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A multi-harmonic finite element method for scattering problems
with small-amplitude boundary deformations

D. Gasperini∗†‡, H. P. Beise‡, U. Schroeder‡, X. Antoine∗, C. Geuzaine†

Abstract
A finite element method in the frequency domain is proposed for solving scattering

problems with moving or, more generally, deforming boundaries. First, the original prob-
lem is rewritten as an equivalent weak formulation set in a fixed domain. Next, this
formulation is approximated as a simpler weak form based on asymptotic expansions
when the amplitude of the movements or the deformations is small. Fourier series expan-
sions of some geometrical quantities and of the solution are next introduced to obtain a
coupled multi-harmonic frequency domain formulation. Standard finite element methods
can then be applied to solve the resulting problem and a block diagonal preconditioner
is proposed to accelerate the Krylov subspace solution of the linear system for high fre-
quency problems. The efficiency of the resulting method is demonstrated on a radar
sensing application for the automotive industry.

Keywords: high frequency scattering; moving boundary; Doppler effect; multi-harmonic
resolution; finite element method.
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1 Introduction

In the framework of wave scattering problems, the Doppler effect [11, 23] characterizes the
property that the motion of a target modulates the frequency of the reflected signal initially
emitted by a source. For motions with uniform velocity, the Doppler frequency shift can be
easily obtained [9] while for more general movements it is estimated by combining simple
models and signal processing techniques [6, 7, 11, 12, 24, 29, 32]. During the last years, the
radar detection of non uniformly moving scatterers was applied to a wide variety of problems
because of the availability of newly designed high-frequency sensors and devices. For example,
the two radar frequency ranges 24-24.5 GHz and 61-61.5 GHz (ISM bands) are now standard
in many applications, and the new 77-81 GHz band is being used for applications in the
automotive industry. Furthermore, the THz frequency range will be used in the next coming
years (e.g. at the frequency 140 GHz). A crucial advantage of high-frequency radar sensing
is its sensitivity to micro movements (see e.g. [11, 12]) of obstacles involving several moving
parts, which results in the micro-Doppler effect [11, 12] used nowadays in many applications
[1, 4, 7, 12, 21]. In the automotive industry, micro-Doppler sensing has recently been applied
with success [17, 24, 27, 29] to the contactless detection of vital signs, in particular for the
breathing of children left alone on the back seat of overheating cars. Difficult challenges
are then related to this kind of applications as for example the analysis of random body
movements or vehicle vibrations [17, 24, 29, 31, 32, 33] that can be classified thanks to their
radar signature by deep learning techniques [3, 4, 14]. In the development life cycle of these
new sensors, a full realistic simulation of the high frequency scenarios is therefore needed.
The goal of the present paper is to design a suitable numerical modelling to this problem and
to propose efficient computational solutions.

In practice, the physical model leads to solving a time-dependent wave propagation prob-
lem in a complex environment (the interior of a car here) with a complex geometry made
up of several dielectric materials strongly interacting with the high frequency emitted wave.
Moreover, the moving targets, such as a child located on the back seat of the car, can have
nontrivial shapes, consist of different materials, often show small amplitude displacements,
and usually happen at frequencies several orders of magnitude below the frequencies of the
emitter. Therefore, the natural mathematical modelling involves a system of partial differen-
tial equations (PDEs) which needs to be efficiently solved numerically for complex geometries
and materials. Finally, more complicated situations like random vibrations can be included
by adapting the PDE system.

The solution of moving target problems formulated in a PDE framework has already
received some attention from both the mathematical and engineering sides. Among them,
analytical methods for simple motions were designed in [8, 10, 13, 16, 25, 32, 36]. More-
over, numerical approximation schemes based e.g. on FDTD [25, 38, 39] or fast integral
equation solvers [37] were developed. More theoretical contributions essentially linked to one-
dimensional moving boundary problems have also been considered [15, 20]. To the best of the
authors’ knowledge, however, numerically solving the micro-Doppler PDE modeling problem
has not been considered in the literature until now.

In the present paper, we propose a numerical approach to solve two- and three-dimensional
micro-Doppler problems by the finite element method. The method is inspired by the ap-
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proach introduced in [22] for the one-dimensional case, but has also major differences since
the numerical method must be able to tackle efficiently much more complicated engineering
problems (higher spatial dimension, complex geometries and materials). After stating the
problem and introducing some notations in Section 2, we derive in Section 3 an approximate
multi-harmonic Helmholtz-type weak coupled formulation well-adapted to the finite element
method. To this end, in subsection 3.1, we rewrite the moving target problem written in
weak form for a fixed domain by means of a mapping that can be computed by the finite ele-
ment method. Since the resulting weak formulation in the fixed domain remains complicated
to solve, we propose in subsection 3.2 an approximation of this formulation by a simplified
weak form for small deformations. To justify this approximation, we derive some asymptotic
error estimates of the bilinear forms according to the small deformation parameter setting.
Then, the coupled multi-harmonic Helmholtz-type system is derived in subsection 3.3 from
the approximate weak formulation. Considering the time Fourier series expansions of the
geometrical quantities (e.g. the Jacobian tensor) for periodic movements and the unknown
wavefield, we obtain an approximate truncated finite system of coupled weak form Helmholtz
equations at different equally spaced frequencies. The finite element implementation is next
developed in Section 4 for the coupled system. An efficient preconditioned solver that exploits
the structure and properties of the resulting linear system is proposed in Section 5. Section
6 presents the application of the resulting method to a two-dimensional problem of the de-
tection of a breathing baby placed on the rear seat of a car. Numerical results illustrate the
behavior of the approach and its main features. Finally, we conclude our work in Section 7.

2 Problem statement and notations

Let t > 0 be the time variable and x := (x1, ..., xd)T a point of Rd (d = 2, 3). We assume
that a wave is emitted at a source with localized fixed finite support Ωs ⊂ Rd of boundary
Γs = ∂Ωs, and is scattered by a bounded obstacle Ωobst(t) ⊂ Rd, with Cs (s ≥ 2) boundary
Γ(t) = Γt = ∂Ωobst(t) smoothly deformed around an equilibrium position Γ0 := Γ(t = 0),
oscillating at a period T` = 1/ν` for a frequency ν`. Let us remark here that some of the
results stated in the paper do not need the periodicity condition of the deformation. We define
Ωext(t) as the d-dimensional unbounded homogeneous domain of propagation with boundary
Γs ∪ Γ(t), where we assume that Γs ∩ Γ(t) = ∅ for all t > 0. Denoting by ∆x :=

∑d
i=1 ∂

2
xi

the
spatial Laplace operator, the unknown total wave field u := u(x, t) is searched as the solution
to the scalar wave equation

1
c2
∞
∂2
t u−∆xu = 0, (1)

for (x, t) ∈ Ωext(t)×R+
∗ (setting R+

∗ := {t > 0}), where c∞ is the constant wave speed. (The
extension to space-dependent wave speeds will be considered later, at the discrete level.) Here,
we impose a Tf -periodic time-dependent source term supported on Γs, i.e. u(x, t)|Γs = Aeiωft,
with real-valued amplitude A > 0, periodicity Tf = 1/νf for a frequency νf , and angular
frequency ωf := 2πνf > 0. In practice, νf is supposed to be very large compared to ν`. In
what follows, we set a homogeneous Dirichlet boundary condition u(x, t) = 0 on Γt, but the
extension to other boundary conditions (e.g. Neumann or Fourier-Robin boundary condition)
is relatively direct. In addition, the two initial conditions in Ωext(t = 0) are set to

u(x, 0) = 0 and ∂tu(x, 0) = 0. (2)
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To apply later a numerical method, e.g. the finite element method, we need to bound the
exterior domain Ωext. To this end, we introduce a fixed fictitious smooth boundary Σ enclosing
Ωs and Ωobst. The resulting finite computational domain Ω(t) = Ωt is then defined with
boundary ∂Ωt = Σ∪Γs∪Γt. In the present paper, we simply apply the Sommerfeld absorbing
boundary condition on Σ

1
c∞

∂tu+ ∂nu = 0, (3)

with the normal derivative ∂nu := ∇xu ·n, where n designates the exterior unit normal vector
to Ωt and the spatial gradient operator is given by ∇x := (∂x1 , ..., ∂xd

)T . However, higher-
order absorbing boundary conditions or PMLs could also be applied without any specific
difficulty. In the sequel, we keep on denoting by u the solution to the wave equation (1)
but set in Ωt × R+

∗ , with the source term u(x, t) = Aeiωft on Γs, the homogeneous Dirichlet
boundary condition u(x, t) = 0 on Γt, the absorbing boundary condition (3) on Σ and with
homogeneous initial data (2) in the compact set Ω(t = 0) = Ω0. We schematically illustrate
the configuration in Figure 1.

n

ΓsΣ
Ωt

Γt

Fig. 1. Example of a two-dimensional (d = 2) computational domain Ω(t) with source term on the
boundary Γs, with moving scattering surface Γt and fictitious boundary Σ.

Let us remark that, in practical applications, e.g. Ωt being the interior of a car with
shape Σ, impedance boundary conditions are usually prescribed on some parts of Σ to model
transparent, absorbing or reflecting materials (see also Figure 2 in Section 6). Hence, the
system does not have any sharp resonance and the useful frequency information is only related
to the perturbation of the wave emitted by the radar Γs, with high-frequency νf(� ν`), by
the local slowly oscillating smooth boundary Γt, with frequency ν`. Let us finally note that
the limit situation of the fully reflecting domain is analyzed in details in the one-dimensional
case in [22].

3 Approximate multi-harmonic Helmholtz-type weak coupled
formulation

We now present an approximate multi-harmonic weak formulation based on coupled Helm-
holtz equations to solve the previous initial boundary-value problem. To this end, we first
derive in subsection 3.1 an equivalent weak formulation of the initial problem in a fixed
domain. An approximate variational formulation is then proposed in subsection 3.2 for small
deformations. Next, in subsection 3.3, a truncated Fourier series expansion of the unknown
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scalar field and some other geometrical quantities are considered around νf for uniformly
spaced sample frequencies with step ν`. This results in the solution of a system of coupled
multi-harmonic Helmholtz-type equations written under a weak form. The finite element
approximation of the formulation is then discussed in section 4.

3.1 Equivalent weak formulation in a fixed domain

The aim of this section is to write a weak form of the system in a fixed initial domain Ω0
through a metric change parametrized by the time t > 0. For fixed t > 0, we designate by
Hm(Ωt) the standard Sobolev space of solutions of finite energy on Ωt and introduce the
Sobolev space

Hm
0,A(Ωt) :=

{
u ∈ Hm(Ωt) such that u|Γt = 0 and u|Γs = Aeiωft

}
, (4)

for m = 1, 2. With our notations, we have in particular that, a t = 0,

Hm
0,A(Ω0) := {u ∈ Hm(Ω0) such that u|Γ0 = 0 and u|Γs = A} . (5)

We also need the following Sobolev space

Hm
ωft,A(Ω0) :=

{
u ∈ Hm(Ω0) such that u|Γ0 = 0 and u|Γs = Aeiωft

}
. (6)

All along the paper, we assume that the solution u := u(x, t) to the initial boundary-
value problem stated in section 2 is an element of the space C0([0, T`], H2

0,A(Ωt)), ∂tu is in
C0([0, T`], H1(Ωt)) while ∂2

t u is C0([0, T`], L2(Ωt)) (see e.g. [30] for regularity results of the
solution of the wave equation for fixed domains).

According to these assumptions, the weak formulation in Ωt writes: find u(·, t) ∈ H1
0,A(Ωt)

such that

∀φ ∈ H1
0,0(Ωt),

∫
Ωt

∇xu · ∇xφdΩt +
∫

Ωt

1
c2
∞
∂2
t uφdΩt +

∫
Σ

1
c∞

∂tuφ dΣ = 0, (7)

with the two initial conditions u(x, 0) = 0 and ∂tu(x, 0) = 0. Here, we define φ as the complex
conjugate of the function φ, a · b :=

∑d
j=1 ajbj for two vectors a and b in Cd, and the norm

|a| of a is: |a| =
√

a · a.
We now consider a vector flow Φt, for t ∈ R+, defined by

Φt : Ω0 → Ωt ⊂ Rd
x0 7→ x = (Φt1(x0), ...,Φtd(x0))T = (x1, ..., xd)T ,

(8)

mapping the fixed initial domain Ω0 to Ωt in such a way that we have

Φt(Γ0) = Γt, Φt(Σ) = Σ, Φt(Γs) = Γs and Φ0 = Id, (9)

where Id is the identity map from Ω0 to Ω0. For fixed t ≥ 0, Φt is assumed to be a
C2-diffeomorphism with inverse map Φ−1

t : Ωt → Ω0. In addition, we suppose that the
vector flow {Φt}t>0 is of class Cs in time, with s ≥ 2. Throughout the paper, x0 =
(x01, ..., x0d)T denotes a point of the fixed domain Ω0, image of x ∈ Ωt by the change of
variables Φ−1

t , i.e. x0 = Φ−1
t (x). Let u0 be the unknown in Ω0 after applying Φ−1

t and let
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us set u(x, t) = u0(Φ−1
t (x), t) = u0(x0, t) for t ∈ R+. We also consider the space-time vector

X0 := (Φ−1
t1 (x), ...,Φ−1

td (x), t)T = (x01, ..., x0d, t)T ∈ Ω0 × R+ and define the two gradient
operators

∇X0 := (∂x01 , ..., ∂x0d
, ∂t)T and ∇x0 := (∂x01 , ..., ∂x0d

)T .

The time-dependent spatial Jacobian matrix Jt of Φ−1
t at point x ∈ Ωt then writes

Jt(x) = (∇xΦ−1
t (x))T .

By the change of variable Φ−1
t , we have the following relations:

∇xu = JTt ∇x0u0, ∂tu = ∂tX0 · ∇X0u0, ∂2
t u =

(
∂2
tX0 · ∇X0 + (∂tX0 · ∇X0)2

)
u0.

Let us explain a simple construction of Φt, even if other possibilities could be alternatively
considered. We introduce a smooth fixed surface Γloc enclosing Γt for all t ≥ 0, such that
Γloc ∩ Γt = ∅. This defines a local neighborhood Ωloc

t := Ωloc(t) of Γt in Ωt. Let us set
Ωloc

0 := Ωloc(t = 0). Therefore, we have: ∂Ωloc
0 = Γ0 ∪ Γloc, and the fixed complementary

domain Ωfix := Ω0 − Ωloc
0 is the part where the deformation is not active.

Our aim is to model the impact of the local surface deformation to compute the volume
coordinates changes, parametrized by t ≥ 0. By assumption, we know that the deformation
δt on Γ0 is given by Φt −Φ0 ∈ C2(Γ0) and by the knowledge of Γt, which has C2 regularity.
In addition, since we assume that there is no effect of the deformation on Ωfix, we set: δt =
Φt−Φ0 = 0 on Ωfix, and in particular on Γloc, for t ≥ 0. Now, we propose to build the volume
deformation δt := Φt −Φ0 through the local unique solution Φt (a proof could be obtained
by the Lax-Milgram theory for example at any time t > 0, accordingly to the smoothness
properties of the data) to the following Dirichlet problem, parametrized by t > 0,

−∆x0Φt = 0 in Ωloc
0 ,

Φt = Id on Γloc,
Φt = Φt|Γ0 on Γ0,

(10)

where Id is the identity operator over Γloc and Φt|Γ0 is the given deformation on Γ0. The
Laplacian is defined by ∆x0 := (∇x0)2. The Dirichlet problem (10) splits into d separated sub-
problems over each component Φtj of Φt, 1 ≤ j ≤ d. For a fixed time t, the solution to (10)
provides Φt which has components in C2(Ωloc

0 )∩C0(Ωloc
0 ), and by extension in C2(Ω0)∩C0(Ω0).

Now, we can compute the Jacobian Jt of Φ−1
t as

Jt = Jac(Φt)−1. (11)

For a fixed t > 0, the coefficients of Jt are C1(Ω0) functions defined as spatial derivatives of
the C2 mapping Φt based on the Jacobian expression. Practically, a finite collection of the
local deformations at some uniformly distributed discrete times will be computed through the
solution of the boundary-value problem (10) by the finite element method. Through (11),
we obtain a way to compute Jt by derivation (again numerically realized later by the finite
element method) in Ωloc

0 . The tensor Jt is trivially equal to the identity matrix in Ωfix.
Let us recall that the Sobolev space H1

ωft,A
(Ω0) is given from definition (6) for m = 1.

Then, the variational formulation (7) writes in the fixed domain Ω0, for fixed t > 0: find
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u0(·, t) ∈ H1
ωft,A

(Ω0) such that, ∀φ ∈ H1
0,0(Ω0),∫

Ω0
JtJTt ∇x0u0 · ∇x0φ|J−1

t |dΩ0

+
∫

Ω0

1
c2
∞

(
∂2
tX0 · ∇X0 + (∂tX0 · ∇X0)2

)
u0φ|J−1

t |dΩ0 +
∫

Σ

1
c∞

∂tu0φdΣ = 0,
(12)

since (see also expression (21))

(∂tX0 · ∇X0)u0 = ∂tu0, on Σ, (13)

and where |J−1
t | denotes the determinant of J−1

t , which in particular is equal to 1 on Σ.
Finally, we also have the two initial conditions u0(x0, 0) = 0 and ∂tu0(x0, 0) = 0 in Ω0. From
the assumptions on the smoothness of ∂tu and ∂2

t u, we deduce that ∂tu0 is an element of
H1(Ω0) while ∂2

t u0 is in L2(Ω0).

Remark 1. Conversely to the methodology introduced in [22], we first write here the weak
formulation and then apply a change of coordinates so that the problem is set in a time
independent domain with a metric that depends on the parameter t ≥ 0. In [22], the change
of coordinates was first applied and then the weak form was stated, which may provide a
different formulation according to the algebraic calculations. However, the weak formulation
of this previous approach is equivalent to (12) when applied to specific test functions of the
form φ̃ = |J−1

t |φ.

Remark 2. Let us remark that we choose to model the deformation by (10). More advanced
elastic deformations could also be used. For the problem of interest here, this is nevertheless
a sufficiently accurate model.

3.2 Approximate weak formulation for small deformations

For conciseness, let us set ∇ := ∇x0 since we are now working on the fixed domain Ω0. In
practice, the exact formulation (12) could be used for a numerical computation. However, in
the case of a small deformation of the moving interface, an accurate approximate formulation
can be used to simplify the calculations. Indeed, a careful analysis developed in [22] for the
one-dimensional case, and formally extended to higher-dimensional problems, shows that the
following simplified weak formulation (14) provides an accurate approximate solution v of
u0 that satisfies (12). More precisely, the formulation writes: for a fixed time t > 0, find
v := v(·, t) ∈ H1

ωft,A
(Ω0) such that, for any test-function φ ∈ H1

0,0(Ω0),∫
Ω0

JtJTt ∇v · ∇φ|J−1
t |dΩ0 +

∫
Ω0

1
c2
∞
∂2
t vφ|J−1

t |dΩ0 +
∫

Σ

1
c∞

∂tvφdΣ = 0, (14)

with the two initial conditions v(x0, 0) = 0 and ∂tv(x0, 0) = 0. The derivation of (14) is based
on the following formal approximation

(∂2
tX0 · ∇X0 + (∂tX0 · ∇X0)2)u0 ≈ ∂2

t v in Ω0. (15)

To give a more rigorous understanding on how these approximation lead to (14) as a correct
approximation of (12), let us write the application Φt with a small smooth perturbation ε� 1
under the form

x = Φt(x0) = x0 + εδt(x0), (16)
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where (δt)t>0 ∈ C2(]0;Tmax], C2(Ω0,Rd)), where Tmax is a finite maximal time of computation.
Then, for t ∈]0;Tmax], the time derivatives of δt up to the second-order are uniformly bounded,
i.e. there exist a constant d` such that, for any t ∈]0;Tmax], for ` = 0, 1, 2, we have

d`,t := ‖∂`tδt‖L∞
d

(Ω0) ≤ d` := sup
t∈]0;Tmax]

d`,t, (17)

with L∞d (Ω0) := (L∞(Ω0))d. Here, δt may be oscillating but this is not yet mandatory. In
the case of a periodic deformation, we can fix: Tmax = T`. Now, since x0 = Φ−1

t (x), we have
from (16)

x0 = Φ−1
t (x) = x− εδt(Φ−1

t (x)). (18)

Based on this expression, we get

∂tΦ−1
t (x) = −ε∂tδt(Φ−1

t (x)) =: −εA(x0, t), (19)

and then

∂tX0 = ∂t

(
Φ−1
t (x)
t

)
=
(
−εA

1

)
. (20)

Consequently, we have the following expansion in Ω0

(∂tX0 · ∇X0)u0 =
(
−εA

1

)
·
(
∇
∂t

)
u0 = (∂t − εA · ∇)u0. (21)

Now, we obtain

(∂2
tX0 · ∇X0 + (∂tX0 · ∇X0)2)u0

=
(
−ε∂tA

0

)
·
(
∇u0
∂tu0

)
+
(
−εA

1

)
·
(
∇
∂t

)((
−εA

1

)
·
(
∇u0
∂tu0

))
.

(22)

By using (21), we deduce that

(∂2
tX0 · ∇X0 + (∂tX0 · ∇X0)2)u0 = −ε∂tA · ∇u0 + (∂t − εA · ∇)2u0

= ∂2
t u0 − 2ε∂t(A · ∇u0) + ε2 A · ∇(A · ∇u0). (23)

Now, to prove Proposition 1 which justifies the approximation (14), let us consider the second
term in (12) and introduce the following bilinear forms from the decomposition (23)

aε,t(u0, φ) = a0,t(u0, φ) + εa1(u0, φ) + ε2a2(u0, φ), (24)

with
aε,t(u0, φ) :=

∫
Ω0

1
c2
∞

(
∂2
tX0 · ∇X0 + (∂tX0 · ∇X0)2

)
u0φ|J−1

t |dΩ0, (25)

a0,t(u0, φ) :=
∫

Ω0

1
c2
∞
∂2
t u0φ|J−1

t |dΩ0, (26)

a1,t(u0, φ) := −2
∫

Ω0

1
c2
∞
∂t(A · ∇u0)φ|J−1

t |dΩ0, (27)
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and
a2,t(u0, φ) :=

∫
Ω0

1
c2
∞

A · ∇ (A · ∇u0)φ|J−1
t |dΩ0. (28)

Let us first consider a1,t given by (27). Then, the Cauchy-Schwarz inequality implies that

|a1,t(u0, φ)| ≤ 2γt||∂t(A · ∇u0)||L2(Ω0)||φ||L2(Ω0), (29)

where

γt :=
∣∣∣∣∣
∣∣∣∣∣ |J−1

t |
c2
∞

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω0)

. (30)

If we develop the right hand side derivative term we obtain

||∂t(A · ∇u0)||L2(Ω0) = ||∂tA · ∇u0 + A · ∇∂tu0||L2(Ω0)
≤ ||∂tA · ∇u0||L2(Ω0) + ||A · ∇∂tu0||L2(Ω0).

(31)

Since A has continuous first-order time derivative, then we can deduce that there exist a
constant C0,t which depends on d2,t = ||∂tA||L∞

d
(Ω0) such that

||∂tA · ∇u0||L2(Ω0) ≤ C0,t||∇u0||L2
d
(Ω0) ≤ C0,t||u0||H1(Ω0) (32)

and a constant C1,t depending on d1,t = ||A||L∞
d

(Ω0) such that

||A · ∇∂tu0||L2(Ω0) ≤ C1,t||∇∂tu0||L2
d
(Ω0) ≤ C1,t||∂tu0||H1(Ω0). (33)

If one collects (29)-(33), we obtain

|a1,t(u0, φ)| ≤ 2γt(C0,t||u0||H1(Ω0) + C1,t||∂tu0||H1(Ω0))||φ||L2(Ω0). (34)

For the term a2,t, let us first set: Ã := c−2
∞ |J−1

t |A, which leads to

a2,t(u0, φ) =
∫

Ω0
(Ãφ) · ∇(A · ∇u0)dΩ0

=
∫
∂Ω0

(Ã · n)(A · ∇u0)φd(∂Ω0)−
∫

Ω0
((∇ · Ã)φ+ Ã · ∇φ)(A · ∇u0)dΩ0.

(35)

By assumption, we have: ∂Ω0 = Σ ∪ Γs ∪ Γ0. On Σ ∪ Γs, since there is no deformation, A is
identically equal to 0. In addition, the test-functions φ are in the space H1

0,0(Ω0) and vanish
on Γ0 (as well as on Γs). Therefore, the boundary term in (35) is equal to zero. For the
second term, we have

|a2,t(u0, φ)| =
∣∣∣∣∫

Ω0
((∇ · Ã)φ+ Ã · ∇φ)(A · ∇u0)dΩ0

∣∣∣∣
≤

∣∣∣∣∫
Ω0

((∇ · Ã)φ)(A · ∇u0)dΩ0

∣∣∣∣+ ∣∣∣∣∫
Ω0

(Ã · ∇φ)(A · ∇u0)dΩ0

∣∣∣∣ . (36)

For the first term on the right hand side of the above inequality, one gets∣∣∣∣∫
Ω0

((∇ · Ã)φ)(A · ∇u0)dΩ0

∣∣∣∣ ≤ C3,t‖u0‖H1(Ω0)‖φ‖L2(Ω0), (37)
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where C3,t is a constant that depends on ∇·Ã and A. Concerning the second term, we obtain∣∣∣∣∫
Ω0

(Ã · ∇φ)(A · ∇u0)dΩ0

∣∣∣∣ ≤ C4,t‖u0‖H1(Ω0)‖φ‖H1(Ω0), (38)

where the positive constant C4,t is related to Ã and A. Combining (36)-(38), we deduce that

|a2,t(u0, φ)| ≤ C2,t‖u0‖H1(Ω0)‖φ‖H1(Ω0), (39)

with C2,t = C3,t + C4,t. Finally, this directly proves the following proposition.

Proposition 1. Let us define aε,t a0,t, a1,t and a2,t, by (25), (26), (27) and (28), respectively,
such that (24) holds. Then, for the solution u0(·, t) ∈ H2

0,A(Ω0), ∂tu0(·, t) ∈ H1(Ω0), and
∂2
t u0(·, t) ∈ L2(Ω0), and for any test-function φ ∈ H1

0,0(Ω0), we have the following error
bounds, for t > 0,

|aε,t(u0, φ)− a0,t(u0, φ)| ≤ ε|a1,t(u0, φ)|+ ε2|a2,t(u0, φ)|
≤ ε(C1

0,t‖u0‖H1(Ω0) + C1
1,t‖∂tu0‖L2(Ω0))‖φ‖H1(Ω0)

+ε2C2,t‖u0‖H1(Ω0)‖φ‖H1(Ω0)

(40)

and
|aε,t(u0, φ)− a0,t(u0, φ)− εa1,t(u0, φ)| ≤ ε2|a2,t(u0, φ)|

≤ ε2C2,t‖u0‖H1(Ω0)‖φ‖H1(Ω0),
(41)

where we define: C1
0,t := 2γtC0,t, C1

1,t := 2γtC1,t and C2,t := γtd1,t(d1,t + d3,t).

From this we conclude that solving the weak formulation (14) provides an approximation
v of u0 solution to (12) up to a bounded error of order O(ε). Let us remark that the estimates
(40) and (41) also hold uniformly in time since one can take the maximum of C1

0,t, C1
1,t and

C2,t over [0, Tmax]. Furthemore, an improved first-order formulation can be obtained thanks
to the bilinear form a0,t + εa1,t up to an error O(ε2). More precisely, one could replace the
bilinear form in (14) by

(a0,t + εa1,t)(v, φ) = 0, (42)

with
a1,t(v, φ) = 2

∫
Ω0

1
c2
∞
∂t
(
∂tΦ−1

t · ∇v
)
φ|J−1

t |dΩ0.

However, in the present paper, we restrict our analysis to (14). In the following, we provide
a suitable formulation to (14) when the motion of the boundary is T`-periodic in time.

3.3 Coupled multi-harmonic Helmholtz-type system

We now assume that the parametrization of Γt is periodic with periodicity T`. Then, the
smooth Jacobian Jt is also a T`-periodic tensor of class Cs in time, with ν` � νf . Conse-
quently, both JTt , JtJTt , |J−1

t | and |J−1
t |JtJTt are also time-dependent function/tensors with

time periodicity T` with Cs regularity according to t > 0 and C1 smoothness in Ω0 (since
the quantities can be expressed as sums and products of T`-periodic smooth functions). In
particular, we have the Fourier series expansions

|J−1
t |JtJTt =: C(x0, t) =

∑
n∈Z

Cn(x0)einω`t and |J−1
t | =: c(x0, t) =

∑
n∈Z

cn(x0)einω`t, (43)

10



for x0 ∈ Ω0, where

Cn(x0) := 1
T`

∫ T`/2

−T`/2
|J−1
t |JtJTt e−inω`tdt and cn(x0) := 1

T`

∫ T`/2

−T`/2
|J−1
t |e−inω`tdt. (44)

The tensor fields Cn satisfy Cn = C−n since |J−1
t |JtJTt is a real-valued matrix. In addition,

we have cn = c−n because |J−1
t | is real-valued. Finally, these two quantities have a C1(Ω0)

regularity.
In view of a numerical implementation of the coefficients Cn and cn, we discretize the

T`-periodic motion of Γt at 2N + 1 equally spaced sampling times tk = k∆t`, 0 ≤ k ≤ 2N ,
with time step ∆t` := T`/(2N + 1). This is a natural choice since it avoids any aliasing
effect and provides a uniform discretization over one period T`. Moreover, to satisfy the
Nyquist-Shannon sampling theorem, (2∆t`)−1 has to be larger than the maximal frequency
arising in |J−1

t |JtJTt and |J−1
t |, represented as (43). Thus, we obtain a sequence {Γk}0≤k≤2N

of boundaries sampling Γt at the discrete times tk, 0 ≤ k ≤ 2N , described through the maps
Φk = Φtk . Therefore, based on the numerical solution of the 2N + 1 local boundary value
problems (10), we can compute both Ck := C(tk) and ck := c(tk) from Jk := J(tk) evaluated
at the discrete times tk, 0 ≤ k ≤ 2N . Consequently, the approximations of C and c (defined
by (43)) are given by the following truncated tensor CN and function cN

CN (x0, t) :=
∑
n∈N

Cn(x0)einω`t and cN (x0, t) :=
∑
n∈N

cn(x0)einω`t, (45)

which are all well-defined at any point x0 in Ω0. Here, we set N := {n ∈ Z;−N ≤ n ≤ N}.
Since we assumed that Φt is a T`-periodic diffeomorphism of class Cs in time, with s ≥ 2,
then one gets for example for the function c (but a similar property arises for the tensor C),
for j = 0, ..., s, that it is such that

∂jt c(x0, t) :=
∑
n∈Z

(2iπn
T`

)j
cn(x0)einω`t,

for x0 ∈ Ω0. This implies that ‖cn‖L∞(Ω0) = o(|n|−s), justifying hence that (45) are suitable
approximations of (43) if N is chosen large enough. In particular, if the mapping is C∞, then
one gets rapidly decaying coefficients since the o(|n|−s) asymptotic holds for any s > 0 (see
section 6 for an illustrative numerical example). Concretely, in a finite element context, the
tensor fields Cn and functions cn are obtained by using some FFTs, locally on each element
of the finite element triangulation, then leading to piecewise constant tensors and functions
(see e.g. sections 4 and 6.1).

Now and similarly to [22], we develop the solution v of (14) as a Fourier series expansion
with complex Fourier coefficients aj

v(x0, t) =
∑
j∈Z

aj(x0)eiωjt = eiωft
∑
j∈Z

aje
ijω`t, (46)

for x0 ∈ Ω0, where ωj = ωf + jω` = 2πνj , with νj := νf + jν`. Here, we assume that
aj ∈ H2

0,0(Ω0), meaning that aj(x0) = 0 on Γs for j ∈ Z − {0}, and a0 ∈ H2
0,A(Ω0), i.e.

a0(x0) = A on Γs. In view of a numerical procedure, we have to truncate the Fourier
series expansion of the unknown v. To this end, let us introduce the finite sets of integers
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J := {j ∈ Z ; −J ≤ j ≤ J} and J∗ := J − {0}, for a fixed truncation index J ≥ 0. We
denote by wJ the Fourier series expansion (46) truncated with ]J := 2J + 1 terms, i.e.

wJ (x0, t) =
∑
j∈J

aj(x0)eiωjt, (47)

with aj ∈ H2
0,0(Ω0), for j ∈ J∗, and a0 ∈ H2

0,A(Ω0). The parameter J must be carefully chosen
to include the significant contributions to the solution [22]. Let us remark that the Fourier
transform of (47) in the sense of distributions is given as a finite sum of Dirac distributions
δνj located at the discrete frequencies {νj}j∈J , modulated by the functions aj , i.e.

ŵJ =
∑
j∈J

ajδνj , (48)

where the Fourier transform of a given function f is defined by

f̂(ξ) :=
∫ ∞
−∞

f(t)e−2iπξdt.

Setting wJ (x0, 0) = 0 and ∂twJ (x0, 0) = 0 as initial conditions, we obtain, by derivation of
(47),

∂tw
J (x0, t) =

∑
j∈J

iωjaje
iωjt and ∂2

tw
J (x0, t) = −

∑
j∈J

ω2
jaje

iωjt. (49)

Considering the approximations (45) and (49), we have

cN∂2
tw
J = −eiωft

( ∑
n∈N

cne
inω`t

)( ∑
j∈J

ω2
jaje

ijω`t
)

= −eiωft
J+N∑

m=−(J+N)

( J∑
j=−J

−N≤m−j≤N

cm−jω
2
jaj
)
eimω`t

= −
J+N∑

m=−(J+N)

( J∑
j=−J

−N≤m−j≤N

cm−jω
2
jaj
)
eiωmt,

(50)

since the following identity holds

( N∑
n=−N

αn
)( J∑
j=−J

βj
)

=
J+N∑

m=−(J+N)

( J∑
j=−J

−N≤m−j≤N

αm−jβj
)
. (51)

Similarly, one gets in Ω0

CN∇wJ = eiωft
( ∑
n∈N

Cne
inω`t

)( ∑
j∈J
∇ajeijω`t

)
=

J+N∑
m=−(J+N)

( J∑
j=−J

−N≤m−j≤N

Cm−j∇aj
)
eiωmt.

(52)
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Based on these truncated Fourier series expansions and from the previous calculations, we
obtain the following approximation of the weak form (14): find aj ∈ H1

0,0(Ω0), for j ∈ J∗,
and a0 ∈ H1

0,A(Ω0) such that, for any φ ∈ H1
0,0(Ω0),

J+N∑
m=−(J+N)

( J∑
j=−J

−N≤m−j≤N

∫
Ω0

Cm−j∇aj · ∇φdΩ0 − ω2
j

∫
Ω0

cm−j
c2
∞

ajφdΩ0

+δm−j
∫

Σ

iωj
c∞

ajφdΣ
)
eiωmt = 0,

(53)

where δm−j is the delta Kronecker symbol, i.e. δm−j = 1 if m = j, and zero otherwise.
Finally, by projecting (53) onto the Fourier modes −J ≤ n ≤ J in the outer sum over m, we
obtain the square set of (2J + 1) equations with (2J + 1) unknowns {a}j∈J , for n ∈ J ,

J∑
j=−J

−N≤n−j≤N

∫
Ω0

Cn−j∇aj · ∇φdΩ0 − ω2
j

∫
Ω0

cn−j
c2
∞
ajφdΩ0 + δn−j

∫
Σ

iωj
c∞

ajφdΣ = 0. (54)

A first possibility consists in assuming that we fix N = 2J to get access to the (4J + 1)
Fourier coefficients (Cn)−2J≤n≤2J and (cn)−2J≤n≤2J . Then, (54) writes, for n ∈ J ,

J∑
j=−J

−2J≤n−j≤2J

∫
Ω0

Cn−j∇aj · ∇φdΩ0 − ω2
j

∫
Ω0

cn−j
c2
∞
ajφdΩ0 + δn−j

∫
Σ

iωj
c∞

ajφdΣ = 0. (55)

This first choice leads to a global weak form with (2J + 1)× (2J + 1) blocks involving sparse
matrices. Let us now assume that we compute the (2J + 1) first Fourier coefficients in (45),
i.e. N = J . This has the advantage of considering less modal coupling between the geometry
and the unknown expansions when computing their products. As a consequence, the resulting
(2J + 1)× (2J + 1) system is given by a 2J + 1 band limited coupled system, for n ∈ J ,

J∑
j=−J

−J≤n−j≤J

∫
Ω0

Cn−j∇aj · ∇φdΩ0 − ω2
j

∫
Ω0

cn−j
c2
∞
ajφdΩ0 + δn−j

∫
Σ

iωj
c∞

ajφdΣ = 0, (56)

involving 3J2 + 3J + 1 blocks, instead of 4J2 + 4J + 1 for the first approach.
More generally, if one only retains 2N +1 terms in the Fourier expansions (45), leading to

indices −N ≤ n−j ≤ N in (54), then the global system is still block banded, with band length
2N −1, and requires n(N,J) := (4N + 2)J + (1 +N −N2) blocks. From these remarks, we will
say that the Fourier approximation is of order (N, J) when we consider an approximation of
the unknown wJ given by (47) with 2J + 1 Fourier terms, and 2N + 1 (0 ≤ N ≤ 2J) Fourier
coefficients for the geometrical quantities, based on (45). The (2J + 1)× (2J + 1) system to
be solved is then given by, for n ∈ J ,

J∑
j=−J

−N≤n−j≤N

∫
Ω0

Cn−j∇aj · ∇φdΩ0 − ω2
j

∫
Ω0

cn−j
c2
∞
ajφdΩ0 + δn−j

∫
Σ

iωj
c∞

ajφdΣ = 0. (57)
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When solving (57), the approximation of order (N, J) of wJ solution to (47) is defined by

w(N,J)(x0, t) =
∑
j∈J

a
(N,J)
j (x0)eiωjt, (58)

where the a(N,J)
j , j ∈ J , are the 2J + 1 unknown functions associated to (57).

Finally, let us remark that the case of inhomogeneous media, i.e. when the speed is space
dependent (c∞ = c∞(x0)), is considered in Sections 4 and 6. To this end, we directly adapt
the previous formulation by considering a piecewise constant finite element approximation of
the velocity, according to the local properties of the media.

4 Finite element approximation

Let us consider a fixed covering Ω0,h = Ωh(0) of Ω0 with n0,h triangular/tetrahedral elements
in 2D/3D. We also set nloc

0,h as the number of elements involved in the discrete domain Ωloc
0,h

interpolating Ωloc
0 . The basis functions of the P1 finite element approximation are denoted

by {φj}1≤j≤ndof , where ndof is the number of degrees of freedom for the Lagrange finite
element approximation of H1

0,0(Ω0). For j ∈ J , we designate by a(N,J)
j,h the P1 finite element

approximation of a(N,J)
j and define the interpolated field w(N,J)

h in Ω0,h approximating (58)

w
(N,J)
h (x0,h, t) =

∑
j∈J

a
(N,J)
j,h (x0,h)eiωjt. (59)

Higher-order finite element methods (or alternative spatial discretization methods) could be
used to increase the accuracy as well as to minimize the dispersion/pollution error related to
high frequency time-harmonic wave problems [26]. The representation in the finite element
basis of the unknown wave field w(N,J)

h built from the (N, J)-approximation is given by the
vectorw(N,J) = (a(N,J)

−J , ...,a
(N,J)
0 , ...,a

(N,J)
J )T , with vector components a(N,J)

j ∈ Cndof , j ∈ J .
Therefore, w(N,J) is an element of CnJ

dof , with nJdof = (2J + 1)ndof .
Let us briefly explain how to build the linear system related to (57). To compute Jk,h,

which is the P0 finite element approximation of Jk on Ω0,h, we solve (10) under its weak
form. This leads to the solution of (2N + 1) variational problems with unknown discrete d-
dimensional deformations Φk,h, 0 ≤ k ≤ 2N , in the small local fixed domain Ωloc

0,h, where only
the boundary condition on Γ0,h changes at index k. This means that the matrix associated
with the linear system resulting from the discretization of (10) remains unchanged while the
contribution of the boundary conditions modifies the right-hand side of the linear system
to solve. To this end, a Choleski factorization of the sparse symmetrical positive definite
matrix (here, the stiffness matrix for the Laplacian) can be used before the time loop over
k while only 2d sparse triangular linear systems can next be efficiently solved for each new
right-hand side at step k, with k = 0, ..., 2N . Based on P1 finite elements, one gets the finite
sequence of discretized deformations Φk,h, 0 ≤ k ≤ 2N . Then Jk,h is obtained by a simple
numerical derivation through the discrete gradients and based on (11), corresponding to P0
approximations of the sequence of Jacobians, and piecewise constant tensors/functions Ck

h and
ckh. As a consequence, on each element in Ωloc

0,h, a Fourier series expansion can be computed
locally to get Cn,h and cn,h, −N ≤ n ≤ N , from the sampling Ck

h and ckh, 0 ≤ k ≤ 2N .
The main computational cost in this procedure is related to the FFT computations locally
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on each element of the domain Ωloc
0,h to obtain Cn,h and cn,h, −N ≤ n ≤ N , which means

O(nloc
0,hN log(N)) operations.
Let us now introduce the generalized finite element stiffness matrix Kn and mass matrix

Mn, for −N ≤ n ≤ N , respectively given by the ndof × ndof matrices

(Kn)ı, :=
∫

Ω0,h

Cn,h∇φı · ∇φdΩ0,h, (Mn)ı, :=
∫

Ω0,h

cn,h
c2
∞
φıφdΩ0,h, 1 ≤ ı,  ≤ ndof .

These two symmetrical complex-valued sparse matrices are such that: Kn = K−n, Mn =
M−n (if c∞ is real-valued). In addition, we need the real-valued highly sparse generalized mass
matrix MΣ on the fixed interpolated fictitious boundary Σh (but considered as a ndof × ndof
matrix)

(MΣ)ı, :=
∫

Σh

1
c∞

φıφ dΣh, 1 ≤ ı,  ≤ ndof ,

where c∞ can be assumed to be defined constant by element, i.e. as the P0 approximation
of the space-dependent velocity c∞. Let us remark that considering a non-homogeneous
medium inside the domain (i.e. different physical materials) leads to non constant velocity
c∞ according to the space variable, and therefore to additional coupled terms due to the
metric change. For the P0 approximation, both approaches are identical.

We now introduce some block banded matrix notations. We define S(N,J) as the block
Toeplitz matrix, with (2J + 1)× (2J + 1) blocks and bandwidth equal to 2N + 1, based on a
collection of ndof × ndof sparse complex-valued elementary matrices Sn, −N ≤ n ≤ N , such
that

S(N,J) =



S0 · · · S−N 0 · · · 0
... . . . . . . . . . ...

SN
. . . . . . 0

0 . . . . . . S−N
... . . . . . . ...
0 · · · 0 SN · · · S0


. (60)

Let us consider the global stiffness matrix K(N,J) associated with Kn, n ∈ N , which is a block
Toeplitz matrix, with bandwidth 2N+1. In addition, it is generated by the N+1 elementary
matrices Kn, n = 0, ..., N , since K−n = Kn. If the storage of one elementary stiffness
matrix is γndof , with γ > 0 a small constant that depends on the mesh interconnections, then
storing K(N,J) needs γ(N + 1)ndof coefficients. Similarly, we can introduce the global mass
matrix M(N,J), based on the elementary blocks Mn, n = 0, ..., N , with similar properties as
K(N,J). To simplify the explanations, we assume that storing Mn also needs γndof complex
values. Now, let us consider the two diagonal matrices: ω(J) = diag(ωjIndof )j∈J and ω2,(J) =
diag(ω2

j Indof )j∈J , where Indof designates the unitary matrix of size ndof × ndof . We also
need the matrix M(J)

Σ , where MΣ is repeated (2J + 1) times on the diagonal. Both its
construction cost and memory storage are negligible compared with K(N,J) and M(N,J) since
MΣ is only related to the boundary nodes on Σh. Finally, the finite element solution of
(57) implies that the boundary conditions generate some contributions to the right hand side
vector b(N,J) ∈ CnJ

dof . To conclude, the frequency domain finite element method yields the
block linear system

A(N,J)
ω(J) w

(N,J) = b(N,J), (61)
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setting
A(N,J)
ω(J) := K(N,J) −M(N,J)ω2,(J) + iω(J)M(J)

Σ , (62)

where A(N,J)
ω(J) := (A(N,J)

ω(J),j,n
)(j,n)∈J×J is a block banded matrix but is not block Toeplitz. In

addition, we have the block hermitian property: A(N,J)
ω(J),j,n

= A(N,J)
ω(J),n,j

, for (j, n) ∈ J∗ × J∗.

5 Efficient solution of the linear system

Let us now focus on the efficient numerical solution of the linear system (61). The storage
of the matrix A(N,J)

ω(J) is given by the matrices K(N,J), M(N,J) and M(J)
Σ , and the brute-

force application of a direct solver is not computationally tractable in the high-frequency
regime even for moderate values of N and J , as each single high-frequency Helmholtz-type
problem is already known to be extremely challenging, requiring the use of advanced solvers
[19, 28]. Here, our aim is to show that solving (61) scales as (2J + 1) calls to robust single
high-frequency Helmholtz-type solvers through an iterative process based on a preconditioned
GMRES [34, 35]. One of the key ingredients of GMRES is to compute the Matrix-Vector
Products (MVPs) y ← A(N,J)

ω(J) x, where x and y are some complex-valued vectors in CnJ
dof .

In our situation, this can be easily achieved block-wise, based on the Toeplitz storage. Since
A(N,J)
ω(J) has n(N,J) := (4N + 2)J + (1 + N − N2) blocks, then each global MVP has a cost

2γndofn(N,J). In practice, N is often smaller than J (see section 6). Therefore, asymptotically,
the cost of a MVP is about 8γndofNJ , which means that it scales linearly with J . Another
crucial point of the acceleration of the GMRES is to use a preconditioner. Here, we build a
left preconditioner P such that PA(N,J)

ω(J) ≈ I := Indof(2J+1) to improve the convergence rate
of the Krylov method. A robust preconditioner P for GMRES must yield a clustering of
the eigenvalues of PA(N,J)

ω(J) around (1, 0) in the complex plane [34]. Since we have a Toeplitz
storage of A(N,J)

ω(J) , we cannot easily build an approximation of (A(N,J)
ω(J) )−1. Let us instead

consider the splitting: A(N,J)
ω(J) = A(0,J)

ω(J) + ∆A(N,J)
ω(J) , where A(0,J)

ω(J) := diag(A(0,J)
ωj )j∈J is the

static part of A(N,J)
ω(J) , i.e. A(0,J)

ωj = K0 − ω2
jM0 + iωjMΣ, for j ∈ J . Let us assume that we

have access to an efficient solver for each linear system associated to the j-th block matrix
A(0,J)
ωj . Then, we could consider a preconditioner P based on the “inversion” of the 2J + 1

diagonal blocks, which means solving an associated linear system for each j ∈ J . Nevertheless,
since j is changing, the linear systems are j-dependent. Let us recall that: ωj = ωf+jω`, with
ωf � ω`. This means that we can consider the high-frequency approximation ωj ≈ ωf = ω0

with associated block diagonal preconditioner P := diag((A(0,J)
ω0 )−1)j∈J . Since we are solving

the preconditioned linear system

PA(N,J)
ω(J) w

(N,J) = Pb(N,J), (63)

we then have PA(N,J)
ω(J) = I + R(N,J)

ω(J) , where R(N,J)
ω(J) is expected to be a small perturbation

of the identity matrix I. The application of the preconditioner P at each GMRES iteration
requires to solve the linear system

A(0,J)
ω0 xj = bj , (64)

for 2J + 1 right hand sides bj , j ∈ J . Therefore, the cost for the application of the pre-
conditioner in each iteration is equal to (2J + 1) times the cost of solving (64). In practice,
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a sparse LU factorization of P is computed before entering into the GMRES iteration loop
after reordering the unknowns by a Cuthill-MacKee algorithm. This then leads to an exact
factorization A(0,J)

ω0 = Lω0Uω0 and block LU preconditioner P. Let us remark that incom-
plete LU factorizations A(0,J)

ω0 ' L̃ω0Ũω0 (or possibly other single-frequency more advanced
preconditioners) can alternatively be used [34]. Applying such LU preconditioners P requires
the solution to 2(2J + 1) decoupled upper/lower sparse complex-valued triangular systems.

Remark 3. Let us remark that, under the high-frequency assumption ωj ≈ ω0 = ωf, j ∈ J ,
for ω` � ωf, the linear system (61)-(62) can be approximated by

A(N,J)
ω(0) w

(N,J)
ω(0) = b(N,J), (65)

setting A(N,J)
ω(0) := K(N,J) − ω2

f M(N,J) + iωfM(J)
Σ . The matrix A(N,J)

ω(0) has (2J + 1)× (2J + 1)
blocks, each one being ωj independent (unlike A(N,J)

ω(J) ), leading to a block Toeplitz structure.
More precisely, the matrix writes

A(N,J)
ω(0) =



T0 · · · T−N 0 · · · 0
... . . . . . . . . . ...

TN
. . . . . . 0

0 . . . . . . T−N
... . . . . . . ...
0 · · · 0 TN · · · T0


,

with T0 = A(0,J)
ω(0) , Tn = Kn − ω2

f Mn and T−n = Tn, 0 ≤ n ≤ N . Therefore, one gets

A(N,J)
ω(J) = A(N,J)

ω(0) + ω`ωf
c2
∞

R(N,J),

where R(N,J) can be expressed in terms of mass matrices that can then be bounded in norms.
A direct computation shows that we have

‖w(N,J)
ω(0) −w(N,J)‖

‖w(N,J)
ω(0) ‖

≤ ω`ωf
c2
∞

cond(A(N,J)
ω(J) )‖R

(N,J)‖
‖A(N,J)

ω(J) ‖
(66)

for a given matrix norm ‖A‖ of a matrix A and where the condition number is defined
by cond(A) = ‖A‖ × ‖A−1‖. Storing A(N,J)

ω(0) still requires γ(N + 1)ndof complex coefficients.
Solving (65) can be expected to provide a suitable solution to the problem, under the assumption
ω`ωf
c2

∞
� 1, by using an algorithm based on fast block Toeplitz solvers [2]. In addition, one may

also use A(N,J)
ω(0) to build a banded limited preconditioner by dropping some off-diagonal blocks

Tn for solving (62), then generalizing P = (A(0,J)
ω(0) )−1.

6 Application to a model problem

6.1 Description of the problem

We now apply the proposed method to a simplified two-dimensional test-case motivated by
the high-frequency radar detection of a breathing baby installed in a child seat located on the
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rear seat of a car. Let us consider the initial geometry at t = 0 depicted in Figure 2, which
represents the two-dimensional longitudinal section of the interior of a car. The computational
domain Ω0 is delimited by the shape of the car, including the surface of the body of the baby
in his seat, facing the road. We assume that the red parts of the car, called Σ0, are Perfectly
Electrical Conductors (PEC), i.e. we impose a homogeneous Dirichlet boundary condition.
In addition, the belly of the baby Γ0 (black part on Figure 2) is also considered as a PEC
assuming e.g. that the baby is wearing a perfectly conducting jacket which reflects the wave
field created by an antenna modeled by an extruded circle Γs placed near the roof of the
car, above the rear seat. This antenna emits a transverse magnetic electromagnetic field of
amplitude A > 0 and high-frequency νf . The belly of the baby is the part Γt of the boundary
that moves in the modeling. At t = 0, Γ0 is a curved segment with two endpoints p1 and p2.
Finally, the rest of the surface of the car, called Σ1 (blue part on Figure 2), is considered to
be non-reflecting as a rough approximation, assuming that it is constituted e.g. of glass or
synthetic materials. This is modelled by the zeroth-order absorbing boundary condition (3).
Therefore, within our notations, Ω0 is the domain with boundary Γ0 ∪ Γs ∪ Σ0 ∪ Σ1, while
∂Ωt := Γt ∪ Γs ∪ Σ0 ∪ Σ1. In Ω0, we consider that, except in the seats (grey parts), we have
some air. Therefore, we model the propagation of the wave in Ωair

0 by the velocity cair of the
light in the air. In the seats Ωseat

0 , we have specific dielectric materials where the velocity
takes different values, depending on the refraction index. More precisely, Ωseat

0 models the
seat foam (gray volume in Figure 2) with complex-valued constant velocity cseat and refractive
coefficient (with the air) ηseat

cseat = cair

ηseat , with ηseat :=
√
µseat

r

(
εseat

r + i
θseat

νfεair

)
, (67)

where εseat
r , µseat

r , θseat and εair are the relative permittivity and permeability of the material,
its conductivity, and the permittivity of the vacuum, respectively. Here,

√
· denotes the

principal determination of the square-root with branch-cut along the negative real-axis. Let us
remark that these physical parameters are chosen only according to the emission frequency νf .
Therefore, we can define the velocity c∞ as piecewise constant in our model, i.e. c∞ := cair,seat

in Ωair,seat
0 , and Ω0 = Ωair

0 ∪ Ωseat
0 .

Now, we need to introduce the contour Γloc to define the domain of computation of
the metric change. Here, we choose a fixed polygonal open curve included inside Ω0 with
endpoints p1 and p2 (dashed black line on Figure 2). Therefore, this delimits the domain
Ωloc

0 with boundary Γ0 ∪ Γloc. When the baby is breathing, Γ0 is deformed to Γt, but the
two points p1 and p2 stay fixed. In the paper, we consider a small deformation of size ε� 1
described by a simple T`-periodic sine mapping deforming the initial configuration Γ0 into Γt
in the normal direction. More precisely, for x0 ∈ Γ0 and t ≥ 0, we define

x = Φt(x0) = x0 + εδt(x), (68)

with the deformation
δt(x0) = sin

(
π
l(p1x0)
l(Γ0)

)
sin(ω`t)n(x0), (69)

assuming ω` � ωf . Trivially, one gets ‖δt(x0)‖ ≤ 1 for all x0 ∈ Γ0 and t ≥ 0. Here, l(p1x0)
is the arclength over Γ0 from p1 to x0, and l(Γ0) denotes the length of Γ0. The unit normal
vector n(x0) at x0 ∈ Γ0 is outwardly directed to Ω0. More complex breathing models are
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Ωseat
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•p1

Ωloc
0

Zoom near the moving belly of the child

Σ0: PEC

Σ0

Σ1: ABC Σ1

Σ1

Fig. 2. Schematic description of the 2D model problem.

described in [17, 27]. In our framework, considering general movements is easy since only
the moving of the surface finite element interpolation nodes on Γ0 is needed. In addition, we
have: Ωfix

0 := Ω0 −Ωloc
0 , which is the part of Ω0 where the deformation is not active. Finally,

the problem under consideration is given by: find the total wave field u in Ωt, t > 0, such
that 

1
c2
∞
∂2
t u−∆xu = 0 in Ωt,

1
c∞

∂tu+ ∂nu = 0 on Σ1,

u = 0 on Σ0 ∪ Γt,
u = Aeiωft at Γs,
u(x, 0) = 0 in Ω0,
∂tu(x, 0) = 0 in Ω0.

(70)

We now consider the discrete times {tk}0≤k≤2N , where N ≥ 1. Since Φt is given following
(68)-(69), we can alternatively compute simultaneously the sequence of discrete deformations
δk in the layer Ωloc

0 as the solutions to
−∆δk = 0 in Ωloc

0 ,
δk = 0 on Γloc,

δk = sin
(
π
l(p1x0)
l(Γ0)

)
sin( 2πk

2N + 1)n(x0) for x0 ∈ Γ0,
(71)

for 0 ≤ k ≤ 2N . The solution δk,h to (71) is realized by a P1 finite element method for
the corresponding weak form in Ωloc

0,h (with nloc
0,h triangles), providing hence Φk,h(x0,h) =

x0,h + εδk,h(xh). A second step allows to calculate the P0 approximation of Jk,h by a weak
derivation. The solution to the linear systems is obtained by computing once the Choleski
factorization of the stiffness matrix related to the problem (71) and then by a forward-
backward solution for each of the 2(2N + 1) right hand sides.
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Let us remark that the size L of the layer Ωloc
0,h along the normal direction must be suffi-

ciently large compared to ε so that the deformation does not flatten too much the triangulation
related to Ωloc

0,h. At the same time, the mesh in Ω0,h must also be sufficiently refined to cor-
rectly capture the high oscillations of the solution due to ωf . The coefficients Cn and cn,
−N ≤ n ≤ N , are finally evaluated as piecewise constant on each triangle from the Jacobian
Jk,h, 0 ≤ k ≤ 2N , using (11) and FFTs.

6.2 Numerical study of the method

We consider the following physical parameters corresponding to realistic applications of radar
detection of car occupants [5, 18]: c∞ = 3× 108 in Ωair

0 , µr = 1, εr = 1.2, εair = 8.85× 10−12

and θ = 2.7 × 10−3. These values yield cseat = 2.7 × 108 − 1.2 × 106i according to (67).
The emission frequency and amplitude, and the breathing motion frequency are respectively
νf = 3× 109, A = 1 and ν` = 1. The layer Ωloc

0,h is chosen with thickness L = 0.1. The tuning
parameters ε, N and J are varying parameters of the study.

Let us first illustrate through an example the construction of the function cn,h and tensor
Cn,h from the metric computation, which is a pre-processing step of the method. We fix ε =
0.01 and N = 4 (see below for this choice), which means that the time interval [0, T`] = [0, 1] is
discretized by 2N+1 = 9 equally spaced points. We report on Figure 3a the triangulation Ω0,h
(gray mesh) zoomed around the rear seat. For the sake of clarity, we consider a relatively large
element size (triangle edge length) of 6 × 10−3 (leading to n0,h = 115702). We superimpose
on Ω0,h (colored circles) the nodes of the initial triangulation mapped by Φk,h, for k = 6 (i.e.
tk = 0.67), resulting from the finite element approximation to (71). From this calculation, we
can deduce the piecewise constant function cn,h and tensor Cn,h. We represent in Figures 3b-
3e the amplitude of (Cn,h)1,1, n = 0, · · · , 3. In particular, we observe that (C0,h)1,1 = 1 and
(Cn,h)1,1 = 0 (n = 1, 2, 3) outside Ωloc

k,h. One of the main points of the method is to correctly
adjust the value of N in (45) to have an accurate representation of the moving geometry but
also to avoid enlarging the bandwidth of the linear system (61) more than necessary.

Now, for a given calculation, the mesh size must be fixed to capture the small oscillations
of the wave field related to the high frequency signal (with usual wavelength in the range
0.01-0.1). For νf = 3 × 109, the element size in the triangulation Ω0,h is fixed at 7 × 10−4,
which leads to n0,h = 8001827 triangular elements and ndof = 4000778 nodes. For n ∈ N, we
set

mn :=
‖cn,h‖L∞(Ωloc

0,h
)

‖c0,h‖L∞(Ωloc
0,h

)
, Mn :=

max1≤ı,≤2 ‖(Cn)ı,‖L∞(Ωloc
0,h

)

max1≤ı,≤2 ‖(C0)ı,‖L∞(Ωloc
0,h

)
.

Then, we fix N as the smallest positive integer such that: mN ≤ τ and MN ≤ τ , where τ
is a small tolerance parameter. Usually, because of the expressions of cn and Cn, and from
numerical simulations (see also Figure 4 (Left)), the most important point is to check the
criterion on Mn. We report Mn and mn, for 0 ≤ n ≤ 8, in Figure 4 and see that N = 4
(respectively N = 5) for τ = 10−2 and ε = 0.01 (respectively ε = 0.02). In practice, we define
an initial value for N and adjust it to fulfill the above criterion. The associated local cost per
element in Ωloc

0,h is however low, for a global cost of about N log(N)nloc0,h. This pre-processing
step is important since it impacts the block structure of the matrix A(N,J)

ω(J) . In addition, we
observe that the ratios Mn (as well as mn) are rapidly decaying and behave as e−κεn when
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Ωloc
k,h

Γk,h

Ω0,h

Γloc
h

· · ·

· · ·

(a) Finite element triangulation and its local deformation for k = 6.

(b) |(C0,h)1,1| (c) |(C1,h)1,1|

(d) |(C2,h)1,1| (e) |(C3,h)1,1|

Fig. 3. Computation of the local deformation and piecewise constant tensor Cn,h for 0 ≤ n ≤ 3.
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n > n0, for some constants n0 ∈ N and κ > 0, i.e.

max
1≤ı,≤2

‖(Cn)ı,‖L∞(Ωloc
0,h

) ≈ max
1≤ı,≤2

‖(C0)ı,‖L∞(Ωloc
0,h

)e
−κεn,

which is due to the fact that we use a smooth mapping.
For N fixed, since the computation of cn,h and Cn,h is spatially localized near the moving

boundary as corrections of the static case (n = 0) and their maximal amplitude decays with
n, we can expect that the blocks (A(N,J)

ω(J) )j,n of A(N,J)
ω(J) , (j, n) ∈ J∗×J∗, have a sparser profile

with smaller coefficients when n increases. We report on Table 1 the number of nonzero
elements (nnz) and the Frobenius norm ‖ · ‖F of these blocks, for j = 0 and n = 0, ..., 4, fixing
J = 8 and for ε = 0.01 and ε = 0.02 (N is obtained thanks to the above truncation criterion).
We can see that the number of elements and the Frobenius norm of the blocks get smaller as
k grows. In addition, a larger value of ε implies that N must be taken larger and that both
the number of elements and the norm of the blocks is slightly larger.

Case ε N n = 0 n = 1 n = 2 n = 3 n = 4

nnz((A(N,J)
ω(J) )0,n) 0.01 4 27982288 468181 220590 19467 0

0.02 5 27982288 470036 306880 50530 382

‖(A(N,J)
ω(J) )0,n‖F

0.01 4 7.50× 103 20.4 6.24× 10−1 1.07× 10−1 0
0.02 5 7.50× 103 41.4 3.57 4.65× 10−1 1.48× 10−1

Table 1: nnz and Frobenius norms of the matrices (A(N,J)
ω(J) )0,n, n = 0, ..., 4, with J = 8.

Let us now analyze the selection of the truncation parameter J ≥ N for the unknown
expansion (59). In Figure 4, we report α(N,J)

j := ‖a(N,J)
j,h ‖L∞(Ω0,h)/‖a

(N,J)
0,h ‖L∞(Ω0,h), for 0 ≤

j ≤ J = 8, and ε = 0.01 (N = 4) and ε = 0.02 (N = 5). We observe that the behaviour
of α(N,J)

j is similar to the behavior of Mn in both situations, i.e. we have rapidly decaying
coefficients according to j. We recommend in practice to take J a little bit larger than N ,
e.g. J = N + 3. While it would be very interesting to have a priori and a posteriori error
estimators for the expansion of the solution, this is not trivial as it depends on the global
regularity of the procedure, and in particular of the mapping. For completeness we report
the amplitudes of the four first functions |a(4,8)

j,h (x0)|, 0 ≤ j ≤ 3, in Ω0,h when ε = 0.01, for
νf = 3× 109 on Figure 5 and νf = 1.5× 1010 on Figure 6. Let us remark that when the radar
frequency increases, the first modes contribute more to the scattering problem [22], leading
to the Doppler effect.

22



0 1 2 3 4 5 6 7 8
10

-6

10
-4

10
-2

10
0

Fig. 4. Mn, mn and α(N,8)
j , for 0 ≤ n, j ≤ 8 (threshold τ = 10−2).

(a) j = 0. (b) j = 1.

(c) j = 2. (d) j = 3.

Fig. 5. Amplitudes |a(4,8)
j,h (x0)|, 0 ≤ j ≤ 3, in Ω0,h. The parameters are: c∞ = 3× 108, νf = 3× 109,

εr = 1.2, θ = 2.7× 10−3, A = 1, ν` = 1, ε = 0.01 and L = 0.1.
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(a) j = 0. (b) j = 1.

(c) j = 2. (d) j = 3.

Fig. 6. Amplitudes |a(4,8)
j,h (x0)|, 0 ≤ j ≤ 3, in Ω0,h. The parameters are: c∞ = 3×108, νf = 1.5×1010,

εr = 1.2, θ = 2.7× 10−3, A = 1, ν` = 1, ε = 0.01 and L = 0.1.

We now consider the solution of the linear system (61) and its preconditioned version (63)
by using the GMRES without restart. The computations were performed using Matlab on a
laptop with Intel Core i7-10510U CPU at 2.30 GHz. The LU decomposition A(0,8)

ω0 = Lω0Uω0

defining P is used to solve (64) for j ∈ J , as explained in Section 5. The resulting upper
and lower ndof × ndof triangular matrices are highly sparse for nnz/n2

dof = 2.2 × 10−3%. We
report in Figure 7 the residual history for solving (61) and (63), for 5 ≤ J ≤ 8, with ε = 0.01
and ε = 0.02. The parameter settings are the same as before. Without the preconditioner,
the convergence is very slow (the maximum number of iterations is fixed to 50) and may
even breakdown for some configurations. When using the preconditioner P, we obtain a very
good convergence rate which seems to be independent of J . In addition, the slope of the
convergence rate increases with ε which is natural since the boundary movement perturbates
more the static configuration, which penalizes the preconditioner efficiency. In Table 2, we
can observe that the CPU time for the iterative solution scales linearly with the parameter
J and is faster than the direct Matlab solver for ε = 0.01. We expect that this difference will
be much more important for higher frequencies or/and for three-dimensional problems.
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Fig. 7. Convergence history of GMRES for solving (61) (black) and (63) with increasing J , for
ε = 0.01 (red) and ε = 0.02 (blue).

Case ε J = 5 J = 6 J = 7 J = 8

Preconditioned GMRES 0.01 1124 1276 1450 1719
0.02 1709 1893 2304 2627

Direct Matlab solver 0.01 1667 1924 2371 2743
0.02 1680 2028 2489 2858

Table 2: CPU time for solving (61) with a direct solver and (63) with the preconditioned GMRES.

7 Conclusion and perspectives
This paper proposes a general approach for computing the solution to two- and three-
dimensional scattering problems by moving boundaries. To this end, the initial boundary
value problem is rewritten in a fixed domain thanks to a well-adapted mapping that can be
computed by a finite element method. Next, approximations are introduced according to the
small deformation of the boundary, and some geometrical quantities as well as the solution
are expanded in terms of truncated Fourier series. This leads to the solution of a finite cou-
pled system of Helmholtz-type equations, that can be solved by the finite element method.
The numerical implementation of the method is fully detailed on a simplified model example
arising from the automotive industry. This shows the potentiality of the approach for solving
moving boundary problems for wave scattering, with applications to Doppler effects.

Since the method is now validated, further improvements remain to be investigated.
Among them, let us mention the use of high-order finite element methods and the devel-
opment of robust solvers for very high frequency three-dimensional problems. Finally, all the
material presented here can be extended to the three-dimensional Maxwell’s equations.
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