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Abstract

We are interested in the long-time behaviour of approximate solutions to heterogeneous and
anisotropic linear advection-diffusion equations in the framework of hybrid finite volume (HFV)
methods on general polygonal/polyhedral meshes. We consider two linear methods, as well as a
new, nonlinear scheme, for which we prove the existence and the positivity of discrete solutions.
We show that the discrete solutions to the three schemes converge exponentially fast in time
towards the associated discrete steady-states. To illustrate our theoretical findings, we present
some numerical simulations assessing long-time behaviour and positivity. We also compare the
accuracy of the schemes on some numerical tests in the stationary case.

Keywords: Finite volume schemes, general meshes, anisotropic advection-diffusion equations, long-time
behaviour, entropy method.
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1 Introduction

We are interested in the numerical approximation of linear advection-diffusion equations on bounded
domains. These equations constitute the main building block in the modelling of more complex
problems stemming from physics (e.g., porous media flows [3], or corrosion models [2]), biology, or
electronics (semi-conductor devices modelling [37]). Thus, designing reliable numerical schemes to
approximate their solutions is a pre-requisite before discretising more complex models. Our aim here
is the preservation of some key physical properties of these equations at the discrete level, on a large
variety of meshes.

Let © be an open, bounded, connected polytopal subset of R?, d > 2, with boundary 09 divided
into two disjoint open subsets I'” and TV, in such a way that 9Q = I'® UTN. We consider the
following problem: Find u : R4 x €2 — R solution to

0w — div(A(Vu +uVe)) = f in Ry x €,
w=g” on Ry x P,
AVu+uVe)-n=g" onRy xIV,
u(0,-) =u™ in Q,

(1.1)

where n is the unit normal vector to 92 pointing outward €2, and the data satisfy:

o A € L®(Q;R¥) is a symmetric and uniformly elliptic diffusion tensor: there exist \,, Ay with
0 < A, < A < oo such that, for a.e. z in , £- A(2)€ > A [¢]? and [A(z)E] < A\gl¢| for all £ € RY;



¢ € CY(Q) is a regular potential from which derives the advection field V% := —AV¢, assumed
to satisfy V¢ € H(div; Q);

f € L?() is a source term;

gP ¢ H%(FD) is a Dirichlet datum, assumed to be the trace on I'P of u” € H'(Q) satisfying
HUDHHI(Q) < C||gD||H1/2(FD) for a given C' > 0;

g" € L2(TV) is a Neumann datum;
e u™ € L%(Q) is an initial datum.

When [I'P| = 0, we assume that the compatibility condition fQ I+ 90 g~ = 0 holds true. We denote
by M the initial mass, M = fQ u'™, and we know that it is preserved along time: fQ u(t) = M for
almost every ¢t > 0. For further use, we let u := % € R, and we refer to this quantity as the mass

lifting. Advection-diffusion models of the form (1.1) enjoy certain structural properties. First, when
the data f, g©, ¢V, and v are positive, then the solution u is also positive. Second, the asymptotics
t — oo, the so-called long-time behaviour of the solutions, is well understood, see [5, 11, 12, 36] for
related models. Indeed, the solution u to (1.1) converges exponentially fast when ¢ — oo towards the
steady-state u®°, solution to the stationary problem

—div (A(Vu™® +u>*Ve)) = f in Q,
u® =g? onTP, (1.2)

g
A(Vu® +u>Ve)-n=g" onTV,

with additional constraint [, u> = M when ITP| = 0. The question of long-time behavior has been
widely studied in the context of many-particle systems, for which the second law of thermodynamics
ensures a relaxation of the transient phenomena towards an equilibrium. From a mathematical point
of view, this evolution is strongly related to the dissipation of an entropy functional. Such a vision
based on entropy dissipation has given birth to the so-called entropy method. As highlighted by
Arnold et al. in [1], the successful use of the entropy method in kinetic theory paves the way to
extended applications on various dissipative systems. We refer the reader to the book [29] of Jiingel
for a presentation of some of these applications. In [5], Bodineau et al. proposed an entropy functional
adapted to drift-diffusion equations with non-homogeneous Dirichlet boundary conditions. A direct
adaptation of their method allows to conclude in the present case on the exponential convergence in
time of the solution to Problem (1.1) towards the solution of Problem (1.2).

Under appropriate assumptions on the data (a sufficient condition, also valid for more general
advection fields, is to assume that divV? > 0 a.e. in Q and V?-n < 0 a.e. on I'"V), the stationary
Problem (1.2) is coercive and its well-posedness is straightforward. It turns out that such assumptions
on the data are not fulfilled, the problem is still coercive in the new unknown p™ = u>e? so one
can conclude on well-posedness invoking the standard inf-sup theory (or equivalently by solving the
problem in the new unknown). Concerning the evolution Problem (1.1), the same arguments show the
existence and uniqueness of a global weak solution. For general advection fields, we refer the reader
to the results of Droniou [17] (for mixed Dirichlet-Neumann boundary conditions), and Droniou and
Vazquez [22] (for pure Neumann boundary conditions) for detailed statements about well-posedness
and regularity of the solutions.

When it comes to numerical approximation, the accuracy of the method is not the only important
feature. In some applications (e.g., in subsurface modelling, where the mesh often results from seismic
analysis), the mesh must be taken as a datum of the problem, and the numerical method needs to
be adapted so as to handle potentially fairly general meshes. In some other applications (e.g., power
plant simulation), the preservation of the positivity of the solutions (or better, of the monotonicity



properties of the equation) is an important quality criterion. In yet some other applications (e.g.,
nuclear waste repository management), finally, the reliability of the simulations in very large time
proves to be crucial for sustainability purposes. The positivity and long-time behaviour of discrete
solutions have been closely studied in the context of standard two-point flux approximation (TPFA)
finite volume schemes, for isotropic diffusion (i.e., A = A1l with A : @ — R%) on orthogonal
meshes. In [26], Filbet and Herda studied the long-time behaviour of a TPFA scheme for nonlinear
boundary-driven Fokker—Planck equations, adapting to the discrete setting the arguments of [5].
In [13], Chainais-Hillairet and Herda proved on a variety of models that a whole family of TPFA
schemes (the so-called B-schemes) preserves the exponential decay towards discrete steady-states.
The results of [26] and [13] are valid for general advection fields, and a choice of data [T'P| > 0,
f =0 g¢g” >0 ¢¥ =0, and u™ > 0. We also refer to [31, 14, 28, 7] for related schemes and
similar issues. However, these TPFA schemes suffer from an intrinsic limitation: the mesh needs to
be A-orthogonal, which, in practice, restricts their use to isotropic diffusion tensors and (standard)
orthogonal meshes. In order to overcome this limitation, several finite volume methods using auxiliary
unknowns have been designed (cf. [19] for a presentation of some of these schemes). As highlighted
by Droniou in [19], these methods however suffer from a lack of monotonicity, and so do not preserve
the positivity of discrete solutions. As a possible remedy, Cances and Guichard introduced in [10],
for a class of models encompassing (1.1) for pure Neumann boundary conditions and a choice of
data f = 0, ¢ = 0, and ™ > 0 with M > 0, a nonlinear vertex approximate gradient (VAG)
scheme, designed so as to preserve at the discrete level the positivity of the solutions and the entropy
structure of the models, for arbitrary anisotropic diffusions and general meshes. Following the same
ideas, Cances et al. devised and analysed in [9] a (nonlinear) positivity-preserving discrete duality
finite volume (DDFV) scheme, whose discrete entropy structure and long-time behaviour were fully
studied in [8], based on the adaptation to the discrete setting of nonlinear functional inequalities.
The DDFYV scheme at hand is however limited to the two-dimensional case, and its adaptation to
a three-dimensional framework seems difficult (cf. [19]). On yet another level, it is known that,
provided adequate assumptions hold on the data, the solutions to Problem (1.1) are regular in space
(at least locally). This suggests that the use of high-order methods shall be an interesting track
in order to increase the accuracy at fixed computational cost. Recently introduced by Di Pietro et
al. in [16], hybrid high-order (HHO) methods can be seen as an arbitrary-order generalisation of
hybrid finite volume (HFV) schemes, that were introduced by Eymard et al. in [25] as yet another
way to overcome the limitations of TPFA schemes. HFV methods hinge on cell and face unknowns
(whence the vocable hybrid), and as such benefit from a unified 2D /3D formulation. HFV methods
have also been bridged to the larger family of hybrid mimetic mixed (HMM) methods in [21]. In
view of the above elements, the study of HFV methods appears to be a natural first step in order to
design structure-preserving high-order (HHO) schemes for Problem (1.1), that shall both increase the
accuracy at fixed computational burden, and preserve the key properties (positivity and long-time
behaviour) of the model at hand.

In this article, we study three different HFV schemes for Problem (1.1). The first one is the
HFV variant of the HMM family of schemes introduced and analysed in the stationary setting by
Beirao da Veiga et al. in [4, 18] (note that an arbitrary-order (HHO) generalisation of this scheme has
been proposed in [15]). It is a linear scheme, based on a discretisation of the diffusive and advective
fluxes, that is well-posed under a coercivity condition. The second scheme is also a linear one. Its
construction is based on exponential fitting, and takes inspiration from ideas in [6] (it also shares
some features with the works [30, 32] and [26], which cover general advection fields). This scheme
is unconditionally coercive. These two linear schemes are not expected to preserve positivity, which
motivates the introduction of the third method. For pure Neumann boundary conditions, and a
choice of data f = 0, ¢ = 0, and v > 0 with M > 0, we introduce a nonlinear HFV scheme,
that is devised along the lines of the nonlinear VAG and DDFV schemes of [10] and [9, 8], so as to



guarantee the positivity of discrete solutions. Our first result, stated in Theorem 1, is the existence of
(positive) solutions to this nonlinear scheme. In a second time, we investigate the long-time behaviour
of the three schemes at hand. We establish in Theorems 2, 3, and 4 the exponential decay in time
of their discrete solutions towards the associated discrete steady-states. We numerically validate our
theoretical findings on a set of test-cases and, for completeness, we also compare the accuracy of the
three schemes on stationary problems.

The article is organised as follows. In Section 2, we introduce the HFV framework (mesh, discrete
unknowns and discrete operators) on a steady variable diffusion problem. In Section 3, we introduce
the three schemes for the transient advection-diffusion problem, and we discuss their well-posedness.
In Section 4, we study the long-time behaviour of the three schemes, and prove exponential decay to
equilibrium. In Section 5, we discuss the implementation of the schemes, and provide a numerical
validation of our theoretical results, as well as a comparison of the stationary schemes in terms of
accuracy. Appendices A and B finally collect some functional inequalities and the proofs of auxiliary
results.

2 HFYV discretisation of a variable diffusion problem

The aim of this section is to recall the HF'V framework on a steady variable diffusion problem, which
corresponds to (1.2) without any advection term (AV¢ = 0). For a detailed presentation of the
method, we refer the reader to [25].

2.1 Mesh and discrete unknowns

The definitions and notation we adopt for the discretisation are essentially the same as in [25]. A
discretisation of the (open, bounded, connected) polytopal set Q C R, d > 2, is defined as a triplet
D :=(M,E&,P), where:

e M (the mesh) is a partition of €, i.e., a finite family of nonempty disjoint (open, connected)
subsets K of Q (the mesh cells) such that (i) for all K € M, |K| >0, and (ii) Q@ = Ugepq K-

o & (the set of faces) is a partition of the mesh skeleton | J ¢ 1 0K, i.e., a finite family of nonempty
disjoint (open, connected) subsets o of 2 (the mesh faces, or mesh edges if d = 2) such that (i)
for all ¢ € &, |o| > 0 and there exists H, affine hyperplane of R? such that o C H,, and (ii)
Urkem OK = U, ce @ We assume that, for all K € M, there exists Ex C £ (the set of faces of
K) such that 0K = |J,c¢, 0. For o € &, we let M, :={K € M | o € £k} be the set of cells
whose o is a face. Then, for all o € £, either M, = {K} for a cell K € M, in which case o is
a boundary face (o C 9Q2) and we note o € Eeyy, or M, = {K, L} for two cells K, L € M, in
which case o is an interface and we note o = K|L € .

e P (the set of cell centres) is a finite family {zx } ke of points of € such that, for all K € M,
(i) zx € K, and (ii) K is star-shaped with respect to xx. Moreover, we assume that the
Euclidean (orthogonal) distance d K,o between xx and the affine hyperplane H, containing o
is positive (equivalently, the cell K is strictly star-shaped with respect to zx).

For a given discretisation D, we denote by hp > 0 the size of the discretisation (the meshsize),

defined by hp := sup hg where, for all K € M, hg := sup |z — y| is the diameter of the cell K.
KeM I,yG?

For all 0 € £, we let T, € o be the barycentre of . Finally, for all K € M, and all ¢ € £, we
let ng, € R? be the unit normal vector to ¢ pointing outward K, and Pk, be the (open) pyramid
of base o and apex i (notice that, when d = 2, Pk, is always a triangle). Since |o| and dg , are

positive, we have |Pg | = W# > 0. We depict on Figure 1 an example of discretisation. Notice



that the mesh cells are not assumed to be convex, and xx is neither assumed to be the barycentre
of K € M. We consider the following measure of regularity for the discretisation (which is slightly

Figure 1: Two-dimensional discretisation and corresponding notations.

stronger than the ones advocated in [25, Eq. (4.1)] or in [20, Eq. (7.8)-(7.9)]):

hx hd-1
0p := max max ———, max -5 |. (2.1)
KeMoelkdg o o€, KEM, |O]

Notice that 8p > 1, and that for all K € M,

K = - Kol — d = o T 9 K-
2 2 2 o2~ doz,

o€EK oc€fK o€k

Thus, the number of faces of any mesh cell is uniformly bounded:

VK € M, Ex| < db3,. (2.2)

d
.. . dr.os dL.o a—1
Also, it is an easy matter to verify that max max (552, L2 ) <94,
’ o=K|LEE;ns dr,o” di.o D

We now introduce the set of (hybrid, cell- and face-based) discrete unknowns:
Vpi= {QD = ((vK)KeM, (UU)UEg) vg E RVK € M, v, € RVo € 5}.

Given a mesh cell K € M, we let V = R x RIxl be the restriction of Vp to K, and vy =
(vK, (vg)gegK) € Vi be the restriction of a generic element vy € Vp to K. Also, for vy € Vi, we
let voq: Q — R and ve : [Jgepg OK — R be the piecewise constant functions such that

vpmg = vk forall K € M, and wvg, =v, forallo € €.



In what follows, for any set X C Q, we denote by (-,-)x the inner product in L?(X;R!), for

[ € {1;d}. In particular, we have (wa,vm)o = Z |K|wgvg and (we,ve)on = Z |o|we v,
KeM o€€ext
For further use, we let 1 denote the element of V5 with all coordinates equal to 1. Also, given a

function f : R — R, and with a slight abuse in notation, we denote by f(vp) the element of Vp
whose coordinates are the (f(vk))xem and the (f(vs))see. Finally, we let the product wp X vp
denote the element of V , whose i-th coordinate is the product of the ¢-th coordinates of wp and vp.

When considering mixed Dirichlet-Neumann boundary conditions, we assume that the discreti-
sation D is compliant with the partition 8Q = I'P UTN of the boundary of the domain, in the
sense that the set ., can be split into two (necessarily disjoint) subsets 5£t = {0 €&t |0 C FD}
and &N, = {a €&t |0 C FN} such that £, = EL, U EN,. Notice that as soon as [I'P| > 0,

ext ext

|EP.| > 1. We define the following subspace of V1, enforcing strongly a homogeneous Dirichlet

boundary condition on I'P:
ZIZ;O = {QD c K’D Vg = OVO’ S gel?pt} .

In view of the upcoming analysis, we define a discrete counterpart of the H! semi-norm. Locally to

any cell K € M, we let, for any vy € Vi, ‘QK’%’K =) et %(UK —v,)2. At the global level,

lvpli,p = Z il k-
KeM

Notice that |- |1 p does not define a norm on Vp, but if [vp|1 p = 0, then there is ¢ € R such that
vp = c¢lp (vp is constant). Thus, |- |1 p defines a norm on the space Kg,o as soon as [I'P| > 0, as
well as on the space of zero-mass vectors

Vo= {UDEVD:/UMZO}-
0

For further use, and to allow for a seamless treatment of pure Neumann boundary conditions, we
introduce the notation Vp, o, to denote either Kg,o whenever [T'”| =0, or Zg,o otherwise.

for any vp € Vp, we let

2.2 Foundations of the hybrid finite volume discretisation

The HFV method hinges on the definition of a discrete gradient operator Vp, that maps any element
vp € Vp to a piecewise constant R%valued function on the pyramidal submesh of M formed by all
the Pk ,’s, for K € M and o € £x. More precisely, for all K € M, and all ¢ € &,

VDQD‘K = VKQK with VKQKUJKJ = VK,UQK = GKQK + SK,UQK c Rda
where G vy is the consistant part of the gradient given by
1 1
GKQK = m Z ‘O-,|(/Uo" *'UK)TLK,O'/ = m Z ‘O-/|v0'/nK,o";
O'IGSK O’IGSK
and Sk vy is a stabilisation part, given, for some parameter 1 > 0, by
n _
Skovi = 7 — (Vo = vx = Grvg - (T — 2K)) N0 (23)
R

Let us consider the stationary problem (1.2), without any advection term (AV¢ = 0 in Q). Our aim
is to write a HF'V discretisation of this steady variable diffusion problem. Locally to any cell K € M,
we introduce the discrete bilinear form a% 1 Ve x Ve — R such that, for all ug, vy € Vi,

af (u, V) = Z |Pro|VEoVk Ak oVKour = (AViuy, VKU )k, (2.4)
g€EK



where we set Ak , := ﬁ f Pro A. At the global level, we let a% : Vp x Vp — R be the discrete
bilinear form such that, for all up,vp € Vp,

a%(ﬂp,ﬂp) = Z a’jl\((@IOQK) = (AVDQI%VDQD)Q'
KeM

The discrete HF'V problem then reads: Find u%, € KD’O such that

ap (U, vp) = (f,vm)a + (g7, ve)rn — ap(up,vp)  Yup € Vi, (2.5)
where ng € Vp is equal

(i) either, when [I'P| > 0, to the HFV interpolate ul of the known lifting u” of the Dirichlet
datum g¢P (satisfying [uB|1p < CZIDHgDHHyQ(FD), with C;rp > 0 only depending on the

discretisation D through 6p),

M

(ii) or, when [I'P| =0, to ulf := M1, where we recall that uM = ] Is the mass lifting (remark

that af(u,vp) = 0 for all vp € Vp),

and the approximation of the solution to (1.2) denoted u¥ € Vp is finally defined as
uf = up + ub. (2.6)

Let us note that the superscript z stands for “zero”, while [ stands for “lifting”.

Problem (2.5) defines a finite volume method, in the sense that it can be equivalently rewritten
under a conservative form, with local mass balance, flux equilibration at interfaces, and boundary
conditions. For all K € M, and all o € £k, the normal diffusive flux — fo AVUTIO( "MK s IS approxi-
mated by the following numerical flux:

Fi p(ug) = > A% (ug — o), (2.7)
o' €€k
where the A}’("/ are defined by
A}'{U = Z ’PK,O'”| y?( o. AKJ”y?( g s (28)
o eEx

and the y}‘("/ € R? only depend on the geometry of the discretisation D (see, for example, [25,
Eq. (2.22)] for an exact definition with = v/d). For all K € M, one can express the local discrete

bilinear form a‘}( in terms of the local fluxes (F[/}U) : for all up, v € Vi,

ocelk

af (ugv) = D Fitolug) vk —ve). (2.9)
oefk

As for the VAG [10] and DDFV [9, 8] schemes, we can also express the local discrete bilinear form
in a different way, which will be useful in the sequel:

a (U, v) = Oxvg - A, (2.10)
where, for all v;c € Ve, dgvy € RIEK| is defined by
OrVK = (VK — Vo )pegy -

and A € RIE&IXIEk| ig the symmetric (because A is) positive semi-definite matrix whose entries are
the A}'(U,, that can actually be proved to be nonsingular (cf. Lemma 3).



2.3 Well-posedness

As for the continuous case, the well-posedness of HFV methods for diffusion problems relies on a

coercivity argument. Let K € M, and reason locally. By definition (2.4) of the local discrete

bilinear form a4, and from the bounds on the diffusion coefficient, we have \,||Vxv K||%2 (KRY) <

a (v, ) < )\ﬁHVKyKH%Q(K‘Rd) for all vy € V. Furthermore, the following comparison result
holds (cf. [20, Lemma 13.11, p = 2] and its proof): there exist o,y with 0 < o, < oy < 00, only
depending on €2, d, and 6p such that ab‘ﬂKﬁK < HVKQKH%Q(K;RU!) < Oéﬁ|QK|iK for all vy € V.

Combining both estimates, we infer a local coercivity and boundedness result:

Vog € Vi, )‘bab‘QK’%,K < a% (vg,vg) < )‘ﬁo‘ﬁ’QK‘%,K' (2.11)
Summing over K € M, we get the following global estimates:

Vup € Vp, M |vplip < ap(vp, vp) < Ao |vplf p. (2.12)
The well-posedness of Problem (2.5)-(2.6) follows.

Proposition 1 (Well-posedness). There exists a unique solution u € Vp to Problem (2.5)-(2.6),
which satisfies [uy|1p < C <|]fHL2(Q) + H9N||L2(r1v) + HgDHH1/2(FD)>7 for some C > 0 depending on
the data, and on the discretisation D only through 0p.

Proof. The existence/uniqueness of uf, € Vp  solution to (2.5) (and in turn of u = uf, + ub) is
a direct consequence of the coercivity estimate (2.12), and of the fact that |- [; p defines a norm on
Vpo (vecall that Vp o denotes either Kﬁo when [I'P| =0, or Kl[)),() otherwise). To prove the bound
on [u]1,p, we use the triangle inequality:

1D+ |ub

lup 10 < |up 1,D-

Since M‘DJ |1 > = 0, we only need to treat the case |FD | > 0. The second term in the right-hand
side is estimated recalling that |[uB|;p < ClIDHgDHHyg(FD). To estimate the first term, we test
Problem (2.5) with vp = uf, € V., we use (2.12), and we apply the Cauchy-Schwarz inequality.
We get

/\bab’ﬂZD’%,D < Hf||L2(Q)||U§wHL2(Q) + H9N||L2(FN)HU<ZSHL2(FN) + Mgy |QZD|1,D\MZD 1,D-

The conclusion follows from a discrete Poincaré inequality recalled in Proposition 7 and applied to
up € Vp, from the discrete trace inequality of [20, Eq. (B.58), p = 2] combined with a discrete
Poincaré inequality, and from the fact that [uB|1p < Cj o ||gD||H1/2(FD). O

3 Definition of the schemes and well-posedness

In this section, we introduce and study the well-posedness of three HFV schemes, two linear ones
and a nonlinear scheme, for the time-dependent advection-diffusion problem (1.1). For the first two
(linear) schemes, we introduce and study in the first place their steady versions on Problem (1.2).
For the nonlinear scheme, by anticipation of the discrete asymptotic analysis of Section 4.3, we
restrict our study to the case where the (positive) solution to Problem (1.1) converges in long time
towards the so-called thermal equilibrium (see (3.11)). However, as it will be verified numerically in
Section 5.4 in the stationary setting, our scheme is applicable for more general data. We consider a
fixed spatial discretisation D of €2, which satisfies the conditions detailed in Section 2.1, and a fixed
time step At > 0 for the time discretisation.



Remark 1 (Linear schemes and nonhomogeneous data). The linearity of Problem (1.1) implies that,
(i) if [TP| > 0, the shifted variable u* := u — u” (recall that uP is a known lifting of the Dirichlet
datum gP) satisfies an advection-diffusion equation with zero Dirichlet boundary condition on T'P,
and (i) otherwise, the shifted variable u* := u—u™ (recall that uM = % is the mass lifting) satisfies
a (compatible) pure Neumann advection-diffusion equation with zero-mass constraint. Thus, without
loss of generality, we can restrict our study to the homogeneous case g” = 0 or M = 0. For an
example (in the steady, purely diffusive case) on how to handle at the discrete level nonhomogeneous
data g or M, we refer the reader to Problem (2.5) and Proposition 1 above. Notice that such

manipulations are possible for linear schemes only.

3.1 Standard HFV scheme
We present the HF'V variant of the HMM family of schemes introduced in [4, 18].

3.1.1 Stationary problem

We consider Problem (1.2) with g = 0 when |[T'P| > 0, or M = [, u™ = 0 otherwise (cf. Remark 1).
Locally to any cell K € M, we introduce the discrete bilinear form ax : Vi X Vo — R such that,
for all up, v € Vi,

arc (U, V) = af (ug, vi) + af (ug, v, (3.1)
where the diffusive part a’ is defined by (2.4) (and rewrites as (2.9) in terms of the local diffusive
fluxes F I/} »(ug) given by (2.7)), and the advective part af( is defined by

af(ug,vg) = Y Fp (ug) (v — vg), (3.2)
o€k

with F ;’é »(trc) an approximation of the normal advective flux [ UOOV& “NK,s. In order to define
the numerical advective fluxes, we need to introduce some data. We set VI? 5 = |71| fa Ve.n Ko, and
llg ‘= min (l,minKGMo Sp(AK)) > 0 where Ag := ﬁ fK A. We could as well simply define u, as
mingenm, Sp(Ax), but we choose here to stick to the formula advocated in [4, 18]. We also consider

a Lipschitz continuous function A : R — R, satisfying the following conditions:

A(0) =0,
Vs € R, A(—s) — A(s) =

S, (3.3)
Vs e R, A(—s)+ A(s) > 0.

Standard choices of A functions include:
e the centred discretisation: A : s+ —3;

e the upwind discretisation: A : s — max(—s,0);

s 4
e the Scharfetter—-Gummel discretisation: A4 : s — { ef—1 (1) i i f 8

We eventually define, for all K € M, and all o € £k, the numerical advective flux: for all uy € Ve,

o d o d o
F (ug) = |o] - (A (— K V;@U> uk —A( X, v;§0> u0> : (3.4)
’ dK,q fo fo
Letting ap : V.p X V.o — R be the (global) discrete bilinear form such that, for all up,vp € Vp,
ap(up,vp) = Y ax (g, vy), (3.5)
KeM
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and recalling that Vp denotes either KgD whenever |TP| = 0, or 130 otherwise, the discrete
problem reads: Find u3 € Voo such that

ap(uy,vp) = (fivm)a + (g, ve)rw Vup € Vp . (3.6)

Remark in passing that, for pure Neumann boundary conditions with M # 0, as opposed to the
purely diffusive case of Problem (2.5), ap(u,vp) # 0 a priori for vp € Kg,o- The well-posedness
of (3.6) is discussed in the following proposition.

Proposition 2 (Well-posedness). Let A be a Lipschitz continuous function satisfying (3.3). If the
advection field V¢ satisfies the two following conditions:

(i) almost everywhere on TN, V. n <0, (3.7a)
2
(7i) there ezists f < 22% such that, almost everywhere in Q, divV?® > —p, (3.7b)
P

where Nyoy, is the coercivity constant of (2.12), and Cp is either equal to Cpy if [I'P| = 0 or to
Cpro otherwise (where Cpw,Cpro are the Poincaré constants of Proposition 7), then there exists
k > 0, only depending on A, B, Q, d, T, and 6p such that

Vup € Vp s ap(vp, vp) > Klvpli p. (3.8)

Consequently, there erists a unique solution uxy € Vp, to Problem (3.6). Moreover, one has
uFlio < C(Ifl2) + gV l2rny), for some C > 0 depending on the data, and on the dis-
cretisation D only through 0p.

Proof. Let K € M, and 0 € £i. Let sg o = d:[;" V;éa and (ko := A(—sk,s) + A(Sk,s). According

0 (3.3), ko > 0, and we have A(—sk,,) = % and —A(sky) = w Consequently, for
all VK S KK?

1 1
(A(=sk.o)vk — A(SK,0)0s) (VK — Vs) = §SK,a(v§( —v2) + 5 G (Vi = Vg)? >

Recalling (3.2) and (3.4), we infer that, for all vy € Vp,

1
ap(vp.vp) = Y aglvie,vi) = 5 D Y oIV, (vk —v3).

KeM KeMoelk

SKU(U%( - UZ,)

N | —

Since, for all K € M, Y e |0|VE, = [ divV? and, for all 0 € Emi, Ygeeny, 0V, = 0, we
have, for all vp € Vip o,

1, . 1
ap(vp. vp) = 5 (div V7 vi)a — S (V7 n vf)rw. (3.9)

Combining (3.5)-(3.1), (3.9)-(3.7), and the coercivity result (2.12), we deduce that, for all vp € Vp g,

B
ap(vp,vp) > May|upli p — 5””/\/1”%2(9)- (3.10)

Using a Poincaré inequality from Proposition 7, one has, for all vp € Vi,

53
on(ep o) = (May = 75 ) Lol o

2
therefore the estimate (3.8) holds for k = A, — %, which is positive according to (3.7b). The
existence/uniqueness of u® € Vp, solution to (3.6) is a direct consequence of the coercivity esti-
mate (3.8), and of the fact that |- [y p defines a norm on V5. The continuous dependency of ug

with respect to the data can then be proved as in the proof of Proposition 1. O
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Remark 2 (Assumptions on the advection field). The well-posedness result of Proposition 2 do not
use the fact that V' is related to the gradient of a potential, and are thus generalisable to general
advection fields. Even better, under a smallness assumption on the meshsize hp, it is actually possible
to prove well-posedness for Problem (3.6) without assumptions (3.7) on the advection field. The
starting point to prove so is a discrete Garding inequality like (3.10), which can be easily obtained in
full generality from (3.9) (in the case [T'N| > 0, it is obtained from the multiplicative discrete trace
inequality of [20, Eq. (B.57), p = 2] and holds for hp sufficiently small). The proof then proceeds
by contradiction, assuming that a discrete inf-sup condition does not hold in the limit hp — 0, and
using a compactness arqgument (cf. [20, Lemmas B.27-B.33, p = 2]).

Remark 3 (Choice of A). The choice of the function A is of great importance. In particular, the
Scharfetter—Gummel approzimation is rather classical in various contexts. First introduced in [35]
in the framework of TPFA schemes, this approzimation of the flux ensures the preservation of the
so-called thermal (or Gibbs) equilibrium at the discrete level which has the form:

uly = pe? (3.11)

where p € R is prescribed by the data. For instance, for pure Neumann boundary conditions, f =0,
and gV = 0, we have p = M/ Jo e~®. The discrete solution obtained with the TPFA scheme is
then the interpolate of ugy. This property is no more true for the hybrid scheme and we observe
numerically that, for M # 0, the discrete solution u € Vp is in general not the HF'V interpolate of
ugy. However, as explained in [18, pp. 553-554], provided the parameters (iy)oce are well-chosen,
using the Scharfetter—Gummel A function ensures a sort of automatic upwinding of the scheme.

3.1.2 Evolutive problem

We consider Problem (1.1) with g” = 0 when [T > 0, or M = [, u™ = 0 otherwise (see Remark 1).
We use a backward Euler discretisation in time, and the HF'V discretisation introduced in Section 3.1.1
in space. The discrete problem reads: Find (g% € KD70)n>1 such that

1 _
E(U.T/L\/l - un_/\/[ » U )Q + CL’D(’LLD, UD) (f’ UM o+ ( S)FN VQ’D € KD,O? (3128‘)

0 = K 12
e ‘K|/ VK € M, (3.12D)

where ap is defined by (3.1)—(3.5). Since ap is coercive, the bilinear form in (3.12) is also coer-
cive, so the scheme (3.12) is well-posed, under the assumptions (3.7) on the advection field, as a
straightforward consequence of Proposition 2.

Remark 4 (Pure Neumann case). When considering pure Neumann boundary conditions, and con-
trary to the stationary case, one can actually seek at each time step for a solution to Problem (3.12)
in Vp, i.e., it is not necessary to seek for a solution in the constrained space Kg,o- Indeed, test-
ing (3.12a) by 1p € Vo, and using that [ f+ [5q,9" =0 and ap(ufh,1p) = 0, one can automatically
infer that fQ u'hy = fQ u"/\;l for all n > 1, that 1is, fQ u'hg = fQ u?w = fQ u™ =M =0 for alln > 1,
ie., uh € VP o for alln € N*.

3.2 Exponential fitting HFV scheme

Following ideas in [6] (cf. also [30, 32] and [26] for general advection fields) in the context of finite
element methods, we aim to design an unconditionally (i.e., without the need for assumptions (3.7) on
the advection field V) coercive scheme for the advection-diffusion problem in the HFV framework.

12



3.2.1 Stationary problem

We consider Problem (1.2). The strategy advocated in [6] is based on the following observation: at
the continuous level, if u® is a solution to (1.2), letting

w=e?, (3.13)

we can introduce the Slotboom change of variable (see [33, 34]): p™ = % Indeed, noticing that

Vu® +u*Veo = wVp>® — p*wVeo+ p®wVe = wVp™, the Slotboom variable p™ equivalently solves
the following pure diffusion problem:

—div (wAVp™) = f in Q,
p>° = w‘_ﬁ)gD on I'D, (3.14)
wAVp>® - n =gV on TV,

with additional constraint [, wp™ = M when [I'”| = 0. Following Remark 1 (with p instead of v,

pP lifting of w‘_rlD gP instead of uP lifting of ¢, and pM = f%w € R instead of uM), we consider
Q

Problem (3.14) with prp = 0 when ITP| > 0, or [,wp™ = 0 otherwise (which is equivalent to

consider Problem (1.2) with g” = 0 or M = [,u> = 0). Since ¢ is continuous on €2, there exist
Wy, wy with 0 < w, < wy < 00, only depending on ¢ and €, such that w, < w(z) < wy for all x € Q.
We then denote by L2 () the w-weighted L? space on Q.

At the discrete level, instead of discretising (1.2), we approximate the solution to (3.14). For any
K e M, we let af : Vg X Ve — R be the discrete bilinear form such that, for all p,,vg € Vi,

ai (P Vi) = (WAVKP VKUK K, (3.15)

and, classically, we let a3 : V. x Vp — R be the corresponding global discrete bilinear form obtained
by sum of the local contributions. To account for the change of variable, we let V7 5 be the space

Kgp when [T'P| > 0, and the space {QD eVp: fQ WU = 0} otherwise. The discrete problem reads:
Find p2 € V% such that

ap(p%,vp) = (from)a + (9%, ve)ry  Vup € V. (3.16)
Remark that, for pure Neumann boundary conditions with M # 0, as for Problem (2.5), letting

ng = leD, a%(gl‘g,yp) =0 for all vp € V. Letting wp € Vp be the HFV interpolate of w, i.e.,

1 1
Wi = / w VK e M, Wy 1= /w Vo € &, (3.17)
K| Jk o] Js

the approximation of the solution to Problem (1.2) is finally defined as the product u¥ := wp x 2
that is
u =wrpx VK e M, Uy = wypg. Vo eé. (3.18)

g

Remark that uy’ € V(. Reasoning as in Section 2.3, one can easily prove that, for all vp € Vp,
a$(vp, vp) = WA, [Up|T - (3.19)
This estimate is instrumental to infer well-posedness for Problem (3.16)-(3.18).

Proposition 3 (Well-posedness). There exists a unique solution uf € Vp, to Problem (3.16)-

(3.18), which satisfies |us|1p < C (HfHLg(Q) + H9N||L2(FN))’ for some C' > 0 depending on the data,
and on the discretisation D only through 0p.
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Proof. The existence/uniqueness of p € V3  solution to (3.16) (and in turn of uy € Vp ) is a
direct consequence of the coercivity estimate (3.19), and of the fact that |- [, p clearly defines a norm
on K%,o- To prove the bound on |u$ |1 p, we use the fact that uyy = wp x B%O. For all K € M,

o] o]
W T = Y 7 (@rpR —wapy)? <2 ) e (wa(pR = P2 + () (Wi — wa)?) -

cefk i cefk ’

By definition (3.17) of wp, and local stability of the HF'V interpolant (cf. [20, Proposition B.7, p = 2]
and its proof), we infer

2 2 2 2 2 2
lug |1,k < 2wy [Pl K +2(pK) Csm”VWHLZ(K;Rd)v

with Cy > 0 only depending on d and p. Since Vw = —wVe¢, ¢ € CH(Q), and w > 0, we have

HVUJHZLZ(K;RGZ) < wy SUB|V¢(«T)|2\K|WK‘
e

Summing over K € M then yields

W12 p < 263 192 p + 2 O wy 5up [V() 21930123 -
€

When |TP| > 0, Hp?SIH%i(Q) < WﬁHpﬁH%Q(Q) < wy CI%’,FD|BODO’%,D’ where we have applied the dis-

crete Poincaré inequality (A.2) to p € Kle. Otherwise, p¥ € V3 satisfies [,wpfy = 0,

and one can use [8, Lemma 5.2] to infer that |[p%|l12 ) < 2[[p%; — ﬁfﬂ Pillrz (), and finally
get that [[p%yllr2 ) < 2/wsCrw|p3|1,p applying the discrete Poincaré inequality (A.1) to p75 —
ﬁfﬁ Plp € Zﬁo. In any case, we end up bounding |uf|1p by |px|1,p, with multiplicative
constant depending on the data, and on the discretisation D only through 6p. The rest of the
proof consists in bounding \B%Oh,p, and proceeds as in the proof of Proposition 1, using that

P52 @) < 21/ 5% Crwlps |10 when [TP] = 0. O

In the sequel, the HFV scheme (3.16)-(3.18) will be referred to as “exponential fitting”. Notice that
no assumption on V¢ is needed to ensure its well-posedness since this scheme is unconditionally
coercive.

Remark 5 (Preservation of the thermal equilibrium). As for the exponential fitting scheme of [6],
the method (3.16)-(3.18) preserves the thermal equilibrium. This property is analogous to what holds
true for the TPFA Scharfetter—Gummel scheme.

3.2.2 Evolutive problem

u

We consider Problem (1.1). Following the previous strategy, letting p := =, one can show that p
equivalently solves the following transient pure diffusion problem:

wop — div(wAVp) = f in Ry x ,
p= w‘}}jg[) on Ry x P, (3.20)
wAVp-n =gV on Ry x I'V,
p(0,) = p™ in Q,

where p'" = % Following Remark 1, we consider Problem (3.20) with pjrp = 0 when ITP| >0, or
Jqwp™ = 0 otherwise (which is equivalent to consider Problem (1.1) with g” = 0or M = [, u™™ = 0).
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At the discrete level, instead of discretising (1.1), we approximate the solution to (3.20). We use
a backward Euler discretisation in time, and the HFV discretisation introduced in Section 3.2.1 in
space. The discrete problem reads: Find (B% € K%,O)nx such that

1 _
Ag M~ Pt wmoa)n + ap (P, vp) = (f vt (g7 ve)py Vup €Vpy,  (3.21a)

0
= VK € M, 3.21b

where a$, is defined (locally) by (3.15), and the approximation of the solution uf, € V. to Prob-
lem (1.1) is finally defined as up := wp X pf., i.e., according to (3.18) (with superscript n instead
of 00). Once again, because of the coercivity of a%, the scheme (3.21)-(3.18) is unconditionally
well-posed, as a straightforward consequence of Proposition 3.

Remark 6 (Pure Neumann case). When considering pure Neumann boundary conditions, and con-
trary to the stationary case, one can actually seek at each time step for a solution to Problem (3.21) in
Vp, i.e., it is not necessary to seek for a solution in the constrained space {QD eVyp: fQ Wup = 0}.
Indeed, testing (3.21a) by 1p € Vop, and using that [o, f+ [5o 9~ =0 and ap(pp,1p) = 0, one can au-
tomatically infer that [owplh, = [qwply ! for alln > 1, that is, [qwphy = [qwpS = Jou™ =M =0
foralln > 1, ie., pI € {QD eVp: [quwum = 0} (equivalently, w}, € Kg,o) for all n € N*.

3.3 Nonlinear HFV scheme

We are interested in the evolutive problem (1.1). We restrict our study to the pure Neumann case
(ITP| = 0), and to the choice of data f =0, g" =0, and u™ > 0 with M = Jo u™ > 0. Under these
assumptions, it is known that the solution u to Problem (1.1) is positive on R} x Q. Furthermore,
in long time, u(t) converges towards the thermal equilibrium Indeed, we easily verify that the
function u>® = pM e~?, where we recall that p™ =T _¢ > 0 (cf. Section 3.2.1), solves the steady

problem (1.2) with same data. Since u > 0 on R} x §, we can rewrite the flux J = —A(Vu +uV¢)
under the nonlinear form

J = —uAV (log(u) + ¢) = —uAV log (u%)

At the continuous level, introducing this nonlinearity enables to highlight the following entropy /dissipation
structure of the model at hand: testing the equation against log (u%), we get

d
FE® +D() =0, (3.22)

where

E(t) = /Q u By (Z@) and  D(t) = /Q u(t) AV log <Z&?)-Vlog (ﬁ?) (3.23)

with ®1(s) = slog(s) — s+ 1 for all s > 0. Since ®; > 0, the relative entropy E(¢) is a non-negative
quantity (as well as the relative dissipation D(¢)). The entropy/dissipation structure (3.22)-(3.23)
is instrumental to prove the exponential convergence in time of the solution u(t) to Problem (1.1)
towards the equilibrium «*°. From the above nonlinear expression of the flux J, we build a nonlinear
hybrid discretisation of the problem, leading to a scheme designed along the same principles as the
nonlinear VAG and DDFYV schemes of [10] and [9, 8]. This scheme is devised so as to ensure the
positivity of discrete solutions, as well as to preserve at the discrete level the entropy/dissipation
structure (and the long-time behaviour) of the model. The choice of designing a nonlinear HFV
scheme is driven by the prospect of the design of Hybrid High Order schemes which could have
similar features.
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3.3.1 Definition of the scheme and key properties of discrete solutions

In the sequel, a vector of discrete unknowns vy € V., will be called positive if and only if, for all
K e Mandallo €& vk >0 and v, > 0. Recall the definition (3.13) of w = e~?, as well as the
definition (3.17) of the HFV interpolate wp € V5 of w. Remark that wp is positive. If up € Vo is
positive, one can then define wp as the element of V5, such that

Ug

wg = log (ZK> VK e M, wy = log <

" ) Vo € £. (3.24)

Wo

In what follows, to emphasise the dependency of wp upon up, we sometimes write wp(up). The
definition (3.24) of wp will be justified a posteriori by (3.33). Locally to any cell K € M, we define

an approximation of
(u,v) — —/ J - Vv :/ u AV log (i> -Vu
K K U

under the form

Tr(ug, Wg, V) 1= / ri(Ug) AVrwg - Vv,
K

for all up € Vi positive and all vy € Vi, where rg : (KK): — R% is a local reconstruction
operator. Since ri(ug) is a (positive) constant on K, we have

Ti (ug, wie, ) = T (U )al (Wi, vk ), (3.25)

where a’ is defined by (2.4). Following (2.10), one can equivalently reformulate (3.25) using the
local matrix Ag defined by (2.8):

T (ug, Wr, V) = T (U ) Ok V¢ - A O W (3.26)

As already pointed out in the analysis of the nonlinear DDFV scheme of [9, 8], the definition of
the local reconstruction operator is crucial to guarantee the existence of solutions and a good long-
time behaviour to the scheme. The most natural choice in the HFV context would obviously be
ri(ur) = ug, however it turns out that such a reconstruction embeds too few information on wuz
to conclude. Therefore, we use a richer reconstruction, described below, which embeds information
from both the local cell and face unknowns. For uy € V ;- positive, we let

T (ug) = fleg| ((m(quuU))UegK> ) (3.27)

with m : (R%)? — R% and, for k > 1 integer, fi : (R%)* — R*, such that

m is non-decreasing with respect to both its variables, (3.28a)
m(z,z) =z for all z € R} and m(y,z) = m(z,y) for all (z,y) € (R})?, (3.28b)
m(Az, Ay) = Am(z,y) for all A > 0 and all (z,y) € (R})?, (3.28c¢)

y—x *\2
——— < m(z,y) < max(z,y) for all (x,y) € (RX)*, x #y, 3.28d

and
1 E
fe(z, .. xp) = k;xz or fr(x1, ... xp) = max(zq,...,2k). (3.29)

Heuristically, rx(ug) computes an average of the unknowns attached to the cell K, especially it
contains information about all the local face unknowns. As far as the properties (3.28)-(3.29) are
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concerned, they will be instrumental to prove Lemma 2 and Proposition 6 below. As now standard,
we finally let Tp be such that, for all up € V5 positive, and all vp € Vp,

Tp(up, wp,vp) = Z Tr(ug, wi,vg), (3.30)
KeM

where the local contributions Tk are defined by (3.25).
Using a backward Euler discretisation in time, and the HFV discretisation we have just introduced
in space, our discrete problem reads: Find (g% € Kp)n>1 such that

1 — n n
E(“?\A —uit vm)a + Tp(uh, wp(uh), vp) =0 Vop € Vp, (3.31a)

1 )
ufe = / u'™ VK € M. (3.31b)
K| Jk

Notice that if (u},)n>1 solves Problem (3.31), then, necessarily, u}, is positive for all n > 1. Therefore,
in the sequel, we will speak about the positive solutions to (3.31). Notice also that U?vt may vanish
in some cells of the mesh, since we only impose that u™ > 0 (but U9\4 cannot be identically zero in
Q since M > 0). Notice finally that u2 needs not be defined, as the scheme only uses “9\/1-

Testing (3.31a) with vp = 1p, and remarking that Tp(uf, wp(up),1p) = 0 for all n > 1, we
immediately infer the following discrete mass conservation property.

Proposition 4 (Mass conservation). If (uf, € KD)n21 is a (positive) solution to (3.31), then

Vn € N*, /u%:/u%:/ui”:M.
Q Q Q

Following Proposition 4, a discrete steady-state uy € V. of (3.31) shall satisfy
TD(E%O7MD(Q%O)7QD) =0 VQD S KD? (332)

and [, uSy = M. Letting w¥ = wp(ug), and testing (3.32) with vp = w3, by (3.30)-(3.25), since
ri(ug) > 0 for all K € M, we necessarily have a%(w%o,w%o) = 0, which yields |[wF|i,p = 0 by
the coercivity property (2.12). Hence, w3 = c1p for some constant ¢ € R, and since fQ oM =
M = fQ u$y, by (3.24), we necessarily have e® = 1, that is ¢ = 0 and w3 = 0. As a consequence,
again by (3.24), u¥ = Mwp, ie., u$ is the HFV interpolate of ugy. Thus, just like the exponential
fitting scheme (cf. Remark 5), the nonlinear scheme preserves the thermal equilibrium. An important
consequence of the fact that u = p™wp. Moreover, we notice that wy, defined first by (3.24) can
be modified up to an additive constant without any impact in the scheme (3.31), so that we can
redefine wp, as

—log(E) VKeM, wy=log(-Z) Voek. (3.33)

WK 0og usg ) o g s

Another important consequence of the fact that w3 is the HFV interpolate of ug}; is the following.

Letting u.® := Iﬂéﬁ > 0 and ué’o = IJSVZI% > 0 (recall that w, and wy only depend on ¢ and ), we

have u® < ugy < ugo, but we also have that
u®lp <up < uglp, (3.34)

where the inequalities shall be understood coordinate-wise. In other words, the continuous bounds
on the steady-state are transferred to the discrete level.
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Given a (positive) solution (up, € V) | to (3.31), we define the following discrete versions of
the relative entropy and dissipation introduced in (3.23): for all n > 1,

n
E" ::/ujacbl (Z@g) and D" = Tp(ulh, wh, wh), (3.35)
0 i

where we let w} = wp(u}), and we recall that ®;(s) = slog(s) — s+ 1 for all s > 0. Notice that
E™ > 0 for all n > 1 since ®1; > 0. For further use, we extend the function ®; by continuity to
0, letting ®;(0) = 1. We can then define, in case there exists K € M such that u?( =0,E">0
according to (3.35). As far as D" is concerned, by (3.30)-(3.25), for all n > 1, we have

D" = Y ric(ul)af (wie, wi) > 0.
KeM

We can now establish the following discrete counterpart of (3.22).
Proposition 5 (Entropy dissipation). If (u} € KD)n>1 is a (positive) solution to (3.31), then

En-l—l _En

Vn eN
n e N, At

+D <. (3.36)

Proof. Let n € N. By the expression (3.35) of the discrete relative entropy, and the convexity of ®1,

we have
n+1 n+1 n
u u —Uu
En—l—l _E" < § |K‘uco(1>l K K K )

KeM K

Thus, by (3.33), we get

n+1
1 1 u 1 1
BB < [ (i —u%)log(u& ) = (" — i wi e

By (3.31a) and (3.35), we finally infer
EnJrl _E™ < —At TD(E%+17M%+17Q%+1) — At ]Dn+17
which yields (3.36). O

We finally state the main result of Section 3.3, about the existence of (positive) solutions to the
nonlinear scheme (3.31). The proof of this result is the subject of the next subsection.

Theorem 1 (Existence of positive solutions). Let u'® € L%*(Q) be a non-negative function such
that fQ u™ = M > 0. There exists at least one positive solution (g% € Vp)n>1 to the nonlinear
scheme (3.31). Moreover, there exists € > 0, depending on A, ¢, u'™, M, Q, d, At, and D such that

Vn > 1, up > YVKeM and uy>e Voek. (3.37)

The uniform-in-time positivity result (3.37) on discrete solutions is the equivalent in the HF'V context
of [10, Lemma 3.7] and [9, Lemma 3.5] obtained, respectively, in the VAG and DDFV contexts.
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3.3.2 Existence of discrete solutions

The existence of discrete solutions to the nonlinear scheme (3.31) is proved in two steps. First,
we introduce a regularised scheme, for which we prove the existence of solutions by a fixed-point
argument. Then, we prove that sequences of regularised solutions satisfy uniform a priori bounds,
which allows us to pass to the limit in the regularisation parameter. Notice that our proof of existence
is based on arguments that are quite different from the topological degree arguments used for proving
equivalent results in the VAG [10] and DDFV [9] contexts. Henceforth, we reason in the w,, variable,
and we recall that up = uy x exp(wp) according to (3.33). The advantage of doing so is that we
can seek for solutions wp in the whole space Vp, with bijective correspondence with solutions wup
that are automatically positive. Recalling the definition (3.35) of the discrete relative entropy and
dissipation, and using (3.30) combined with (3.26), we let, for all wpy € Vp,

E(wa) := Z | K |ufe @ (e™X), D(wp) = Z TK(QCI)(O X exp(wK)) Orwy - Agdgwg, (3.38)
KeM KeM

in such a way that E" = E(wa(u?,)) and D" = D(wp(ulp)) for all n > 1. Using the fact that
®,(0) = 1, we extend the definition of E(wa) to the case where some wg’s are equal to —oo.

Before proceeding with the proof of Theorem 1, we state two preliminary lemmas. The first one,
that can be found, e.g., in [23, Section 9.1], is a corollary of Brouwer’s fixed-point theorem. This
result is instrumental to show the existence of solutions to the regularised scheme.

Lemma 1. Let N € N*, and let P : RV — R be a continuous vector field. Assume that there is
r > 0 such that
P(z)-z>0 if |x| =

Then, there exists a point o € RY such that P(xg) = 0 and |zg| < 7.

The second lemma, whose proof is postponed until Appendix B.1, establishes sufficient boundedness
conditions on the discrete mass and (relative) dissipation so that a priori bounds hold for vectors of
discrete unknowns. This result is instrumental to show that sequences of regularised solutions satisfy
(uniform) a priori bounds.

Lemma 2. Let wp € Vp, and assume that there exist Cy > 0, and My > M, > 0 such that
M, < ) |KluR e < M and  D(wp) < Cy. (3.39)
KeM

Then, there exists C' > 0, depending on A, up®, ué’o, M,, My, Cy, Q, d, and D such that
lwg| <C VKeM and |w,|<C Voef.

We can now proceed with the proof of Theorem 1. Let us first define the following inner product
and corresponding norm on the space Vp: for all wp,vp € Vp,

(wp,vp) = Z WKVK + Zwavo— and  |vpll :== v/ (vp, vp)-

KeM o€l

Letting N := |M|+|€|, and identifying V1, to RY, the inner product (-,-) is nothing but the standard
inner product on RY. For all K € M, and all ¢ € £k, we let, for u;, € V- positive,

Filawe) =) Y- A7 (1o (25 ) <1og (221 (3.40)

o' €€ K o’
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where the A%7" are defined by (2.8). Combining (3.25)-(3.33) with (2.9)-(2.7) and (3.40), we have
that Tk (U, Wi, Vk) = D e, FKU(uK)(vK — vgy) for all vK € V. In what follows, we let n € N*
and u'y, 1 >0 be given. We assume that M" ! : fQ u'yy 1'> 0 and that uﬁ;l > 0 if n > 1. Letting,
for any up € Vp positive, G% (up) be the element of ZD such that

G- (up) = | K| + > TR VK € M, (3.41a)
o€k

Go (up) = _(]:?(l,a(ﬂK) + FZ,IJ(ML)) Vo=K|LE€ &En, (3.41Db)

gg(gl)) = _IJIIE!,U(QK) Vo € Eeut, (341C)

we infer that, for all vp € Vp,

5 (o = 3 o) + Toup, wplup), vp) = (G(up), vp) (342

Hence, a positive vector u}, € Vp is a solution to the nonlinear equation (3.31a) if and only if
G5 (up) = 0. With this observation in hand, we now detail the two steps of the proof.

Step 1: Using the relation up = uy x exp(wyp), we define the vector field E%’“ :Vp = Vp such
that, for all wp € Vp,

P (wp) == G (uF x exp(wp)) + pwp, (3.43)
with G7, defined by (3.41) and u > 0. Notice that, unlike G%, the vector field P ™H is continuous on the
whole space Vp, for any p > 0. If wl}, € Vp satisfies BD (wlh) = 0, then letting u}, := u x exp(wp),
we have G7,(up) = 0, therefore uD is a (positive) solution to (3.31a). For p > 0, the problem of

finding wD’“ € Vp such that P (wp") = 0 can thus be seen as a regularisation of the original
problem. By (3.43) and (3.42), for all wp € Vp, we have

K]

<B%M(QD)7QD> = Z A (u%o QWK _urlz{—l) Wi
- (3.44)
+ Z ric(uf % exp(wg))dxwy - Axdrwy + pllwp|?.
KeM

By (3.38), we recognise in the second term of the right-hand side the quantity D(wp) > 0. As far
as the first term is concerned, for n > 1, by positivity of the (u’}{l) KeM, bhere exist real numbers

-1 . .
(w?(fl)KeM such that unK*1 =uP e¥x  for all K € M, and since &, is convex,

K _ K .
5 B (et = 3 < )
KeM KeM

(3.45)

where we have used the definition (3.38) of E(w m)- For n =1, now, it may happen that u% be zero
for some K € M, and then w(}( such that 19 K= UR %0 ¢Wk cannot be defined. However, letting in that
case wY := —oo0, the inequality above still holds since ®1(0) = 1 and ®1(e®) — 1 < se® for all s € R.
By non-negativity of E(wa,), we finally infer from (3.44) and (3.45) that

E(w); ")

<B%’“(wp),wp> 2 MHMDHQ - At
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E(wnfl)

so that we have <E%’“(wp),wp> > 0 if |lwpll = LAt

. By Lemma 1, we conclude about the

existence of solutions to the regularised scheme. There exists M%’“ € Vp such that

E(wi; ')
Pp'(wp”) =0 and [lwp"| < TIAL (3.46)
Step 2: Since (Pp!(wp!), wp!) =0, by (3.44) and (3.45), we have
E(w'r) E(w? 1)
D iy 2 M
)| D) + | <
The three terms on the left-hand side being non-negative, we infer that
D(w}") < Gy, (3.47)
n—1
with Cy 1= ( ) > 0. Moreover, since (Pp"(wp!), 1p) = 0, by (3.43) and (3.42), we have
Z | K |u% VK" M = AL (wp',1p).
KeM
Applying a Cauchy—Schwarz inequality, and recalling the bound (3.46), we obtain
> [KJufe eV —Mm < pA|Lp || < vy NAEE@i ),
KeM
n—1)2
so that, letting o : 41\7&%1@7()) > 0, the following holds for all 0 < p < ug:
Mn—l _— 3Mn—1
5— =M, < > K [ug es" < My = - (3.48)

KeM

Remark that if E(w%l) =0, then ) pc [K|uf e®k" = M" 1 and the inequality (3.48) remains
valid for all ¢ > 0. By (3.48) and (3.47), we infer that wp;" satisfies (3.39) for p sufficiently small with
constants that are uniform in 4, so that by Lemma 2 the family (w7 )o< <y, is bounded uniformly in
p. As a consequence, by compactness, there is w} € Vp such that, up to extraction, w%’“ converges
towards w}, when p tends to zero. Since P3" converges to B%’O as p tends to zero, we finally infer
that B%’O(m%) =0 (also, > e [ K|us eWic = M 1),

Conclusion: Letting w}, = uy x exp(wp), we have G7(up) = () therefore uf, is a (pomtwe)
solution to (3.31a). By Propositions 4 and 5, and since ]D)(w%) = D", E" is non-negative, and E" i
non-increasing in n according to (3.36), we deduce that

n E?
Y |Kug ek =M and  D(wh) < .
KeM

By Lemma 2 (recall also that u°, ug® only depend on M, ¢, and Q), there exists C' > 0, depending
on A, ¢, u™, M, Q, d, At, and D, but not on n € N*, such that —C1lp < w?, < Clp. By (3.34), we
finally infer that up > elp, with € := u® e~ ¢ > 0 still independent of n € N*. This concludes the
proof of Theorem 1.
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4 Long-time behaviour

In this section, we analyse the long-time behaviour of the three HFV schemes we have introduced in
Section 3, thereby proving the main results of this paper.

Remark 7 (Linear schemes and nonhomogeneous data). In order to stay consistent with Section 3,
we here below state our asymptotic results of Theorems 2 and 3, which respectively concern the (linear)
standard and exponential fitting schemes, for discrete problems that feature homogeneous data (i.e.,
gP = 0 when [TP| > 0, or M = 0 otherwise). Nonetheless, Theorems 2 and 3 remain valid in the
general case of nonhomogeneous data (we refer to Remark 1 for the straightforward adaptation of the
schemes to this situation). Indeed, the proofs of the latter results solely hinge on the fact that the
difference between the discrete transient and steady-state solutions belongs to the homogeneous space
Vipgor K%,w which remains true in the general case. This remark does not apply, however, to the
nonlinear scheme.

4.1 Asymptotic behaviour of the standard HFV scheme

We recall that u is the solution to Problem (1.1), and that u® is the corresponding steady-state,
solution to Problem (1.2), and we consider the following definition of the relative entropy and dissi-
pation:
1
E(t) = [[u(t) = u*|i2), D)= /QA(V(U(t) —u™) + (u(t) —uX)Ve) - V(u(t) — u™).

It can be easily verified that the following entropy/dissipation relation holds at the continuous level:

d
—E(t) +D(¢t) = 0.
() + D(Y)

At the discrete level, recalling that (g% € KD())“>1 is the solution to Problem (3.12), and that
up € Vp is the corresponding steady-state, solution to Problem (3.6), we consider the following
equivalents of the relative entropy and dissipation: for all n € N*,

1
E" = o by —ufilfay s D= ap(uh — - u).

where the discrete bilinear form ap is defined by (3.5)-(3.1). The definition of the relative entropy is
seamlessly extended to the case n = 0. Our main result on the standard HF'V scheme is the following.

Theorem 2 (Asymptotic stability). Assume that the advection field V' satisfies the conditions (3.7)
of Proposition 2, with constant 3. Then, the following discrete entropy/dissipation relation holds true:

EnJrl _ En
Vn € N, - +D"l <o (4.1)
At
Furthermore, the discrete entropy decays exponentially fast in time: there is v := 62,—’}2'1 > 0, where &

is the constant of (3.8) (only depending on A, B, Q, d, TP, and 0p), and Cp is either equal to Cpyy
if TP| =0 or to Cpro otherwise (where Cpw, Cpro are the Poincaré constants of Proposition 7),
such that

vneN,  E'<(1+vAt)TE™ (4.2)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n € N*,

luhs = uRill 2y < (1A [[ulyy = uFd |l 2 (4.3)

22



Proof. Let n € N. First, remark that

= 3 el (USRS - ) ).

KeM

Hence, we can infer that

n+l _ n+1)2 (u?()z _ n+tl _  n

KeM

Since = + 22 is convex, for all z,y € R, we have y? — 22 < 2y(y — x), therefore

E - B < > K| (ut! — ) (ut — i) = (uift = uluit = ui) (4.4)
KeMm

Now, testing (3.12a) with vj5" == uht —ugs € Vo yields
( T/t/l—H _UM’U,C\L;:_]-)Q Atap( n+1 n+l) —I-At((f, n+1) (gN g—H)I‘N)'
By definition (3.6) of the discrete steady-state u3, we also have

(f? n+1) (gN ?JFI)FN - a’D(u’D7U%+1)7

whence, by bilinearity of ap, we infer
n+1 n+1 _ n+1 n+1 n+1
(uM — Upg, Vg )Q——Atap(gp —up,vp ) —AtD

Combined to (4.4), this proves the entropy/dissipation relation (4.1). Now, since the advection field
V¢ satisfies (3.7), we can invoke (3.8) from Proposition 2 to infer that

Dn+1 n+1

> wlup™ — uF |t p,

where £ > 0 only depends on A ,3, Q, d, I'P, and 6p. Combining this estimate with a discrete
Poincaré inequality from Proposition 7 (applied to g%“ —up € Vp), and with the definition of the
discrete (relative) entropy, yields

Dl > n+1 K R+l

K
o vy MHL2(Q) - CTQD

where Cp is either equal to Cpy if \FD | = 0 or to Cprp otherwise. This last inequality, combined
with the entropy/dissipation relation (4.1), implies the entropy decay (4.2). The inequality (4.3) is
then a straightforward consequence of the definition of E™. O

4.2 Asymptotic behaviour of the exponential fitting scheme

We recall that p = 2, with w = e~?, is the solution to Problem (3.20), and p™ is the corresponding
steady-state, solution to Problem (3.14). We consider the following w-weighted definitions of the
relative entropy and dissipation:

Eu(t) = 5 o) —0* 2oy, Dult) = /Q WAV (p(t) = p) - V(p(t) - o).

It can be easily verified that the following entropy /dissipation relation holds at the continuous level:

d

ZE () +Du(t) = 0.
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Let us recall that, at the discrete level, (p% e VH 0) n>1 is the solution to Problem (3.21). We

then set up = wp x pi with wp defined by (3.17), such that up, € V. Similarly, as p75 € V3
is the corresponding steady—state solution to Problem (3.16) , we set uy = wp X pp- Then, we
consider the following equlvalents of the w-weighted (relative) entropy and dissipation: for alln € N*,

2
Ej =3 oty - Pjllzz > D= aploy =y o — p%),

where the discrete bilinear form a% is defined (locally) by (3.15). The definition of the relative
entropy is seamlessly extended to the case n = 0. Our main result on the exponential fitting HF'V
scheme is the following, whose proof is very similar to the one of Theorem 2.

Theorem 3 (Asymptotic stability). The following discrete entropy/dissipation relation holds true:
EnJrl En
Vn € N, —w @ prtl <o, (4.5)
At
Furthermore, the discrete entropy decays exponentially fast in time: there is v, := sz% > 0, where

Ay, s the coercivity constant of (2.12) (only depending on A, Q, d, and 0p), (we recall that) the
bounds wy,,wy only depend on ¢ and ), and Cp is either equal to 2Cpw if TP =0 or to Cpro
otherwise (where Cpw, Cprp are the Poincaré constants of Proposition 7), such that

VneN,  E'!<(1+u,At) 'E (4.6)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n € N*,

09} _n 00
e = w2 < 4/ ;i 1+ voAt) "2 [July — uSS |2 (0)- (4.7)

Proof. Let n € N. By convexity of z — 22, we have

En—i—l E"? — K (p}L{—H) (pVIL()Z n+1 n
w w_z‘ ’wK _pK(pK _pK)

KeM 2
< > Kk (05 (0 = plk) — pR (P — pi))
KeM
= (P = P wom (Pt = p%1)) g

Testing (3.21a) with ( ntl BD) € Vo, and using the definition (3.16) of p7¥ along with the
bilinearity of a3, we then get

ESM —EL < —Atap (o - py ot - o) = —AtDEH,

which proves (4.5). By the coercivity estimate (3.19), we infer that

DTL-‘r > wb)‘bab‘pn—i_l - pD }1 D’
where o, > 0 from Section 2.3 only depends on (2, d, and 6p, and w, > 0 only depends on ¢
and ). Reasoning as in the proof of Proposition 3, and using a discrete Poincaré inequality from

Proposition 7 (combined with [8, Lemma 5.2] in the case |[T'”| = 0), we infer that

ot = pallrz @) < v@s Celel™ = pSh,

where wy > 0 only depends on ¢ and €, and Cp is either equal to 2Cpy if [I'P| = 0 or to Cpro
otherwise. Thus, we finally get that

2wp Ap v
Dn+1 bAb bEnH
v WﬁCQ

Combined to (4.5), this yields (4.6). Deriving (4.7) is then straightforward. O
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4.3 Asymptotic behaviour of the nonlinear scheme

Recall that u > 0 is the solution to Problem (1.1) endowed with pure Neumann boundary conditions
(JTP| = 0), and data f = 0, g = 0, and ™ > 0 with M = fQ u'™ > 0, and that u® > 0, solution
to Problem (1.2) with same data, is the thermal equilibrium ugy given by (3.11). The analysis of the
nonlinear scheme relies on the entropy/dissipation structure (3.22)-(3.23) introduced in Section 3.3.
Notice that the relative dissipation (or relative Fisher information) of (3.23) can be equivalently

rewritten
D(t) = /Qu(t)Ang (ﬁ?) - Vlog (ﬁ’?) :4/Qu°OAV\/@-V\/@.

At the discrete level, recalling that (uf, € Vip), ., is a (positive) solution to Problem (3.31), and
that uy € Vp is the corresponding steady-state, solution to Problem (3.32), that is equal to the
HFYV interpolate of ugy, we consider the discrete entropy E™ and dissipation D" defined by (3.35),
and we define a discrete equivalent of the relative dissipation written in root-form: for all n > 1,

D" =4 ) u, / AVRED V€ =4 ) uf, 0k - Adgé, (4.8)
KeM K KeM

where, for all K € M, u%, := min (uf{o, mign ug") and the matrix Ag is defined by (2.8), and &n is
’ ocli -
the element of V5 such that

o= £ VKeM, =, Voet. (4.9)
uP ug

At the discrete level, and as opposed to the continuous level, the quantities D™ and D™ are not equal,
therefore we need to compare them. The definition of u$, results from the following observation:

according to the structures of D™ and ]@”, locally, we expect to have to compare ug, with rx (u),
which depends on u} and on the (u})see, -

Proposition 6 (Fisher information). There is Cr > 0, only depending on A, Q, d, and 0p such that
vn>1,  D"<CpD™ (4.10)

Proof. Let n € N*, and K € M. By (B.5) from Lemma 3, we first have that
4u}’(°7b 5K§;( . AKdKén S 4u§<o’b (5K§TIL( . BKdKénKa (4.11)

where the matrix By is the diagonal matrix defined by (B.4). Since for all (z,y) € (Ri)Q, I % =
2 (y/y — V), the Cauchy—Schwarz inequality yields

2
4(Vy — V)" < (y —2)(log(y) — log(x)).
By the property (3.28d) of the function m, we then get that

2 2 2
V(z,y) € (RY)",  4(Vy—va)” <m(z,y)(log(y) —log(z))". (4.12)
Since By is diagonal, the combination of (4.11), (4.9), and (4.12), yields

u” un ?
R, 5 €l - Agdr€l < Z R, BFE K _ .-z

o€EK uK 'LLS.O
2
ul ul u’ ul
00 oo K o K o
o€EEK K g K g
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By definition of u%,, and monotonicity (3.28a) and homogeneity (3.28c) of m, we infer that, for all

o €&k,
u u u ul
o) K o 00 K o _ n n
U M <, oo > <ux,m ( =m (uf,ul).

oo ! ,,00
U Ug Uh UKy

By definition (3.29) of fi¢,|, and the bound (2.2) on |€k|, we then have

u ul
o] K o n n n 2 n
—, — | < <|& < df .
Jaax g ,m <uoo7 u3°> raax m (up, uy) < |Ex|r(uk) < dbp ri(uj)

We deduce that

n n 2
u u
dugg, Ok &l AxOrE, < do% r(ul) Z BY <log (@(Ig) —log <u;°>>
c€EK g

= db3 ri(uf) Sxwl - Broxwh,

where w', € V- is such that uj, = u® x exp(w’,). Using again (B.5) from Lemma 3, we finally infer
that
4u§<°’b 5K§?( . AK(5K§7IL< S dQ%CB TK(QTIL() (5}(@% . AK(SKQ?{,

with Cp > 0 only depending on A, Q, d, and #p. Summing over K € M, and recalling the
definitions (4.8) of D", and (3.35) of D", eventually yields (4.10) with Cr = d6%Cp. O

The long-time behaviour of the nonlinear HF'V scheme is studied in the following result.

Theorem 4 (Asymptotic stability). Recall the discrete entropy/dissipation relation of Proposition 5.
A, /\b%um > 0, depending

CrC3 g\/Mu;

The discrete entropy decays exponentially fast in time: there is vy =
on A, ¢, M, Q, d, and 0p such that

VneN,  E"M < (14, At)7IE™ (4.13)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n € N*,

V|3

[uhg — uRillLr) < V2ME? (1 + vy At)™ (4.14)
Proof. Let n € N. By definition (4.8) of D", and from the coercivity estimate (2.12), we first infer
that
) 2
Hrtl — 4 Z u?ba}\((érgﬁ-l’é}—&-l) > 4ubooa%(§%+l’§%+l) > 4ub00)\bab‘§%+1’1’p,
KeM

which, combined with (4.10), implies that

Dn—i—l > CLDH—H > 4U|;x>)\b0lb

I CF |§%—H‘i®'

In order to compare this quantity with the entropy, we use the discrete log-Sobolev inequality (A.3)

of Proposition 8, applied to the couple (g%“,g%o) (which satisfies the mass condition owing to

Proposition 4). We get
1
Bl — [ @ UnM+ < C2o [ Mue }§n+1‘2
= MO oo | = CLs U [Sp  |1,p
Q M
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which, combined with the previous estimate, yields

Dt > dug® Ny
CFC%S ]\4ui¢>o

En+1

Combined with (3.36) from Proposition 5, this shows (4.13). The L'-norm estimate (4.14) is then a
direct consequence of (4.13) and of the Csiszdr—Kullback lemma (cf., e.g., [8, Lemma 5.6]) applied

to the probability measure p(z) dx = viy(z) dﬁx and to the function g = % m

5 Numerical results

5.1 Implementation

In this Section, we discuss some practical details concerning the implemention of the schemes de-
scribed in this paper. In all the test cases presented below, the two-dimensional domain is taken to
be = (0,1)2. The meshes used for the numerical tests are classical Cartesian, triangular, Kershaw
meshes - see for example [27] for the first three ones - and a tilted hexagonal mesh, presented on
Figure 2. These meshes have convex cells, hence we always choose xx as the barycentre of K. We

A
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(a) Kershaw mesh (b) Cartesian mesh (¢) Triangular mesh  (d) Tilted hexagonal mesh

Figure 2: Implementation. Coarsest meshes of each family used in the numerical tests.

compute the meshsize as hp = Ir(n% %, which is easier to evaluate than hp in practice. Observe
€

that hp/hp is framed by constants depending only on the regularity of the mesh. Moreover, we use a

fixed stabilisation parameter n = 1.5 (see (2.3)). In the sequel, we will denote by HMM the classical

HFV linear scheme for advection-convection, and we restrict our attention to the Scharfetter—Gummel

discretisation of the flux in (3.4), namely A(s) = =~ — 1, extended by continuity at s = 0.

es —1

5.1.1 Linear systems and static condensation

The two linear schemes (HMM and exponential fitting) are implemented in the same way. To fix
ideas, we consider the stationary problem with pure Neumann boundary condition, of unknown
u € V, and we denote by Upq € RMI and Ug € RIEl the unknown vectors (ur)kem and (Us)ses-
Testing the scheme against a basis of V', we can write the linear scheme as the following block system:

2 5 () (3
Megm Mg Us Se )’

where My € RIMIXIM|, Mume € RIMIxIEL Me pm € RIEXIMI Mg e RIEXIEL and Sy, and Se are
vectors of size |€| and | M| issued from the loading term and the boundary conditions.

By construction, the matrix M, is diagonal with non-zero diagonal entries and can therefore be
inverted at a very low computational cost. Thus, we can eliminate the cell unknowns, noticing that

Unm = Mg (Spt — M eUs) - (5.2)
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Using this relation, one shows that Ug is the solution to the following linear system
(Mg — Mg My Mpge) Us = Se — Mg My S, (5.3)

where Mp = Mg — Mg, MM/_\/%M M., the Schur complement of the matrix of (5.1), is an invertible
matrix of size |£]. In practice, we solve the linear system (5.3), using a LU factorization algorithm,
and we use the solution Ug in order to directly compute Upq from the equation (5.2). This method,
called static condensation, allows one to inverse a system of size || instead of a system of size
|€| + | M| and to get a substantial decrease of the computational cost.

For mixed Dirichlet-Neumann boundary conditions, we solve the system in the lifted unknown
up = up — g%), and we eliminate the rows and columns corresponding to the Dirichlet boundary
unknowns, since the associated unknowns are fixed to 0.

5.1.2 Exponential fitting scheme: choice of unknown and harmonic averaging

The exponential fitting scheme can be expressed in either the u or p = ue? variable. In the p variable
the resulting linear system is symmetric. One can take advantage of this property in order to improve
computational efficiency (using for example Choleski factorization or conjugate gradient method).
However, the formulation in p is also ill-conditioned. Indeed, in our numerical experiments, the ratio
between condition numbers of the linear system in p and in u exceeds 10°. Because of this issue, we
choose and recommend to solve the system in the unknown w.

In order to implement the exponential fitting scheme, one needs to evaluate averages of the

hilIVollLoo Py )

diffusion matrix |’ Py, wA. Observe that w(z)/w(zk) is of order e on Pk ,. Therefore

with large advection fields, the diffusion problem (3.14) becomes strongly heterogeneous. It is pointed

out in [6] that an (empirical) solution to improve robustness to this heterogeneity is to use harmonic

averages to approximmate integrals of the diffusion tensor. In the tests of the following subsections,

we compare the “classical” exponential fitting scheme (where the integral is approached by standard

quadrature) with the “harmonic” one, in which case we choose to use the following approximation
-1

1
/ wA = [Ep IProl | Y —= Alz),
Pg

d FEngmr (U(JUF)

where £ Pk .o denote the set of faces (or edges if d = 2) of Pk, and T is the barycentre of F.

5.1.3 Nonlinear scheme and Newton method

The implementation of the nonlinear scheme relies on the following formulation: given g%_l eVp
positive, we want to solve the nonlinear system Q%’& (up) = 0, where Q%’& is defined in (3.41), with
a step time 0t instead of At. The resolution of this system relies on a Newton method.

First, one initialises the method with max(ujy !, lp) € Vp (where the maximum is taken coor-
dinate by coordinate), in order to avoid potential problems due to the singularity of the log near 0.
In order to compute the residues, we perform a static condensation, since the linear systems have
the same structure as (5.1). As a stopping criterion, we compare the [*° relative norm of the residue
with a threshold tol. If the method does not converge after i,,,, iterations, we divide the time step
by 2 and restart the resolution. When the method converges, one can proceed to the approximation
of w5t!, with an initial time step of min(At, 25t).

The initial time step (used to compute g%)) is At. In practice, we use ¢ = 107, i,,4, = 50 and
tol = 10711,

The implementation of the non linear scheme relies on the computation of log(wg) and log(wy).

Since we use meshes such that zx is the barycenter of K, we choose to approximate ﬁ / K e ? by

e~ ?K)  Therefore, log(wk) is computed as log(e?(*x)) = —p(z ). The same holds for log(wy).

28



In the simulation showed below, we use the arithmetic means for the reconstruction defined in
(3.28) - (3.29). Therefore, for u € V and K € M,

1 1
riclu) = 5 | uK g > u,

For a discussion on other choices of reconstructions we refer to [8, Section 6.2].

5.2 Long-time behaviour of discrete solutions

In this subsection, we present some numerical illustrations of the long-time behaviour of discrete
solutions.

We start with a test case used in [10, 9, 8]. We consider homogeneous Neumann boundary
conditions (I'P = () and ¢"¥ = 0) and no loading term (f = 0). The potential and diffusion tensor

are set to ¢(z,y) = —z and A = <lw 0

0 1). The exact solution is defined by

u(t,z,y) = Cre™ 2 (21 cos(mz) + sin(wx)) + 20w em—%,

1 .
where C; > 0and o = I, <4 + 7r2>. Note that " vanishes on {x = 1}, but for any ¢ > 0, u(t,-) > 0.

The steady sate is
1
u™(x,y) =2C1me" 2.

The experiments are performed using the following values:
l, =102 and C; = 107"

We compute the solution on the time interval [0,7%] and we denote by (u})i<n< Ny+1 the corre-
sponding approximate solution. Note that the number of time steps Ny may differ between linear
and nonlinear schemes, because of the adaptive time step refinement procedure for the nonlinear
scheme.

We set Ty = 350 in order to see the complete evolution. Since the long-time behaviour of the
schemes does not depend on the size of the discretisation, we can explore the evolution using a large
time step, At = 107!, We perform the numerical experiments on two Kershaw meshes (see Figure
2a) of sizes 0.02 and 0.006. On Figure 3, we show the L' distance between u} and u*> (the real
steady state) computed as

> IKJufe — u (k).

KeM
We observe the exponential decay towards the steady state, until some precision is reached. Note
that for the HMM scheme, some saturation occurs at precision of magnitude 1076 and 10~7 : the
scheme does not preserve the thermal equilibrium (see Remark 3). This saturation corresponds to
the accuracy of the stationary scheme (see next subsection), so the threshold is lower on the refined
mesh. Note that one could also consider Z |K||uf — u%|, which measures the error between the

KeMm
discrete solution and the discrete steady state : this quantity decays exponentially, with a lower

saturation of magnitude 10712, The other schemes (nonlinear and exponential fitting) have the same
decay rate, and the saturation occurs at the machine precision. For the four schemes, the rates of
convergence observed are similar to the real one. Especially, the use of harmonic averages in the
exponential fitting scheme does not have impact on the long-time behaviour.

29



—@— Nonlinecar —— HMM —@— ExpF —%— ExpF (harmonic) —4— e~ @t

’ —@— Nonlinear —— HMM —@— ExpF —%— ExpF (harmonic) —4— ¢~ %t

=
& =
B 100 1 g wf .
iz -
z 3
=}
S 10 1% 1wt 1
© )
) ~
ﬁ +
= g
© 107 | 1 g 107 :
3 3
s 2
o 1072 1 S| 1
O g
3 £
;U 10716 |- B Tq 10716 |- N
~ 0 100 200 300 0 100 200 300
Time Time

Figure 3: Long-time behaviour of discrete solutions. Comparison of long-time behaviour on
Kershaw meshes, for Ty = 350 and At = 0.1.

5.3 Positivity of discrete solutions

We are now interested in the positivity of the discrete solutions. Here, we use a test case with
anisotropic diffusion, and homogeneous Neumann boundary conditions. We set I'P? = (), f = 0,
N

g =0,

p(z,y) = — ((z — 0.4)* + (y — 0.6)*) and A = (068 (1]) .

For the initial data, we take '
™ =107 15+ Lo\ 5,

where B is the Euclidean ball {(z,y) € R? | (z — 0.5)> 4 (y — 0.5)* < 0.2%}. These data ensure that
the solution w is positive on R4 x €. The experiment is performed on a tilted hexagonal mesh (see
Figure 2d) of size 4.3 - 1073, made up of 4192 cells and 12512 edges. Since we deal with a diffusive
phenomenon, the smallest values of u are observed for a small time, so that we perform the simulation
with a relatively small final time T = 5.107%, alongside with a time step of At = 1075,

The results are presented on Table 1. The cost is defined as the number of linear systems solved
in order to compute the solution (u})i<n< Ns+1, and the minimum values mincells and minfaces are

defined as
min{uy [1<n < Np+1, K€ M} and min{u; |[1<n < Ny+1, 0 €&}.

As expected, the nonlinear scheme has positive discrete solutions, whereas the linear ones exhibit

cost | mincells | minfaces | # negative unknowns
Nonlinear 175 | 9.93e-04 | 7.36e-04 0
HMM 50 -5e-03 | —7.74e-02 5.93e+02
ExpF 50 | -4.98e-03 | -7.72e-02 5.90e+02
ExpF (harmonic) | 50 | -4.98e-03 | -7.74e-02 5.88e+-02

Table 1: Positivity of discrete solutions. Numerical results for Ty = 5.1074, At = 107° on a
tilted hexagonal mesh. At each time step, there are 4192 cells unknowns and 12512 faces unknowns.
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a default of positivity (the value of 7 seems to have some influence over the positivity, see [24]).
Note that the use of harmonic averages for the exponential fitting scheme has no impact on the
undershoots.

We observe that the nonlinear scheme requires approximately 3.5 times more linear system inver-
sions than the linear schemes. However, this value depends strongly on the final time of simulation
Ty. Indeed, the number of linear systems solved at the step n decreases when n increases. The first
iteration costs 9 resolutions, but this number rapidly decreases as the solution approaches the steady
state (the second and the third iterations respectively cost 5 and 4 resolutions).

5.4 Accuracy of stationary solutions

In this subsection, we aim to exhibit the convergence rates of the different schemes for the stationary
problem, in order to compare their respective accuracy. To do so, we define the L? and H! errors to
be the corresponding norm of the difference between the discrete solution up and the projection of
the continuous solution Ipu := ((u(zk)) K, (u(ZTy))s) divided by the norm of I pu.

The nonlinear scheme is extended to a more general setting in order to take into account a loading
term f > 0 and mixed Dirichlet-Neumann boundary conditions with g” > 0 and g% > 0. The scheme
writes

find up € Vp positive such that G, (up) = 0, (5.4)

where G, : (R, YMIFIEL 5 Vo is the vector field defined by

VK € M, Gr(up) = Y Frolug) / 1, (5.5a)
€€k
Vo = K|L € Eint, Go(up) = — (Fr.o(ur) + Frolug)), (5.5b)
Vo € EN,, Golup) = /gN — Fro(ug), (5.5¢)
o & 80 Golup) = 1 / o, (5.5d)
VK € MYo € Ex, Frolug) =r"(ug) > A% (log(uk) + d(zx) — log(us) — ¢(x)). (5.5€)
o'efk

The implementation of this scheme still relies on a Newton method similar to the one used for the
evolutionary scheme. It is initialised with a discretisation of the thermal equilibrium e~?.

The first test case is the same as in [4]. It is an isotropic problem, with A = I, TV = (),
¢(z,y) = —(2z + 3y) and the exact solution is

u(z,y) = (:U — eQ(x_1)> (y — e3(y_1)) ,

the other data are set according to this exact solution. Note that for this test case, the diffusion and
advection terms are of same order. The numerical experiments are performed on triangular meshes.

In Figure 4, we show the convergence results. As expected, the two linear schemes are of order
two in L? norm, and one in H' norm. The same holds for the nonlinear scheme, whose accuracy
seems to be rather the same as the classical HMM scheme. On this test case, the use of harmonic
averages for the exponential fitting scheme does not have a significant impact.

The second test case is a advection-dominated problem, with anisotropic diffusion and mixed
Dirichlet-Neumann boundary condltlons We set I'P = ({0} x [0,1]) U ({1} x [0,1]), TN = ([0, 1] x
{0} u([0,1] x {1}), g” =1, ¢" =0 and f = 0. The diffusion tensor and the potential are defined
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Figure 4: Accuracy of stationary solutions. Errors in L? and H' norms for the first test case,
on triangular meshes.

by the following expressions
10 1
A= (O ly) and ¢(z,y) = log <v + :U> ,

v
with v > 0. Note that the advection field —AV¢ = <1BW ) has a norm of order v when x is
small. Thus, near {0} x [0, 1], the problem is advection dominated if v is big enough. Moreover,
2

—div(AVe) = (1:1):5)2 > (), so the problem is coercive. The explicit solution is given by

( ) v 2ux 1+x +1
u(z,y) = 4= =,
Y l4+wve \24+v \v 2 v

We perform the numerical experiments on Cartesian meshes, with

l, = 100 and v = 200.

The results are presented on Figure 5. They show that the HMM scheme exhibits an order of
convergence inferior to one in H' norm and two in L? norm. This deteriorated convergence appears
because the advective term predominates over the diffusive term, at least in some part of the domain.
The other schemes are of order one in H' norm and two in L? norm. Moreover, on this test case,
their effective accuracy is better than that of the HMM scheme on refined meshes.

Note that, by the expression of the potential, w = e™® = ) fm will have small variations on the
cells even if v is big. Therefore, the diffusion tensor wA of the problem in the p unknown for the
exponential fitting schemes is not too heterogeneous (locally). It could explain the performance of
the exponential fitting schemes in this case. Moreover, on this test case, using harmonic averages
in the exponential fitting scheme gives a substantial gain of accuracy for both L? and H' relative

errors, of magnitude 10!,
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Figure 5: Accuracy of stationary solutions. Errors in L? and H! norms for the second test case,
on Cartesian meshes.

6 Conclusion

In this paper, by means of discrete entropy methods, we have analysed the long-time behaviour of
three hybrid finite volume schemes for linear advection-diffusion equations. We have proved that the
solutions to all schemes converge exponentially fast in time towards the associated discrete steady-
states. Two schemes among the three are new, that are the (linear) exponential fitting scheme
(adapting known ideas to the HFV context) and the nonlinear scheme, for which we have proved
the existence of solutions. All schemes can handle anisotropy and general meshes. The two linear
schemes can deal with general data and mixed Dirichlet-Neumann boundary conditions, however
they do not preserve the positivity of solutions. On the other hand, the nonlinear scheme preserves
positivity and can be used in practice with general boundary conditions. However, at the moment,
its analysis is limited to systems that converge in time towards the thermal equilibrium, restricting
the admissible data. We have finally validated our theoretical findings on different numerical tests,
assessing positivity, long-time behaviour, and spatial accuracy of the schemes.

A Discrete functional inequalities

A.1 Discrete Poincaré inequalities

We recall the hybrid discrete Poincaré inequalities (cf. [20, Lemmas B.25 and B.32, p = 2]).

Proposition 7 (Discrete Poincaré inequalities). Let D be a given discretisation of Q, with reqularity
parameter Op. There exists Cpy > 0, only depending on Q, d, and 0p such that

Vup € V3o, lvmllzz) < Cpwlvplip- (A.1)

Assume that |T'P| > 0. Then, there exists Cprp >0, only depending on €2, d, I'P, and 0p such that

Vup € VB, lvamllzz@) < Cprolvplip. (A.2)
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A.2 A discrete logarithmic Sobolev inequality

Adapting to the hybrid setting the arguments of the proof of [8, Proposition 5.3] (in turn based on
the proof of [8, Theorem 5.1]), we prove a hybrid discrete log-Sobolev inequality.

Proposition 8 (Discrete logarithmic Sobolev inequality). Let D be a given discretisation of 2, with
reqularity parameter Op. Let vp, v € Vp be two positive vectors of unknowns such that

/UM:/U?\?[:ZM,
Q Q

and set vy, i= sup V. Define &, as the element of V.p such that

KeM
L VK L Vo
o= fix VKeM gm0 voes

There exists Cpg > 0, only depending on 2, d, and 0p such that

UM 2/ 00 2
/{;’U?\jq)l (1].(/)\%) S CLS M,UM,ﬁ ’§,D}1,,D, (AB)

where we recall that ®1(s) = slog(s) — s+ 1 for all s > 0.

Proof. By [8, Eq. (5.7)] applied to the probability measure p(x)dz = vy () dﬁx and the function

[ = /& = &m, we first infer that
M

VM 12
1 — ) <8,/ Mv% -
/QUM og <v?\?t> < mllw §MHL4(Q)’

where we let &y = ﬁ fQ Erm- The conclusion then falls in two steps. On the one hand, since
Joom = [ v, we remark that

oo UM UM
/ 'UM(b]_ (OO) = / VM 10g (OO> .
Q Vaq Q Vaq

On the other hand, we invoke the following hybrid discrete Poincaré—Sobolev inequality (cf. [20,
Lemma B.25, p =2, ¢ = 4]):

Vwp € Vi, lwmll sy < Cpslwplip,

where Cpgs > 0 only depends on €, d, and 6p, that we apply to wp = §p— Emlp € Kg’o. This
proves (A.3) with Crs = 2v/2Cpg. O

B Proofs of technical results

B.1 Discrete boundedness by mass and dissipation
We prove Lemma 2 from Section 3.3.2. To ease the reading, we first recall the result.

Lemma 2. Let wp € Vp, and assume that there exist Cy > 0, and My > M, > 0 such that

M, < Y |KuFe’ <My and  D(wp) < Cy. (3.39)
KeM

Then, there exists C > 0, depending on A, u®, ui’o, M,, My, Cy, Q, d, and D such that
lwg| <C VK eM and |w,|]<C Voek.
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Proof. For K € M, using (2.10) and (2.11), we first infer that

o]

2
OkWr * Agdrwy = a?{(MKaMK) > )\bab@Kﬁ,K = A, Z (wK - wa) .

oefk Ko

lo|

hd_2
P > 5{7 for all o € £k, so that

By definition (2.1) of the regularity parameter 6p, we have that

Ao g
Sxwy - AgSgwpe > %h;f( 2|6 cwp|?. (B.1)

By the expression (3.38) of D(wp), and the local lower bound (B.1), we thus get

D(wp) = > ri(uf x exp(wy))dxwy - Axdxwy
KeM
Ap @y
Op

v

S R (w5 X exp(wy)) Oxwy |
KeM

=0 Do D i (uR x exp(wy)) (wie — w,)*.
D KeMoelk

Let K € M and o € £k be fixed. Using, successively, the definition (3.27) of rx combined with the
definition (3.29) of fi¢, |, the combination of (3.34) with assumptions (3.28a) and (3.28c), and the
assumptions (3.28b) and (3.28d) combined with the bound (2.2) on |Ex|, we infer, for w, # wg,

1

TK(Q?? X exp(wK))(wK —wy)? > @ m(u?{o e K uX e )(wK — We)

2

and we verify that this inequality still holds when w, = wg. Since D(wp) < Cy by (3.39), for all
K € M, and all o € £k, we have

0 < (K —e") (wx — wo) < Ch37Y, (B.2)
with ¢ = /\igiﬁg@ > 0 (recall that o, depends on €, d, and 0p). Besides, since )~ e v |[K|ug €K <
M; again by (3.39), for all K € M, we have |K|u® e"kX < My for all K € M. Similarly, since

> rem [ K[uF e > M, there exists Ko € M such that [Qu3 e“%o > M,. Combining these
bounds, we infer that there exists Ky € M such that

M, M,
1 — | < < I . B.
Og(mrugo) = Ko < °g<|f<o|u;°> (5:5)

Now let us show that we can similarly frame all the other components of wyp.

For a,z € R, let us define E(a,z) = (e* —e®) (z —a). Observe that E(a,z+a)e”® = (e* — 1)z =:
£(x) and that ¢ is strictly convex, minimal at = 0 and £(x) — 400 when & — +o0o. Let b,ay > 0
and take |a| < ag. By the properties of £, if E(a,z) < b then |z| < ky(ay) = ay + max{|z| s.t. 0 <
&(x) < be™}. We can thus infer that if (x)r—o..m is a finite sequence of real numbers such that
E(xy, xp41) < band |zo| < ay, then |z,,| < K}gm) (ay) where ﬁl()m)
the bound depends only on ay, m and b.

is m compositions of k. In particular
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Now we can conclude. Because of the connectivity of the mesh, for any cell K (resp. face o) there
is a finite sequence of components of wp, denoted (xj)k—0..m, starting at g = wg, and finishing
at T, = wg (resp. T, = ws) such that, by (B.2), E(zk, vx41) < b:= (h%_d. The inequality (B.3)
yields the initial bound on |zy|, and one concludes by the above argument.

O

B.2 A local comparison result

We prove a local comparison result between the matrices Ax and some (local) diagonal matrices.
The proof relies on arguments that are similar to those advocated in [10] to analyse the VAG scheme.

Lemma 3. For K € M, let Ag € RIEKIXIEK] be the matriz defined by (2.8). The matrices A are
symmetric positive-definite, and there exists C4 > 0, only depending on A, Q, d, and 0p such that

VK € M, COHdQ(AK) < Cy,

where Conda(Afc) := ||AR |2]|Ak]2 is the condition number of the matriz Ax. Moreover, letting for
K € M, Bg € RIEIXIEL] pe the diagonal matriz with entries
= > JA¥|  forallo € &k, (B.4)
o'efk

there exists Cg > 0, only depending on A, Q, d, and 0p such that
VKGM,VwG]R'gK', w-Agw <w- -Bgw < Cpw-Agw. (B.5)

Proof. Let K € M and k := |E|. As direct consequence of its definition (2.8), the matrix Ax € RF**
is symmetric and positive semi-definite. Now, let w := (wy),ce, € R¥, and define vy € Ve such
that

v =0 and Ve = —W, for all o € Ek.

Then, vy = (VK — Vo )oecs, = w. By (B.1), we immediately get that

Ay

9 hd 2|‘

w - Agw >

which implies, since w € R¥ is arbitrary, that Ag is invertible, and gives us a lower bound on its
smallest eigenvalue. By the same arguments advocated to prove (B.1), noticing that % < 9@h§?2

for all o € £k, we infer that
w-Agw < /\ﬁauﬁph?{_2|w\2.

We eventually get, using the estimates on the eigenvalues of A, that

A

Condy(Ag) < 222802 = Oy, (B.6)

by

with C4 > 0 only depending on A, Q, d, and 6p. Now, by (B.4), since Ag is symmetric, we have
weBrw= ) > AR |wp= D > AR up,
€€k o'e€fk €€k o'e€k

and we can use the half-sum to get

w-Brgw = Z Z |A‘m/]w +w

o€l o'EEK
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Using Young’s inequality, we infer

wohgw= 3 Y AR wewer < D AR ||wol[we

o€l o' EEK o€l o'EEK
2 2
WS 4w
<X Y AR s Bew
o€l o'€€K

For the second inequality, by symmetry of Ag, we have

w-Brw= Y BFw; < max(BF) > wi=max | > [AZ|| |[w]® = [Axl|w]*.

oc€lK o€k

O‘ESK O‘EEK O”GSK
The space R¥*F being of finite dimension, the norms || - ||; and || - ||2 are equivalent, and there exists
v, > 0 such that || - ||1 < 7% - ||2. Moreover, since Ak is (symmetric) positive-definite, the following

inequality holds:

HAKH? 2
<A > =
w-Agw > Condy( )|w|

From the previous estimates and (B.6), we deduce that

w - IB%Kw < Yk COHdQ(AK) w - AKU) < Yk CA w - AKU).

But, according to (2.2), we have maxvy; <  max -+, therefore
KeM (d+1)<i<db?,

w-Brw < Cpw - Agw,
where Cp = C4  max 7 is a positive constant only depending on A, €2, d, and #p. This completes

(d+1)<I<db?,
the proof of the comparison result (B.5). O
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