: Consistently fitting primitives by discovering global
relations, ACM Trans. Graph. 30 (4). doi:10.1145/2010324.
1964947.
URL https://doi.org/10.1145/2010324.1964947

[7] M. Arikan, M. Schwärzler, S. Flöry, M. Wimmer, S. Maierhofer,
O-snap: Optimization-based snapping for modeling architecture,
ACM Trans. Graph. 32 (1). doi:10.1145/2421636.2421642.
URL https://doi.org/10.1145/2421636.2421642

[8] G. K. L. Tam, Z. Cheng, Y. Lai, F. C. Langbein, Y. Liu, D. Mar-
shall, R. R. Martin, X. Sun, P. L. Rosin, Registration of 3d point

clouds and meshes: A survey from rigid to nonrigid, IEEE Trans-
actions on Visualization and Computer Graphics 19 (7) (2013)
1199–1217.

[9] P. J. Besl, N. D. McKay, A method for registration of 3-d shapes,
IEEE Transactions on Pattern Analysis and Machine Intelligence
14 (2) (1992) 239–256.

[10] A. Segal, D. Hähnel, S. Thrun, Generalized-icp., in: J. Trinkle,
Y. Matsuoka, J. A. Castellanos (Eds.), Robotics: Science and
Systems, The MIT Press, 2009.
URL http://dblp.uni-trier.de/db/conf/rss/rss2009.html#
SegalHT09

[11] C. Stoll, Z. Karni, C. Rössl, H. Yamauchi, H.-P. Seidel, Template
Deformation for Point Cloud Fitting, in: M. Botsch, B. Chen,
M. Pauly, M. Zwicker (Eds.), Symposium on Point-Based Graph-
ics, The Eurographics Association, 2006. doi:10.2312/SPBG/
SPBG06/027-035.

[12] R. B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms
(fpfh) for 3d registration, in: 2009 IEEE International Conference
on Robotics and Automation, 2009, pp. 3212–3217.

[13] O. Sorkine, M. Alexa, As-rigid-as-possible surface modeling, in:
Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, SGP ’07, Eurographics Association, Goslar, DEU,
2007, p. 109–116.

[14] R. W. Sumner, J. Schmid, M. Pauly, Embedded deformation for
shape manipulation, in: ACM SIGGRAPH 2007 Papers, SIG-
GRAPH ’07, Association for Computing Machinery, New York,
NY, USA, 2007, p. 80–es. doi:10.1145/1275808.1276478.
URL https://doi.org/10.1145/1275808.1276478

[15] H. Li, B. Adams, L. J. Guibas, M. Pauly, Robust single-view
geometry and motion reconstruction, ACM Trans. Graph. 28 (5)
(2009) 1–10. doi:10.1145/1618452.1618521.
URL https://doi.org/10.1145/1618452.1618521

[16] S. Pellegrini, K. Schindler, D. Nardi, A generalisation of the icp
algorithm for articulated bodies, in: Proceedings of the British
Machine Vision Conference, BMVA Press, 2008, pp. 87.1–87.10,
doi:10.5244/C.22.87.

[17] F. Buonamici, M. Carfagni, R. Furferi, L. Governi,
A. Lapini, Y. Volpe, Reverse engineering of mechanical
parts: A template-based approach, Journal of Compu-
tational Design and Engineering 5 (2) (2018) 145 – 159.
doi:https://doi.org/10.1016/j.jcde.2017.11.009.
URL http://www.sciencedirect.com/science/article/pii/
S2288430017301392

[18] V. Nivoliers, D.-M. Yan, B. Lévy, Fitting polynomial surfaces to
triangular meshes with voronoi squared distance minimization,
Engineering with Computers 30 (3) (2014) 289–300.

[19] D. C. Liu, J. Nocedal, On the limited memory bfgs method
for large scale optimization, Math. Program. 45 (1–3) (1989)
503–528.

[20] G. Vosselman, Building reconstruction using planar faces in very
high density height data, International Archives of Photogram-
metry and Remote Sensing 32 (3; SECT 2W5) (1999) 87–94.

[21] K. Zhang, J. Yan, S.-C. Chen, Automatic construction of build-
ing footprints from airborne lidar data, Geoscience and Re-
mote Sensing, IEEE Transactions on 44 (2006) 2523 – 2533.
doi:10.1109/TGRS.2006.874137.

[22] A. F. Elaksher, J. S. Bethel, et al., Reconstructing 3d buildings
from lidar data, International Archives Of Photogrammetry Re-
mote Sensing and Spatial Information Sciences 34 (3/A) (2002)
102–107.

[23] P. Dorninger, N. Pfeifer, A comprehensive automated 3d ap-
proach for building extraction, reconstruction, and regularization
from airborne laser scanning point clouds, in: Sensors, 2008.

[24] Q.-Y. Zhou, U. Neumann, Fast and extensible building model-
ing from airborne lidar data, in: Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in geographic
information systems, ACM, 2008, p. 7.

[25] Q.-Y. Zhou, U. Neumann, 2.5d dual contouring: A robust ap-
proach to creating building models from aerial lidar point clouds,
in: K. Daniilidis, P. Maragos, N. Paragios (Eds.), Computer Vi-
sion – ECCV 2010, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010, pp. 115–128.

[26] F. Tarsha-Kurdi, T. Landes, P. Grussenmeyer, Extended ransac
algorithm for automatic detection of building roof planes from

12

https://data.strasbourg.eu/explore/dataset/odata3d_lidar/information
https://data.strasbourg.eu/explore/dataset/odata3d_lidar/information
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1111/cgf.12802
http://dx.doi.org/10.1111/cgf.12802
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1145/1073204.1073227
https://doi.org/10.1145/1073204.1073227
http://dx.doi.org/10.1145/1073204.1073227
https://doi.org/10.1145/1073204.1073227
https://doi.org/10.1145/2010324.1964947
https://doi.org/10.1145/2010324.1964947
http://dx.doi.org/10.1145/2010324.1964947
http://dx.doi.org/10.1145/2010324.1964947
https://doi.org/10.1145/2010324.1964947
https://doi.org/10.1145/2421636.2421642
http://dx.doi.org/10.1145/2421636.2421642
https://doi.org/10.1145/2421636.2421642
http://dblp.uni-trier.de/db/conf/rss/rss2009.html#SegalHT09
http://dblp.uni-trier.de/db/conf/rss/rss2009.html#SegalHT09
http://dblp.uni-trier.de/db/conf/rss/rss2009.html#SegalHT09
http://dx.doi.org/10.2312/SPBG/SPBG06/027-035
http://dx.doi.org/10.2312/SPBG/SPBG06/027-035
https://doi.org/10.1145/1275808.1276478
https://doi.org/10.1145/1275808.1276478
http://dx.doi.org/10.1145/1275808.1276478
https://doi.org/10.1145/1275808.1276478
https://doi.org/10.1145/1618452.1618521
https://doi.org/10.1145/1618452.1618521
http://dx.doi.org/10.1145/1618452.1618521
https://doi.org/10.1145/1618452.1618521
http://www.sciencedirect.com/science/article/pii/S2288430017301392
http://www.sciencedirect.com/science/article/pii/S2288430017301392
http://dx.doi.org/https://doi.org/10.1016/j.jcde.2017.11.009
http://www.sciencedirect.com/science/article/pii/S2288430017301392
http://www.sciencedirect.com/science/article/pii/S2288430017301392
http://dx.doi.org/10.1109/TGRS.2006.874137

lidar data.
[27] F. Lafarge, C. Mallet, Creating large-scale city models from 3d-

point clouds: a robust approach with hybrid representation, In-
ternational journal of computer vision 99 (1) (2012) 69–85.

[28] D. Chen, L. Zhang, P. T. Mathiopoulos, X. Huang, A methodol-
ogy for automated segmentation and reconstruction of urban 3-d
buildings from als point clouds, IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 7 (10) (2014)
4199–4217.

[29] M. Shahzad, X. X. Zhu, Automatic detection and reconstruction
of 2-d/3-d building shapes from spaceborne tomosar point clouds,
IEEE Transactions on Geoscience and Remote Sensing 54 (3)
(2016) 1292–1310.

[30] J. Martín-Jiménez, S. Del Pozo, M. Sánchez-Aparicio, S. Lagüela,
Multi-scale roof characterization from lidar data and aerial or-
thoimagery: Automatic computation of building photovoltaic ca-
pacity, Automation in Construction 109 (2020) 102965.

[31] J. Milde, C. Brenner, Graph-based modeling of building roofs,
in: Proceedings of the 12th AGILE Conference on GIScience,
Hannover, Germany (on CD-ROM), 2009.

[32] B. Xiong, S. O. Elberink, G. Vosselman, A graph edit dictio-
nary for correcting errors in roof topology graphs reconstructed
from point clouds, ISPRS Journal of photogrammetry and remote
sensing 93 (2014) 227–242.

[33] Q. Zhou, U. Neumann, 2.5d building modeling by discovering
global regularities, in: 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition, Providence, RI, USA, June 16-
21, 2012, IEEE Computer Society, 2012, pp. 326–333. doi:
10.1109/CVPR.2012.6247692.
URL https://doi.org/10.1109/CVPR.2012.6247692

[34] A. Henn, G. Gröger, V. Stroh, L. Plümer, Model
driven reconstruction of roofs from sparse lidar point
clouds, ISPRS Journal of Photogrammetry and Remote
Sensing 76 (2013) 17 – 29, terrestrial 3D modelling.
doi:https://doi.org/10.1016/j.isprsjprs.2012.11.004.
URL http://www.sciencedirect.com/science/article/pii/
S0924271612002043

[35] H. Huang, C. Brenner, M. Sester, 3d building roof reconstruction
from point clouds via generative models, 2011, pp. 16–24. doi:
10.1145/2093973.2093977.

[36] H. Huang, C. Brenner, M. Sester, A generative statisti-
cal approach to automatic 3d building roof reconstruc-
tion from laser scanning data, ISPRS Journal of Pho-
togrammetry and Remote Sensing 79 (2013) 29 – 43.
doi:https://doi.org/10.1016/j.isprsjprs.2013.02.004.
URL http://www.sciencedirect.com/science/article/pii/
S0924271613000476

[37] P. W. Holland, R. E. Welsch, Robust regression using itera-
tively reweighted least-squares, Communications in Statistics-
theory and Methods 6 (9) (1977) 813–827.

[38] A. E. Beaton, J. W. Tukey, The fitting of power series, meaning
polynomials, illustrated on band-spectroscopic data, Technomet-
rics 16 (2) (1974) 147–185.

[39] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, C. Yang, On
centroidal voronoi tessellation—energy smoothness and fast com-
putation, ACM Transactions on Graphics (ToG) 28 (4) (2009)
1–17.

[40] J. B. Lasserre, K. E. Avrachenkov, The multi-dimensional version
of

∫ a
b x

pdx, The American Mathematical Monthly 108 (2) (2001)
151–154.

[41] ALICE, Geogram, http://alice.loria.fr/index.php/
software/4-library/75-geogram.html.

[42] V. Nivoliers, Phd thesis: Échantillonnage pour l’approximation
de fonctions sur des maillages, Ph.D. thesis, INRIA (2012).

Appendix A. Computation of ∇SG

Computations of the gradient∇SG were first made in [18]
and [42], but have been adapted to our notations. We first
recall the expression of G in Equation (11) and its decom-
position as a sum over polygonal regions where πP (q) is
constant:

G =

∫
S

||q − πP (q)||2dS(q) =
∑
p∈P

∫
Ωp∩S

||p− q||2dS(q)

The polygonal areas Ωp ∩ S can be partitioned intro
triangles, on which we can calculate the exact formula for
the integral. Let p ∈ P be a point and let T (v1, v2, v3) be
a triangle of the subdivision of Ωp ∩ S. The contribution of
triangle T on the energy G, noted GT is:

GT =
area(T)

6

∑
1≤i≤j≤3

(vi−p)(vj−p) and G =
∑
p∈P

∑
T∈

Ωp∩S

GT

The expression of GT depends on the coordinates of the
vk, which are not coordinates of X in general. Using the
chain rule, we get:

∂GT
∂xi

=
∑
k

∂GT
∂vk

· ∂vk
∂xi

The first term ∂GT
∂vk

is obtained by directly differentiating
GT according to the vk, k=1,2,3, to obtain the following
partial derivatives:

∂GT
∂vk

=
1

12
(2vk + vk+1 + vk+2 − 4p)||nT ||

+
∑

1≤i≤j≤3

(vi − p)(vj − p)(vk+1 − vk+2)
nT
||nT ||

where indices k are taken modulo 3 and nT = (v1 − v2) ×
(v1 − v3) the normal vector of triangle T .

For the computation of ∂vk∂xi
, recall that X is the vector

of the coordinates of vertices of S, and T (v1, v2, v3) is a
triangle that is a subset of a triangular face C(c1, c2, c3) of
S. With these notations, c1, c2 and c3 are three triplets
of coordinates of X. Let v be one of the vertices v1, v2, v3.
It is clear that ∂v

∂xi
= 0 if xi is not present in c1, c2 or c3.

In other words, the gradient computed on triangle T only
contributes to the points of the face in which T belongs. In
the opposite case, the partial derivative ∂v

∂ci
is non-zero, and

three configurations appear: (see Figure A.15)
(1) v is one of the vertices ci. Then ∂v

∂c = I3×3 if
c = ci and 0 otherwise.

(2) v is on an edge [ci, cj]. This means that v is on the
intersection of the segment [ci, cj] and an edge delimiting
two Voronoi cells Ωp1 and Ωp2 . We have:

∂v
∂ci

= ew>i + (1− u)I3x3

∂v
∂cj

= ew>j + uI3x3

∂v
∂c = 0 if c 6= ci, cj

13

https://doi.org/10.1109/CVPR.2012.6247692
https://doi.org/10.1109/CVPR.2012.6247692
http://dx.doi.org/10.1109/CVPR.2012.6247692
http://dx.doi.org/10.1109/CVPR.2012.6247692
https://doi.org/10.1109/CVPR.2012.6247692
http://www.sciencedirect.com/science/article/pii/S0924271612002043
http://www.sciencedirect.com/science/article/pii/S0924271612002043
http://www.sciencedirect.com/science/article/pii/S0924271612002043
http://dx.doi.org/https://doi.org/10.1016/j.isprsjprs.2012.11.004
http://www.sciencedirect.com/science/article/pii/S0924271612002043
http://www.sciencedirect.com/science/article/pii/S0924271612002043
http://dx.doi.org/10.1145/2093973.2093977
http://dx.doi.org/10.1145/2093973.2093977
http://www.sciencedirect.com/science/article/pii/S0924271613000476
http://www.sciencedirect.com/science/article/pii/S0924271613000476
http://www.sciencedirect.com/science/article/pii/S0924271613000476
http://dx.doi.org/https://doi.org/10.1016/j.isprsjprs.2013.02.004
http://www.sciencedirect.com/science/article/pii/S0924271613000476
http://www.sciencedirect.com/science/article/pii/S0924271613000476
http://alice.loria.fr/index.php/software/4-library/75-geogram.html
http://alice.loria.fr/index.php/software/4-library/75-geogram.html

with:

e = cj − ci
n = p2 − p1

b = n · e
h = n · (p1 + p2)/2

u = (h− n · c2)/b

wi = 1
b2 (n · cj − h)n

wj = 1
b2 (h− n · ci)n

(3) vk is in general position in the face (c1, c2, c3).
This means that v is the intersection of three Voronoi cells
Ωp1 , Ωp2 and Ωp3 . Therefore:{

∂v
∂ci

= ew>i , i = 1, 2, 3
∂v
∂c = 0 if c 6= c1, c2, c3

with:

e = (p1 − p2)× (p1 − p3)

n = (c1 − c2)× (c1 − c3)

b = n · e
w1 = ((c2 − c3)× (c1 − v) + n)/b

w2 = ((c3 − c1)× (c1 − v))/b

w3 = ((c1 − c2)× (c1 − v))/b

Figure A.15: Illustration of the three cases for one triangle. v1 is in
case (1), v2 in case (2) and v3 in case (3).

This allows us to conclude for the computation of∇XGT .
The sum to retrieve ∇XG is then straightforward.

Appendix B. Computation of ∂E
∂θ

Using the chain rule, we begin by writing:

∂E

∂θ
=

n∑
i=1

∂E

∂Si
· ∂Si
∂θ

= ∇XE ·
∂S

∂θ

According to Equation (13):

Si = Rz(θ)Xi + T

the vector S only depends on θ through the application
of the rotation matrix R. Differentiating according to a
rotation can be done using its exponential form. Given a
unit vector u ∈ R3, let

Lu =

 0 −z y
z 0 −x
−y x 0

then, for any θ ∈ R, the matrix Ru(θ) = exp(θLu) is the

rotation of angle θ along axis u. From this, we can deduce
that:

∂Ru(θ)

∂θ
=
∂ exp(θLu)

∂θ
= Lu exp(θLu) = LuRu(θ)

In our case, we restrict ourselves to rotations along the
axis Oz, as it is the only axis we needed in our applications,
but this result is general for any axisZ u. Let Lz and Rz(θ)
be the skew and rotation matrix of angle θ associated with
the axisOz = (0, 0, 1). Notice that Lz = Rz(

π
2). Combining

this property with Equation (13), we get:

∂Si
∂θ

= LzRz(θ)Xi = Lz(Si − T) = Rz(
π

2
)(Si − T)

This allows us to conclude for axis Oz. In order to add
axes Oy and Ox, one has to apply the three rotations in
fixed order and inserting Lx and Ly at the correct position
in (15).

Appendix C. Computation of ∂E
∂T

Let µ be an index x, y or z. Expressing the chain rule
for the translation coordinate Tµ yields:

∂E

∂Tµ
=

n∑
i=1

∂E

∂Si
· ∂Si
∂Tµ

and according to Equation (13):

∂Si
∂Tx

= (1, 0, 0)

∂Si
∂Ty

= (0, 1, 0)

∂Si
∂Tz

= (0, 0, 1)

hence the result of Equation (16)

14

	Introduction
	Related work
	Problem formulation
	A distance between a point cloud and a surface
	F(S): distance from P to S
	G(S): distance from S to P

	Constrained optimization
	Constraints
	Energy Minimization

	Results and Applications
	Robustness to quality of the point cloud
	Impact of initialization
	Discussion and future work

	Computation of S G
	Computation of E
	Computation of ET

