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Abstract: Fresh produce is often a source of enterohaemorrhagic Escherichia coli (EHEC) outbreaks.
Fimbriae are extracellular structures involved in cell-to-cell attachment and surface colonisation.
F9 (Fml) fimbriae have been shown to be expressed at temperatures lower than 37 ◦C, implying a
function beyond the mammalian host. We demonstrate that F9 fimbriae recognize plant cell wall
hemicellulose, specifically galactosylated side chains of xyloglucan, using glycan arrays. E. coli
expressing F9 fimbriae had a positive advantage for adherence to spinach hemicellulose extract and
tissues, which have galactosylated oligosaccharides as recognized by LM24 and LM25 antibodies.
As fimbriae are multimeric structures with a molecular pattern, we investigated whether F9 fimbriae
could induce a transcriptional response in model plant Arabidopsis thaliana, compared with flagella and
another fimbrial type, E. coli common pilus (ECP), using DNA microarrays. F9 induced the differential
expression of 435 genes, including genes involved in the plant defence response. The expression of F9
at environmentally relevant temperatures and its recognition of plant xyloglucan adds to the suite of
adhesins EHEC has available to exploit the plant niche.

Keywords: Escherichia coli; host–microbe interaction; bacterial adhesion; fimbriae; glycan array;
xyloglucan; plant defence; ELISA; immunofluorescence microscopy

1. Introduction

Enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7 are responsible for food-borne
diseases including haemorrhagic colitis or life-threatening complications, such as haemolytic uremic
syndrome (HUS) [1], and are frequently associated with outbreaks linked to fresh produce [2].
A large-scale outbreak in Japan was directly linked with consumption of radish sprouts contaminated
by a strain of EHEC O157:H7 Sakai [3].

To efficiently colonise tissues or surfaces, bacteria need to adhere via proteinaceous structures on
the cell surface, termed adhesins [4]. Type 1 and P fimbriae are the best characterized structures and
belong to a large family of bacterial adhesins, defined by their secretion mechanism, the chaperone-usher
pathway (CUP). The CUP is well conserved in Gram-negative bacteria. The receptor-binding adhesin
occupies the distal end of the fimbrial organelle and connects the adhesin to the terminal major subunit
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protein. Fimbrial adhesins mediate binding to specific ligands over a lectin domain [5]. Type 1 fimbriae
adhesin (FimH) binds to mannosylated receptors (α1-3 mannan) via N-linked glycans [6]. FimH can be
expressed at low temperatures, compatible with plant growth, and has been shown to target mannose
containing polysaccharides and N-glycans from plants [7]. Similarly, Yad fimbriae from E. coli K-12 and
E. coli common pilus (ECP) are expressed at a low temperature and mediate binding to plant cell walls
via xylose and arabinans, respectively [8,9]. Phylogenetic analysis of E. coli identified another CUP
gene cluster, F9 fimbriae (also known as Fml/Yde), as part of the γ1 fimbrial subclade, which formed a
monophyletic cluster with type 1 fimbriae, suggesting that they originated through gene duplication
from a common ancestral operon [10].

The F9 gene cluster is not ubiquitous in E. coli and is restricted to three main groups: (i) present in
isolates in the same gene cluster organisation as EHEC Sakai; (ii) present in the environmental isolate
E. coli SMS-3-5, although this version does not share the same putative adhesin; and (iii) present in
ExPEC and described for UPEC (isolate CFT073), with a different regulatory organisation compared with
the EHEC cluster-type that contains an apparent insertion and different transcriptional regulator [11].
Unlike some other adhesin gene clusters (e.g., Pap), the EHEC F9 cluster is not associated with insertion
into tRNA sites (as determined by Island Viewer 4 [12]), and is thus likely to have arisen through
recombination. F9 fimbriae was first described for EHEC to play a role in adhesion on bovine epithelial
cells [13] and later in biofilm formation for Uropathogenic Escherichia coli (UPEC) [14]. F9 expression
has been shown to occur at low temperatures (around 20 ◦C) [11,15]. F9 fimbriae mediate adhesion
to terminal d-galactose linked in β1-3 with a residue of N-acetyl d-glucosamine (Galβ1-3GlcNAc)
sequence, also defined as type 1 N-acetyllactosamine (LacNAc type 1) [11]. Terminal LacNAc type 1
has been found in core-1 and -2 O-glycans of inflamed urothelium, associated with UPEC persistence
during chronic cystitis in an acute mouse model of cystitis. Furthermore, vaccination with FmlH was
shown to protect mice from chronic cystitis [16].

In contrast to animal cells, plant cells are surrounded by a polysaccharide-rich wall. These walls
consist mainly of cellulose, non-cellulosic polysaccharides including pectins, hemicelluloses,
and proteoglycans, and in the case of secondary walls, lignin. Hemicelluloses are structural
components of walls, usually branched [17] and divided into four general groups depending on
backbone composition; that is, xylans, mannans, mixed linkage β-glucans, and xyloglucans [18].
Xyloglucans are the most abundant hemicelluloses of primary cell walls from higher plant species [19].
The structure-based nomenclature for xyloglucan-derived oligosaccharides describes the attachments
to the backbone: unbranched glucosyl residue is denoted G; a glucosyl residue linked to a single xylose
is denoted X; and, when linked to a disaccharide of βGal1, 2αXyl is denoted L, e.g., XXXG stands for
three consecutive glucosyl residues with xylose attached and a fourth unbranched residue [20].

Plants perceive microbes via microbe-associated molecular patterns (MAMPs), sometimes also
termed pathogen-associated molecular patterns (PAMPs). MAMP recognition is the basal defence and
can lead to more specific responses involving plant R (resistance) proteins, which recognize intracellular
pathogen effectors (reviewed in [21]). Bacterial flagella are almost ubiquitous and the flagellin monomer
is a potent (and well-described) MAMP [22,23]. Other bacterial MAMPs include elongation factor Tu
(EF-Tu) [24], peptidoglycan [25], cold shock proteins [26], and lipopolysaccharide [27] (all reviewed
in [28]). As yet, fimbriae have not been described to elicit an immune response in plants, but have been
heterologously expressed in plants for animal vaccine candidates [29,30].

Here, we demonstrate that F9 from EHEC O157:H7 strain Sakai can bind to spinach tissues through
hemicellulose polysaccharide harbouring galactose. We also show that F9 fimbriae invoke a host
response in Arabidopsis thaliana that is distinct from the response to either H7 flagella or ECP fimbriae.
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2. Results

2.1. F9 Description

The f9 gene cluster of EHEC Sakai (Figure S1; Genbank # BA000007.3) does not include a canonical
in cis transcriptional regulator, as the open reading frame (ORF) upstream of the main structural subunit,
fmlA (ECs2113), is an incomplete allele of hipA without its cognate partner hipB, a toxin/antitoxin
system [31,32]. However, a cryptic CDS (ECs2114) is located between hipA and fmlA that belongs
to the AraC-like regulator family, containing the HTH_18 superfamily domain, and is present as
a hypothetical gene in the equivalent EDL933 genome (z2199). The Sakai and EDL933 amino acid
sequences of the Z2199 regulators are 100% conserved, as are the 5′-untranslated regions (UTRs),
but with two potential start codons.

2.2. F9 (Regulator and FimA-Like) GFP+ Transcriptional Fusion Expression In Vitro

F9 reporter plasmid-transformed EHEC Sakai were grown under conditions to indicate potential
catabolite control (i.e., glucose ‘vs.’ glycerol) and at a plant-relevant temperature of 18 ◦C, compared with
37 ◦C (Figure 1). The putative regulator ECs2114 reporter showed minimal expression in both
media types and temperatures, although there was some evidence for higher expression at 37 ◦C
(230 ± 144) compared with 18 ◦C (101 ± 64). The translational fusion of fmlA was induced compared
with the transcriptional fusion, for all conditions except glucose, at 37 ◦C. There appears to be
temperature-dependent translational control of fmlA, as expression was at least sixfold higher at 18 ◦C
(glucose = 15,777 ± 1628; glycerol = 8322 ± 942 average ± SD).
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Figure 1. Expression of F9 transcriptional and translational fusions in vitro in defined media.
Enterohaemorrhagic Escherichia coli (EHEC) Sakai carrying plasmids with the 5′UTR of fmlA (pAH010;
open triangles) or putative regulator ECs2114 (pAH011; open circles) cloned upstream of gfp+ or 5′UTR
with 5 aa CDS of fmlA (pACloc8; closed triangles) cloned upstream of egfp. Bacteria were grown in
rich defined (RD)-MOPS glucose or glycerol at 37 ◦C or 18 ◦C shaking for 24 h. Values plotted are
corrected for background fluorescence from the promoterless reporter plasmid and normalized for
OD600. Plasmids are described in Table 1.

2.3. Functional Analysis of EHEC F9 Fimbriae

2.3.1. Recognition of Plant Glycans

In order to identify any potential plant–ligand binding targets for F9 fimbriae, a high-throughput
screen using plant glycan arrays (polysaccharide and oligosaccharides) was used, as previously for
ECP fimbriae [8]. F9 organelles were overexpressed and purified from E. coli strain JT-1 (Figure S2).
Purified F9 fimbriae interacted with galactosylated xyloglucans, but not fucosylated xyloglucans (FLX)
(Figure 2A, blue box). They also bound to oligosaccharides XLX and LLX, but not with XXX (Figure 2A,
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red box). The binding overlapped with glycan specific antibody LM15 (anti-xyloglucan, Figure 2B),
confirming xyloglucan epitopes on the array.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 20 

 

(Figure 2A, red box). The binding overlapped with glycan specific antibody LM15 (anti-xyloglucan, 
Figure 2B), confirming xyloglucan epitopes on the array. 

 
Figure 2. Plant oligosaccharide and polysaccharide interactions with F9. (A) Plant glycan arrays 
(approx. 2.5 cm × 2.5 cm) comprising 81 plant carbohydrates probed with purified F9 detected with a 
specific anti-F9 antibody on ECL film. Areas with positive interactions are highlighted: red box is 
BSA-conjugated xyloglucan oligosaccharide, black circles show respective glycan position on the 
array, and blue box is xyloglucan polysaccharide. The glycans are arranged as described in the 
Material and Methods; refer to Table 2 for details. (B) Glycan arrays probed with anti-xyloglucan 
antibodies LM15. All glycan symbol structures were made using software DrawGlycan-SNFG [33]. 

2.3.2. Interaction with Spinach Hemicellulose Extract and Tissues 

Xyloglucan motifs were differentially distributed in the leaves compared with roots for spinach, 
a horticultural plant relevant to EHEC foodborne outbreaks, such that there were greater levels of 
XXXG in root (LM15 and LM25) compared with leaf hemicellulose-enriched extracts (Figure 3A). In 
contrast, there was more XLLG (LM24) in spinach leaf compared with root extracts. E. coli (JT-1) 
overexpressing F9 (pASL04) adhered significantly better to leaf hemicellulose extract compared with 
the vector only control (pBAD18). Overexpressing F9 did not provide a significant advantage for 
adherence to root extracts, but did show a positive trend (Figure 3B). A defined mutant of the main 
F9 structural subunit in EHEC Sakai (fmlA/ECs2113) was constructed to test a functional role for 
adherence (Figure 3C). EHEC Sakai lacking the F9 fimbriae were recovered from spinach leaf and 
root tissues at a significantly lower rate compared with the isogenic parent (one-way analysis of 
variance (ANOVA); Dunnett’s multiple comparison test), although the decrease was small. 
Adherence was restored to WT levels in the F9 mutant complemented with a low copy plasmid 
containing fmlA sequence (pAH012). The average number of F9 mutant with the empty control vector 
recovered from spinach leaves (Figure 3Ci) was significantly different from the WT, but not the 
complemented strain (pAH012) (one-way ANOVA; Dunnett’s multiple comparison test). Thus, there 
was an increase in the average number of bacteria recovered from spinach leaves in the presence of 
FmlA (ECs2113). The positive effect was not significant on spinach roots because transformation of 
the mutant strain with either plasmid increased the number of bacteria recovered (Figure 3Cii). This 
may be down to artefactual effects from the plasmid transformation; expression variation of fmlA 
from the low-copy vector, or a combination of both. Bacteria resistant to ampicillin and/or tetracycline 
were not recovered from uninfected control plant tissues. 

Figure 2. Plant oligosaccharide and polysaccharide interactions with F9. (A) Plant glycan arrays
(approx. 2.5 cm × 2.5 cm) comprising 81 plant carbohydrates probed with purified F9 detected with
a specific anti-F9 antibody on ECL film. Areas with positive interactions are highlighted: red box is
BSA-conjugated xyloglucan oligosaccharide, black circles show respective glycan position on the array,
and blue box is xyloglucan polysaccharide. The glycans are arranged as described in the Material and
Methods; refer to Table 2 for details. (B) Glycan arrays probed with anti-xyloglucan antibodies LM15.
All glycan symbol structures were made using software DrawGlycan-SNFG [33].

2.3.2. Interaction with Spinach Hemicellulose Extract and Tissues

Xyloglucan motifs were differentially distributed in the leaves compared with roots for spinach,
a horticultural plant relevant to EHEC foodborne outbreaks, such that there were greater levels of
XXXG in root (LM15 and LM25) compared with leaf hemicellulose-enriched extracts (Figure 3A).
In contrast, there was more XLLG (LM24) in spinach leaf compared with root extracts. E. coli (JT-1)
overexpressing F9 (pASL04) adhered significantly better to leaf hemicellulose extract compared with
the vector only control (pBAD18). Overexpressing F9 did not provide a significant advantage for
adherence to root extracts, but did show a positive trend (Figure 3B). A defined mutant of the main
F9 structural subunit in EHEC Sakai (fmlA/ECs2113) was constructed to test a functional role for
adherence (Figure 3C). EHEC Sakai lacking the F9 fimbriae were recovered from spinach leaf and root
tissues at a significantly lower rate compared with the isogenic parent (one-way analysis of variance
(ANOVA); Dunnett’s multiple comparison test), although the decrease was small. Adherence was
restored to WT levels in the F9 mutant complemented with a low copy plasmid containing fmlA
sequence (pAH012). The average number of F9 mutant with the empty control vector recovered from
spinach leaves (Figure 3Ci) was significantly different from the WT, but not the complemented strain
(pAH012) (one-way ANOVA; Dunnett’s multiple comparison test). Thus, there was an increase in
the average number of bacteria recovered from spinach leaves in the presence of FmlA (ECs2113).
The positive effect was not significant on spinach roots because transformation of the mutant strain
with either plasmid increased the number of bacteria recovered (Figure 3Cii). This may be down to
artefactual effects from the plasmid transformation; expression variation of fmlA from the low-copy
vector, or a combination of both. Bacteria resistant to ampicillin and/or tetracycline were not recovered
from uninfected control plant tissues.



Int. J. Mol. Sci. 2020, 21, 9720 5 of 20
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 20 

 

 
Figure 3. Functional analysis of F9 adherence to spinach extracts and tissues. (A) Enzyme linked 
immuno-sorbent assay (ELISA) of hemicellulose extract from spinach leaves (SLs) and roots (SRs) 
screening with three hemicellulose probes. (B) Bacterial adhesion of E. coli expressing F9 (pASL04) or 
not (pBAD18) on hemicellulose enriched polysaccharides from spinach roots (SRs) and leaves (SLs). 
Data shown from two independent experiments (mean ± SD; students t-test, ** p < 0.005, *** p ≤ 0.0001, 
NS = not significant). (C) Bacteria were incubated on spinach leaves (i) or roots (ii) for 2 h in PBS. The 
number of recovered bacteria was significantly reduced for Sakai lacking F9 fimbriae on both spinach 
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The preliminary results demonstrated labelling only with LM25, and thus tissue was subsequently 
pre-treated with pectate lyase in case pectin in the cell wall masked the hemicellulose epitopes. LM25 
shows the greatest labelling of the spinach leaf abaxial epidermal surface, localizing over the cell 
walls and at the guard cells of the stomata (Figure 4A). Following pectate lyase treatment, LM24 
addition resulted in large aggregates of labelling (Figure 4E), while LM15 resulted in more diffuse 
labelling, particularly aligned with the anticlinal walls (Figure 4F). The addition of enzymatic/high 
pH treatment reduced LM25 labelling of the epidermal cell walls, but not the guard cells (Figure 4D). 
Fluorescent punctae were observed in untreated LM24 (Figure 4B) and LM15 (Figure 4C) tissue and 
control tissue incubated without primary antibody (Figure 4G–I). 

Figure 3. Functional analysis of F9 adherence to spinach extracts and tissues. (A) Enzyme linked
immuno-sorbent assay (ELISA) of hemicellulose extract from spinach leaves (SLs) and roots (SRs)
screening with three hemicellulose probes. (B) Bacterial adhesion of E. coli expressing F9 (pASL04) or
not (pBAD18) on hemicellulose enriched polysaccharides from spinach roots (SRs) and leaves (SLs).
Data shown from two independent experiments (mean ± SD; students t-test, ** p < 0.005, *** p ≤ 0.0001,
NS = not significant). (C) Bacteria were incubated on spinach leaves (i) or roots (ii) for 2 h in PBS.
The number of recovered bacteria was significantly reduced for Sakai lacking F9 fimbriae on both
spinach tissue types (one-way analysis of variance (ANOVA); ** p < 0.007, *** p ≤ 0.0001). Data from
three independent experiments with five biological repeats are shown (mean ± SD).

2.3.3. Characterisation of Spinach Leaf Xyloglucan in Situ

To understand the distribution of galactosylated xyloglucan in spinach leaves, the distribution
of LM15, LM24, and LM25 epitopes was determined by immunofluorescence microscopy (Figure 4).
The preliminary results demonstrated labelling only with LM25, and thus tissue was subsequently
pre-treated with pectate lyase in case pectin in the cell wall masked the hemicellulose epitopes.
LM25 shows the greatest labelling of the spinach leaf abaxial epidermal surface, localizing over
the cell walls and at the guard cells of the stomata (Figure 4A). Following pectate lyase treatment,
LM24 addition resulted in large aggregates of labelling (Figure 4E), while LM15 resulted in more diffuse
labelling, particularly aligned with the anticlinal walls (Figure 4F). The addition of enzymatic/high
pH treatment reduced LM25 labelling of the epidermal cell walls, but not the guard cells (Figure 4D).
Fluorescent punctae were observed in untreated LM24 (Figure 4B) and LM15 (Figure 4C) tissue and
control tissue incubated without primary antibody (Figure 4G–I).
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Figure 4. In situ localisation of xyloglucan in spinach. Confocal microscopy images of the abaxial
surface of spinach leaves following incubation with LM25 (A), LM24 (B), or LM15 (C); tissue pre-treated
with pectate lyase and incubated with LM25 (D), LM24 (E), and LM15 (F); or untreated (G), CAPS buffer
(H), or pectate lyase treated (I) tissue incubated without primary antibody followed by Alexa Fluor®

488 secondary antibody (green). All images are maximum intensity projections of z-stacks also showing
the autofluorescence from chlorophyll (blue). Scale bars for all images represent 50 µm.

2.4. Plants Can Elicit a Response to F9 Fimbriae

We wanted to investigate whether purified F9 fimbriae elicited a MAMP response in plants.
We chose a microarray transcriptomics approach using Arabidopsis thaliana as a well-established model
for plant defence responses, particularly MAMP triggered immunity (MTI). The response to F9 was
compared to purified H7 flagella; the flagellin monomer is a well-characterized MAMP, but here,
we used the multimeric form rather than the classic eliciting 22 amino acid epitope, Flg22 [22,23].
We have previously described the role of E. coli common pilus (ECP) in the attachment of E. coli O157:H7
to plant tissues, specifically to arabinan containing residues [8], and thus included it for a comparison
of the plant response to a more common fimbrial type.
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2.4.1. Global Transcriptomic Response in Arabidopsis thaliana

Infiltration of purified F9 resulted in the significant (p > 0.05) differential expression of 435
A. thaliana genes compared with 1521 in response to H7 flagella or 320 genes with ECP fimbriae
(Figure 5, Table S1). Treatment with F9 resulted in upregulation of 176 genes and 259 repressed
genes. Of the F9-responsive genes, 48% of genes were specifically differentially expressed compared
with 78% of H7-responsive genes or 37% of ECP-responsive genes. There is little commonality
across all three conditions, particularly for repressed genes. Only 1.2% (23) of differentially expressed,
H7-independent genes were shared by F9 and ECP; these genes may be described as fimbrial-responsive.
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Figure 5. Gene expression overview. (A) Heatmap of Arabidopsis thaliana transcriptomic responses to
F9 fimbriae, H7 flagella, and E. coli common pilus (ECP) fimbriae compared with buffer only control.
Significant (p > 0.05) changes in expression of at least twofold are shown for induced (red) or repressed
(green) genes. (B) Venn diagrams showing distribution of up-regulated (top) and down-regulated
(bottom) genes between the three treatments.
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2.4.2. Comparisons with Other Published Datasets

In order to define the genes associated with microbe/pathogen-associated molecular pattern trigger
immunity (MTI/PTI), we compared our dataset to previous publications that had investigated the MTI
response to E. coli and Salmonella enterica. Schikora et al. [34] investigated the transcriptomic response
of A. thaliana seedlings to the non-pathogenic isolate of E. coli DH5α (Table S2). Of the 289 genes
described as responsive to E. coli K-12 treatment, 23 genes were also responsive to F9, 79 genes to
H7, and 38 genes to ECP (Figure 6A). E. coli isolate DH5α encode flagella serotype H48 rather than
EHEC (Sakai) H7 serotype, although the Flg22 epitope is conserved in both [22,23]. Comparison with
an A. thaliana dataset that focused on the presence of flagella and included E. coli O157:H7 fliC- [35]
identified 49 F9-responsive genes out of the 748 genes described, 249 with H7, and 89 genes with ECP,
of which 17 were in common (Figure 6B, Table S3). Our dataset showed that the overall change in
A. thaliana gene expression was the same, i.e., 92–98%, either positively or negatively impacted. Of the
total number of genes differentially regulated for each treatment, MAMP response genes constitute
11% of the response to F9 fimbriae, 16% to H7 flagella, and 28% to ECP fimbriae.
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To examine the F9-specific response in more detail, MapMan [36] was used to assess the genes
involved in biotic stress response (Figure 6C). Out of 435 genes, 112 mapped, including those involved
in jasmonic acid signaling, PR defence proteins, peroxidases, and cell wall turnover. The H7-specific
response elicited four times more (462) genes for the biotic response, whereas the ECP-specific response
was more comparable (96) (Figure S3). Infiltration of Arabidopsis leaves with purified H7 invoked the
significant upregulated expression of well characterized flagellin response genes FRK1 (AT2G19190),
FLS2 (AT5G46330), WRKY22 (AT4G01250), WRKY29 (AT4G23550), and PAL1 (AT2G37040) [37–39].
ECP also stimulated upregulation of FRK1.

3. Discussion

F9 fimbriae are not common across Escherichia coli, but limited to pathogenic EHEC and UPEC
isolates. Environmental E. coli isolate SMS encodes an orthologous cluster that has a divergent
adhesin compared with the pathogenic counterpart. Previous work has shown that F9 fimbriae
from EHEC can be expressed at low temperatures [13] and it was identified in a genetic screen for
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adherence to calf intestines [40]. In EHEC Sakai, there is a putative regulator (ECs2114, Figure S1)
with predicted HTH DNA binding domain encoded upstream of the fimbrial operon, which was not
induced under the conditions tested within this study. Here, the translational reporter fusion showed
temperature-dependent control of F9 main subunit (fmlA) expression, which supports previous reports.
The induction of fmlA expression in glycerol at 37 ◦C from the translational reporter compared with
the transcriptional reporter may be because of the different GFP variant used in the constructs.

Interestingly, F9 specifically recognize non-fucosylated xyloglucans (representative from tamarind
seeds and not from peas). Although F9 binding overlapped with the plant probe LM15 on the glycan
array, LM15 does not distinguish between these two types of xyloglucans, suggesting a different
mechanism of binding (Figure 2). However, it is possible that fucose masks the epitope harbored by the
fucosylated xyloglucan. Interaction with xyloglucan oligosaccharides provides more insight about the
binding recognition of F9. While LM15 recognized LLX, XLX, and XXX, F9 binds only to LLX and XLX.
These two oligosaccharides bear two or one (respectively) β-galactose linked in 1–2 to a residue of xylose
in the α position (Gal1,2αXyl). In mammalian tissues, F9 can bind specifically to terminal d-galactose,
but is linked in β1–3 to N-acetyl d-glucosamine (Galβ1-3GlcNAc) [10,16]. These carbohydrates from
animals and plants have a terminal galactose in common, but with different linkages. This result is in
accordance with the lectin specificity of the adhesin of F9 previously described.

Spinach leaf polysaccharide extracts contained significantly more xyloglucan oligosaccharides
recognized by LM24 than by LM25 or LM15 (Figure 3A). It is noteworthy that LM24 is known to bind
more efficiently to LLX oligosaccharide than XXX and XLX, and at a higher level compared with LM15
and LM25 [41]. This makes LM24 the more specific antibody, and to our knowledge, for galactosylated
xyloglucan oligomers. E. coli expressing F9 conferred a positive advantage for adherence to spinach
leaf extract, although the EHEC Sakai F9 mutant was negatively impacted for adherence to both
spinach leaf and root tissues. This may be down to differences in F9 binding targets, expression of
other adherence factors, or a combination of both. Immunofluorescence labelling of spinach leaf tissue
with LM25 shows that there are galactosyl residues (LXX/LLX) presented for the interaction of F9 on
the epidermal surface and guard cells (Figure 4). The greater specificity of LM24 for LLX oligomers
may explain the requirement for exposure by pectic lyase treatment.

F9 not only recognizes specific hemicellulose ligands, but it is also perceived by the plant
host in a specific manner. Arabidopsis thaliana is a well-established plant model and studies have
shown that non-fucosylated xyloglucan is present in the primary cell wall of Arabidopsis mesophyll
protoplasts [42] and galactosylated xyloglucan oligosaccharides constitute approximately 25% of total
stem xyloglucan [43]. LM24 was reported to strongly label the outer layer of Arabidopsis apical shoot
meristems [44] and demonstrates the presence of LLX oligosaccharides in Arabidopsis leaf hemicellulose
extract [45]. The global transcriptomic response of A. thaliana to purified E. coli organelles was greatest
for H7 flagella (1521 genes), as anticipated for a major MAMP, compared with F9 (435 genes) and ECP
(320 genes) fimbriae (Figure 5). Approximately half of the F9-responsive genes are shared with the
other treatments, indicating similar pathways may be affected by bacterial organelles either as part of a
general response to E. coli or a MTI response.

Only 13 genes are common between the three treatments and the general E. coli response subset
(Figure 6A), indicating that the response of the plant to whole E. coli cells is multifactorial, and that
different subsets of genes may be affected by the different epitopes present. The vast majority of
A. thaliana MTI related genes (as defined by published datasets [34,35]) induced by F9 were also induced
by other EHEC surface organelles, H7 and ECP, indicative of a common MTI response (Figure 6B).
These included genes induced by Flg22, such as pectin methylesterase 17 (PME17; AT2G45220) [46]
and FAD-linked oxidoreductase gene CELLOX (AT4G20860) [47]. Interestingly, one FAD-linked gene,
BBE8 (AT1G30700), induced by all three E. coli organelles, is involved in stomatal opening by S. enterica
and Pseudomonas syringae [48].

F9 induced a specific response for putative plant defensin protein, (PDF1.4, AT1G19610), which is
predicted to encode a PR (pathogenesis-related) protein. Plant defensins have a well-characterized role
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in antimicrobial responses against a range of bacteria and fungi [49]. PDF1.4 has been shown to be
induced in the non-host response of A. thaliana to barley powdery mildew [50], thus it is intriguing that
this defensin was only triggered by F9 and not H7 or ECP. Instead, H7 and ECP induced another member
of the defensin family, PDF1.1. PDF1.4 is cytoplasmic, whereas PDF1.1 is secreted and not induced by
methyl-jasmonate [50]. F9 downregulated PDCB3 (AT1G18650), a member of GPI-anchored protein
family that localises to the apoplastic face of plasmodesmata and bind callose, affecting cell-to-cell
traffic [51]. Although PDCB3 expression, as measured by q-RT PCR, was not impacted by heat or
wound treatment [51], it may be influenced by lectin interactions with the plant cell wall. Furthermore,
both F9 and ECP induced SHB1 (AT4G25350), which acts in cellular signaling and is associated with
cell elongation [52], suggesting that fimbriae that recognize cell wall ligands trigger a separate signaling
pathway. There is mounting evidence that the plant immune response is not only dependent upon the
plasma membrane bound receptors, but also on plant cell wall integrity [53]. It would be interesting to
investigate whether the plant responses reported here are due to an interruption of cell wall integrity
by fimbrial interactions with the plant cell wall components.

Although F9 binds to spinach tissue, it is most likely to act as a part of an adherence consortium,
and on its own does not have a marked phenotype. Nonetheless, it is the combination of the adherence
complement plus available ligands that results in the outcome of specific colonization and localization
on host tissue. Here, we describe the interaction of F9 with hemicellulose component xyloglucan and
the results herein could offer a reason to why EHEC foodborne outbreaks are often associated with
spinach [54,55]. Previous work has also identified plant carbohydrate ligands for ubiquitous E. coli
fimbriae ECP [8], Type 1 fimbriae [6], and Yad fimbriae [9], which are differentially expressed. Thus,
the specific complement of adherence factors encoded by EHEC isolates sets them apart from other
E. coli, and thereby may contribute to niche exclusion.

4. Materials and Methods

4.1. Bacterial Strains and Growth Conditions

Escherichia coli O157:H7 strain Sakai (RIMD 0509952; [56]) stx− KanR, herein termed EHEC
Sakai, and E. coli K-12 strain JT-1 [57] were grown with aeration at 200 rpm in either lysogeny broth
(LB) or MOPS medium [58] supplemented with 0.2% glucose (or glycerol where indicated), 10 µM
thiamine, and MEM essential and non-essential amino acids (Sigma M5550 and M7145) termed
rich defined MOPS (RD-MOPS) media. Antibiotics were included where necessary at the following
concentrations: 50 µg/mL kanamycin (Kan), 12.5 µg/mL chloramphenicol (Cam), 10 µg/mL Tetracycline
(Tet), and 50 µg/mL ampicillin (Amp).

4.2. Molecular Methods

Plasmids and primers are listed in Table 1. For the GFP transcriptional reporters, the 5′UTR of
fmlA (441 nt; ECs2113) and ECs2114 was PCR amplified (primers 2113utr_for, 2113utr_rev, 2114utr_for,
2114utr_rev) with Phusion polymerase from New England Biolabs (Hitchin, UK) and cloned into
pKC026 using XbaI, creating the transcriptional fusions pAH010 and pAH011, respectively. There are
two potential start codons for putative regulator ECs2114, so a transcriptional fusion was generated from
the longer version of the regulator, encompassing 274 nt of the 5′-UTR. A defined deletion in the EHEC
Sakai fmlA gene (ECs2113) was constructed using allelic exchange as previously described [8,59] using
constructed vector pAH013. Deletions were confirmed by PCR and Sanger sequencing. To complement
the mutation in trans, fmlA and 500 bp of its flanking sequence was PCR amplified (2113.5F and 2113.3R)
and cloned into low copy plasmid pWSK29, via pGEMT-easy, to create pAH012. Restriction enzymes
and T4 DNA ligase used were from Promega (Southampton, UK).
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Table 1. Plasmids and primers.

Plasmid Description Reference

pASL04 pBAD_loc8 [13]

pACloc8 translational reporter of fmlA [13]

pKC026 pAJR145 with P rpsM replaced by P gyrA. camR [59]

pAH010 pKC026 with ECs2113 UTR this study

pAH011 pKC026 with ECs2114 UTR this study

pTOF24 Temperature-sensitive allelic exchange vector [60]

pTOF61 A plasmid derived from pTOF1 with TcR cloned into SmaI site [61]

pAH013 pTOF24: PstI-SalI insertion of ECs2113. NotI linker + NotI insertion of
TcR from pTOF61 CamR TetR Ts SucS this study

pWSK29 lac operon, low copy number (< 10) ampR [62]

pAH012 pWSK with ECs2113 and 500bp flanking sequence this study

pMAT3 pSE380; ampR; ecpA–E (IHE3034) [63]

pEBW3 pWSK29; ampR; SalI-BamHI insertion of fliC (H7, TUV93-0) [64]

Primer Name Sequence Construct/qPCR

2113utr_for GCTCTAGACTGTCGGTCAGCTTTAAT pAH010

2113utr_rev GCTCTAGAAATTTATATTTAAGTAGC pAH010

2114utr_for GCTCTAGAGTATTAAGTAAGAGTAAGATATGGG pAH011

2114utr_rev GCTCTAGATTTGCCAGCTTGAGTCTT pAH011

2113.SalI.5F TTATCGTCGACCCGACGGGAATATTTGCGGATG pAH013

2113.NotI.5R CCGTTCCAAGCGGCCGCAAGAGCGAATTCTCCAAAATTTATATTTAAG pAH013

2113.NotI.3F CGCTCTTGCGGCCGCTTGGAACGGTTCAATATTAAGGTGGCTATACG pAH013

2113.PstI.3R GGATCCTGCAGCGTGACAGGCAATAAAACCTG pAH013

2113.5.F CTGTCGGTTACGAAAGCTTATC pAH012

2113.3.R GGCAGGATCATTATTCGTGACAGG pAH012

Actin1.F TCAGGTAGAAGAAAATGGCTGA qPCR

Actin1.R TAGGTGCATCATCCCCAGC qPCR

MAPKKK15.F CAGACTGGGAAACGAACGGT qPCR

MAPKKK15.R TCCTCCTCCAATGACGTTGC qPCR

AT4G12500.F ATCAGCTCAACCATGCTGCT qPCR

AT4G12500.R CCTAAGGGCAGTGCAGAGAC qPCR

AT1G22900.F CGCATCGACGGACATGAAAA qPCR

AT1G22900.R GGTGCTGCCGTTAAACTCTC qPCR

AT5G44910.F CAATAGTAGAGCGGACCGGC qPCR

AT5G44910.R CTTAACCGCCGTGACGATTG qPCR

AT1G10360.F TCTGTGATGATCCCGCTGTG qPCR

AT1G10360.R CCAGTTTATGCTTGCCGCTT qPCR

AT2G17740.F AGCTGCAATGTTAAAGGCACA qPCR

AT2G17740.R AGCTCTTTGCATCTCCAAGTGA qPCR

WRKY29.F GAAACGAGTACGCACCAAGC qPCR

WRKY29.R CTCCCGGACATCAAATCCGA qPCR

AT1G33760.F TCCATTAGACTCGCCGAGGA qPCR

AT1G33760.R CATCCCTATCGTGCTGACCA qPCR

AT1G24020.F ATGGAGAAGGATCTCCACTGGT qPCR

AT1G24020.R CGCCAATGATGCTGTACGAC qPCR

AT3G61930.F AATCGGACGACGGTGGTAAG qPCR

AT3G61930.R TGAGATCGAACATCGCCACC qPCR

4.3. Analysis of Bacterial Fluorescence In Vitro

Gene expression was measured from EHEC Sakai transformed with pAH010, pAH011, or pACloc8
following growth for ~18 h in LB medium + Cam at 37 ◦C, 200 rpm before diluting 1:100 into 15 mL
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RD MOPS medium supplemented with 0.2% glucose or glycerol. Cultures were incubated shaking
at 18 ◦C or 37 ◦C and measured for cell density and GFP fluorescence after 24 h. GFP fluorescence
was measured in triplicate 150 µL volumes in a 96-well plate using GloMax plate reader (Promega,
Southampton, UK). EHEC Sakai transformed with the vector control plasmid pKC026 or pAJR70
(for pACloc8) was included as a control for background fluorescence. Fluorescence was normalised
to cell density (OD600) and background subtracted, and values were plotted using GraphPad Prism
version 5.00 for Windows (GraphPad Software, San Diego, CA, USA) for three experimental repeats.

4.4. Protein Purification and Antibody Production

H7 serotype flagella were purified as described previously from pEBW3 transformed into JT-1 [64].
ECP fimbriae were purified from pMAT3 and F9 fimbriae from pASL04 transformed into JT-1 as
described previously [8]. All protein preparations were detoxified using Pierce High-Capacity
Endotoxin removal spin column (ThermoScientific, Perth, UK) as per the manufacturer’s instructions.

Rabbit polyclonal antibodies were produced against a peptide (DSESMNQTVELGQVRSSRLC)
from F9 major subunit according to standard procedures by Genoshere Biotechnologies (France).

Protein concentrations were determined using the BCA protein assay (Thermo Fisher Scientific
Inc., Waltham, MA, USA).

4.5. Glycan Array

Glycan array printing and screening were performed as described previously [41,64].
All oligosaccharides are listed in Table 2 and glycan array layout shown in Figure 7. The results
are based on three individual experiments.

Table 2. List of plant oligosaccharides and polysaccharides. The letter and number code relates to the
position printed on the glycan array shown in Figure 7.

Sample List

A1 α-(1→4)-D-heptagalacturonate (DE 0%) F5 Arabinoxylan (wheat)

B1 α-(1→4)-D-pentagalacturonate (DE 0%) G5 4-Methoxy-glucoronoarabinoxylan (birch)

C1 β-D-galactose H5 Xyloglucan #1 (tamarind)

D1 β-(1→4)-D-galactotetraose I5 Xyloglucan #2 (pea)

E1 Pectin (lime, DE 11%) A6 Xyloglucan XXX(G)-

F1 Pectin (lime, DE 43%) B6 Xyloglucan XXL(G)-

G1 Pectin (lime, DE 0%) C6 Xyloglucan XLL(G)-

H1 Pectin (lime, DE 16%) D6 6-α-D-galactosyl-β-(1→4)-D-mannobiose

I1 Pectin (sugar beet) E6 Carboxymethyl-cellulose

A2 α-L-arabinose F6 Hydroxymethyl-cellulose

B2 α-(1→5)-L-arabinobiose G6 Hydroxyethyl-cellulose

C2 α-(1→5)-L-arabinotriose H6 (1→6):(1→3)-β-D-glucan (Laminaria digitata)

D2 α-(1→5)-L-arabinotetraose I6 (1→3)-β-D-glucan (Poria cocos)

E2 Pectic galactan #1 (lupin) A7 (1→3),(1→4)-β-D-glucotriose [G4G3G(G)-]

F2 Pectic galactan #2 (potato) B7 (1→3),(1→4)-β-D-glucotetraose [G3G4G4G(G)-]

G2 Pectic galactan #3 (lupin) C7 (1→3),(1→4)-β-D-glucopentaose
[G3G4G3G4G(G)-]

H2 Pectic galactan #4 (tomato) D7 63,64-digalactosyl-β-(1→4)-D-mannotetraose

I2 Pectin (RGII enriched, red wine) E7 β-glucan #1 (lichenan, icelandic moss)
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Table 2. Cont.

Sample List

A3 α-(1→5)-L-arabinopentaose F7 β-glucan #2 (barley)

B3 α-(1→5)-L-arabinohexaose G7 β-glucan #3 (oat)

C3 α-(1→5)-L-arabinoheptaose H7 β-glucan #4 (yeast)

D3 β-(1→4)-D-glucopentaose I7 (1-6);(1-4)-α-D-glucan (Aureobasidium pullulans)

E3 RGI #1 (soy bean) A8 α-(1→4)-D-glucobiose

F3 RGI #2 (carrot) B8 α-(1→4)-D-glucopentaose

G3 RGI #3 (sugar beet) C8 α -(1→6)-D-glycosyl-α-(1→4)-D-maltotriose

H3 RGI #4 (arabidopsis) D8 α-(1→6)-D-glycosyl-α-(1→4)-D-maltosyl-maltose

I3 Seed mucilage (arabidopsis) E8 Glucomannan (konjac)

A4 β-D-mannose F8 Galactomannan (carob)

B4 β-(1→4)-D-mannotriose G8 Gum (guar)

C4 β-(1→4)-D-mannotetraose H8 Gum (arabic)

D4 β-(1→4)-D-mannopentaose I8 Gum (locust bean)

E4 Arabinan #1 (sugar beet) A9 β-D-glucose

F4 Arabinan #2 (sugar beet) B9 β-(1→3)-D-glucotriose

G4 Arabinan #3 (sugar beet) C9 β-(1→3)-D-glucotetraose

H4 RGI #5 (potato) D9 β-(1→3)-D-glucopentaose

I4 Xylogalacturonan (apple) E9 Gum (xanthan)

A5 β-D-xylose F9 Carrageenan #1 (red seaweed)

B5 β-(1→4)-D-xylotriose G9 Carrageenan #2 (red seaweed)

C5 β-(1→4)-D-xylotetraose H9 Alginate (brown seaweed)

D5 β-(1→4)-D-xylopentaose I9 RGI #6 (arabinan enriched, sugar beet)

E5 Xylan (birch) DE; degree of methyl esterification
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Figure 7. Glycan array layout. Eighty-one samples were spotted in two concentrations (1.0 mg/mL and
0.2 mg/mL) in duplicate. The glycan array is organized in two parts: from A1 to D9, BSA-conjugated
oligosaccharides and, from E1 to I9, polysaccharides were spotted. Table 2 lists samples printed in
positions A1-I9.
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4.6. Plant Growth Conditions and Extract Preparation

Spinach (Spinacia oleracea, var. Amazon) was grown in individual pots in a glasshouse at 22 ◦C
(16 h light, 8 h dark), with 130–150 µmol m−2 s−1 light intensity. Compost was used for all experiments
except for plant root polysaccharides extraction, where vermiculite was supplemented with Osmocote
Start NPK (6 weeks), containing 12-11-17, to avoid compost contamination (peat).

Arabidopsis thaliana Col-0 were surfaced sterilised with Triton X-100 and ethanol and sown on
Murashige–Skoog + 20% (w/v) sucrose agar plates. Seeds were vernalised at 4 ◦C for 2–3 days in the
dark and then transferred to a growth cabinet (22 ◦C; 16 h light, 8 h dark photoperiod) for a further
11–12 days. Seedlings were transplanted four plants per 8 cm round pot, for another 3 weeks’ growth
in the cabinet. Four to five-week old plants were used for infiltration experiments.

Plant polysaccharide extracts were prepared as described in [8]. In short, alcohol insoluble
residue was prepared by five washes of homogenised spinach leaves or roots with 70% ethanol
6:1 (v/v), followed by two acetone washes, and then the pellet was air-dried. Sequential extraction
of pectic and hemicellulosic fractions was performed by incubating the insoluble fraction in 50 mM
diamino-cyclo-hexane-tetra-acetic acid (CDTA), pH 7.5, and 4 M NaOH, respectively. Polysaccharide
content was quantified by a phenol–sulfuric acid method in microplate format [64] after acid hydrolysis
(2 M trifluoroacetic acid for 1 h at 120 ◦C).

4.7. Enzyme Linked Immuno-Sorbent Assay (ELISA)

ELISA was performed as described in [8]. NUNC Maxisorp 96-well plates were coated with 5 µg
polysaccharides (in Tris buffered saline (TBS)) overnight at 4 ◦C and then incubated with ~1 × 106 cfu
bacteria or 1/20 dilution monoclonal antibody. Primary monoclonal antibodies used in this study
include LM15 [19], LM24, and LM25 [41] (Plant Probes, Leeds, UK). Bacteria were detected with
1/500 dilution rabbit anti-E. coli antibody (Abcam, Cambridge, UK). Secondary HRP-linked antibodies
were used at 1/1000 dilution. Colour reaction was developed with 2,2′-azino-di-(3-ethylbenzthiazoline
sulfonic acid (ABTS) solution: 22 mg ABTS (Sigma Aldrich, St. Louis, MO, USA) diluted in 100 mL of
citrate buffer (50 mM sodium citrate, 0.05% H2O2, pH 4.0). The absorbance at OD405 was measured on
a microplate reader SpectraMax M5 (Molecular Devices, Sunnyvale, CA, USA).

4.8. Bacterial Adhesion Assays

Adherence assays were performed as described in [65]. In short, pre-weighed spinach plant
tissues were incubated in bacterial suspension (~1 × 107 cfu/mL in sterile PBS; OD600 = 0.02) for two
hours at 18 ◦C, 80 rpm. Plant samples were vigorously washed three times in sterile PBS by mixing on
a vortexer, and then homogenised with a sterile pestle and mortar. Samples were serially diluted and
plated on MacConkey’s agar with appropriate antibiotics for viable counts. Each experiment used five
plants per bacterial strain and the experiment was repeated three times.

4.9. Immunofluorescence Microscopy

Leaf discs, 7.6 mm in diameter, were cut from young spinach leaves 4–6 cm in length and the
abaxial surface floated on sterile distilled water (control). Samples were pre-treated either in CAPS
buffer (50 mM CAPS, 2 mM CaCl2, adjusted to pH 10 with KOH) or buffer plus 10 µg/mL Pectate
lyase (from C. japonicus; Megazyme, Bray, Ireland) at 37 ◦C for 2 h [66]. Control and pre-treated discs
were labelled with antibody using methods modified from [67], by blocking in 2% BSA in microtubule
stabilizing buffer (MTSB) for 2 h at 37 ◦C before addition of antibody, LM15, LM24, or LM25, diluted 1:50
in BSA+ MTSB and incubation overnight at 6 ◦C. The discs were washed three times in MTSB before
addition of secondary antibody Alexa Fluor® 488 goat anti rat (ThermoFisher Scientific, Perth, UK)
diluted 1:500 in BSA+ MTSB and incubation for 2 h at 37 ◦C. After washing three times for 5 min in
MTSB, discs were mounted abaxial surface up in MTSB, and observed using a Nikon A1R confocal
laser scanning microscope with an NIR Apo 40X DIC water dipping lens at 488 nm excitation and
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emission from Alexa Fluor® 488 collected between 500–530 nm and chlorophyll 663–737 nm with the
gain set to prevent saturation (blanks collected at the same gains as labelled tissue). Images were
assembled, equally linearly enhanced, and reduced in size using Adobe Photoshop Elements 2019
(17.0 X64).

4.10. Treatment of Plants with Protein Preparations

Fimbriae (1 µM) and H7 flagella (750 nM) were pressure infiltrated by needleless syringe into
the leaf tissue. Then, 10 mM Tris-HCl + 0.2 M NaCl (endotoxin free) buffer, used for eluting from
the detoxification columns, was used as a control. After 3 h of incubation, the infiltrated leaf was
dropped into liquid nitrogen, ground to a powder by mortar and pestle, and transferred to a pre-chilled
Eppendorf. Samples were kept at −80 ◦C until RNA purification. For each treatment, three individual
plant replicates were used.

4.11. RNA Purification and Microarray

RNA was purified from samples using Qiagen RNAeasy Plant Mini kit following the
manufacturer’s instructions and including the DNase treatment step (Qiagen, Manchester, UK).
RNA concentration and quality were checked on BioAnalyzer2100 (Agilent Technologies, Cheadle, UK).
Single-colour labelling, hybridization, and washing of the Agilent Arabidopsis (v. 4) Gene Expression
4x44k microarray slides were performed according to the manufacturer’s protocols (One-Color
Microarray-Based Gene Expression Analysis, v. 6.5; Agilent Technologies). Microarrays were
scanned using a G2505B scanner (Agilent Technologies, Cheadle, UK) as recommended and data
were extracted from images using Feature Extraction software (Agilent v. 10.7.3.1) with default
parameters. Data are available at ArrayExpress (https://www.ebi.ac.uk/arrayexpress/; E-MTAB-9732).
Data were subsequently imported into GeneSpring GX 7.3 (Agilent Technologies, Santa Clara, CA, USA).
Quality control was applied to remove those probes with no consistent signal in any of the conditions
tested, whereby data were filtered on flags present or marginal in at least two out of the twelve arrays.
Principal component analysis was performed to identify any outlier samples. Statistical analysis of the
datasets was carried out by performing a Volcano plot on each condition with a twofold minimum
cut-off for fold change and a Student’s t-test with multiple testing correction (Benjamini and Hochberg;
p < 0.05). A heatmap of the significantly changing datasets was generated using the Gene Tree function
in GeneSpring, and default parameters for clustering (Pearson’s correlation).

Microarray data were validated by qPCR as described in [68] for the following subset of significantly
regulated genes: MAPKKK15 (AT5G55090), AT1G10360, AT4G12500, AT1G22900, AT2G17740,
WRKY29 (AT4G23550), AT3G61930, AT5G44910, and AT1G33760. Correlation coefficients were
0.9635, 0.9581, and 0.9302 for F9, ECP, and H7, respectively.

Venn diagrams were constructed using Venny 2.1.0 online tool [69].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/24/9720/s1.
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Abbreviations

ABTS 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid
BCA Bicinchoninic acid
BSA Bovine serum albumin
CAPS N-cyclohexyl-3-aminopropanesulfonic acid
CDS Coding sequence
CUP Chaperone Usher Pilus
ECP E. coli Common Pilus
EHEC Enterohaemorrhagic E. coli
GFP Green fluorescent protein
HRP Horseradish peroxidase
HTH Helix turn helix
MAMP Microbe-associated molecular pattern
MDPI Multidisciplinary Digital Publishing Institute
MOPS 3-(N-morpholino)propane sulfonic acid
MTI MAMP triggered immunity
ORF Open Reading Frame
PAMP Pathogen-associated molecular pattern
PBS Phosphate buffered saline
PTI PAMP triggered immunity
UPEC Uropathogenic E. coli
UTR Untranslated region
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