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ABSTRACT
Based on its great successes in inference and denosing tasks,
Dictionary Learning (DL) and its related sparse optimization
formulations have garnered a lot of research interest. While
most solutions have focused on single layer dictionaries, the
recently improved Deep DL methods have also fallen short
on a number of issues. We hence propose a novel Deep DL
approach where each DL layer can be formulated and solved as
a combination of one linear layer and a Recurrent Neural Net-
work, where the RNN is flexibly regraded as a layer-associated
learned metric. Our proposed work unveils new insights be-
tween the Neural Networks and Deep DL, and provides a
novel, efficient and competitive approach to jointly learn the
deep transforms and metrics. Extensive experiments are car-
ried out to demonstrate that the proposed method can not only
outperform existing Deep DL, but also state-of-the-art generic
Convolutional Neural Networks.

Index Terms— Deep Dictionary Learning, Deep Neural
Network, Metric Learning, Transform Learning, Proximal
Operator, Differentiable Programming.

1. INTRODUCTION

Dictionary Learning/Sparse Coding has been successfully ap-
plied for solving various inference tasks, such as image de-
noising [1], image restoration [2], image super-resolution [3],
audio processing [4], and image classification [5].

Synthesis Dictionary Learning (SDL) is the early primary
approach in this area. Then, Analysis Dictionary Learning
(ADL)/Transform Learning, the dual problem of SDL, re-
ceived more attention. DL based methods [6, 7, 8, 9, 10] for
image classification usually focus on learning one-layer dic-
tionary and its associated sparse representation. Since DL
methods need to simultaneously learn the dictionary and its
associated representation, thanks to a sparsity promoting reg-
ularization, they raise challenging numerical issues. To ad-
dress such challenges, a number of dictionary learning solvers
have been developed, including K-SVD [6] and Fast Iterative
Shrinkage-thresholding Algorithm (FISTA) [11] schemes, for
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instance. Although such alternating minimization methods
provide practical solutions for DL, they remain prone to lim-
itations and have a relatively high computational cost. To
overcome such computational difficulties, differentiable pro-
gramming has also been developed, to take advantage of the
efficiency of neural networks, such as LISTA [12] and Sparse
LSTM [13].

Although the aforementioned differentiable programming
methods are efficient at solving a single-layer DL problem, the
latter formulation still does not lead to the best performance in
image classification tasks. With the fast development of deep
learning, Deep Dictionary Learning (DDL) methods [14, 15]
have thus come into play. [16] deeply stacks SDLs to classify
images and achieves promising performance. Also, a deep
model for ADL followed by a SDL is developed for image
super-resolution in [17]. Unsupervised DDL approaches have
also been proposed, with interesting results [18, 19].

However, to the best of our knowledge, there is no method
for training such kind of end-to-end deep dictionary models in
a both fast and reliable manner. This work aims at ensuring the
discriminative ability of single-layer DL while benefiting from
the efficiency of end-to-end models. To this end, we propose
a novel differentiable programming method, namely, Deep
Transform and Metric Learning. To further benefit from the
efficiency of DDL models, the resulting structures are stacked
into a deep network, leading to a so-called DeTraMe Network
(DeTraMe-Net). Our new approach not only increases the
discrimination capabilities of DL, but also brings the flexibility
to construct different DDL or Deep Neural Network (DNN)
architectures. It also allows to overcome the roadblocks raised
by initialization and gradient propagation issues arising in
standard DDL methods. Although the authors of [20] and [21]
also used a CNN followed by an RNN for respectively solving
super-resolution and sense recognition tasks, they directly used
LISTA in their model. In turn, our method actually solves the
same problem as LISTA.

Our main contributions are summarized below: 1) We
theoretically transform one-layer dictionary learning into a
transform learning and Q-Metric learning, and derive the con-
version of DDL into DeTraMe-Net. 2) Such joint transform
learning and Q-Metric learning are easily implemented into a
combined linear layer and a RNN. A convolutional layer can



be chosen for the linear part, and the RNN can also be simpli-
fied into a Convolutional-RNN. To the best of our knowledge,
this is the first work which establishes an insightful bridge be-
tween DDL methods and the combination of Forward Neural
Networks (FNNs) and RNNs. 3) The transform and Q-Metric
learning use two independent variables, one for the metric and
the other for the pseudo-inverse of the dictionary. This allows
us to make a link with conventional SDL while introducing
more discriminative power and allowing faster learning pro-
cedures than the original DL. 4) Q-Metric can also be viewed
as a parametric non-separable nonlinear activation function,
while in current neural network architectures, very few non-
separable nonlinear operators are used. As a module in a
neural network, it can be flexibly inserted into any network
architectures to easily construct DL layer. 5) The proposed
DeTraMe-Net is demonstrated not only to improve the discrim-
ination power of DDL, but also to achieve a better performance
than the state-of-the-art CNNs.

The paper is organized as follows: In Section 2, we intro-
duce the required background material. We derive the theoreti-
cal basis for our novel approach and its algorithmic solution
in Section 3. Substantiating experimental results and evalu-
ations are presented in Section 4. Finally, we provide some
concluding remarks in Section 5.

2. PRELIMINARIES

2.1. Notation

Uppercase and lowercase bold letters respectively denote ma-
trices and vectors throughout the paper. The transpose and
inverse of matrices are respectively represented by the super-
scripts > and −1. The identity matrix is denoted by I. The
lowercase ai,j represents the element in the ith row and jth

column of matrix A, and ai represents the ith component of
vector a.

2.2. Deep Dictionary Learning

An efficient DDL approach [16] consists of computing
ŷ = ϕ(Cx(s)) where

x(s) = P(s) ◦MD(s) ◦ · · · ◦ P(1) ◦MD(1)(x(0)), (1)

and ŷ denotes the estimated label, C is the classifier matrix,
ϕ is a nonlinear function, and ◦ denotes the composition of
operators. For every layer r ∈ {1, . . . , s}, P(r) is a reshap-
ing operator, which is a tall matrix. Moreover, MD(r) is a
nonlinear operator computing a sparse representation within a
synthesis dictionary matrix D(r). More precisely, for a given

matrix D(r) ∈ Rmr×kr ,

MD(r) : Rmr → Rkr , x 7→ argmin
a∈Rkr

LR(D(r),a,x),

LR(D(r),a,x) =
1

2
‖x−D(r)a‖2F + λψr(a) +

α

2
‖a‖22

+ (d(r))>a,

(2)

where (λ, α) ∈ (0,+∞)2, d(r) ∈ Rkr , and ψr is a function
in Γ0(Rkr ), the class of proper lower semicontinuous convex
functions from Rkr to (−∞,+∞]. A simple choice consists
in setting d(r) to zero, while adopting the following specific
form for ψr : ψr = ‖ · ‖1 + ι[0,+∞)kr , where ιS denotes
the indicator function of a set S (equal to zero in S and +∞
otherwise). Note that Eq. (2) corresponds to the minimization
of a strongly convex function (w.r.t. a), which thus admits
a unique minimizer, so making the operatorMD(r) properly
defined.

3. DEEP TRANSFORM AND METRIC LEARNING

3.1. Proximal interpretation

In the following, the superscript denoting the layer r has been
omitted for simplicity. We have then the following result [22]:

Theorem 3.1 Let LR be the function defined by eq. (2). For
every D ∈ Rm×k, let Q = D>D + αI, let F = Q−1D>,
and let c = Q−1d. Then, for every x ∈ Rm,

MD(x) = argmin
a∈Rk

LR(D,a,x) = proxQ
λψ(Fx− c), (3)

where proxQ
λψ denotes the proximity operator of function λψ

in the metric ‖ · ‖Q =
√

(·)>Q(·) induced by Q [23, 24].

Therefore determining the optimal sparse representation
a of x ∈ Rm is equivalent to computing a proximity operator.
Furthermore, this result shows that the SDL can be equivalently
viewed as an ADL formulation involving the dictionary matrix
F, provided that a proper metric is chosen.

3.2. Multilayer representation

Consequently, by substituting eq. (3) in eq. (1), the DDL
model can be re-expressed in a more concise and comprehen-
sive form as

ŷ =ϕ◦A(s+1) ◦proxQ(s)

λψs
◦A(s) ◦ · · · ◦proxQ(1)

λψ1
◦A(1)(x(0)),

(4)
where the affine operators

(
A(r)

)
1≤r≤s are defined as

A(r) : Rkr−1 → Rkr : z(r−1) 7→W(r)z(r) − c(r), (5)



with k0 = m1, W(1) = F(1), and

∀r ∈ {2, . . . , s}, W(r) = F(r)P(r−1), W(s+1) = CP(s)

∀r ∈ {1, . . . , s},Q(r) = (D(r))>D(r) + αI,

F(r) = (Q(r))−1(D(r))>, c(r) = (Q(r))−1d(r).

(6)

Eq. (5) shows that we obtain a structure similar to an FNN
using weight operators

(
W(r)

)
1≤r≤s and bias parameters

(c(r))1≤r≤s, which is referred to as the transform learning
part in our DeTraMe-Net method. In standard FNNs, the ac-
tivation functions can be interpreted as proximity operators
of convex functions [25]. Eq. (4) evidences that our model is
actually more general in the sense that different metrics are
introduced for these operators.

3.3. Prox computation

Reformulation (4) has the great advantage of exploiting algo-
rithmic frameworks developed for FNNs provided that we are
able to compute efficiently

proxQ
λψ(Z) = argmin

U∈Rk×N

1

2
‖U− Z‖2F,Q + λψ(U), (7)

where ‖·‖F,Q =
√

tr((·)Q(·)>) is the Q-weighted Frobenius
norm. Hereabove, Z is a matrix where the N samples associ-
ated with the training set have been stacked columnwise. A
convention is used to construct X and Y from (xj)1≤j≤N and
(yj)1≤j≤N . Various iterative splitting methods could be used
to find the unique solution to the above convex optimization
problem [23, 26]. Our purpose is to develop an algorithmic
solution for which classical NN learning techniques can be
applied in a fast and systematic manner. Our approach will be
grounded in the following result.

Theorem 3.2 [22] Assume that an elastic-net like regulariza-
tion is adopted by setting ψ = ‖ · ‖1 + ι[0,+∞)k×N + β

2λ‖ · ‖
2
F

with β ∈ (0,+∞). For every Z ∈ Rk×N , the elements of
proxQ

λψ(Z) in eq. (7) satisfy for every i ∈ {1, . . . , k}, and
j ∈ {1, . . . , N},

ui,j =

{
qi,i

qi,i+β
zi,j − vi,j if qi,izi,j > (qi,i + β)vi,j

0 otherwise,
(8)

where vi,j =
λ+

∑k
`=1,` 6=i qi,`(u`,j−z`,j)

qi,i+β
.

We have observed that the choice of an elastic elastic-
net like regularization has a positive influence in increasing
stability and avoiding overfitting. Since Theorem 3.2 does not
provide an explicit expression of proxQ

λψ(Z), we compute it by
adopting a block-coordinate approach and update the i-th row
of U by fixing all the other ones. As Q is a positive definite

matrix, qi,i > 0. Let

W̃ = −
(

qi,`
qi,i+β

δi−`

)
1≤i,`≤k

, h =
(

qi,i
qi,i+β

)
1≤i≤k

∈ [0, 1]k,

b =
(

λ
qi,i+β

)
1≤i≤k

∈ [0,+∞)k, 1 = [1, . . . , 1]> ∈ RN ,

where (δ`)`∈Z is the Kronecker sequence (equal to 1 when
` = 0 and 0 otherwise). Then, (8) suggests that the elements
of U can be globally updated, at iteration t, as follows

Ut+1 = ReLU
(
(h1>)� Z + W̃(Ut − Z)− b1>

)
, (9)

where � denotes the Hadamard (element-wise) product. Note
that a similar expression can be derived by applying a precondi-
tioned forward-backward algorithm [24] to Problem (7), where
the preconditioning matrix is Diag(q1,1, . . . , qk,k). Given W̃,
h, and b, this updating rule (9) can be viewed as an RNN struc-
ture for which Ut is the hidden variable and Z is a constant
input over time.

Algorithm 1 Deep Metric and Transform Learning
Initialization: Set t = 0.

1: while not converged and t < tmax do
2: Forward pass: U(0)

t = X
3: for r = 1, . . . , s+ 1 do
4: Z

(r)
t = W

(r)
t U

(r−1)
t − c

(r)
t

5: if r ≤ s then
6: Initialize U

(r)
0 as the null matrix and set tt = 0

7: while not converged and tt < ttmax do
8: Update Utt+1 according to eq. (9); tt← tt+ 1
9: end while

10: end if
11: end for
12: Ŷt = ϕ(Z

(s+1)
t )

13: Loss: L′(θt) = L(Y, Ŷt), θt: vector of all parameters
14: Backward pass:
15: for r = 1, . . . , s+ 1 do
16: W

(r)
t+1 = W

(r)
t − ρt ∂L′

∂W(r) (θt)

17: c
(r)
t+1 = c

(r)
t − ρt ∂L

′

∂c(r) (θt)
18: end for
19: for r = 1, . . . , s do
20: W̃

(r)
t+1 = PD0

(
W̃

(r)
t − ρt ∂L′

∂W̃(r)
(θt)

)
21: h

(r)
t+1 = P[0,1]k

(
h
(r)
t − ρt ∂L

′

∂h(r) (θt)
)

22: b
(r)
t+1 = P[0,+∞)k

(
b
(r)
t − ρt ∂L

′

∂b(r) (θt)
)

23: end for
24: t← t+ 1
25: end while

3.4. Training procedure

We have finally transformed our DDL approach in an alter-
nation of linear layers and specific RNNs. Let ρt > 0 be the



Accuracy (%) CIFAR10 + CIFAR100 +
Network Architectures Original DeTraMe-Net Original DeTraMe-Net

(#iteration) (#iteration)
PlainNet 3-layer 35.14± 4.94 88.51± 0.17 (5) 22.01± 1.24 64.99± 0.34 (3)
PlainNet 6-layer 86.71± 0.36 92.24± 0.32 (2) 62.81± 0.75 69.49± 0.61 (2)
PlainNet 9-layer 90.31± 0.31 93.05± 0.46 (2) 66.15± 0.61 69.68± 0.50 (2)

PlainNet 12-layer 91.28± 0.27 92.03± 0.54 (2) 68.70± 0.65 70.92± 0.78 (2)
ResNet 8 87.36± 0.34 89.13± 0.23 (3) 60.38± 0.49 64.50± 0.54 (2)

ResNet 20 92.17± 0.15 92.19± 0.30 (3) 68.42± 0.29 68.62± 0.27 (2)
ResNet 56 93.48± 0.16 93.54± 0.30 (3) 71.52± 0.34 71.52± 0.44 (2)
ResNet 110 93.57± 0.14 93.68± 0.32 (2) 72.99± 0.43 73.05± 0.40 (2)

Table 1. CIFAR10 and CIFAR100 with + is trained with simple translation and flipping data augmentation. All the presented results are
re-implemented over 5 runs by using the same settings, and are calculated by their means and standard deviations.

learning rate at iteration t, the simplified form of a training
method for DeTraMe-Net is provided in Alg. 1. The con-
straints on the parameters of the RNNs have been imposed
by projections. In Alg. 1, PS denotes the projection onto a
nonempty closed convex set S and D0 is the vector space of
k × k matrices with diagonal terms equal to 0.

4. EXPERIMENTS AND RESULTS

In this section, our DeTraMe-Net method is evaluated on two
popular datasets, namely CIFAR10 [27] and CIFAR100 [27].
Since the common NN architectures are plain networks such
as ALL-CNN [28] and residual ones, such as ResNet [29] , we
compare DeTraMe-Net with these two respective state-of-the-
art architectures. We replace all the ReLU activation layers in
PlainNet with Q-Metric ReLU, leading to DeTraMe-PlainNet,
and replace the ReLU layer inside the block in ResNet by Q-
Metric ReLU, giving rise to DeTraMe-ResNet. More detailed
information can be found in [22].

4.1. DeTraMe-Net vs. DDL

Model # Parameters CIFAR10 CIFAR100
DDL 9 [16] 1.4M 93.04%∗ 68.76%∗

DeTraMe-Net 9 3.0M 93.05% ± 0.46% 69.68% ± 0.50%
Model #Parameters Training (s/per image) Testing (s/per image)

DDL [16] 0.35 M 0.2784∗ 9.40×10−2∗

DeTraMe-Net 12 2.4 M 0.1605 3.52×10−4

Table 2. The results with ∗ are reported in the original paper. The
top table provides the accuracy of DeTraMe-Net vs. DDL, where
DeTraMe-Net 9 and DDL 9 follow the same ALL-CNN [28] archi-
tecture. The bottom one is the efficiency comparison, where the
architectures are different from the top ones

First we compare our DeTraMe-Net with DDL [16]. Al-
though DeTraMe-Net needs more parameters, DeTraMe-Net
presents two main advantages: (1) A better ability to discrim-
inate: in comparison to DDL in the top table of Table 2, in
terms of averaged performance, 0.01% and 0.92% accuracy
improvements are respectively obtained on these two datasets.
(2) DeTraMe-Net is implemented in a network framework,
with no need for extra functions to compute gradients at each

layer, which greatly reduces the time costs. The bottom part of
Table 2 shows that our method with 6 times more parameters
than DDL only requires half training time and a faster testing
time by a factor 100. Moreover, by taking advantage of the
developed implementation frameworks for neural networks,
DeTraMe-Net can use up to 110 layers, while the maximum
number of layers in [16] is 23.

4.2. DeTraMe-Net vs. Generic CNNs

We next compare DeTraMe-Net with generic CNNs with re-
spect to two different aspects: Accuracy and Capacity.

Accuracy. As shown in Table 1, with the same architec-
ture, using DeTraMe-Net structures achieves an overall better
performance than all various generic CNN models do. For
PlainNet architecture, DeTraMe-Net increases the accuracy
with a median of 3.99% on CIFAR10, 5.11% on CIFAR100
and 0.45% on SVHN. For ResNet architecture, DeTraMe-
Net also consistently increases the accuracy with a median of
0.05% on CIFAR10, 0.13% on CIFAR100.

Capacity. In terms of depth, comparing improvements
with PlainNet and ResNet, shows that the shallower the net-
work, the more accurate. It is remarkable that DeTraMe-
Net leads to more than 42% accuracy increase for PlainNet
3-layers on CIFAR10 and CIFAR100. When the networks
become deeper, they better capture discriminative features
of the classes, and albeit with smaller gains, DeTraMe-Net
still achieves a better accuracy than a generic deep CNN, e.g.
around 0.11% and 0.05% higher than ResNet 110 on CIFAR10
and CIFAR100.

5. CONCLUSION

Starting from a DDL formulation, we have shown that the
introduction of metrics within standard activation operators,
gives rise to a novel Joint Deep and Transform Learning prob-
lem. This has allowed us to show that the original DDL can be
performed thanks to a network mixing FNN and RNN parts, so
leading to a fast and flexible network framework for building
efficient DDL-based classifiers. Our experiments illustrate that
the resulting DeTraMe-Net performs better than the original
DDL approach and state-of-the-art generic CNNs.
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