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Solvable Approximations of 3-dimensional
Almost-Riemannian structures

Philippe Jouan∗and Ronald Manŕıquez†

January 29, 2021

Abstract

In some cases, the nilpotent approximation of an almost-Riemannian struc-
ture can degenerate into a constant rank sub-Riemannian one. In those cases,
the nilpotent approximation can be replaced by a solvable one that turns out
to be a linear ARS on a nilpotent Lie group or a homogeneous space.

The distance defined by the solvable approximation is analyzed in the 3D-
generic cases. It is shown that it is a better approximation of the original
distance than the nilpotent one.
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AMS subject classifications: 53C15, 53C17, 22E25, 53B99.

1 Introduction

The aim of this paper is to locally approximate almost-Riemannian structures (ARS
in short) at singular points, by ARSs on Lie groups and to show that this approxi-
mation is generally better than the nilpotent one.

An ARS on an n-dimensional differential manifold is a rank-varying sub-Riemanni-
an structure that can be defined, at least locally, by a set of n vector fields satisfying
the Lie algebra rank condition (Larc in short). We denote by ∆p the linear span of
the vector fields at the point p. The set of points where dim(∆p) < n is called the
singular locus or the singular set and denoted by Z. Many papers dedicated to the
study of ARSs can be found in the literature, for instance [2], [8], [9], [11] [12].

In the generic 3-dimensional case, in which we are particularly interested, the
singular set is a codimension one embedded submanifold and the points where ∆p =
TpZ are isolated (see [3] and [10]).

We are likewise interested in the so-called simple ARSs on Lie groups (or ho-
mogeneous space) because they will be used as approximating structures for general
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ARSs: a simple ARS on an n-dimensional Lie group is an almost-Riemannian struc-
ture defined by n− 1 left-invariant vector fields and one vector field whose flow is a
one-parameter group of automorphisms, called linear in the sequel. Under some con-
ditions, the singular set of such structures is a subgroup or an analytic, embedded,
codimension one submanifold (see [5] and [17]).

In some cases the nilpotent approximation of an ARS degenerates, because it is
no longer an ARS but a constant rank sub-Riemannian structure. In other words,
it may happen that some of the vector fields of the nilpotent approximation vanish,
changing the almost-Riemannian structure into a constant rank sub-Riemannian
one. For instance, if

X1 =

 1
0
0

 , X2 =

 0
1
x

 and X3 =

 0
0
x2

 ,

then its nilpotent approximation is

X̂1 =

 1
0
0

 , X̂2 =

 0
1
x

 and X̂3 = 0.

It is what happens in some generic 3-dimensional cases (see for instance [10]). In this
paper we are interested in the case where only one of the vector fields vanishes and
the other ones are independent: then they define a left-invariant sub-Riemannian
structure on a Lie group (or a homogeneous space).

Our aim consists in recovering the almost-Riemannian structure lost in the nilpo-
tent approximation, thanks to a vector field, denoted X̃n which is the homogeneous
component of degree 0 of the Taylor expansion in privileged coordinates of the vec-
tor field that vanishes. The new family of vector fields composed by the nilpotent
approximation and X̃n is called the solvable approximation.

The Lie algebra generated by this new family of vector fields is finite dimensional
and solvable. However, we are interested in some nilpotent Lie group on which X̃n

acts as a linear vector field (these vector fields were generalized in [6]). Thanks to
the equivalence theorem of [16] we know that the space Rn is diffeomorphic to a
homogeneous space. Through this diffeomorphism, the solvable approximation is
equivalent to a simple ARS on a homogeneous space or a Lie group. It is important
to notice that in the 3D-generic case the non-degenerated nilpotent approximation,
and the solvable one in the degenerated case, are simple ARSs on Lie groups or
homogeneous space (see Section 3.3).

On the other hand, the solvable approximation gives rise to a distance denoted
by d̃. This distance has the advantage to be really almost-Riemannian unlike the
distance d̂ associated to the nilpotent approximation in the degenerated cases. The
distance d̃ is not homogeneous but always satisfies d̃ ≤ d̂.

Denoting by d the distance associated to the original structure we show that in
some 3D-generic cases the order of |d− d̃| is strictly better than the one of |d− d̂|.
More accurately, the order of |d − d̂| is d

3
2 and the one of |d − d̃| is d2 in the cases

we consider.
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Moreover, the nilpotent distance d̂ is left-invariant while d and d̃ are not. Using
this fact we prove that for some pairs (q, q′) of points translated from the singular

locus the difference |d(q, q′)− d̃(q, q′)| is strictly smaller than |d(q, q′)− d̂(q, q′)|.
The paper is organized as follows. Section 2 contains generalities about ARSs,

nonholonomic order, privileged coordinates, the nilpotent approximation, linear vec-
tor fields and simple ARS on Lie groups or homogeneous spaces.

In Section 3 we introduce the definition of a solvable approximation, we analyze
its algebraic structure and an example is detailed.

Section 4 is divided in two parts. In the first one, we state two propositions
about the almost-Riemannian distance d̃ defined by the solvable approximation.
The second part is devoted to analyze d̃ in the 3-dimensional generic case.

Finally, in Section 5 we provide the Hamiltonian associated to the flow defined
by the solvable approximation in the 3D generic case and we compute the geodesics
with initial condition x(0) = y(0) = z(0) = 0 and p(0) = cos(θ), q(0) = sin(θ),
r(0) = r in a particular case.

2 Preliminaries

In this section some definitions and results are reviewed and come from [4], [7] and
[15].

2.1 Almost-Riemannian structures

An almost-Riemannian structure can always be locally defined by a set of n vector
fields, where n is the dimension of the state space. Since we are interested in local
questions, the following definition will be enough in this paper, and the reader is
referred to [4], [5] and [15] for the global definition on manifolds.

We denote by Lie(X1, . . . , Xn) the Lie algebra generated by the vector fields
X1, . . . , Xn on Rn.

Definition 1. We say that the vector fields X1, . . . , Xn satisfy the Lie algebra rank
condition (Larc in short) on an open set Ω of Rn if

Lie(X1, . . . , Xn)(p) = TpRn,

for all p ∈ Ω.

Definition 2. The set {X1, . . . , Xn} defines an almost-Riemannian structure (ARS
in short) on the open and connected subset Ω of Rn if:

(i) It satisfies Larc.

(ii) The singular locus, that is Z = {p ∈ Ω/rank (X1(p), X2(p), . . . Xn(p)) < n} is
non-empty, but with empty interior.

The metric is defined by declaring the frame to be orthonormal.

Remark 1.
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1. The structure is Riemannian out of Z.

2. Let v ∈ TpΩ. If p is a Riemannian point then v =
n∑
i=1

uiXi(p) in a unique way

and its length is ||v|| =

(
n∑
i=1

ui
2

) 1
2

. If p ∈ Z then the decomposition of v, if

it exists, is not unique and ||v|| = inf


(

n∑
i=1

ui
2

) 1
2

: v =
n∑
i=1

uiXi(p)

.

An absolutely continuous curve γ : [0, T ] −→ Rn is admissible if there exists a
measurable essentially bounded function t 7→ u(t) from [0, T ] into Rn called control
function such that γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)) + . . . + un(t)Xn(γ(t)) for
almost every t ∈ [0, T ]. Given an admissible curve γ : [0, T ] −→ Rn, the length of γ
is

l(γ) =

∫ T

0

||γ̇(t)||dt.

The almost-Riemannian distance (or Carnot-Caratheodory distance) on Ω associ-
ated with the n-ARS is defined by

d(p0, p1) = inf {l(γ) : γ(0) = p0, γ(T ) = p1, γ admissible} .

It induces the usual topology on Ω.

2.2 Nonholonomic orders

In what follows {X1, X2, . . . , Xn} defines an ARS on Ω ⊂ Rn.

Definition 3. Let f : M → R be a continuous function. The nonholonomic order
of f at p, denoted ordp(f), is the real number defined by

ordp(f) = sup {s ∈ R : f(q) = O (d(p, q)s)} .

This order is always nonnegative.
Let C∞(p) denote the set of germs of smooth functions at p. For f ∈ C∞(p),

we call nonholonomic derivative of order 1 of f the Lie derivatives X1f, · · · , Xnf .
We call further XiXjf,XiXjXkf, . . . , the nonholonomic derivatives of f of order
2, 3, . . . of f . The nonholonomic derivative of order 0 of f at p is f(p).

As a consequence, the nonholonomic order of a smooth (germ of) function is
given by the formula

ordp(f) = min {s ∈ N : ∃ i1, . . . , is ∈ {1, . . . , n} s.t. (Xi1 . . . Xisf) (p) 6= 0} ,

where as usual we adopt the convention that min ∅ = +∞.
Let V F (p) denote the set of germs of smooth vector fields at p.

Definition 4. Let X ∈ V F (p). The nonholonomic order of X at p, denoted by
ordp(X), is the real number defined by:

ordp(X) = sup {σ ∈ R : ordp(Xf) ≥ σ + ordp(f), ∀ f ∈ C∞(p)} .
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2.3 Privileged coordinates

We adopt the notation of [15] to define privileged coordinates. Let V F (Ω) denote
the set of smooth vector fields on Ω. We define ∆1 = span {X1, . . . , Xn}. For s ≥ 1,
define ∆s+1 = ∆s + [∆1,∆s], where

[∆1,∆s] = span
{

[X, Y ] : X ∈ ∆1, Y ∈ ∆s
}
.

For p ∈ Ω, we set for s ≥ 1, ∆s(p) = {X(p) : X ∈ ∆s}. By definition these sets are
linear subspaces of TpΩ.

The evaluation of these sets at p forms a flag of subspaces of TpΩ, and since
X1, . . . , Xn satisfy Larc, we get,

∆1(p) ⊂ ∆2(p) ⊂ · · · ⊂ ∆r−1(p)  ∆r(p) = TpΩ, (1)

where r = r(p) is called the degree of nonholonomy at p. Let ni(p) = dim ∆i(p).
The r-tuple of integers (n1(p), . . . , nr(p)) is called the growth vector at p. The first
integer in the growth vector is the rank n1(p) ≤ n of the family X1(p), . . . , Xn(p),
and the last one nr(p) = n is the dimension of Rn.

Definition 5. The point p is regular if the growth vector is constant in some neigh-
borhood of p. Otherwise we say that p is a singular point.

The structure of the flag (1) may also be described by another sequence of
integers. We define the weights at p, wi = wi(p), i = 1, . . . , n, by setting wj = s if
ns−1(p) < j ≤ ns(p), where n0 = 0. In other words, we have

w1 = · · · = wn1 = 1, wn1+1 = · · · = wn2 = 2, . . . , wnr−1+1 = · · · = wnr = r.

Definition 6. A system of privileged coordinates at p is a system of local coordinates
(x1, . . . , xn) such that ordp(xj) = wj, for j = 1, . . . , n.

On the other hand, given a sequence of integers α = (α1, . . . , αn) we define the
weight of the monomial xα = xα1

1 · · ·xαnn to be w(α) = w1α1 + · · · + wnαn and

the weighted degree of the monomial vector field xα
∂

∂xj
to be w(α) − wj. The

weighted degrees allow to compute the orders of functions and vector fields in a
purely algebraic way.

Constructions of privileged coordinates can be found in [7] and [15].

Proposition 1 ([15], Proposition 2.2). For a smooth function f with a Taylor ex-
pansion in privileged coordinates

f(x) ∼
∑
α

cαx
α,

the order of f is the least weighted degree of monomials having a nonzero coefficient
in the Taylor series.
For a vector field X with a Taylor expansion in privileged coordinates

X(x) ∼
∑
α,j

aα,jx
α ∂

∂xj
,

the order of X is the least weighted degree of a monomial vector field having a
nonzero coefficient in the Taylor series.
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Remark 2. A vector field of degree < −r vanishes.

The one-parameter family of dilations δλ : Rn −→ Rn is defined by δλ(x) =
(λw1x1, λ

w2x2, . . . , λ
wnxn), λ ≥ 0. A dilation δλ acts also on functions and vector

fields by pull-back: δ∗λf = f ◦ δλ and δ∗λX is the vector field such that (δ∗λX)(δ∗λf) =
δ∗λ(Xf). So we have the following definition.

Definition 7. A function f is homogeneous of degree s if δ∗λf = λsf . A vector field
X is homogeneous of degree s if δ∗λX = λsX.

Proposition 2 ([7], Proposition 5.16). Let X and Y be vector fields on M . If X and
Y are homogeneous of degree k and l respectively (in the chosen system of privileged
coordinates) then [X, Y ] is homogeneous of degree k + l or vanishes.

Definition 8. The function defined by x 7→ ||x||p =
n∑
i=1

|xi|
1
wi is the so-called

pseudo-norm at p.

Remark 3. Let x = (x1, . . . , xn) be a system of privileged coordinates defined
on an open neighborhood U of the point p. When composed with the coordinate
functions, the pseudo-norm at p is (non smooth) homogeneous of order 1, that is,
||x(q)||p = O(d(p, q)), where x(q) are the coordinates of q ∈ U .

2.4 Nilpotent approximation

Fix a system of privileged coordinates (x1, . . . , xn) at p. Every vector field Xi is of
order ≥ −1, hence it has, in x coordinates, a Taylor expansion

Xi(x) ∼
∑
α,j

aα,jx
α ∂

∂xj
,

where w(α) ≥ wj − 1 if aα,j 6= 0. Grouping together the monomial vector fields of
same weighted degree we express Xi as a series of homogeneous vector fields of the
form

Xi = X
(−1)
i +X

(0)
i +X

(1)
i +X

(2)
i + · · · , (2)

where X
(s)
i has degree s. We set

X̂i = X
(−1)
i , i = 1, . . . , n.

Definition 9. The family of vector fields
(
X̂1, . . . , X̂n

)
is called the nilpotent ap-

proximation of the system (X1, . . . , Xn) at p.

Proposition 3 ([7], Proposition 5.17). The vector fields X̂i, i = 1, . . . , n, generate

a nilpotent Lie algebra Lie
(
X̂1, . . . , X̂n

)
of step r = wn. They satisfy Larc at every

point y ∈ Rn, and the distance d̂ is finite for every x, y ∈ Rn.

The following results are found in [7] and [15] and will be useful in this work.
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Proposition 4 ([7] Proposition 7.25 and [15], Lemma 2.1). There exist positive
constants C,C ′ such that for all q ∈ Rn we have

C||q||p ≤ d̂p(p, q) ≤ C ′||q||p.

Lemma 1 ([15], Lemma 2.2). There exists constant C and ε > 0, such that, for any
z0 ∈ Rn and any t ∈ R+ satisfying τ = max (||z0||p, t) < ε, we have

||z(t)− ẑ(t)||p ≤ Cτt
1
r ,

where z(·) and ẑ(·) are trajectories of the nonholonomic systems defined respectively

by X1, . . . , Xn and X̂1, . . . , X̂n starting at the same point z0, associated with the
same control function u(·), and satisfying ||u(t)|| = 1 a.e.

To finish, we recall the very important Theorem 7.32 of [7] stated here with a
slight modification.

Theorem 1 (Theorem 7.32 in [7]). There exist constants ε > 0 and C > 0 such
that for any q, q′ ∈ B(p, ε), we have

−Cτd(q, q′)
1
r ≤ d(q, q′)− d̂(q, q′) ≤ Cτ̂ d̂(q, q′)

1
r ,

where τ is as in Lemma 1 and τ̂ is similarly defined, this is τ = max (||q||p, d(q, q′))

and τ̂ = max
(
||q||p, d̂(q, q′)

)
.

2.5 Linear vector fields

The definition of linear vector fields comes from [6] and [16].

Let G be a connected Lie group and g its Lie algebra (the set of left-invariant
vector fields, identified with the tangent space at the identity). The set of analytic
vector fields on G is denoted by V ω(G), and the normalizer of g in V ω(G) is by
definition

N = normV ω(G)g = {X ∈ V ω(G) : ∀ Y ∈ g [X, Y ] ∈ g} .

Definition 10. A vector field X on G is said to be linear or to be infinitesimal
automorphism (see [13]), if X belongs to N and X (e) = 0, where e is the identity
of G.

We can see in [16] that a vector field X on G if and only its flow (φt)t∈R is a
one-parameter group of automorphisms of G and a linear vector field is consequently
analytic and complete.

2.5.1 Simple ARS’s on Lie groups

Linear and invariant vector fields make it possible to define almost-Riemannian
structures on Lie groups. The following definition is given in [5].

7



Definition 11. A simple ARS is an ARS defined on a connected Lie group G by
a set of n vector fields {X , Y1, . . . , Yn−1} where X is linear, Y1, . . . , Yn−1 are left-
invariant, dimG = n and the rank of X , Y1, . . . , Yn−1 is full on a non empty subset
of G and the set {X , Y1, . . . , Yn−1} satisfies Larc.

For instance, the famous Grushin plane on the Abelian Lie group R2 is a simple
ARS. This structure was introduced in [5] and its isometries have been study in [17].

In Section 3.3 a 3-dimensional example will be provided.

2.5.2 Simple ARS’s on homogeneous spaces

Consider a homogeneous space G/H of a connected and simply connected Lie group
G by a closed subgroup H (the elements of G/H are right cosets of H because we
deal with left-invariant vector fields). Since we are interested in simply connected
quotients we assume H to be connected. Let g be the Lie algebra of G, identified
with the space of left-invariant vector fields. The projection of such a vector field
Y on G/H is well-defined, is referred to as a left-invariant vector field, and we can
assume that it vanishes identically only if Y is the zero field (see details in [16]).
On the other hand the projection of a linear field X of G does exist on G/H if and
only if H is invariant under its flow, or equivalently, because H is connected, if the
Lie algebra of H is ad(X )-invariant. This allows to define linear vector fields and
simple ARS on G/H:

Let Y1, . . . , Yn−1,X be a set of n = dim(G/H) vectors fields on G/H, where
Y1, . . . , Yn−1 are invariant and X is linear. It defines a simple ARS if

1. They satisfy Larc.

2. The singular set Z where their rank is less than n is proper with empty interior.

In the sequel, we will need (a simplified version of) the equivalence Theorem (see
[16] and [5]).

Theorem 2 (Equivalence Theorem). Let f1, . . . , fn be a set of n complete vector
fields on Rn and let us assume:

1. f1, . . . , fn define an Almost-Riemannian Structure on Rn;

2. The Lie algebra L generated by f1, . . . , fn is finite dimensional;

3. The ideal g generated in L by f1, . . . , fn−1 is nilpotent and of codimension 1
in L.

Then Rn is diffeomorphic to a homogeneous space G/H of the nilpotent simply con-
nected group G generated by g and f1, . . . , fn defines a simple ARS on G/H. More
accurately the vector fields f1, . . . , fn−1 are left-invariant and fn is linear on this
homogeneous space.

3 Solvable Approximation

In this section we introduce the solvable approximation of an ARS and we analyze
its algebraic structure.
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3.1 Definition

Let {X1, . . . , Xn} be a set of vector fields defining an almost-Riemannian structure
on an open neighborhood of 0 ∈ Rn. The point p = 0 is assumed to belong to the
singular locus, the natural coordinates of Rn to be privileged and we consider the

nilpotent approximation
{
X̂1, . . . , X̂n

}
of {X1, . . . , Xn} at p = 0.

It may happen that some of the vector fields X̂i vanish, possibly changing
the almost-Riemannian structure defined by X1, . . . , Xn into a constant rank sub-
Riemannian one. It is what happens in some cases of generic 3-dimensional ARSs
that are described in detail in Section 3.3. In what follows we are interested in
the case where only one of the X̂i’s vanishes, say X̂n = 0, and the other ones are
independent and define a left-invariant sub-Riemannian structure on a Lie group, or
a homogeneous space, the underlying manifold of which is Rn. Recall that each Xi

can be expanded in a series of homogeneous vector fields in the system of privileged
coordinates at p = 0, this is

Xi = X
(−1)
i +X

(0)
i +X

(1)
i + . . . , ∀ i ∈ {1, . . . , n},

where X
(k)
i is the homogeneous component of degree k. Denoting X̃n = X

(0)
n , we

introduce the following definition:

Definition 12 (Solvable approximation). The family
{
X̂1, . . . , X̂n−1, X̃n

}
is the

solvable approximation of {X1, . . . , Xn}.

Proposition 5. L = Lie
(
X̂1, . . . , X̂n−1, X̃n

)
is a finite dimensional solvable Lie

algebra. Its step of solvability is less than or equal to log2(r) + 1, where r is the
degree of nonholonomy at p = 0.

Proof. Let DkL stand for the kth derived algebra of L, with L = D0L. Ac-
cording to Proposition 2 and Remark 2 the algebra L is generated by homoge-
neous vector fields of degree 0,−1, . . . ,−r because the X̂i’s are homogeneous of
degree −1, for i = 1, . . . , n − 1, and X̃n is homogeneous of degree 0. According
to Proposition 2 again D1L is generated by homogeneous vector fields of degree
−1, . . . ,−r. More generality DsL is generated by homogeneous vector fields of de-
gree −2s−1,−2s, . . . ,−r, so that DsL = 0 if 2s > r. Therefore L is solvable and
the step of solvability σ of L satisfies σ ≤ log2(r) + 1. On the other hand, the Lie
algebra L splits into homogeneous components

L = L0 ⊕ L−1 ⊕ L−2 ⊕ . . .⊕ L−r,

where L−s is the set of homogeneous vector fields of degree −s under the action
of δλ. A homogeneous vector field X of degree w ∈ {0,−1,−2, . . . ,−r} writes in

coordinates X(x) =
n∑
i=1

fi(x)
∂

∂xi
, where fi(x) is a homogeneous polynomial function

of degree w+ ord(xi). Since the space of polynomials of degree w+ ord(xi) is finite
dimensional, L−w is finite dimensional. Therefore L is finite dimensional.

9



Remark 4. It is clear that the families of vector fields
{
X̂1, . . . , X̂n−1, X̃n

}
and

{X1, . . . , Xn} have the same nilpotent approximation. Consequently the family of

vector fields
{
X̂1, . . . , X̂n−1, X̃n

}
satisfies Larc on Rn and the growth vector at 0 of{

X̂1, . . . , X̂n−1, X̃n

}
is equal to the one of {X1, . . . , Xn}.

3.2 Structure of the approximating system

Fundamental remark. Despite the previous result we are not interested in the

solvable Lie group associated to the Lie algebra Lie
{
X̂1, . . . , X̂n−1, X̃n

}
but in some

nilpotent Lie group on which X̃n acts as a linear vector field.

For this reason we denote by h the Lie algebra generated by X̂1, . . . , X̂n−1 and

by g the ideal generated by h in L = Lie
{
X̂1, . . . , X̂n−1, X̃n

}
.

Proposition 6. The ideal g is the space of vector fields of L whose nonholonomic
order is negative. It is a nilpotent Lie algebra and

L = g⊕ RX̃n.

Moreover D = −ad(X̃n) is a derivation of g.

Proof. Since g is the ideal generated by h in L, we have L = RX̃n⊕ g and ad
(
X̃n

)
is a derivation of g.

Let G be the simply connected Lie group whose Lie algebra is isomorphic to g.
According to [16] there exists a linear vector field on G associated to the derivation

D = −ad
(
X̃n

)
. With a clear abuse of notation we will denote it by X̃n. Thanks to

the equivalence theorem we have the following:

Theorem 3. The space Rn is diffeomorphic to a homogeneous space G/G0 of G.

Through this diffeomorphism
{
X̂1, . . . , X̂n−1, X̃n

}
is equivalent to a simple ARS on

G/G0, and the Lie algebra g0 of G0 is isomorphic to the set of vector fields of g that
vanish at 0.

Proof. First of all, notice that the vector fields
{
X̂1, . . . , X̂n−1, X̃n

}
are complete

from their triangular form, namely, in the equation ẋ =
n∑
i=1

uiX̂i(x)+unX̃n(x), ẋj is

linear with respect to the coordinates of weight wj and polynomial with respect to
coordinates of weight < wj (see [7] or [15] for details). They define an ARS, hence in
particular satisfy Larc and generate a finite dimensional Lie algebra (Proposition 5).
According to Theorem 2 Rn is diffeomorphic to a homogeneous space G/G0 of G,
where G0 is the connected subgroup of G whose Lie algebra is, after identification of
L(G) with g, the set of elements of g that vanish at 0. Thanks to the diffeomorphism

between Rn and G/G0 the system
{
X̂1, . . . , X̂n−1, X̃n

}
can be identified to a simple

ARS on G/G0.
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We are also interested in conditions for which G = Rn.

Theorem 4. With the previous notations the following assertions are equivalent:

(i) ad
(
X̃n

)
.X̂i belongs to Span

{
X̂1, . . . , X̂n−1

}
for i = 1, . . . , n− 1;

(ii) h is ad
(
X̃n

)
-invariant;

(iii) h = g.

Under these conditions X̃n is a linear vector field on exp(h).

Proof.

(i) ⇒(ii) It is an immdiate consequence of the Jacobi identity.

(ii)⇒(iii) Condition (ii) implies L = h⊕ RX̃n, hence h = g.

(iii)⇒(i) Condition (iii) implies that h is ad
(
X̃n

)
-invariant. According to Proposition

2 the set of elements of h of order −1 is Span
{
X̂1, . . . , X̂n−1

}
. For i =

1, . . . , n− 1 the bracket
[
X̂i, X̃n

]
belongs to h, since h = g, and is of order −1

or is equal to 0. Therefore it belongs to Span
{
X̂1, . . . , X̂n−1

}
.

3.3 Example. The 3D-generic case

The local representation of a generic ARS in dimension 3 is detailed in Section 4.2.
Its nilpotent approximation at a point of the singular locus is the following:

X̂1 =

1
0
0

 , X̂2 =

 0
1

x cosσ

 , X̂3 =

 0
0

x sinσ

 , where σ ∈
[
0,
π

2

]
.

There are two particular cases, according to the value of the parameter σ. The first
one for σ = π

2
, because the bracket of X̂1 and X̂2 vanishes, and the second one for

σ = 0, because X̂3 vanishes, it is the tangent case.
More accurately the Lie brackets are:

[
X̂1, X̂2

]
=

 0
0

cosσ

 ,
[
X̂1, X̂3

]
=

 0
0

sinσ

 ,
[
X̂2, X̂3

]
= 0.

The analysis of the different cases is as follows:
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1. General case σ ∈
]
0, π

2

[
.

We can set Z =

 0
0

cosσ

 so that
[
X̂1, X̂2

]
= Z and (X̂1, X̂2, Z) is the Heisen-

berg Lie algebra. Since X̂3 vanishes at (0, 0, 0) and since its Lie brackets with

X̂1, X̂2 and Z are[
X̂1, X̂3

]
= tan(σ)Z and

[
X̂2, X̂3

]
=
[
Z, X̂3

]
= 0,

it is a linear vector field on the Heisenberg group, the associated derivation of
which is

D =

 0 0 0
0 0 0

tanσ 0 0

 .

The conclusion is that
(
X̂1, X̂2, X̂3

)
defines a simple ARS on the 3D Heisen-

berg group.

2. Particular case σ = π
2
. Then

X̂1 =

1
0
0

 , X̂2 =

0
1
0

 , X̂3 =

0
0
x

 .

It is a simple ARS on the Abelian Lie group R3. Indeed X̂1 and X̂2 are (left

and right) invariant and X̂3 is linear.

3. Tangent case σ = 0. Here the nilpotent approximation degenerates into the
following sub-Riemannian structure on the Heisenberg group

X̂1 =

1
0
0

 , X̂2 =

0
1
x

 , X̂3 =

0
0
0

 .

However we will see after the next remark that in case where the component

X̃3 of order 0 of the vector field X3 does not vanish then
(
X̂1, X̂2, X̃3

)
defines

a simple ARS on a homogeneous space.

Remark 5. In the cases σ = π
2

and σ ∈
]
0, π

2

[
the Lie algebra generated by

X̂1, X̂2, X̂3 is 4-dimensional and two points of view are possible. The usual one
consists in considering R3 as a homogeneous space of a nilpotent 4-dimensional
Lie group. Our point of view is to consider X̂3 as a linear vector field on the 3-
dimensional Lie group R3 endowed with the Abelian structure if σ = π

2
and the

Heisenberg one if σ ∈
]
0, π

2

[
.

Following this way we will consider the solvable approximation whenever σ = 0,
and finally all approximations of generic 3D-ARS will appear as being simple ARS.
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The solvable approximation of the tangent case σ = 0.
The homogeneous component of nonholonomic order 0 of X3 is

X̃3 =

 0
0

az + bx2 + cy2

 =
(
az + bx2 + cy2

) ∂
∂z

(See Section 4.2 again).

As well as in the general case the Lie algebra generated by X̂1 and X̂2 is:

h = Span
{
X̂1, X̂2, Z =

[
X̂1, X̂2

]}
where Z =

0
0
1

 =
∂

∂z
,

that is the Heisenberg algebra. On the other hand the algebra generated by X̂1, X̂2

and X̃3 is Span
{
X̂1, X̂2, Z,

[
X̂1, X̃3

]
,
[
X̂2, X̃3

]
, X̃3

}
, where:

[
X̂1, X̃3

]
=

 0
0

2bx

 = 2bx
∂

∂z
and

[
X̂2, X̃3

]
=

 0
0

2cy + ax

 = (2cy + ax)
∂

∂z
,

and the ideal generated by X̂1 and X̂2 is:

g = Span

{
∂

∂x
,
∂

∂y
+ x

∂

∂z
, 2bx

∂

∂z
, 2cy

∂

∂z
+ ax

∂

∂z
,
∂

∂z

}
.

A straightforward computation shows that X̃3 acts as a derivation on g. If we assume
b 6= 0 and c 6= 0 then we have also:

g = Span

{
∂

∂x
, x

∂

∂z
,
∂

∂y
, y

∂

∂z
,
∂

∂z

}
.

This is the 5-dimensional Heisenberg Lie algebra h2 and in this basis the derivation
D = −ad(X̃3) is given by the following matrix:

D =


0 0
2b a

0 0
2c a

a

 .

Finally the solvable approximation
(
X̂1, X̂2, X̃3

)
is a simple ARS on R3 diffeomor-

phic to a quotient of the 5-dimensional group Heisenberg H2.

4 Distances

We can distinguish three different families of vector fields from the above section:

{X1, X2, . . . , Xn},
{
X̂1, . . . , X̂n−1

}
and

{
X̂1, . . . , X̂n−1, X̃n

}
which satisfy Larc. Assu-

ming orthonormality, they define three different distances: d, d̂ and d̃ respectively,
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where d̃ and d̂ are defined on Rn. This section is divided in two parts. In the
first one, we give two propositions about the almost-Riemannian distance d̃ defined
by the solvable approximation. The second part is devoted to analyze d̃ in the
3-dimensional generic case.

4.1 The almost-Riemannian distance d̃

The following proposition establishes a relation between d̃ and d̂. It is important
because it allows us to find an upper bound for d̃ (see Section 4.2.2) and to compare
the distances of the solvable and nilpotent approximation.

Proposition 7. For all x, y ∈ Rn, d̃(x, y) ≤ d̂(x, y).

Proof. Let x, y ∈ Rn and let γ be a minimizing geodesic for ẋ =
n−1∑
i=1

uiX̂i, such

that γ(0) = x, γ(T ) = y. Setting un = 0 the curve γ is admissible for ẋ =
n−1∑
i=1

uiX̂i + unX̃n. Since un = 0 the length of γ is the same for both metrics, hence

d̃(x, y) ≤ l(γ) = d̂(x, y).

Let δλ be the dilation related to the privileged coordinates and the weights at
p = 0. We know that the distance d̂ is homogeneous of degree 1 with respect to δλ
(see [15]). However d̃ does not possess this property. This is due to the fact that

X̃n and the X̂i’s do not have the same degree of homogeneity.

Proposition 8. The almost-Riemannian distance d̃ is not homogeneous.

Proof. Let γ be an admissible curve for d̃, that is

γ̇(t) =
n−1∑
i=1

uiX̂i(γ(t)) + unX̃n(γ(t)). (3)

Since X̂i and X̃n are homogeneous of degree −1 and 0 respectively and the pullback
by δλ of a vector field X (see [1]) is defined by

dδλ(q) (δ∗λX(q)) = X
(
δλ(q)

)
, (4)

we get

dδλ(q).X̂i(q) = dδλ(q).λ · δ∗λX̂i(q) = λX̂i

(
δλ(q)

)
and

dδλ(q).X̃n(q) = dδλ(q).δ
∗
λX̃n(q) = X̃n

(
δλ(q)

)
.

(5)

Therefore

d

dt
(δλ ◦ γ) (t) = dδλ (γ(t)) .γ̇(t)

=
n−1∑
i=1

uidδλ
(
γ(t)

)
.X̂i

(
γ(t)

)
+ undδλ

(
γ(t)

)
.X̃n

(
γ(t)

)
=

n−1∑
i=1

λuiX̂i

(
δλ
(
γ(t)

))
+ unX̃n

(
δλ
(
γ(t)

))
.
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This implies that l(δλγ) 6= λl(γ), except if un(t) vanishes a.e. This proves the non

homogeneity of d̃.

4.2 The 3D-tangential case

In Section 3, we have established a model to locally approximate an n-ARS whose
nilpotent approximation is a constant rank sub-Riemannian structure, by a solvable
approximation. In this context we want to determine conditions for |d − d̃| to be

smaller than |d− d̂|.
Recall that ∆(p) = span {X1(p), . . . , Xn(p)} and the singular locus Z is the set

of points of Rn where the rank of the linear span of the vector fields is less than n.
From [10] we take the following.

Proposition 9. Consider a 3-ARS. The following conditions are generic for 3-ARSs

(G1) dim(∆(p)) ≥ 2 and ∆(p) + [∆(p),∆(p)] = TpM for every p ∈M ;

(G2) Z is an embedded (possibly empty) two-dimensional submanifold of M ;

(G3) the points where ∆(p) = TpZ are isolated.

Proposition 10. Under the previous conditions there are three types of points:

1. Riemannian points where ∆(p) = TpM .

2. type-1 points where ∆(p) has dimension 2 and is transversal to Z.

3. type-2 points where ∆(p) has dimension 2 and is tangent to Z.

Moreover type-2 points are isolated, type-1 points form a 2 dimensional manifold
and all other points are Riemannian.

The local representation of the 3-dimensional ARS at type-2 points is given by
the vector fields

X1 =

1
0
0

 , X2 =

 0
1 + δ(x, y, z)

x (1 + θ(x, y, z))

 , X3 =

 0
0

az + bx2 + cy2 + o (x2 + y2 + |z|)

 ,

where δ and θ are smooth functions of order greater than or equal to 1 and a, b, c
are not all zero. Furthermore, from Subsection 3.3, the nilpotent approximation in
privileged coordinates is

X̂1 = X1 =

1
0
0

 , X̂2 =

0
1
x

 , X̂3 = 0.

and

X̃3 =

 0
0

az + bx2 + cy2

 .

(
X̂1, X̂2, X̃3

)
is the solvable approximation at p = 0 in case when 0 is a tangential

(type-2) point.
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4.2.1 Divergence of curves

Let p = 0 be a type-2 point such that the coordinates centered at p are privileged
and q, q′ belonging to the ball centered at p and radius ε, denoted by B(p, ε).

In this subsection we analyze the divergence of curves respectively admissible
for d and d̃, defined by the same control functions and starting at the same point
q. More accurately: let γ be the geodesic for d such that γ(0) = q, γ(T ) = q′ with

u21 + u22 + u23 = 1 and let γ̃ be the admissible curve for d̃ defined by the same control
functions as γ with γ̃(0) = q. We have the following:

γ̇(t)− ˙̃γ(t) = u1

(
X1 (γ)− X̂1 (γ̃)

)
+ u2

(
X2 (γ)− X̂2 (γ̃)

)
+ u3

(
X3 (γ)− X̃3 (γ̃)

)
ẋ(t)− ˙̃x(t)

ẏ(t)− ˙̃y(t)

ż(t)− ˙̃z(t)

 =

 0
u2δ(x, y, z)

u2xθ(x, y, z) + u3 (a(z − z̃) + b (x2 − x̃2) + c (y2 − ỹ2) + o (x2 + y2 + |z|))


We have successively:

• ẋ(t) = ˙̃x(t), hence x(t) = x̃(t).

• ẏ(t)− ˙̃y(t) = u2δ(x, y, z), hence y(t)− ỹ(t) =

∫ t

0

u2(s)δ(x, y, z)ds.

We denote by ρ ≥ 1 the order of δ. Then |δ(x, y, z)| ≤ Cst · ||γ(s)||ρp ≤ Cst · τ ρ
because ||γ(s)||p ≤ Cst · τ , where τ = max (||q||p, t) (the proof of the above
inequality is given in the proof of Lemma 1 of [15]), hence

|y(t)− ỹ(t)| ≤
∫ t

0

Cst · ||γ(s)||ρpds ≤
∫ t

0

Cst · τ ρ ds = Cst · τ ρ · t. (6)

• ż(t)− ˙̃z(t) = u2xθ(x, y, z)+u3 (a(z − z̃) + c (y2 − ỹ2) + o (x2 + y2 + |z|)), hence

z(t)−z̃(t) =

∫ t

0

u2(s)xθ(x, y, z)ds+

∫ t

0

u3(s)a(z−z̃)ds+

∫ t

0

u3(s)c
(
y2 − ỹ2

)
ds+∫ t

0

u3(s)o
(
x2 + y2 + |z|

)
ds.

Since (x, y, z) are privileged coordinates at 0, then x2+y2+|z| ≤ C·d(0, (x, y, z))2.
Moreover, if f((x, y, z)) = o(x2+y2+ |z|), then f((x, y, z)) = o(d(0, (x, y, z))2).
This implies that ordp(f) > 2, hence f(γ(t)) = O (d(0, γ(t))3). Therefore
|f(γ(t))| ≤ Cst · τ 3. On the other hand, let us denote by m ≥ 1 the order of
θ. Then |x · θ(x, y, z)| ≤ Cst · τ · ||γ(s)||mp ≤ Cst · τm+1 because ẋ = u1, hence
|x| ≤ Cst · t+ ||q||p ≤ Cst · τ . Also notice∣∣y2 − ỹ2∣∣ = |y + ỹ| |y − ỹ| ≤ Cst · τ ρ · t · τ = Cst · t · τ ρ+1,

because ẏ = u2(1 + δ(x, y, z)), hence |y| ≤ Cst · t + ||q||p ≤ Cst · τ . Similarly
for ỹ.

Then

|z(t)− z̃(t)| ≤ Cst · t · τm+1 + Cst · t2 · τ ρ+1 + Cst · t · τ 3 +

∫ t

0

|a||z − z̃|ds

|z(t)− z̃(t)| ≤ Cst ·
(
t · τm+1 + t2 · τ ρ+1 + t · τ 3

)
e|a|t

|z(t)− z̃(t)| ≤ Cst · t · τmin(m+1,ρ+1,3). (7)
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Finally,

||γ(t)− γ̃(t)||p = |x(t)− x̃(t)|+ |y(t)− ỹ(t)|+ |z(t)− z̃(t)|
1
2

≤ Cst
(
t · τ ρ + t

1
2 · τ

min(m+1,ρ+1,3)
2

)
≤ Cst · t

1
2 · τ

min(m+1,ρ+1,3)
2 . (8)

Remark 6. The order of δ(x, y, z) does not change the inequality

||γ(t)− γ̂(t)||p ≤ Cst · τ · t
1
2 ,

that comes from Lemma 1. Indeed,

||γ(t)− γ̂(t)||p ≤ Cst
(
t · τ ρ + t

1
2 · τ

)
≤ Cst · t

1
2 · τ.

4.2.2 Upper bounds

In order to state our main result in the next section, we need upper bounds for the
distances d and d̃.

We know that the distance d̂ is left-invariant, this is to say, d̂(q, q′) = d̂(a·q, a·q′),
for all a ∈ R3. Here · stands for the Heisenberg product defined by

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′) . (9)

Recall also that d̃(q, q′) ≤ d̂(q, q′). Considering the above, we have

d̃(q, q′) ≤ d̂(q, q′) = d̂(0, q−1q′) ≤ C||q−1q′||p. (10)

Considering q = (x, y, z) and q′ = (x′, y′, z′) and from (10) and (9) we have

d̃(q, q′) ≤ C||q−1 · q′||p = C
(
|x′ − x|+ |y′ − y|+ |z′ − z + x(y − y′)|

1
2

)
≤ C

(
|x− x′|+ |y − y′|+ |z − z′|

1
2 + |x(y − y′)|

1
2

)
≤ C

(
||q − q′||p + ||q||

1
2
p |y − y′|

1
2

)
. (11)

4.2.3 Upper bound for d

From Theorems 7.31 and 7.26 of [7] we get

d(q, q′) ≤ Cst
∑

k,j|wk≤wj

||q||
1−wk

wj
p |qk − q′k|

1
wj , (12)

Since w1 = w2 = 1 and w3 = 2 we obtain that

d(q, q′) ≤ Cst
(
||q − q′||p + ||q||

1
2
p

(
|y − y2|

1
2 + |x− x2|

1
2

))
. (13)
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4.2.4 Main result

We have seen that the order of δ does not change the estimation of ||γ(t) − γ̂(t)||p
according to Lemma 1, moreover, it does not change the estimates of d̂ as well, this
is to say, d̂(γ(t), γ̂(t)) ≤ Cst · t

1
2 · τ . Indeed, from inequality (10) and Remark 6, we

get

d̂(γ(t), γ̂(t)) ≤ Cst
(
t
1
2 · τ + t · τ

1
2
+ρ
)
,

then d̂(γ(t), γ̂(t)) ≤ Cst · t 12 · τ . However, the above is not true when we want to

estimate d̃, because the estimates depend of ρ and m. Indeed, from inequalities (8)
and (11) we get

d̃(γ(t), γ̃(t)) ≤ Cst ·
(
t
1
2 · τ

min(m+1,ρ+1,3)
2 + t

1
2 · t

1
2 · τ

ρ
2

)
≤ Cst · t

1
2 · τ

min(m+1,ρ+1,3)
2 .

Therefore, we can conclude that if ρ ≥ 2 and m ≥ 2 then

d̃(γ(t), γ̃(t)) ≤ Cst · t
1
2 · τ

3
2 .

Finally, we obtain:

Proposition 11. If ordp(δ) ≥ 2 and ordp(θ) ≥ 2, then

1. d̃(γ(t), γ̃(t)) ≤ Cst · t
1
2 · τ

3
2 .

2. d(γ(t), γ̃(t)) ≤ Cst · t
1
2 · τ

3
2 .

Proof. The proof of item 2 follows from inequalities (8) and (13).

Theorem 5. If m ≥ 2 and ρ ≥ 2, then there exists constants C and ε > 0, such
that, for all q, q′ ∈ B(p, ε), we have

−Cτ
3
2d(q, q′)

1
2 ≤ d(q, q′)− d̃(q, q′) ≤ C · τ̃

3
2 d̃(q, q′)

1
2 , (14)

where

τ = max (||q||p, d(q, q′))

τ̃ = max
(
||q||p, d̃(q, q′)

)
.

Proof. Let q belonging to B(p, ε). Let us consider the geodesics γ : [0, T ] → M
for the distance d such that γ(0) = q, γ(T ) = q′ and associated with the control

function u(·) satisfying ||u(t)|| = 1 and γ̃ the admissible curve for d̃ defined by the
same control functions that γ with γ̃(0) = q. By Proposition 11 item 1

d̃ (γ(T ), γ̃(T )) ≤ Cst · T
1
2 · τ

3
2 . (15)

On the other hand, note that

d(q, q′) = l(γ) = l(γ̃) ≥ d̃ (q, γ̃(T )) .

18



Moreover, by triangle inequality, we have

d̃ (q, γ̃(T )) ≥ d̃ (q, q′)− d̃ (q′, γ̃(T )) ,

Then, from (15), transitivity and since γ(T ) = q′, we get

d(q, q′) ≥ d̃ (q, q′)− Cst · T
1
2 · τ

3
2

d(q, q′)− d̃ (q, q′) ≥ −Cst · T
1
2 · τ

3
2 (16)

Now, we change the roles of d and d̃ and by Proposition 11 item 2, we obtain

d(q, q′)− d̃ (q, q′) ≤ Cst · T̃
1
2 · τ̃

3
2 , (17)

where T̃ = d̃(q, q′).
Therefore from (16) and (17)

−Cτ
3
2d(q, q′)

1
2 ≤ d(q, q′)− d̃(q, q′) ≤ C · τ̃

3
2 d̃(q, q′)

1
2 .

The proof is complete.

4.2.5 Translations

We mentioned in Section 4.2.2 that the distance d̂ is left-invariant. It is not the case
of d̃. Let q be a point in a neighborhood of 0 and g ∈ R3. We are interested in
conditions under which d̃(g, g · q) ≤ d̃(0, q) (the product is the Heisenberg one).

Let γ(t) =
(
x(t), y(t), z(t)

)
be a geodesic of d̃ such that γ(0) = 0 with control

functions u1, u2 and u3. We consider g = (g1, g2, g3) ∈ R3. Let γg(t) = Lg (γ(t)) =
(xg(t), yg(t), zg(t)) and u1, u2, u3 its control functions. Note that γg is admissible

for d̃ as long as it does not meet Z. Indeed, all absolutely continuous curves are
admissible out of the singular locus since the metric is Riemannian. The goal is to

find conditions for g such that γg has a length less than γ. Since Lie
{
X̂1, X̂2

}
is the

Heisenberg algebra, then

Lg (γ(t)) = (x(t) + g1, y(t) + g2, z(t) + g1y(t) + g3) .

We set h(x, y, z) = az + bx2 + cy2. Then

h(γg) = a(z + g1y + g3) + b(x+ g1)
2 + c(y + g2)

2

= h(γ) + h(g) + (2bx+ ay)g1 + 2cyg2 = h(γ) + h(g) + f(g, γ),

where f(g, γ) = (2bx+ ay)g1 + 2cyg2.
We assume that h(γg) does not vanish, this is to say γg is not on Z. In particular

for t = 0, h(γg) = h(g) then h(g) 6= 0 this is equivalent to g /∈ Z.
We have the following result.

Theorem 6. Let γ : [0, T ] −→ Rn be a length minimizer of d̃ with control functions
u1(t), u2(t), u3(t) with u3(t) 6= 0 a.e, and h (γg) 6= 0. If |h(γ)| ≤ |h(γg)| then

d̃ (γg(0), γg(T )) ≤ d̃ (γ(0), γ(T )).
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Proof. Since xg(t) = x(t) + g1 then ẋg(t) = ẋ(t) = u1(t). This implies that
u1(t) = u1(t). In the same way, we obtain u2(t) = u2(t) because yg(t) = y(t) + g2.
Furthermore, zg(t) = z(t) + g1y(t) + g3 then

żg(t) = ż(t) + g1ẏ(t) = u2(t)xg(t) + u3(t)h (γ(t)) . (18)

Besides the above equation, zg(t) satisfies the equation

żg(t) = u2(t)xg(t) + u3(t)h (γg(t)) , (19)

because γg is an admissible curve for d̃. Finally, from the equations (19) and (18)
and as u2(t) = u2(t) we get

u3(t) =
u3(t)h (γ(t))

h (γg(t))
.

The condition |h(γ)| ≤ |h(γg)| implies that |u3(t)| ≤ |u3(t)|, hence u3(t)
2 ≤ u3(t)

2.

Therefore the length of γg decreases and consequently d̃ (γg(0), γg(T )) ≤ d̃ (γ(0), γ(T )).

In the same sense of the above theorem, the following result gives us a sufficient
condition to determine when the distance of the points translated by g is less than
the distance from the origin to γ(T ).

Theorem 7. With the same conditions of the above. If

∂

∂gi
(h(g) + f(g, γ))

h (γg)
> 0

then d̃ (γg(0), γg(T )) < d̃ (γ(0), γ(T )).

Proof. From Theorem 6, the control functions of γg are u1(t), u2(t) and u3(t), hence

l (γg) =

∫ T

0

(
u1(t)

2 + u2(t)
2 + u3(t)

2
) 1

2 dt

=

∫ T

0

(
u1(t)

2 + u2(t)
2 +

u3(t)
2h(γ(t))2

h(γg(t))2

) 1
2

dt

∂

∂gi
l (γg) =

∫ T

0

1

2

(
(u1(t)

2 + u2(t)
2)h(γg(t))

2 + u3(t)
2h(γ(t))2

h(γg(t))2

)− 1
2

· ∂
∂gi

(
u3(t)

2h(γ(t))2

h(γg(t))2

)
dt

=

∫ T

0

−|h(γg(t))|u3(t)2h(γ(t))2

((u1(t)2 + u2(t)2)h(γg(t))2 + u3(t)2h(γ(t))2)
1
2 h(γg(t))3

· ∂
∂gi

(h(g) + f(g, γ)) dt

= −
∫ T

0

u3(t)
2h(γ(t))2

∂

∂gi
(h(g) + f(g, γ))

((u1(t)2 + u2(t)2)h(γg(t))2 + u3(t)2h(γ(t))2)
1
2 |h(γg(t))|h(γg(t))

dt.

Note that the function S defined by

S(t) =

u3(t)
2h(γ(t))2

∂

∂gi
(h(g) + f(g, γ))

(u1(t)2 + u2(t)2h(γg(t))2 + u3(t)2h(γ(t))2)
1
2 |h(γg(t))|h(γg(t))
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is positive if and only if
∂

∂gi
(h(g) + f(g, γ))

h(γg(t))
> 0.

In this case
∂l(γg)

∂gi
< 0 and d̃ (γg(0), γg(T )) < d̃ (γ(0), γ(T )).

In particular at g = (0, 0, 0),

∂

∂gi
l (γg)

∣∣∣∣
(g1,g2,g3)=(0,0,0)

= −
∫ T

0

u3(t)
2 ∂

∂gi
(h(g) + f(g, γ))

h(γ(t))
dt.

4.2.6 Conclusion

In Section 3, we have shown that in case where the nilpotent approximation of
an ARS degenerates, that is when it is no longer an ARS but a sub-Riemannian
structure, we can replace it by a simple ARS on a Lie group or a homogeneous
space. Thanks to formula (14) of Theorem 5 we know that, at least in some 3D

generic cases, the order of the approximation of d by d̃ is better than the one of
the approximation of d by d̂. Indeed, this order is d2 in the first case and d

3
2 in the

second one. However, this does not prove that the solvable approximation is really
better than the nilpotent one, and anyway it is certainly not true for any pair of
points.

Since under left translations the nilpotent distance d̂ is invariant while the solv-
able distance d̃ may be decreasing, we can expect to prove that the approximation
by d̃ is strictly better than the one by d̂ for pairs of points translated in a suitable
direction.

For this purpose, we consider here the 3D-generic case of Section 4.2 with the
particular values a = 1, b = c = 0, that is X̃3 = z ∂

∂z
. The singular locus of the

solvable approximation is then the plane {z = 0}.
In what follows we consider a (normal) geodesic γ for d̃, originated at (0, 0, 0)

and parametrized by arc length on [0, T ]. Denoting γ(t) = (x(t), y(t), z(t)) it is
moreover assumed that z(t) > 0 on ]0, T ].

This geodesic is translated by g = (0, 0, g), with g ≥ 0, into γg = Lgγ. Since
g belongs to the center of the Heisenberg group the curve γg is simply γg(t) =
(x(t), y(t), z(t) + g).

The different distances between g and γg(T ) are analyzed in several steps.

1. Since the controls associated to γg are u1, u2, and
z(t)

z(t) + g
u3 the length of γg

related to d̃ is

l̃(γg) =

∫ T

0

(
u21 + u22 +

(
z(t)

z(t) + g

)2

u23

) 1
2

dt.
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Since z 7−→ z

z + g
is increasing we have l̃(γg) ≤ Ig, where Ig stands for

Ig =

∫ T

0

(
u21 + u22 +

(
zm

zm + g

)2

u23

) 1
2

dt,

with zm = max{z(t); t ∈ [0, T ]}.

2. We apply now formula (14), which writes here:

d(g, γg(T )) ≤ d̃(g, γg(T )) + C · τ̃
3
2 d̃(g, γg(T ))

1
2 ,

where τ̃ = max
{
‖g‖p , d̃(g, γg(T ))

}
. It will always be assumed that ‖g‖p ≤

d̃(g, γg(T )), that is g
1
2 ≤ d̃(g, γg(T )). Taking into account d̃(g, γg(T )) ≤

d̂(g, γg(T )) = d̂(0, γ(T )), we get

d(g, γg(T )) ≤ d̃(g, γg(T )) + C · d̃(g, γg(T ))2

≤ Ig
T
d̃(0, γ(T )) + C ·

(
Ig
T

)2

d̃(0, γ(T ))2

≤ Ig
T
d̂(0, γ(T ))

(
1 +

Ig
T
C · d̃(0, γ(T ))

)
.

3. In order to approximate z(t) and u3(t), we consider the Hamiltonian equations
(see details in the next section), for the values a = 1, b = c = 0. They are:

ẋ = p
ẏ = q + rx
ż = (q + rx)x+ rz2


ṗ = −(q + rx)r
q̇ = 0
ṙ = −r2z

It is important to notice that r0 can be chosen arbitrarily large because H(t =
0) = 1

2
(p20 +q20). We make the choice p0 = q0 and the following approximations

hold:

x(t) ≈ p0t, ż ≈ q0p0t =
1

2
t, z(t) ≈ 1

4
t2, u3(t) = r(t)z(t) ≈ 1

4
r0t

2.

In order to compute l̃(γg), we need to apply the condition g
1
2 ≤ d̃(g, γg(T )) of

point 2. We do not know d̃(g, γg(T )) but we can set d̃(g, γg(T )) = βT with
0 < β < 1 (this estimation “a priori” will be justified later), and set g = β2T 2.
Then we get

z

z + g
≤ zm
zm + g

≈
1
4
T 2

1
4
T 2 + β2T 2

=
1

1 + 4β2
.
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Therefore

l̃(γg) ≤ Ig =

∫ T

0

(
u21 + u22 +

(
1

1 + 4β2

)2

u23

) 1
2

dt

=

∫ T

0

(
1− u23 +

(
1

1 + 4β2

)2

u23

) 1
2

dt =

∫ T

0

(
1− 16β4 + 8β2

(1 + 4β2)2
u23

) 1
2

dt

≈
∫ T

0

(
1− 16β4 + 8β2

(1 + 4β2)2
1

16
r20t

4

) 1
2

dt =

∫ T

0

(
1− 2β4 + β2

2(1 + 4β2)2
r20t

4

) 1
2

dt.

We write δ = 2β4+β2

2(1+4β2)2
and we set δr20T

4 = 1
2
. Notice that this is possible,

even if T is small, by increasing r0. Thanks to (1 − c) 1
2 ≤ 1 − 0.5c whenever

0 ≤ c ≤ 1 we get:

l̃(γg) ≤ Ig ≤
∫ T

0

(
1− 0.5δr20t

4
)
dt = T − 0.5δr20

T 5

5
= T (1− 0.1δr20T

4) ≈ 0.95T.

4. Assuming C · d̃(0, γ(T )) = C · T ≤ 0.01 we get on one hand:

d(g, γg(T )) ≤ d̃(g, γg(T )) + C · d̃(g, γg(T ))2

= d̃(g, γg(T ))(1 + C · d̃(g, γg(T )))

≤ 1.01d̃(g, γg(T )).

On the other hand:

d̂(g, γg(T ))− d(g, γg(T )) ≥ d̂(g, γg(T )

(
1− 1.01

Ig
T

)
= d̃(g, γg(T ))

d̂(g, γg(T ))

d̃(g, γg(T ))

(
1− 1.01

Ig
T

)
≥ d̃(g, γg(T ))

T

Ig

(
1− 1.01

Ig
T

)
= d̃(g, γg(T ))

(
T

Ig
− 1.01

)
.

Therefore d̂(g, γg(T )) − d(g, γg(T )) > d(g, γg(T )) − d̃(g, γg(T )) as soon as
T
Ig
− 1.01 > 0.01 hence as soon as Ig

T
< 0.98.

According to Point 3, we can obtain Ig ≤ 0.95T and in that case the solvable
distance between g and γg(T ) is strictly closer to the original distance between
these points than the nilpotent one.

5 Geodesics

In this section the Hamiltonian for the normal flow defined by the solvable approx-
imation in the 3D generic case is given. We compute the geodesic with initial con-
dition x(0) = y(0) = z(0) = 0 and covector λ = (p, q, r) ∈ T ∗R3 with p(0) = cos(θ),
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q(0) = sin(θ), r(0) = r.

From the above sections, the solvable approximation is defined by

X̂1 = X1, X̂2 =
∂

∂y
+ x

∂

∂z
, X̃3 =

(
az + bx2 + cy2

) ∂
∂z
. (20)

From (20), the Hamiltonian for the normal flow is given by

H(λ) =
1

2

(〈
λ, X̂1(x, y, z)

〉2
+
〈
λ, X̂2(x, y, z)

〉2
+
〈
λ, X̃3(x, y, z)

〉2)
H(λ) =

1

2

(
p2 + (q + rx)2 + r2

(
az + bx2 + cy2

)2)
,

where λ = (p, q, r) ∈ T ∗R3. Hence

ẋ(t) = p

ẏ(t) = q + rx

ż(t) = (q + rx)x+ r(az + bx2 + cy2)2

ṗ(t) = −(q + rx)r − 2bxr2(az + bx2 + cy2)

q̇(t) = −2cyr2(az + bx2 + cy2)

ṙ(t) = −ar2(az + bx2 + cy2)

are the associated Hamiltonian equations to the solvable approximation.

The geodesic with initial condition x(0) = y(0) = z(0) = 0 and p(0) = cos(θ),
q(0) = sin(θ) and r(0) = r = 0 is given by

x(t) = t cos(θ)

y(t) = t sin(θ)

z(t) =
1

4
t2 sin(2θ),

(21)

because p(t) = cos(θ) and q(t) = sin(θ), this is to say p and q are constants.

Notice that the above geodesic for d̃ is the same as the geodesic for d̂. The above
implies that this geodesic is optimal for any time and has no conjugate time (see
Theorem 5.1 and 5.2 in [10]). We can see some geodesics in Figure 1 when r = 0.

Due to the complexity of the Hamiltonian system of equations, we compute the
geodesics considering a = c = 0 and b = 1. Thus the Hamiltonian is

H(λ) =
1

2

(
p2 + (q + rx)2 + r2x4

)
,

hence

ẋ(t) = p

ẏ(t) = q + rx

ż(t) = xq + rx2 + rx4

ṗ(t) = −(q + rx)r − 2r2x3

q̇(t) = 0

ṙ(t) = 0

(22)

Considering the initial condition x(0) = 0 then p(0) = cos(θ), q(0) = sin(θ) and
r(0) = r. If r = 0 then the solution to the differential systems (22) is given by (21).
If r(0) = r 6= 0, since ẋ(t) = p, we get

ẍ = −r(q + rx)− 2r2x3

ẍ+ r2x+ 2r2x3 = −rq.
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Figure 1: Geodesics for θ ∈
{

0, π
3
, 2π

3
, π, 4π

6
, 5π

6

}
when r = 0.

Since q(0) = sin(θ) and q̇ = 0, then q = sin(θ). Hence

ẍ+ r2x+ 2r2x3 = −r sin(θ). (23)

The equation (23) is equivalent to

ẍ+ r2x+ 2r2x3 = −r sin(θ)cn(0, k2), (24)

where cn(0 · t, k2) is the Jacobian elliptic function that has a period in 0 · t equal to
4K(k2) and K(k2) is the complete elliptic integral of the first kind for the modulus
k (see more in [14]). This equivalence is due to the fact that cn(0, k2) = 1.

In [18] a general solution to

ẍ+ cnẋ+ wnx+ εx3 = F cn(wt, k2),

is given by

x(t) = a1(t)cn
(
w1t+ φ, k21

)
+ A1(t)cn

(
wt, k2

)
+B1(t) · sn

(
wt, k2

)
.

Therefore, the solution for the equation (24) is given by

x(t) = a1(t)cn
(
w1t+ φ, k21

)
+ A1(t),

where a1(t), A1(t), w1, φ and k1 need to be determined. Notice that B1(t) ·sn (wt, k2)
vanishes because sn(0, k2) = 0.

25



From [18] is possible to obtain that a1(t) and A1(t) are constants. Then

x(t) = a1cn
(
w1t+ φ, k21

)
+ A1. (25)

Moreover, since x(0) = 0

−A1 = a1 · cn(φ, k21). (26)

Furthermore, differentiating in (25) and since ẋ(0) = p(0) = cos(θ), we have

a1 =
cos(θ)ns(φ, k21)nd(φ, k21)

w1

.

Finally, since y(0) = z(0) = 0,

x(t) = a1
(
cn
(
w1t+ φ, k21

)
− cn

(
φ, k21

))
y(t) =

(
sin(θ)− ra1cn

(
φ, k21

))
t+

ra1
k21w1

(
arccos

(
dn(w1t+ φ, k21)

)
− arccos

(
dn(φ, k21)

) )
z(t) = −

(
ra41cn

(
φ, k21

)4
+ ra21cn

(
φ, k21

)2
+ sin(θ)

)
a1cn

(
φ, k21

)
t+

ra41
3k81w1

z1(t)

+
4ra41cn (φ, k21)

2k61w1

z2(t) +
6ra41cn (φ, k21)

2
+ ra21

k41w1

z3(t)

+
4ra41cn (φ, k21)

3
+ 2ra21cn (φ, k21) + sin(θ)

k21w1

z4(t),

where k′21 +k21 = 1, E(·) is the incomplete elliptic integral of the second kind and

z1(t) = (2− 3k41)k′41 w1t+ 2(2k41 − 1)
(
E(w1t+ φ)− E(φ)

)
+ k41

(
sn(w1t+ φ, k21)cn(w1t+ φ, k21)dn(w1t+ φ, k21)− sn(φ, k21)cn(φ, k21)dn(φ, k21)

)
z2(t) = (2k41 − 1)

(
arcsin

(
k21sn

(
w1t+ φ, k21

) )
− arcsin

(
k21sn(φ, k21)

) )
+ k21

(
sn(w1t+ φ, k21)dn

(
w1t+ φ, k21

)
− sn(φ, k21)dn

(
w1t+ φ, k21

) )
z3(t) = E(w1t+ φ)− E(φ)− k′41 w1t

z4(t) = arccos
(
dn(w1t+ φ, k21)

)
− arccos

(
dn(φ, k21)

))
.
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geometry (Belläıche André-Risler Jean-Jacques, ed.), Progress in Mathematics,
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