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Abstract 

The identification of three somatostatin (SST) genes (SSTa, SSTb and SSTc) in 

lampreys (Tostivint et al. 2016) prompted us to study their expression in the brain and 

spinal cord of the sea lamprey by in situ hybridization. These 3 genes were only 

expressed in equivalent neuronal populations in the hypothalamus. In other regions, SST 

transcripts showed clear differential expression. In the telencephalon, SSTc positive 

cells were observed in the medial pallium, ventral part of the lateral pallium, striatum, 

subhippocampal lobe and preoptic region. In the diencephalon, SSTa positive cells were 

observed in the thalamus and SSTc positive cells in the prethalamus, posterior tubercle, 

pretectal area and nucleus of the medial longitudinal fascicle. In the midbrain, SSTc 

positive cells were observed in the torus semicircularis, lateral reticular area and 

perioculomotor tegmentum. Different SSTa and SSTc positive populations were 

observed in the isthmus. SSTc neurons were also observed in the rostral octavolateralis 

area and caudal rhombencephalon. In the spinal cord, SSTa was expressed in 

cerebrospinal fluid-contacting (CSF-c) neurons and SSTc in non-CSF-c interneurons. 

Comparison with previous immunohistochemical studies using anti-SST-14 antibodies 

strongly suggests that SST-14-like neurons correspond with the SSTa populations. Thus, 

the SSTc populations were not reported previously in immunohistochemical studies. 

Cluster-based analyses and alignments of mature peptides suggested that SSTa is an 

ortholog of SST1 and that SSTb is closely related to SST2 and SST6. Our study provides 

important new insights in the evolution of the somatostatinergic system in vertebrates. 
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Introduction 

A peptide originally isolated from the ovine hypothalamus was named 

somatostatin (SST) because its capability to inhibit growth hormone secretion from rat 

pituitary cells (Brazeau et al. 1973). Since its discovery, SST has been implicated in 

many patho-physiological functions, which include being an inhibitor of endocrine and 

exocrine secretions and nervous system modulation (see Gahete et al. 2010). In 

vertebrates, SST peptides are products of at least 6 different prosomatostatin genes 

named SST1 to SST6 (Liu et al. 2010, Tostivint et al. 2019). Different vertebrates 

contain different numbers of SST genes. SST1, which generates the most common 

isoform of SST peptide (SST-14), and SST2 genes (also called cortistatin in mammals) 

have been found in most gnathostome species. On the other hand, SST3 has been only 

found in chondrichthyes and actinopterygians, SST4 in teleosts, SST5 in chondrichthyes, 

actinopterygians and actinistia and SST6 in chondrichthyes, actinopterygians and birds 

(Tostivint et al. 2019). The current model suggests that the 2 rounds of whole-genome 

duplication (WGD) in vertebrates led to the SST1, SST2 and SST5 genes, while SST4 

was duplicated from SST1 during the third round of genome duplication in teleosts. 

SST3 and SST6 arose by duplication of the SST1 and SST2 genes, respectively (Liu et al. 

2010, Tostivint et al. 2019) in the gnathostome predecessor. The view that SST6 came 

from the second round of genome duplication and SST2 appeared later cannot be 

excluded. Thus, during vertebrate evolution, fishes have maintained a larger repertoire 

of SST genes as compared to tetrapods. Studies in jawed fishes have shown that 

different SST genes are expressed in different regions of the central nervous system 

(CNS) (lungfish: Trabucchi et al. 1999; rainbow trout: Alexander et al. 2001; sturgeon: 

Trabucchi et al. 2002; goldfish: Canosa et al. 2004; orange-spotted grouper: Xing et al. 

2005; common carp: Feng et al. 2015; catshark, Sobrido-Cameán et al., 2020a), which 

suggests that different SSTs play specific roles in different neuronal circuits. It is not 

known whether this is the case in the oldest group of extant vertebrates (i.e. jawless 

vertebrates or agnathans). 

So far, neuroanatomical studies of the somatostatinergic system in the CNS of 

lampreys have been based on immunohistochemistry using antisera raised against 

mammalian SST-14. In lampreys, SST-like immunoreactivity has been reported in 

amacrine cells of the retina (Negishi et al. 1986), in neurons of the hypothalamus, 

thalamus, rostral rhombencephalon and in cerebrospinal-fluid contacting cells (CSF-c 

neurons) of the spinal cord (Hoheisel et al. 1986; Buchanan et al. 1987; Wright, 1986; 
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Cheung et al. 1990, 1991; Yáñez et al. 1992; Jalalvand et al. 2014, 2018). Cheung and 

coworkers (1990, 1991) also reported the presence of weak SST-34-like 

immunoreactivity in cells of the olfactory bulbs, thalamus and hypothalamus of the sea 

lamprey. 

At the functional level, much attention has been put on the SST-like-ir CSF-c 

neurons of the spinal cord of lampreys, which are located close to the central canal and 

colocalize with GABA (Christenson et al. 1991; Jalalvand et al. 2014). These CSF-c 

cells project to the spinal lateral margin where they form a GABA-ir and SST-ir plexus 

that contacts the dendrites of specialized mechanosensory edge cells. SST and GABA 

hyperpolarize edge cells in lampreys, although through different ionic mechanisms 

(Christenson et al. 1991). Recent work has shown that SST-ir CSF-c neurons of the 

spinal cord of lampreys respond to both mechanical stimulation and lowered pH 

(Jalalvand et al. 2016a, 2016b). Interestingly, the effects of SST on edge cells change in 

lampreys that recovered successfully from spinal cord lesions (Svensson et al. 2013). 

Similarly, hypothalamic SST-ir/GABA-ir CSF-c neurons appear to sense deviations 

from physiological pH (Jalalvand et al. 2018). The roles of SST on other neuronal 

circuits of lampreys are not known and specially those of other SSTs. 

A recent study has revealed the existence of at least 3 different SST genes in 

lampreys (Tostivint et al. 2016), which appear to generate a diversity of mature SST 

peptides that could have important functional implications in these animals. The three 

SST transcripts cloned in the Japanese lamprey (Lenthenteron japonicum) were named 

SSTa, SSTb and SSTc, since previous phylogenetic and synteny analyses failed to 

clearly assign orthology relationships with those of gnathostomes (Tostivint et al. 

2016). The SSTb and SSTc sequences were also cloned in Lampetra fluviatilis and 

Petromyzon marinus, respectively (Tostivint et al. 2016). The mature peptide coded by 

the SSTa gene (AGCKNFFWKTFTSC) is identical to mammalian SST-14 (Tostivint et 

al. 2016). This peptide was identified previously in brain extracts of both Petromyzon 

marinus (Sower et al. 1994) and Lampetra fluviatilis (Conlon et al. 1995a). On the other 

hand, the mature SSTb peptide (AGCKNFFWKTFSSC; S substitution in position 12) 

has been reported in extracts of lamprey pancreas and intestine (Andrews et al. 1988; 

Conlon et al. 1995a, 1995b; Sower et al. 1994; Wang et al. 1999). The presence of the 

putative mature SSTc peptide of lampreys (ANCRMFYWKTMAAC) has not yet been 

confirmed by biochemical methods. 
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To advance on our knowledge of the somatostatinergic system of lampreys we 

decided to study the expression of the three SST transcripts in the CNS of larval and 

adult sea lampreys by means of in situ hybridization (ISH). Our results reveal that the 

three SST transcripts are expressed in different neuronal populations. This indicates that, 

as in gnathostomes, different SSTs are implicated in different neuronal circuits and 

might have differential roles in the CNS. Finally, we also attempted to clarify the 

phylogeny and orthology relationships of the lamprey and gnathostome SST genes by 

using cluster analyses. Our study provides an anatomical basis for future functional 

studies on the role of different SSTs in the CNS of lampreys. 

   

Material and methods 

Animals 

Larvae (n = 12), and young (n = 6) and mature adults (n = 9) of the sea lamprey, 

Petromyzon marinus L., were used for the ISH experiments. Additionally, 8 sea 

lamprey larvae were used for RNA extraction. Sea lamprey postmetamorphic young 

adults and larvae were collected from the River Ulla (Galicia, Northwest Spain). 

Upstream migrating mature adults were obtained from a local commercial supplier.  

 

Cloning and sequencing of the Petromyzon marinus SST cDNAs 

Larvae were anesthetized by immersion in 0.1% ethyl 3-aminobenzoate 

methanesulfonate salt (MS-222; Sigma, St. Louis, MO, USA) and the brain and spinal 

cord were dissected out under sterile conditions. Total RNA was isolated from these 

tissues using TriPure (Roche, Mannhein, Germany). The first-strand cDNA synthesis 

reaction from total RNA was catalyzed with Superscript III reverse transcriptase 

(Invitrogen, Waltham, MA, USA) using random primers (hexamers; Invitrogen). For 

polymerase chain reaction (PCR) cloning, specific oligonucleotide primers (SSTa: F: 5’- 

CAACCGGAGCCCGTTACCA – 3’, R: 5’ – ACACGAGGTGAACGTCTTCCA – 3’; 

SSTb: F: 5’- GAGGCCACTCCACGCTAGG – 3’, R: 5’ – 

CAGCACGAAGAGAAAGTCTTCCA – 3’; SSTc: F: 5’- 

CAACCATGAAAGCGACGGC – 3’, R: 5’ – CATCGCCATTCCACTGCCTT – 3’) 

were designed based on the L. japonicum SSTa and SSTb cDNA sequences (GenBank 

accession numbers: KU522235.1 and KU522234.1; please note that these sequences are 

annotated wrongly as b and a in GenBank; for the correct annotation follow the article 

by Tostivint et al. 2016) and the P. marinus SSTc cDNA sequence (GenBank accession 
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number: KU529940.1). The amplified fragments were cloned into pGEM-T vectors 

(Promega, Madison, WI, USA) and sequenced by the University of Santiago de 

Compostela sequencing service. The partial P. marinus SSTa and SSTb cDNA 

sequences generated in this study were deposited in GenBank (GenBank accession 

numbers: MK258196 and MK258197). 

 

In situ hybridization 

Templates for in vitro transcription were prepared by PCR amplification using 

the primers mentioned above for the P. marinus SSTs. In this case, the reverse primers 

included the sequence of the universal T7 promoter 

(TAAGCTTTAATACGACTCACTATAGGGAGA). For the generation of sense 

probes, the sequence of the T7 promoter was included in the forward primers. 

Digoxigenin (DIG)-labeled riboprobes were synthesized using the amplified fragments 

as templates and following standard protocols using T7 polymerase (Roche). 

Lampreys were deeply anesthetized with MS-222 as above before experimental 

procedures. ISH experiments were performed as previously described for riboprobes 

against the sea lamprey serotonin 1a and gabab receptors (Cornide-Petronio et al. 2013; 

Romaus-Sanjurjo et al. 2016) or galanin and cholecystokinin neuropeptides (Sobrido-

Cameán et al., 2019, 2020b). Briefly, the brains/rostral spinal cords were fixed by 

immersion for 12 h in 4% paraformaldehyde. Then, they were cryoprotected with 

sucrose 30% and sectioned in a cryostat in the transverse plane (14 µm sections). Three 

parallel series of sections were obtained from each brain/spinal cord. The sections of 

each series were incubated with each of the P. marinus SST digoxigenin-labelled 

probes, respectively, at 70ºC overnight in hybridization mix and treated with RNAse A 

(Invitrogen) in the post-hybridization washes. Then, the sections were incubated with a 

sheep anti-digoxigenin antibody conjugated to alkaline phosphatase (1:2000; Roche) 

overnight. Staining was conducted in BM Purple (Roche) at 37ºC until the signal was 

clearly visible. Finally, the sections were mounted in Mowiol (Calbiochem; Temecula, 

CA, USA). Sense probes were used as controls and generated no colorimetric signal. 

 

Imaging 

An Olympus photomicroscope (AX-70; Provis) with a 20x Apochromatic 0.75 

lens and equipped with a color digital camera (Olympus DP70, Tokyo, Japan) was used 

to acquire images of brain and spinal cord sections from the ISH experiments. Contrast 
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and brightness were minimally adjusted with Adobe Photoshop CS4 (Adobe Systems, 

San Jose, CA, USA). Figure plates and lettering were also generated using Adobe 

Photoshop. Schematic drawings were generated with CorelDRAW (Corel Ottawa, 

Canada). 

 

Cluster-based analysis and alignment of mature peptides 

To investigate the relationship of the lamprey SSTs with the different SST 

precursors identified in other animals, a database of precursor sequences was obtained 

from Tostivint and coworkers (2019), and the recently identified echinoderm SST 

precursors were added as outgroups (Zandawala et al. 2017; Zhang et al. 2020). Then, 

an all-versus-all BLAST analysis was performed using Cluster Analysis of Sequences 

(CLANS; Frickey and Lupas 2004) with the scoring matrix BLOSUM62. Sequences 

were clustered and linkage clustering was performed with a p-value cutoff of 1e-20 to 

identify coherent clusters. The clustering was collapsed to 2D to enable generation of 

the diagram. The raw file of the clustering analysis containing the name of the 

sequences can be seen as Supplementary figure 1. 

Alignments were performed using ClustalW, with a pairwise alignment setup in 

slow mode/accurate (https://www.genome.jp/tools-bin/clustalw). Highlighting of 

conserved residues was performed using BOXSHADE with 80% conservation as the 

minimum for highlighting (www.ch.embnet.org/software/BOX_form.html). Finally, the 

sequences were highlighted in phylum-specific or superphylum-specific colors: blue 

(agnathans), purple (mammals), orange (sauropsids), yellow (lobe-finned fishes), green 

(ray-finned fishes), pink (cartilaginous fishes). The accession numbers and the 

sequences used to build the cluster analysis and the alignment tree are shown in 

Supplementary file 1. 

 

Results 

Schematic drawings of transverse sections of the brain/spinal cord showing the 

distribution of somatostatinergic neuronal populations are presented in Figures 1 and 2. 

The in situ hybridization experiments revealed differential expression of the 3 SST 

transcripts in both adults and larvae (Figs. 1 and 2, respectively). SSTc expression 

showed a broader distribution in the brain than SSTa, whereas the distribution of STTb 

was mainly restricted to the hypothalamus. Most neuronal populations were observed 

from larvae to adults; therefore, these will be described together. Instances in which a 

https://www.genome.jp/tools-bin/clustalw
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neuronal population is not present in a specific developmental stage will be indicated. 

The terminology employed in this study for the various brain regions, nuclei and 

identified neurons followed those used in recent studies of our group (see Barreiro-

Iglesias et al. 2017; Sobrido-Cameán et al. 2020b), which is partially adapted from that 

the prosencephalic model of Pombal and Puelles (1999). 

 

SSTa expression 

In the brain, SSTa-expressing neuronal populations were observed in the 

hypothalamus, diencephalon, and rhombencephalon of larvae, and young (post-

metamorphic, juvenile) and mature (pre-spawning) adult sea lampreys (Figs. 1A-E, 2A-

G, 3A-P). SSTa positive CSF-c cells were only detected in the spinal cord of adult 

lampreys (Figs. 1F, 3Q). 

In the hypothalamus (secondary prosencephalon), numerous SSTa-expressing 

cells are located in the periventricular cell layer extending from the anterior (postoptic) 

hypothalamic recess to the tuberal region (ventral hypothalamus) (Fig. 1A-B, 2A-C, 

3A-E). Most of these cells probably correspond to CSF-c neurons because of their 

bipolar appearance and their location close to the ependymal layer (Fig. 3C and E). This 

population was observed from larvae (Figs. 2A-B, 3D-E) to mature adults, although in 

the latter they appear more extended and narrowed (compare Figs 3A-E), as it occurs 

with the periventricular cell layer. 

In the diencephalon, the ventral tier or caudal part of the thalamus exhibits 

numerous SSTa-expressing neurons in the thick-layered periventricular region (Figs. 

1C, 2C-E, 3F-I). These cells form a rather compact elongated group in larvae and young 

adults located ventral (rostral) to the fasciculus retroflexus, whereas it appears as a more 

extended cell lamina in mature adults. 

Two SSTa-expressing neuronal populations were observed in the rostral 

rhombencephalon. One of them was a large group of small SSTa-expressing cells 

located in the isthmic tegmental region just caudal to the mid-hindbrain border (Figs. 

1D, 2F, 3J-L). Here, numerous SSTa-positive reticular cells appear in a mediolateral 

region at the level of the interpeduncular nucleus. This population has its caudal limit 

just rostral to the giant I1 isthmic cell. The second SSTa-expressing neuronal population 

was a smaller neuronal group in the anterior rhombencephalic reticular nucleus 

extending to levels ventral to the trigeminal motor nucleus (Figs. 1E, 2G, 3M-P). These 

cells are larger and exhibit stronger staining than those in the rostral isthmus. In mature 



 

 10 

adults, migrated SSTa positive cells are also observed in the ventral midline neuropil 

(interpeduncular nucleus neuropil) (not shown). 

In the rostral spinal cord of mature adult sea lampreys SSTa-positive CSF-c cells 

are located in the intermediate-lateral region of the periventricular cell layer around the 

central canal (Figs. 1F, 3Q). These cells are clearly stained in mature adults but only 

faintly stained in young adults, whereas positive hybridization signal was not noted in 

the larval spinal cord. 

 

SSTb expression 

The expression of SSTb transcript was restricted to postoptic-tuberal 

hypothalamus in adult and larval lampreys (Figs. 1G-H, 2H-K, 4), although in the 

former some expression was also observed in the obex-spinal cord transition (not 

shown).  

In lamprey larvae, the hypothalamic population of SSTb cells extends in the 

ventricular wall of the hypothalamus between the anterior (postoptic) hypothalamic 

recess and the rostral level of the hypophysis. These numerous neurons are located in 

the thick periventricular cell layer (Fig. 2H-K, 4E-G). In adults, these cells are located 

in the rostral part of the ventral hypothalamus, at intermediate levels in the 

periventricular region around the anterior (postoptic) hypothalamic recess (Figs. 1G-H, 

4A-D). In adults, the periventricular cell mantle is separated in this region from the 

ependyma by a thin neuropil layer. Most SSTb-positive neurons are located in the cell 

mantle but a few SSTb-positive neurons are located in the neuropil or among the cells of 

the ependymal layer. SSTb-positive cells are in the same general region where the SSTa-

expressing hypothalamic population is observed (compare Figs. 3A-C and 4), but if they 

colocalize in the same cells or not has not been assessed. 

 

SSTc expression 

The SSTc transcript showed wider expression than the other two SSTs transcripts 

in the adult lamprey brain. Thus, in adults, SSTc-expressing cells were found in the 

telencephalon and hypothalamus (secondary prosencephalon), diencephalon, 

mesencephalon, rhombencephalon and spinal cord (Figs. 1I-V, 5, 6, 7). SSTc expression 

is more reduced in the larval brain, especially in the telencephalon where SSTc-

expressing populations are lacking (Figs. 2L-T, 8). We will first describe in detail the 
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SSTc-positive populations in adults, indicating summarily the main differences observed 

in larvae. 

In the adult telencephalon, the most conspicuous SSTc-expressing populations 

were observed in the lateral pallium and the striatum. Numerous cells showing weak 

staining with the SSTc probe were also observed in the thin periventricular cell band of 

the medial pallium (Figs. 1I-K, 5A-B). In the striatum, the SSTc-expressing neurons 

were observed in periventricular location, but a few also in the characteristic striatal cell 

band away from the ventricle (Fig 1I, 5C). Sparse SSTc positive cells were found in the 

subhippocampal lobe (Figs. 1J, 5D) and also in the ventro-medial region of the lateral 

pallium near the striatum (Fig. 1I, 5D). In the olfactory bulb, no SSTc-expressing cells 

were observed. SSTc expression was not observed in the telencephalon of larvae (not 

shown). 

Three groups of SSTc-expressing cells were found in the preoptic region of adult 

lampreys, which is comprised between the striatum and the optic chiasm. One of the 

SSTc-expressing populations is located dorsal to the magnocellular preoptic nucleus 

(medial preoptic nucleus) adjacent to the striatal population (Figs. 1I, 5C). Most of the 

SSTc-expressing cells of this group are located laterally in the periventricular cell layers, 

but some cells are also located in the inner cell layers (Fig. 5C). Another SSTc-

expressing population forms a compact group located just rostral (dorsal) to the base of 

the preoptic recess and ventral to the magnocellular preoptic nucleus (Figs. 1I, 5C,E). It 

consists of small cells showing strong SSTc expression. The third preoptic group is 

formed by a layer of cells just in the caudal (ventral) wall of the preoptic recess and 

rostral (dorsal) to the optic chiasm (caudal preoptic nucleus). These cells are larger and 

show weaker SSTc expression than those of the rostral group (Fig. 5C,E). Some positive 

cells were observed in this region of the brain of larvae (not shown). 

In the hypothalamus of adult lampreys, a group of SSTc-expressing cells was 

observed in the nucleus of the tract of the postoptic commissure, both in dorsal and 

ventral parts of the nucleus (Figs. 1K, 5F,H,I). Numerous SSTc-expressing cells were 

found scattered in the periventricular layers of the ventral hypothalamus and another 

smaller population was found in inner periventricular layers of the dorsal hypothalamus, 

both rostral to the location of the neurohypophysis (Figs. 1L, 5G). Some SSTc-

expressing cells were also present in the nucleus of the postoptic commissure and rostral 

hypothalamus in larvae (Figs. 2L-M, 8A). 
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In the diencephalon of adults, a conspicuous band with strongly SSTc-expressing 

cells was found extending from the prethalamus to the posterior tubercle nucleus (Figs. 

1M, 6A). This population was also conspicuous in larvae (Figs. 2Q, 8B). A population 

of SSTc-expressing cells was also observed in the adult nucleus of the medial 

longitudinal fascicle (Figs. 1N, 6B-C). In the adult pretectum, numerous SSTc-

expressing neurons were scattered in the lateral pretectal area near the optic tract (Figs. 

1N-O, 6D-E). The cell populations of the medial longitudinal fascicle and pretectum 

were not observed in larvae. 

In the midbrain, SSTc-expressing cells were found in the torus semicircularis and 

in the mesencephalic tegmentum (Figs. 1O-R, 6F-I). The torus semicircularis 

population is comprised of a part that is periventricular and a lateral part that extends 

caudally (Figs. 1Q-R, 6F-G). A group of numerous small SSTc-expressing cells was 

also observed in the perioculomotor region surrounding and caudal to the giant M3 cell 

(Figs. 1O-P, 6H-I). Perioculomotor and toral cells were also observed in the larval 

midbrain (Figs. 2R, 8C), but the toral SSTc-expressing cells are much less numerous 

than in adults. 

 The rhombencephalon of adult lampreys shows some SSTc-expressing cells, 

mostly in its rostral part. In the isthmus, a population of strongly stained SSTc-

expressing cells was found in the ventral reticular area from caudal to the mid-hindbrain 

boundary till levels rostral to the trigeminal motor nucleus (Figs. 1Q-R, 6J-L, 7A). At 

the level of the isthmic I1 giant cell there were numerous SSTc expressing cells (Fig. 

6K). In the rostro-dorsal rhombencephalon just caudal to the trochlear nucleus, a 

conspicuous SSTc-positive population was found in the medial nucleus of the 

octavolateralis area (Figs. 1S, 7B-C). In the larval rhombencephalon, the most 

conspicuous SSTc-expressing population was that of the medial octavolateralis area 

(Figs. 2S, 8D), and the ventral isthmic cells were scarce (Fig. 2S). 

In more caudal regions of the rhombencephalon (at the level of the 

glossopharyngeal and vagal nerves), scattered SSTc-expressing neurons were located 

near the lateral surface of the medulla below the octavolateralis region and near the 

descending root of the trigeminal nerve (Figs. 1T, 7D-E). At the transition between the 

obex and the spinal cord and in the rostral spinal cord, a few SSTc-expressing cells were 

found near the giant reticulospinal axons; in sections they appear over, lateral or 

between the two medial longitudinal fascicles (Figs. 1U-V, 7F). These cells were also 

observed in larval lampreys (Figs. 2T, 8E-F). 
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Analysis of the relationship of lamprey SSTs with SSTs from gnathostomes 

To investigate relationships of the sea lamprey SSTs with gnathostome SSTs, we 

used a previously published database of SST precursors (Tostivint et al. 2019) and 

performed a cluster-based analysis of the precursor sequences using CLANS (Fig. 9a). 

This analysis revealed different clusters: 1) the cluster containing the SST1, SST3 and 

SST5 precursors, which contains very defined cluster of sequences; and 2) a cluster 

containing the SST2 and SST6 precursor sequences, which seem to be very closely 

related to each other (Fig. 9a). Teleost SST4 and lamprey SSTc sequences are so 

divergent to the rest of SST precursors that it was not possible to recognize their 

relationship to any of the other SST sequences (Fig. 9a). However, we were able to 

identify that the lamprey SSTa precursor shares close relationship with the SST1 cluster 

(Figure 9a). Furthermore, an alignment of the predicted mature peptide from lamprey 

SSTa and SST1 from Gnathostome species show a high degree of conservation in all 

species, with the exception of the SST1 precursor from the Australian elephant shark 

(C. milii) that contains a non-synonymous mutation in the 5th position of the predicted 

mature peptide (Fig. 9b). In the case of the lamprey SSTb, we found a connection with 

the sequences belonging to the SST6 precursors (Fig. 9a). However, as this cluster 

contains sequences belonging to the SST2 cluster we performed an alignment with the 

predicted mature peptide from the lamprey SSTb and the SST2 and SST6 sequences 

(Fig. 9c and 9d). The comparison between SSTb and SST2 sequences shows that there 

is more variability between the peptides, and SSTb shows 2 non-synonymous mutations 

when compared to the rest of the mature SST2 peptide sequences. Lamprey SSTb 

shares the most similarity with the SST6 mature peptide, with only 1 non-synonymous 

mutation in the 2nd position of the mature peptide (Fig. 9d). This evidence strongly 

suggests that lamprey SSTa is orthologous to the SST1 precursors and peptides and that 

lamprey SSTb is homologous of the cluster containing the sequences SST2 and SST6 

and is likely an ortholog of the SST6 precursor. 

 

Discussion 

In lampreys, three SST genes have been identified and were called SSTa, SSTb 

and SSTc, but their phylogenetic status was unclear (Tostivint et al. 2016). A very deep 

analysis of the evolution of SST precursors in vertebrates was performed in 2019 by 

Tostivint and coworkers, but it was still not possible to identify the homology of the 
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lamprey SST precursors with those of ganthostomes (Tostivint et al. 2019). Presumably 

the phylogeny was unable to define the relationship of lamprey SSTs with the 

precursors from other species because lampreys are the most basal vertebrate on the list 

of sequences used in those analyses and there was no outgroup for the phylogeny 

(Tostivint et al. 2019). Also, due to the short length of the precursor genes is not always 

easy to identify homology between precursor genes. Here, we used a different approach 

in order to identify potential homology between the lamprey and gnathostome SST 

precursors. CLANS (Cluster Analysis of Sequences) is a software that performs all-vs-

all pairwise analysis and represents sequences by nodes in a graph, placed in a 3D 

space. Clustering is performed using attractive forces proportional to the negative 

logarithm of the BLAST-P values, and a uniform repulsive force (Frickey and Lupas, 

2004). Despite being inferior to a phylogeny for the inference of homology, it has 

previously been used to identify orthologues and to reconstruct orthologue families of 

neuropeptide precursors and receptors in which a phylogeny is challenging (Jékely, 

2013; Thiel et al. 2017; Yáñez-Guerra et al. 2020). According to the data published by 

Tostivint and coworkers (2019), SST3 and SST6 have independently evolved by 

tandem duplications of SST1 and SST2 respectively. Our clustering analysis is 

consistent with this idea, as the SST3 and SST1 clusters are more closely related to each 

other, than to any other SST precursor, and the same occurs with SST2 and SST6, 

which cluster together. 

Using this clustering approach, we were able to identify that lamprey SSTa 

precursors share the most similarities with the SST1 precursors from other species, the 

same result was obtained with the alignment of the mature peptides. This suggests that 

lamprey SSTa is an ortholog of SST1. In the case of the lamprey SSTb, we identified 

that this precursor shows connection to the SST6 precursors. As this cluster is less 

defined than the clusters containing the SST1, SST3 and SST5 sequences, we aligned 

the mature peptide from SSTb with the two precursors conforming this cluster (SST2 

and SST6). The alignment shows more similarity between lamprey SSTb and SST6, 

thus we infer that lamprey SSTb could be an ortholog of SST6 precursors. Such a result 

strongly suggests that SST6 arose before SST2, instead of the other way round.  In 

contrast, our study failed to clarify the orthologous status of SSTc. In this respect, it is 

noteworthy that the temporal relationship between the two WGD events and the 

cyclostome-gnathostome divergence is still unclear and several plus or minus 

contradictory scenarios have been proposed (Kuraku et al. 2009, Mehta et al. 2013, 
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Smith et al. 2013 and Smith and Keinath, 2015, Sacerdot et al., 2018, Simakov et al. 

2020, Cardoso et al. 2020). However, since SSTc does not appears as an ortholog of 

SST5, one can hypothesized that SSTc emerged specifically in the cyclostome lineage, 

after the cyclostome-gnathostome divergence. In any case, since we still could not 

clearly clarify the phylogenetic relationships of the 3 lamprey SST genes, we decided to 

maintain the SSTa, SSTb and SSTc nomenclature. However, the SSTa/SST1 and 

SSTb/SST2/6 relationships identified in our study will be kept in mind during the 

discussion of the expression data below. 

 

Expression of SSTs in lampreys 

Present results show for the first time the distribution of neurons expressing the 

SSTa, SSTb and SSTc genes in the brain of the sea lamprey Petromyzon marinus. These 

three genes showed clear differentially expression in the larval and adult sea lamprey 

brain. SSTc showed a broader expression than SSTa and SSTb, the latter being 

exclusively expressed in hypothalamic neurons. The patterns of expression are largely 

conserved between larval and adult stages in most brain regions but there are also some 

significant changes from larvae to adults. Large differences in the neuroanatomical 

expression of the different SST genes of non-mammalian species were also reported in 

the chicken (Trabucchi et al. 2003), frog (Tostivint et al. 1996), the sturgeon Acipenser 

transmontanus (Trabucchi et al. 2002), the goldfish (Canosa et al. 2004) and the 

catshark Scyliorhinus canicula (Sobrido-Cameán et al. 2020a). Results in the sea 

lamprey and other non-mammalian species appear to indicate that different SST genes 

become specialized in different neural circuits. 

 

Comparison with results of immunohistochemical studies in lampreys 

The distribution of SST-like-ir neurons and fibers in the lamprey brain was 

previously studied with antibodies raised against mammalian SST-14 (Wright 1986; 

Cheung et al. 1990; Yáñez et al. 1992, Cheung et al. 2011), which is identical to the 

peptide sequence predicted by the SSTa (SST1) gene. SST-like-ir positive perikarya 

were observed in the nucleus of the tract of the postoptic commissure, ventral 

hypothalamus, thalamus (dorsal thalamus), isthmic tegmentum (rostral and caudal 

groups) and spinal cord central canal, a pattern consistent with the distribution of SSTa 

transcript expression reported here. Thus, previous immunohistochemical studies 

probably revealed the distribution of the SSTa-expressing neurons. Since the 
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hypothalamic expression of SSTb is rather similar to that of SSTa, there exists the 

possibility that the SST-14 antibody also recognized neurons expressing this gene. On 

the other hand, the expression of SSTc is clearly different from that reported by 

immunohistochemical studies with the SST-14 antibody and represents a new 

somatostatinergic system. Moreover, this system differs greatly between larvae and 

adults in some brain regions, suggesting that it has evolved in response to their different 

ways of life. Cheung et al. (1990) employed an antibody raised against SST-34, which 

revealed additional populations to those observed with anti-SST-14, notably in the 

telencephalon. These SST-34-like-ir cells appear widely distributed in the olfactory 

bulb, which is clearly different from the distribution of the SST transcripts reported here 

in the telencephalon of the same lamprey species. This suggests that in the study by 

Cheung and coworkers (1990) the SST-34 antibody cross-reacted in the telencephalon 

with a different protein, or that the expression of SST transcripts in these cells was under 

the detection level of the present ISH procedure.  

 

Comparative aspects 

Telencephalon 

Of the three SST genes of the sea lamprey, SSTc is the only one expressed in the 

telencephalon. In the adult pallium, abundant cells express SSTc in the medial pallium. 

A few cells were also observed in ventral regions of the telencephalic hemispheres 

(lateral pallium). In ventral lateral pallial regions, they are distributed in the inner zone, 

which also shows GABAergic cells (Robertson et al. 2007; Villar-Cerviño et al. 2011; 

Suryanarayana et al. 2017), but if GABA and SSTc are co-located in the same cells was 

not investigated. With regards to the lamprey medial pallium, its equivalence with any 

cortical regions of jawed vertebrates is unclear and even recent work has proposed that 

it represents the homolog of the prethalamic eminence of jawed vertebrates (Pombal et 

al. 2009). In any case, the important topographical differences with the distribution of 

GABAergic cells reported in the medial pallium (Robertson et al. 2007) indicates that 

SSTc-expressing cells are very probably non-GABAergic cells. This is unlike the cortex 

of mammals, where SST and cortistatin expression have been reported in interneurons 

of the telencephalon (Fitzpatrick-McElligott et al. 1988, 1991; Naus et al. 1988; de 

Lecea et al. 1997), which are GABAergic and take part in inhibitory cortical circuits 

(Urban-Ciecko and Barth, 2016; Adler et al. 2019).  SST-ir or SST-positive cells have 

also been reported in the pallium of birds (Trabucchi et al. 2003), reptiles (Reiner and 
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Oliver, 1987), amphibians (Tostivint et al. 1996), lungfish (Vallarino et al. 1997), 

teleosts (Sas and Maler, 1991; Becerra et al. 1995; Canosa et al. 2004) and 

elasmobranchs (Sobrido-Cameán et al. 2020a), but if they are GABAergic was not 

investigated.  

The subpallium of adult sea lampreys shows SSTc-expressing cells mainly in the 

striatum. The lamprey striatum shares important features with the mammalian striatum 

such as its premotor nature, dopaminergic innervation and excitability properties of its 

neurons (Ericsson et al. 2013). The finding of SSTc-expressing cells in lamprey adds 

new layers of neurochemical complexity to this conserved center. In mammals, a 

population of GABAergic interneurons that express SST controls the feed-forward 

activity of glutamatergic projection neurons in the dorsomedial striatum (Fino et al. 

2018). It is possible that the SSTc-expressing striatal neurons of lampreys may have 

similar roles in control of the striatal output. On the other hand, the expression of SSTc 

in some cells of the subhippocampal lobe deserves special attention because it is 

considered a pallidal homolog (Stephenson-Jones et al. 2012) and is the origin of a 

major afferent projection to the habenula (Yáñez and Anadón, 1996; Stephenson-Jones 

et al. 2012). Similar to the subhippocampal lobe of lampreys, the entopeduncular 

nucleus is the main telencephalic afferent nucleus to the habenula in teleosts (Yáñez and 

Anadón, 1994; Turner et al. 2016) and the Arabian bamboo shark (Chiloscyllium 

arabicum) (Giuliani et al. 2002); this nucleus shows cells expressing SST3 and SST1 in 

goldfish (Canosa et al. 2004) and SST1 in catshark (Sobrido-Cameán et al. 2020a). Our 

results indicate that jawless and jawed vertebrates opted for the use of different SST 

genes in this region. 

The developmental origin and expression patterns of cortical interneurons in 

mammals have received much attention as deficiencies in these populations have been 

implicated in important neurological diseases by imbalance of excitatory and inhibitory 

activities in the cerebral cortex (Xu et al. 2005; Takada et al. 2014; Hu et al. 2017). 

Cortical SST/GABA interneurons are early-born in mice and mainly originate from the 

medial ganglionic eminence, which is specified by the early expression of shh and 

nkx2.1 genes in the basal telencephalon (Puelles et al. 2016; Hu et al. 2017). Unlike 

jawed vertebrates, the basal telencephalon of lamprey embryos lacks expression of these 

genes (Osorio et al. 2005; Rétaux and Kano, 2010) and thus may lack a gene regulatory 

network comparable with that of mice. This may be responsible of the absence of SST 

expression in the larval lamprey telencephalon. The expression of SSTc in the adult 
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lamprey telencephalon is mainly found in the medial pallium and subpallial region. 

Cells in the ventral part of the lateral pallium are scarce and might be originated by 

migration of cells from the medial ganglionic eminence (Puelles et al. 2016). On the 

other hand, the location of SSTc-expressing cells in the periventricular medial pallium 

of adults, a region that grows only very late in larval development (Villar-Cheda et al. 

2006), suggests that these somatostatinergic cells may be a pallial-derived population. 

Little is known about neurochemistry and functions of the medial pallium, but the 

abundant SSTc expression suggests that this substance is implicated in its control. 

Periventricular SSTc cells of the medial pallium, which are GABA (Robertson et al. 

2007) and glutamate immunonegative (Villar-Cerviño et al. 2011), represent a major 

difference with the somatostatinergic populations of the mammalian pallium, which 

suggests a divergent contribution of SSTs to inhibitory mechanisms in the lamprey 

telencephalon.   

 

Preoptic region and rostral hypothalamus 

The preoptic region and the hypothalamus contain different somatostatinergic 

populations. Around the preoptic recess there are three populations expressing SSTc that 

occupy regions of the preoptic nucleus (telencephalic) and the suprachiasmatic nucleus 

homologue (ventral nucleus of the postoptic commissure; Weigle et al. 1996) (alar 

hypothalamus), although these cells were only observed in adults. One of the SSTc 

preoptic populations has a similar location to GnRH-III neurons described in the sea 

lamprey (Nozaki et al. 2000), but whether they are related to sexual maturation is not 

known. In the catshark, positive cells of these areas express SST1 and SST6, 

respectively, indicating higher complexity in the somatostatinergic systems of this 

region of cartilaginous fishes. With regard the basal hypothalamus, the three SST genes 

are expressed in similar regions of the nucleus of the tract of the postoptic commissure 

and rostral hypothalamus. Although this may suggest functional redundancy of SSTs in 

the lamprey hypothalamus, studies in mammals reveal that SST and cortistatin have 

different affinity for SST receptors and ghrelin receptor 1a, allowing them to elicit 

differential responses on target neurons (Deghenghi et al. 2001; Ibáñez-Costa et al. 

2017). Whereas immunohistochemical studies of sharks and bony fishes have revealed 

somatostatinergic fibers projecting to the neurohypophysis (Batten et al. 1990; Vallarino 

et al. 1997; Adrio et al. 2008), in the sea lamprey similar projections appear to be absent 

(Wright, 1986) or to be very scarce (Yáñez et al. 1992). The presence in the preoptic 
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region/hypothalamus of cells expressing other SSTs (SSTb and SSTc) that are probably 

not detected by the SST-14 antibody used in previous lamprey studies (see above) 

opens the possibility that a somatostatinergic preopto/hypothalamo-neurohypophysial 

system was already present in lampreys. This possibility needs to be addressed in future 

studies by using specific antibodies raised against other mature SST peptides of 

lampreys. 

 

Diencephalon 

 Our results revealed populations expressing two different SSTs in regions of the 

three diencephalic prosomeres of the sea lamprey. Thus, a prominent SSTa-expressing 

population that corresponds with that previously reported with SST-14 

immunohistochemistry (Wright, 1986; Cheung et al. 1990; Yáñez et al. 1992) was 

observed in the thalamus (prosomere 2), whereas two new populations expressing SSTc 

were observed in the prethalamus/posterior tubercle (prosomere 3) and in the lateral 

pretectum and the nucleus of the medial longitudinal fascicle (prosomere 1). This 

alternate distribution of SSTa and SSTc expression in diencephalic prosomeres reminds 

that observed in the catshark diencephalon with the SST1 and SST6 genes (Sobrido-

Cameán et al., 2020a); although, as indicated above SSTc is probably not an ortholog to 

SST6 of sharks, which again indicates that different vertebrates are opting for the use of 

different SST genes in similar regions. On the other hand, the sea lamprey habenula 

does not show SST-expressing cells, which is in contrast with the catshark and goldfish 

habenulae (Sobrido-Cameán et al., 2020a; Canosa et al. 2004).  

 

Reticular formation 

Two SST genes (SSTa and SSTc) are expressed in the reticular formation of the 

sea lamprey. Previous studies with SST-14 immunohistochemistry only observed 

somatostatinergic reticular cells in the isthmo-trigeminal region, forming two separate 

populations (Yáñez et al. 1992). This distribution corresponds well with that of SSTa-

expressing isthmic populations reported here. The presence of additional reticular 

populations expressing SSTc in the midbrain tegmentum (perioculomotor and MRA 

populations), the isthmus, and the caudal rhombencephalon indicates that SSTs are more 

widely expressed by reticular populations than previously known in lampreys. The most 

numerous midbrain SSTc-expressing population is located in a tegmental region 

recently characterized as the lamprey homologue of the mammalian periaqueductal gray 
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mainly on the base of its projections on the pretectum and the afferents from the 

interpeduncular nucleus (Olson et al. 2017). Present in situ hybridization results reveal a 

complex pattern of SST-expressing reticular populations in lampreys, which reminds, 

although is simpler, the reticular populations expressing the SST1 and SST6 genes in the 

catshark (Sobrido-Cameán et al. 2020a). Whereas in sea lamprey these reticular 

populations do not appear topographically related with dopaminergic cells, in the 

catshark some midbrain reticular populations are closely related with the dopaminergic 

cells of the ventral tegmental area and substantia nigra (Sobrido-Cameán et al. 2020a). 

 

Expression of the SST genes in sensory centers  

SSTc expression was observed in cells of some sensory areas of the sea lamprey. 

One of the SSTc expressing populations is located in the torus semicircularis, which in 

sea lamprey receives secondary projections from the mechanosensory octavolateralis 

area (González et al. 1999). This mesencephalic structure, which is found in most non-

mammalian vertebrates, is homologous to the inferior colliculus of mammals and 

probably to the lateral mesencephalic nucleus of elasmobranchs, which also exhibit 

somatostatinergic cells (Wynne et al. 1995; Wynne and Robertson, 1997; Sobrido-

Cameán et al. 2020a). SST expression was also reported in cells of the torus 

semicircularis of frog (Tostivint et al. 1996) and goldfish (Canosa et al. 2004). 

Moreover, an SSTc-expressing population was observed in the rostral part of the medial 

nucleus of the octavolateralis area of the rhombencephalon. The medial nucleus of the 

octavolateralis area is specialized in processing lateral line mechanosensory inputs 

(Northcutt, 1981) and the torus semicircularis probably represents an integration/relay 

center for ascending mechanosensory inputs, since it also projects to the thalamus 

(González el al. 1999), a region that also shows SSTc-expressing neurons. The 

distribution of SSTc expressing cells in the medial octavolateralis nucleus, torus 

semicircularis, and thalamus suggests a role of its product in mechanosensory 

processing centers in lampreys.  

 Unlike mechanosensory centers, in the visual system of the sea lamprey brain 

SSTs expression is scarce. Thus, none of the three SSTs was expressed in cells of the 

optic tectum, either larval or adult, and only the pretectum showed SSTc-expressing 

cells in its lateral area. Some SST-positive cells were also present in the MRA, which 

extends lateroventrally to the optic tectum (De Miguel et al. 1990; Rodicio et al. 1995). 

The MRA and Schober’s M5 nucleus contain retinopetal cells and thus are related to 
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visual circuits (De Miguel et al. 1990; Rodicio et al. 1995). The lack of SST expression 

in the lamprey optic tectum is in marked contrast with the optic tectum of chicken, frog, 

sturgeon, goldfish and catshark, in which SST genes are expressed in tectal cells 

(Tostivint et al. 1996; Trabucchi et al. 2002, 2003; Canosa et al. 2004; Sobrido-Cameán 

et al. 2020a). Somatostatin mRNA expression has also been reported in the superior 

colliculus (the mammalian homolog of the optic tectum) in the rat (Harvey, et al. 2001), 

camel (Mensah-Brown and Garey, 2006) and the tree shrew (Ranc et al. 2012). The 

major differences in tectal expression of SST genes between lampreys and jawed 

vertebrates suggests an ancient divergence in the involvement of SSTs in visual circuits.  

 

Spinal cord 

The lamprey spinal cord contains a well-characterized system of 

somatostatinergic CSF-c cells (Buchanan et al. 1987, Christenson et al. 1991; Jalalvand 

et al. 2014, 2016a, 2016b) that is involved in control of movements through its lateral 

projections on the edge cell system. Our results show that these cells express SSTa but 

not the other two SSTs, which agrees with immunostaining of these cells using SST-14 

antibodies. Similar somatostatinergic CSF-c cells are found in the catshark spinal cord 

expressing only SST1 (Sobrido-Cameán et al. 2020a). These catshark spinal cells also 

give rise to the somatostatinergic fibers innervating the marginal glomerular fields of 

the spinal cord contacted by marginal neurons (Anadón et al. 1995). SST-ir CSF-c 

neurons were also observed in the spinal cord of sturgeon (Adrio et al. 2008), but the 

presence of mechanosensory marginal neurons or neuropil similar to that described in 

lampreys and sharks has not been reported in ray-finned fishes.  

Our results also show some SSTc-expressing neurons in the lamprey spinal cord 

that were not of CSF-c type, mostly located near the giant reticulospinal axons, 

indicating that the spinal somatostatinergic systems is more diverse than previously 

known in lampreys. In the catshark spinal cord there are also non-CSF-c SST6-

expressing neurons, which may indicate a conserved pattern (Sobrido-Cameán et al. 

2020a). At rhombencephalic levels, PSS1- and PSS2-expressing cells were observed in 

the medial longitudinal fasciculus of the sturgeon (Trabucchi et al. 2003) and PSS-I 

expressing cells surround the medial longitudinal fasciculus of goldfish (Canosa et al. 

2004). The location of somatostatinergic cells next to the reticulospinal axons suggest 

that they can play a role in modulating descending brain-spinal inputs in different 

vertebrates.  
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Conclusions 

 The present study of expression of the three somatostatin genes in the central 

nervous system of the sea lamprey (Petromyzon marinus L) by in situ hybridization has 

revealed a clear differential pattern, since only in the rostral hypothalamus the three 

genes were expressed in similar neuronal populations. The SSTc gene was the only SST 

gene expressed in the telencephalon, with positive populations located in the pallium 

and subpallium that may be implicated in control of higher brain functions. Whereas 

SSTa hypothalamic cells are probably not related with the hypophysis on the base of 

results with SST-14 antibodies, the presence of SSTb and SSTc in cells of the preoptic 

region and/or hypothalamus suggest that other somatostatins may be used to control the 

secretion of pituitary hormones (Sower, 2018). In the diencephalon, the expression of 

SSTa and SSTc genes is differentially related with its segmental organization. Thus, 

SSTa positive cells were only observed in the thalamus (prosomere 2), whereas SSTc 

positive cells were distributed in the prethalamus/posterior tubercle (prosomere 3), and 

in the pretectal area and nucleus of the medial longitudinal fascicle (prosomere 1). In 

the midbrain, only SSTc positive cells were observed (in the torus semicircularis, lateral 

reticular area and perioculomotor midbrain tegmentum), whereas unlike in jawed 

vertebrates the optic tectum lacks expression of SSTs. In the isthmus, different SSTa and 

SSTc positive neuronal populations were observed in the tegmentum. SSTc neurons 

were also observed in the rostral region of the octavolateralis area and in caudal 

rhombencephalic reticular regions associated to the medial longitudinal fascicle. In the 

spinal cord, SSTa was expressed in some cerebrospinal fluid-contacting (CSF-c) 

neurons whereas SSTc expression was observed in non-CSF-c interneurons in medial 

regions. The three genes were expressed in both larval and adult lampreys with similar 

overall pattern except in a few regions. Comparison with previously published 

neurochemical results on sea lamprey with anti SST-14 shows that SST-14 

immunoreactive populations only correspond with the SSTa positive populations 

revealed here. On the other hand, the SSTc positive populations described here do not 

correspond with any SST-immunoreactive population reported previously in lampreys 

and thus represent a new somatostatinergic system. Moreover, comparison of SSTs 

sequences of lampreys and other vertebrates suggest that SSTa corresponds to SST1 and 

that SSTb is related to SST2/6, whereas SSTc is distantly related with the SSTs of 

gnathostomes. The lamprey gene regulatory networks responsible of the expression 

patterns of somatostatins revealed here need to be investigated. Our results also open 
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the opportunity to investigate the differential contribution of lamprey SSTs to CNS 

circuits in lampreys. 
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Figure Legends 

Figure 1. Schematic drawings of transverse sections of the adult sea lamprey brain and 

spinal cord showing the distribution of cells expressing SSTa (A-F), SSTb (G-H) 

and SSTc (I-V) transcripts. Cells are represented as dots on the right side of 

sections. Anatomical regions are presented on the left side. Asterisk, ventricle. 

For abbreviations, see the list. The planes of sections are represented in the 

https://doi.org/10.1016/0891-0618(92)90006-c
https://doi.org/10.7554/eLife.57640
https://doi.org/10.1098/rsob.170129
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squared figurine representing a lateral view of the brain. Scale bars: A-V, 200 

µm; figurine, 1 µm. 

 

Figure 2. Schematic drawings of transverse sections of the larval sea lamprey brain 

showing the distribution of cells expressing SSTa (A-G), SSTb (H-K) and SSTc 

(L-T). Cells are represented as dots on the right side of sections. Anatomical 

regions are represented on the left side. Asterisk, ventricle. For abbreviations, 

see the list. The planes of sections are represented in the 3 figurines representing 

a lateral view of the brain. Scale bars: a-t, 200 µm. 

 

Figure 3. Photomicrographs of in situ hybridized transverse sections showing the 

expression of SSTa mRNA in the brain and spinal cord of mature (A, B, F, G, J, 

M, Q), juvenile (C, H, K, N, O) and larval (D, E, I, L, P) sea lampreys. A-E, 

Sections of the rostral hypothalamus ventral to the postoptic commissure. B is a 

magnification of A. F-I, Sections throughout the diencephalon showing 

abundant positive cells in the ventral tier of the thalamus. Section in G is caudal 

to F. J-L, Sections throughout the rostral isthmic tegmentum. M-P, Sections 

throughout caudal regions of the isthmic tegmentum/rostral trigeminal 

tegmentum. Q, Section of the spinal cord showing positive CSF-c neurons in the 

lateral walls of the central canal. Inset, Detail of positive cells. Asterisk, 

ventricle. For abbreviations, see the list. Scale bars: 100 µm (A, I, L, P, Q), 50 

µm (B, C, E, F, G, H, J, K, M, N, O, and inset in Q), 250 µm (D). 

 

Figure 4. Photomicrographs of in situ hybridized transverse sections showing the 

expression of SSTb mRNA in cells of the hypothalamus of mature (A, B), 

juvenile (C, D) and larval (E, F, G) sea lampreys. Asterisk, ventricle. For 

abbreviations, see the list. Scale bars: 100 µm (A, E), 50 µm (B, C, D, F, and G). 

 

Figure 5. Photomicrographs of in situ hybridized transverse sections of juvenile sea 

lampreys (j) showing the expression of SSTc mRNA in cells of the telencephalon 

and hypothalamus (secondary prosencephalon). A-B, Sections through the 

medial pallium showing small positive neurons in the periventricular layer. C, 

Section through the basal telencephalon and preoptic region showing abundant 

positive neurons in the striatum and dorsal and ventral parts of the preoptic 
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recess nucleus. Inset, detail of positive cells. D, Section through the caudal 

telencephalon showing some positive neurons in the subhippocampal lobe and 

lateral pallium. E, Detail of the SSTc positive neuronal populations located 

around the preoptic recess. F, Positive neurons in the ventral part of the nucleus 

of the tract of the postoptic commissure. G, Positive neurons in the anterior 

hypothalamus. H, Neurons in the dorsal nucleus of the tract of the postoptic 

commissure. I, J, Sections showing differences between positive cells of the 

dorsal and ventral regions of the nucleus of the posterior commissure. Asterisk, 

ventricle. For abbreviations, see the list. Scale bars: 100 µm (A, C, D, H, I), 50 

µm (B, E, F, G, J, inset in C). 

 

Figure 6. Photomicrographs of in situ hybridized transverse sections of juvenile sea 

lampreys (j) showing the expression of SSTc mRNA in cells of the diencephalon 

(A-E), mesencephalon (E-I) and isthmus (J-L). A, Compact group of positive 

cells in the posterior tubercle nucleus. B, C, Positive cells in rostral and caudal 

regions of the Nmlf. D, E, Scattered positive cells in the lateral pretectal area. F, 

G, SSTc positive neurons in rostral and caudal levels of the TS, respectively. H-

I, Abundant SSTc neurons in the perioculomotor region, close to the M3 cell. J-

L, SSTc positive populations in rostral and caudal levels of the isthmic 

tegmentum. Asterisk, ventricle. For abbreviations, see the list. Scale bars: 100 

µm (A, B, C, D, E, G, H, I, J, K, L), 50 µm (F). 

 

Figure 7. Photomicrographs of in situ hybridized transverse sections of juvenile (j) and 

mature (m) adult sea lampreys showing the expression of SSTc mRNA in cells 

of the hindbrain (A-E) and spinal cord (F). A, Section showing ventral cells in 

the ARRN. B-C, Sections showing abundant positive neurons in the rostral 

region of the OLA. D-E, Sections showing reticular cells (arrows) near the 

lateral hindbrain surface at levels of the glossopharyngeal and vagal motor 

nuclei. F, Section showing positive neurons located over the giant axons of the 

mlf. Asterisk, ventricle. For abbreviations, see the list. Scale bars: 50 µm (A, B, 

C, F), 100 µm (D, E). 

 

Figure 8. Photomicrographs of selected in situ hybridized transverse brain sections of 

larval sea lampreys (l) showing SSTc expression in the rostral hypothalamus (A), 
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basal diencephalon (B), mesencephalon (C), rostral and caudal 

rhombencephalon (D-E) and spinal cord (F). Asterisk, ventricle. For 

abbreviations, see the list. Scale bars: 50 µm (A, D), 100 µm (B, C, E, F).  

 

Figure 9. Analysis of the relationships of lamprey SST precursors and peptides with 

those from other species. A, BLOSUM62 cluster map of SST precursors. Nodes 

correspond to the precursors and are colored according to the key. Edges 

correspond to BLAST connections of P value >1e-20. B, Alignment of the 

lamprey SSTa predicted mature peptide with the predicted mature peptides from 

different gnathostome SST1 precursors. Basic cleavage sites are also included 

with the mature peptide sequences. C, Alignment of the lamprey SSTb predicted 

mature peptide with the predicted mature peptides from gnathostome SST2 

precursors. D, Alignment of the lamprey SSTb predicted mature peptide with the 

predicted mature peptides from gnathostotme SST6 precursors. Sequences were 

highlighted in taxon-specific colors: blue (agnathans), purple (mammals), orange 

(sauropsids), yellow (lobe-finned fishes), green (ray-finned fishes), pink 

(cartilaginous fishes). Species names in the alignments are as 

follows: Pmar (Petromyzon marinus), Ljap (Lethenteron japonicum), Lflu 

(Lampetra fluviatilis), Hsap (Homo sapiens), Btau (Bos taurus), Ggal (Gallus 

gallus), Acar (Anolis carolinensis), Lcha (Latimeria chalumnae), Locu 

(Lepisosteus oculatus), Drer (Danio rerio), Gpet (Gnathonemus petersii), 

Scan (Scylorhinus canicula), Rtyp (Rhincodon typus), Cmil (Callorhinchus 

milii). 

 

Supplementary figure 1. Raw figure of the cluster analysis presented in Figure 9A. 

BLOSUM62 cluster map of somatostatin precursors. Nodes correspond to the 

precursors and are colored according to the key. Edges correspond to BLAST 

connections of P value >1e-20. The names of the sequences are included in the 

figure. 

Supplementary file 1. Sequences used for the cluster analysis and alignment performed 

and shown in figure 1.   

 

Abbreviations used in the figures 

ARRN anterior rhombencephalic reticular nucleus 
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Cc central canal of spinal cord 

Ch optic chiasm 

DC dorsal column 

DCN dorsal column nucleus 

DIG dorsal isthmic grey 

dNpoc dorsal part of the nucleus of the tract of the postoptic commissure 

fr fasciculus retroflexus 

Ha habenula 

Hy hypothalamus 

Hyp hypophysis 

I1 I1 isthmic giant reticulospinal neuron 

III oculomotor nucleus 

IP interpeduncular nucleus 

Is Isthmus 

IXm glossopharyngeal motor nucleus 

j juvenile (postmetamorphic adult)  

l larva  

lHa left habenula 

LP lateral pallium 

LPv ventral region of the lateral pallium 

m mature adult (upstream migrating) 

M mesencephalon 

MAR  mamillary recess 

M2 M2 giant Müller reticulospinal cell 

M3 M3 giant Müller reticulospinal cell 

M5 Schober’s M5 nucleus of the mesencephalon 

mlf medial longitudinal fascicle 

MP medial pallium (prethalamic eminence of Pombal et al. 2009) 

Mpl mesencephalic choroid plexus 

MRA mesencephalic reticular area 

Nmlf nucleus of the medial longitudinal fascicle 

Npoc nucleus of the tract of the postoptic commissure 

OB olfactory bulbs 

OLA octavolateralis area 
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OT optic tectum 

ot optic tract 

P pineal organ 

Pa parapineal organ 

pc posterior commissure 

PO preoptic nucleus 

pOc perioculomotor region (griseum centrale of Olson et al. 2017) 

poc postoptic commissure 

pOMN  posterior octavomotor nucleus 

Pr preoptic recess 

Prn preoptic recess nucleus 

PRRN posterior rhombencephalic reticular nucleus 

PT pretectum 

Pth prethalamus (ventral thalamus) 

PTN posterior tubercle nucleus 

PTu paratubercular region 

rHa right habenula 

Rho rhombencephalon 

Rpl rhombencephalic choroid plexus 

SC spinal cord 

sco subcomissural organ 

SHL subhippocampal lobe  

SO spinooccipital motor nucleus 

St striatum 

T telencephalon 

Th  thalamus (dorsal thalamus) 

TS torus semicircularis 

Vd descending trigeminal tract 

Vm trigeminal motor nucleus 

vNpoc ventral part of the nucleus of the tract of the postoptic commissure 

Xm vagal motor nucleus 
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