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Abstract—Internet of Things (IoT) is a network made up of
a large number of devices which are able to automatically com-
municate to computer systems, people and each other providing
various services for the benefit of society. One of the main chal-
lenges facing the IoT is how to secure communication between
these devices. Among all the issues, the Group Key Management
is one of the most difficult. Although different approaches have
been proposed to solve it, most of them use the same security
parameters to secure all communications. Thus, if several services
are provided by the network, communications within a service
will be accessible to all network members even those which did
not subscribe to it. Moreover, the compromise of a member
will jeopardize all services. In this paper, we propose a highly
scalable Multi-Group Key Management protocol for IoT which
ensures the forward and backward secrecy, efficiently recovers
from collusion attacks and guarantees the secure coexistence of
several services in a single network. To achieve this, our protocol
manages several groups with independent security parameters.

Index Terms—Internet of things, service, security, Group Key
Management, forward and backward secrecy, collusion attack.

I. INTRODUCTION

The number of devices connected to Internet is constantly
increasing since its appearance. Now that this number far
exceeds that of people in the world, we are no longer talking
about Internet but about Internet of Things. This emerging
technology gives rise to revolutionary applications such as
health care, environment monitoring, smart homes, smart
cities...etc. The IoT devices, commonly called smart objects,
are able to automatically communicate to computer systems,
people and each other. The aim is to provide various services
for the benefit of society. One of the main challenges facing
the IoT is how to secure communication between these objects.

The Group Key Management (GKM ) is the core of secure
communication. Its main role is to establish secure links
between the members of a group. To achieve this, the GKM
provides them with a secret cryptographic key that is used to
encrypt the data exchanged [19]. Nevertheless, when a member
leaves the group, it must no longer be able to decipher the
future communications (forward secrecy). Also, if a node joins
the group, it must not be able to decipher the previous ones
(backward secrecy). Backward and forward secrecy are usually
guaranteed by rekeying. Thus, when a node joins or leaves the
group, the secret key is revoked and a new one is distributed
to the remaining members. However, multiple compromised
nodes can cooperate to regain access to the secret key. Such
an attack is referred to as collusion attack [16].

The GKM is a difficult issue especially for networks of
constrained devices. Although different approaches have been
proposed to solve it, most of them use the same parameters
to secure all communications. Thus, if several services are
provided by the network, communications within a service
will be accessible to all network members even those which
did not subscribe to it. Moreover, the compromise of a member
will jeopardize all services. To address this problem, the hier-
archical group access control has been proposed in [14] and
[20]. However, this scheme cannot achieve a high performance
when no hierarchy exists among services. A solution based
on a Master Key Encryption has then been introduced in
[9]. Nonetheless, using an asymmetric approach, this protocol
is not well suited for networks of highly constraint devices.
In this paper, we propose a highly scalable Multi-Group
Key Management (MGKM ) protocol for IoT which ensures
the forward and backward secrecy, efficiently recovers from
collusion attacks and guarantees the secure coexistence of
several services in the network. To achieve this, our protocol
manages several groups with independent security parameters.

The remainder of this paper is organized as follows: related
works are discussed in Section II. We detail then our solution
in Section III. Section IV presents the security analysis of our
protocol. In section V, we evaluate the performance of our
solution. Finally, we conclude in Section VI.

II. RELATED WORKS

According to the encryption technique used, the GKM
schemes can be classified into three categories: symmetric,
asymmetric and hybrid [19]. Symmetric approaches involve
the use of the same key for encryption and decryption, while
asymmetric ones use two different keys.

Generally, symmetric schemes require less computation
time and are more suitable for limited resources devices [18].
However, most of them suffer from high communication and
memory overhead, are not scalable and are not resilient against
compromise [11]. Symmetric approaches are usually based
on Logical Key Hierarchy (LKH) [5, 13], Exclusion Basis
Systems (EBS) [4, 7], polynomials [6], matrices [17]...etc.

On the other hand, asymmetric protocols are more secure
and scalable. However, they usually require intensive com-
puting, which makes them impractical on constrained devices.
Despite this, some asymmetric schemes was proposed even for
wireless sensor networks. Most of them implemented Elliptic



Curve Cryptography (ECC) [1, 10, 12], CertificateLess Public
Key Cryptography (CL-PKC) [8, 11], ID-Based Encryption
(IBE) [3]...etc. Some works [2] proposed then hybrid schemes
that combine both techniques (symmetric and asymmetric) to
take advantages of each and overcome its disadvantages.

Regardless of the type of encryption used, only few re-
searches considered the possibility of coexistence of several
services in a single network. The authors in [14] and [20]
proposed MGKM schemes that achieve hierarchical group
access control. However, the protocols cannot achieve a high
performance when no hierarchy exists among services. The
authors in [9] proposed then a new scheme called the Master
Key Encryption Based MGKM . Nevertheless, the protocol is
based on an asymmetric approach and is therefore not well
suited for networks of highly constraint devices.

The symmetric protocol GREP [16] exploits the history of
node joining to establish a total ordering among nodes. The
aim is to make the rekeying process scalable and efficient.
However, although nodes are organized into subgroups, their
security parameters are not independent. All subgroups must
then be rekeyed when a node gets compromised. On this basis,
we propose a highly scalable MGKM protocol for IoT which
ensures the forward and backward secrecy, efficiently recovers
from collusion attacks and guarantees the secure coexistence
of several services in a single network.

III. OUR SOLUTION

The MGKM we propose uses two layers. The upper layer
manages multiple groups and assigns nodes to them according
to the services to which they subscribe. On the other hand, the
lower layer distributes the nodes of each group into logical
subgroups in order to reduce the protocol overheads on them.
The network is then divided into several groups, each of which
is also partitioned into several subgroups (Figure 1). By doing
this, the security parameters of services will be independent
and the protocol is lighter for the network nodes.

Fig. 1: Network partitioning according to services.

Fig. 2: Network partitioning achieved by the protocol.

A. Services and groups management
An IoT service is a transaction between two entities: a

provider and a consumer. The former measures the state of
the latter or initiates actions which will cause a change to it
[15]. The provider is usually an object while the consumer can
be a human, the environment or an other smart device. The
main role of the GKM is to establish secure communications
between the objects. A smart device can then participate
to a service as a provider, a consumer or both. It may
also participate to different services, at the same time, and
subscribe or unsubscribe from services at any time. The IoT
can then be seen as a set of overlapping classes each gathering
nodes which collaborate to provide a service and others that
benefit from it (Figure 2). As these classes are overlapping, a
group of the protocol cannot be associated to a service. Indeed,
the independence of the group security parameters will then
lose its meaning and the compromise of a node can jeopardize
several groups. We propose then the creation of a group for
each possible combination of services. A combination Ai of
ki services, of a finite set E of e services, is a subset of ki
elements of E . The number of combinations, nc, is equal to:

nc =
e∑

k=1

C k
e = 2 e − 1 (1)

The network N is then partitioned into groups. Each group
Gi is associated with an ID , gidGi , which is unique within
N . It contains then the nodes participating in the services of
the combination Ai associated to it. When an actual member
subscribes or unsubscribes from services, it migrates from
a group to another according to its new combination of
services. The number of groups can reach nc (Formula 1)
if there are nodes participating in every possible combination
of services. On the other hand, it cannot exceed the number
of network nodes, n , because empty groups are not allowed.
The maximum number of groups, maxg , is therefore equal to:

maxg = Min(2 e − 1 ,n) (2)

Groups are created and removed as and when required and
the probability of having only one node in each group is
low. Their number can then be much smaller than maxg . In
Figure 2, two services E1 and E2 coexist in N . Three com-
binations are then possible: A1 = {E1 ,E2}, A2 = {E1} and
A3 = {E2}. Each group Gi contains the nodes participating
in the combination of services Ai associated to it (Figure 1).

B. Subgroups management
To reduce the protocol costs for nodes, each group Gi is in

turn partitioned into a set of logical subgroups. A subgroup
S i
j is associated with an ID , sidSi

j
, which is unique within Gi

and reflects its subgroups’ total order. Given two subgroups
S i
j1

and S i
j2

, sidSi
j1
< sidSi

j2
if and only if S i

j1
was created

before S i
j2

. Thereby, S i
j1

is considered as an elder kindred of
S i
j2

whereas the latter is seen as a junior kindred of the former.
Each subgroup S i

j is also associated to two subgroup tokens:
a forward, stF

Si
j
, and a backward one, stB

Si
j
. In Figure 1, each

group is partitioned into three subgroups.



C. Nodes management
Each node u is first assigned to a subgroup S i

j of the group
Gi . The group is chosen according to the combination of
services Ai in which u participates. On the other hand, the
problem of the choice of the subgroup is treated by us in an
ongoing work. The node u is then associated with an ID ,
nidu , which is unique within S i

j and reflects, its members’
total order. Given two nodes u and v , nidu < nidv if and
only if u has joined S i

j before v . Thus, u is considered as an
elder cognate of v whereas v is seen as a junior cognate of u .

Also, u is associated to two node tokens: a forward, tFu ,
and a backward one, tBu . The node does not know neither its
tokens (tFu and tBu ) nor those of S i

j (stF
Si
j

and stB
Si
j
). However,

it stores the forward and backward node tokens associated to
its elder and junior cognates, respectively, and the forward
and backward subgroup tokens of the elder and junior kindred
of S i

j , respectively. Moreover, u holds a secret node key, Ku ,
and shares a subgroup key, KSi

j
, with its cognates and a group

key, KGi
, with all the nodes of Gi . Finally, u stores a service

key, KEk
, for each service Ek in which it participates. Note

that unlike other keys, those of services do not intervene in the
rekeying process and are only used to encrypt communication.
The table in Figure 3 shows the keys and tokens held by the
nodes of the group G1 of the example presented in Figure 1.

Fig. 3: Example of keys and tokens held by nodes.

In the following, we use the notations tM , KR, KEK , H
and KDF to refer to a master node token, a refresh key, a key
encryption key, a one-way hash function and a pseudo-random
key derivation function, respectively. Also, {m}K means the
message m is encrypted using K and MGKM → R :< m >
denotes that the MGKM sends < m > to the node(s) R.

1) Rekeying upon joining: When a node u joins the net-
work, the MGKM starts by assigning it to a given subgroup S i

j

of the group Gi . Due to space constraints, we assume that the
subgroup S i

j already exists. It determines then nidu , Ku and
tBu . To ensure the backward secrecy, the MGKM randomly
generates KR and tM . Then, using the KDF , it computes tFu
and the new group and subgroup keys, K+

Gi
and K+

Si
j

(Formulas
3 to 5). The KDF is also used to update the key KEk

of each
service Ek to which u subscribes (Formula 6). Finally, the
MGKM discards tM and KR and broadcasts the messages
JM1 to JM3 . The message JM1 is sent to the nodes of
S i
j and is encrypted using its actual key KSi

j
. The message

JM2 is intended to those belonging to the other subgroups of
Gi and is then encrypted using its actual key KGi

. For each
group Gs (Gs �= Gi), which shares at least a service with Gi

(As∩Ai �= ∅), the message JM3 is sent encrypted using KGs .

tFu = KDF (tM ||KR) (3) K+
Gi

= KDF (KGi ||KR) (4)

K+

Si
j
= KDF (KSi

j
||KR) (5) K+

Ek
= KDF (KEk ||KR) (6)

JM1 : MGKM → S i
j :< nidu , {tM ,KR}KSi

j
>

JM2 : MGKM → Gi :< {KR}KGi >

JM3 : MGKM → Gs :< {As ∩Ai ,KR}KGs >

Upon receiving JM1 , a node in S i
j uses KSi

j
to retrieve tM

and KR, computes tFu , K+
Gi

and K+
Si
j

and updates its service

keys (Formulas 3 to 6). Upon receiving JM2 , a node in S i

(S i ∈ Gi and S i �= S i
j ) uses KGi to retrieve KR, computes

K+
Gi

and updates its service keys (Formulas 4 and 6). Upon
receiving JM3 , a node in Gs uses KGs

to retrieve KR and
updates the shared service keys (Formula 6). Finally, the
MGKM provides u , via a secure channel, with Ku , K+

Gi
, K+

Si
j
,

the service keys, the backward tokens of its cognates and the
backward and forward ones of the kindreds of S i

j .
2) Rekeying upon leaving: When a node u leaves a sub-

group S i
j of the group Gi , the cryptographic material it holds

get compromised and must be revoked. By construction, four
tokens remain secret (tFu , tBu , stF

Si
j

and stB
Si
j
) and are then used

to rekey the network. Due to space constraints, we do not
consider the case when S i

j becomes empty. Thus, to ensure
the forward secrecy, the MGKM starts by generating KR.
Then, using the KDF , it computes K+

Gi
, K+

Si
j
, four KEKs

(Formulas 4, 5 and 7 to 10) and updates the service keys u
held (Formula 6). Next, the MGKM removes the node key
and tokens of u and uses KR and H to update the tokens it
knows (Formulas 11 and 12). Finally, the MGKM broadcasts
the messages LM1 to LM3 and discards KR and the KEKs .
The message LM1 is sent to the nodes of S i

j and is encrypted
using the KEKs generated from the tokens of u (KF and
KB ). The message LM2 is intended to those belonging to
the other subgroups of Gi and is then encrypted using the
KEKs generated from the tokens of S i

j (K S
F and K S

B ). For
each group Gs (Gs �= Gi ) which shares at least a service with
Gi (As ∩Ai �= ∅), LM3 is sent encrypted by means of KGs .

KF = KDF (tFu ) (7) KB = KDF (tBu ) (8)

K S
F = KDF (stFSi

j
) (9) K S

B = KDF (stBSi
j
) (10)

t+ ← H (t ||KR) (11) st+ ← H (st ||KR) (12)
LM1 : MGKM → S i

j :< nidu , {KR}KF , {KR}KB >

LM2 : MGKM → Gi :< sidSi
j
, {KR}K S

F , {KR}K S
B >

LM3 : MGKM → Gs :< {As ∩Ai ,KR}KGs >

Upon receiving LM1 , a node v in S i
j (v �= u) computes

either KF , if nidv < nidu , or KB otherwise (Formulas 7
or 8) and retrieves KR. Then, it removes either tBu or tFu ,
computes K+

Gi
and K+

Si
j

and updates the service keys and
tokens u knows (Formulas 4 to 6, 11 and 12). Upon receiving
LM2 , a node in S i (S i ∈ Gi and S i �= S i

j ) computes either
K S

F , if sidSi < sidSi
j
, or K S

B otherwise (Formula 9 or 10) and
retrieves KR. Then, it computes K+

Gi
and updates the service

keys and the subgroup tokens u knows (Formulas 4, 6 and
12). Upon receiving LM3 , a node in Gs uses KGs to retrieve
KR and updates the shared service keys (Formula 6).



3) Recovering from collusion attack: In case of collusion
attack, multiple compromised nodes share their information
to regain access to the group and service keys. A subgroup, a
group or a service is compromised if it contains at least one
compromised node. To recover from it, the MGKM starts
by generating KR, removing the tokens of the evicted nodes
and updating those they know (Formulas 11 and 12). Then, it
computes a new key for each compromised group or service
(Formulas 4 and 6). Regarding subgroups, three cases arise.

a) Rekeying a compromised subgroup S i
j : The MGKM

determines first its eldest (ue ) and youngest (uy ) compromised
members. By construction, the tokens tFue

and tBuy
remain secret

for the evicted nodes and are used to generate two KEKs
(Formulas 7 and 8). The MGKM utilizes then these keys to
encrypt the message RM1 and broadcasts it. However, non
evicted nodes, that are junior cognates of ue and elder cognates
of uy , hold only compromised tokens. Thus, for each of them,
the MGKM sends the unicast message RM2 encrypted by the
node key. If a non compromised node in S i

j receives RM1 ,
it calculates one of the KEKs and uses it to retrieve KR. On
the other hand, if the node receives RM2 , it directly uses its
secret key to retrieve KR . In both cases, the node utilizes KR

to compute K+
Gi

as well as K+
Si
j

and to update the service keys
it knows (Formulas 4 to 6). Finally, it removes the tokens of
its evicted cognates and updates those they held (Formula 11).

b) Rekeying non compromised subgroups of a compro-
mised group Gi : The MGKM determines first the eldest
(S i

e ) and youngest (S i
y ) compromised subgroups of Gi . By

construction, the tokens stFSi
e

and stBSi
y

remain secret for the
evicted nodes and are used to generate two KEKs (Formulas
9 and 10). The MGKM utilizes then these keys to encrypt
the message RM3 and broadcasts it. However, nodes of the
non compromised subgroups, which are junior kindreds of S i

e

and elder kindreds of S i
y , hold only compromised subgroup

tokens. Thus, for each of them, the MGKM broadcasts RM4
encrypted by means of the subgroup key. If a node of a non
compromised subgroup receives RM3 , it calculates one of
the KEKs and uses it to retrieve KR. Otherwise, if the node
receives RM4 , it directly uses its subgroup key to retrieve
KR . In both cases, the node utilizes KR to compute K+

Gi
and

update the service keys it knows (Formulas 4 and 6). Finally,
it updates all the compromised subgroup tokens (Formula 12).

c) Rekeying non compromised subgroups with compro-
mised services: Although a subgroup belongs to a non com-
promised group Gs , its members can share some services with
the compromised ones. In this case, the MGKM broadcasts
the message RM5 encrypted by means of the group key, KGs

.
Upon receiving the message, a node in Gs retrieves KR and
updates its compromised service keys.

RM1 : MGKM → S i
j :< uidue , uiduy , {KR}KF , {KR}KB >

RM2 : MGKM → u :< uidue , uiduy , {KR}Ku >

RM3 : MGKM → Gi :< sidSi
e
, sidSi

y
, {KR}K S

F , {KR}K S
B >

RM4 : MGKM → S i :< sidSi
e
, sidSi

y
, {KR}KSi >

RM5 : MGKM → Gs :< {KR}KGs >

4) Rekying upon group changing: When an actual member
u subscribes or unsubscribes from services, it is moved from
a group Gp to another Gn . The choice of Gn depends on the
new combination of services An in which u participates.

As u leaves the subgroup Sp
j of Gp , the cryptographic

material it holds needs to be changed. By construction, the
tokens tFu , tBu , stF

Sp
j

and stB
Sp
j

remain secret for u and are
used to rekey Gp . To ensure the forward secrecy, the MGKM
generates KR, uses the KDF to compute K+

Gp
, K+

Sp
j

as well
as four KEKs (Formulas 4, 5 and 7 to 10) and updates the
tokens u knows (Formulas 11 and 12). Also, as u joins the
subgroup Sn

j of Gn , the MGKM determines its new ID and
backward token. To ensure the backward secrecy, the MGKM
uses the KDF to generate a new tFu , to compute K+

Gn
and K+

Sn
j

(Formulas 3 to 5) and to update the key of each service Ek to
which u subscribes or unsubscribes (Formula 6). Finally, the
MGKM broadcasts the messages EM1 to EM5 .

The message EM1 is sent to the nodes of Sp
j and is

encrypted using the KEKs generated from the tokens of u .
On the other hand, EM2 is intended to those of the other
subgroups of Gp and is encrypted using the KEKs generated
from the tokens of Sp

j . EM3 is sent to the nodes of Sn
j and

EM4 to those of the other subgroups of Gn . They are then
encrypted using KSn

j
and KGn

, respectively. For each group
Gs (Gs �= Gp and Gs �= Gn ) participating in a service Ek ,
the MGKM broadcasts the message EM5 encrypted using
KGs

. Finally, a last message is used to provide u with its new
cryptographic material and is encrypted by means of Ku .

EM1 : MGKM → Sp
j :< nidu , {KR}KF , {KR}KB >

EM2 : MGKM → Gp :< sidSp
j
, {KR}K S

F , {KR}K S
B >

EM3 : MGKM → Sn
j :< nidu , {tM ,KR}KSn

j
>

EM4 : MGKM → Gn :< {KR}KGn >

EM5 : MGKM → Gs :< {LEs ,KR}KGs >

Upon receiving EM1 , a node v in Sp
j (v �= u) computes

either KF , if nidv < nidu , or KB otherwise (Formula 7 or 8)
and retrieves KR. Then, it computes K+

Gp
and K+

Sp
j

(Formulas 4
and 5), updates the tokens u knows (Formulas 11 and 12) and
removes either tBu or tFu . Moreover, v updates the keys of ser-
vices from which u unsubscribed (Formula 6). Upon receiving
LM2 , a node in Sp (Sp ∈ Gp and Sp �= Sp

j ) computes either
K S

F , if sidSp < sidSp
j

, or K S
B otherwise (Formula 9 or 10) and

retrieves KR. Then, it computes K+
Gp

and updates the subgroup
tokens u knows (Formulas 4 and 12). Also, the node updates
the keys of services from which u unsubscribed (Formula 6).
Upon receiving EM3 , a node in Sn

j uses KSn
j

to retrieve
tM and KR and computes tFu , K+

Gn
and K+

Sn
j

(Formulas 3
to 5). Also, the node updates the keys of services to which u
subscribed (Formula 6). Upon receiving EM4 , a node in Sn

(Sn ∈ Gn and Sn �= Sn
j ) uses KGn

to retrieve KR, computes
K+

Gn
(Formula 4) and updates the keys of services to which u

subscribed (Formula 6). Finally, upon receiving JM5 , a node
in Gs uses KGs

to retrieve KR and the list of the shared
services, LEs , and updates their keys (Formula 6).



IV. SECURITY ANALYSIS

Before a node u joins a subgroup S i
j of a group Gi , the

MGKM rekeys both of them as well as all services involved.
To achieve this, the MGKM uses the messages JM1 to JM3
(if u joins the network) or EM3 to EM5 (when it changes
group). The messages JM1 and EM3 allow the members of
S i
j to calculate the new subgroup, group and service keys.

They are encrypted using the actual subgroup key, KSi
j
. On

the other hand, JM2 and EM4 enable the other nodes of Gi

to calculate the new group and service keys. They are then
encrypted using the actual group key, KGi

. Finally, JM3 and
EM5 allow the members of the other groups which participate
to the same services as u to calculate the new service keys.
They are encrypted by means of their group keys. At the end of
the process of rekeying, the MGKM provides u with the new
keys, via a secure channel (if u joins the network) or using a
message encrypted by means of Ku (if u changes group). The
network is rekeyed and u gets the new keys without access to
the old ones. The backward secrecy is then guaranteed.

After a node u leaves a subgroup S i
j of a group Gi , the

MGKM rekeys both of them as well as all the services
involved. To achieve this, the MGKM uses the messages LM1
to LM3 (if u has left the network), the messages EM1 , EM2
and EM5 (when it changes group) and the messages RM1
to RM5 (in case of collusion attack). The messages LM1 ,
EM1 , RM1 and RM2 allow the members of S i

j to calculate
the new subgroup, group and service keys. They are encrypted
using their node keys or the KEKs generated from the tokens
of u . On the other hand, LM2 , EM2 , RM3 and RM4 enable
the other nodes of Gi to calculate the new group and service
keys. They are then encrypted using their subgroup keys or
the KEKs generated from the tokens of S i

j . Finally, LM3 ,
EM5 and RM5 allow the members of the other groups which
participate to the same services as u to calculate the new
service keys. They are encrypted by means of their group keys.
By construction, u does not know any of the keys used to
encrypt these messages and is then excluded from the process
of rekeying. Since it cannot get access to the new keys or any
future incarnation of them, the forward secrecy is guaranteed.

In our solution, the compromise of a node does not affect
the services in which it does not participate. This is due, firstly,
to the fact that the members of the same group participate to
the same services and, secondly, because nodes belonging to
different groups do not share any security parameter if they
have no service in common. Let us consider two groups Gi

and Gj associated to the combinations Ai and Aj , respectively.
When a node u of the group Gi gets compromised, only
the service keys of Ai are exposed. If Gi and Gj share
some services (Ai ∩Aj �= ∅), the keys of services to which
the members of Gj participate but not those of Gi (Ai\Aj )
remain secret. Indeed, u does not know them. Furthermore,
if the groups do not share services (Ai ∩Aj = ∅), any of the
service keys of Aj gets compromised. In both cases, only the
services in which u participates are compromised. Thus, the
compromise of a service has no effect on the others.

V. PERFORMANCE EVALUATION

In the following, we use the notations m j
i , pi and ki to

refer to the number of nodes in S i
j and that of subgroups and

services in Gi . In a collusion attack, we consider that c nodes
are evicted. We assume that KDF and H require the same
computing cost and that keys and tokens have the same size.

A. Overheads on the MGKM

In a network of n nodes, the MGKM stores n node keys,
n subgroup keys, maxg group keys, e service keys, 2 .n node
tokens and 2 .n subgroup tokens, in the worst case. If we
assume that e ≤ n , the storage will be of the order of O(n).

When a node u joins the subgroup S i
j of Gi , the MGKM

generates KR, tM , Ku , tFu , tBu and updates KSi
j
, KGi

and ki
service keys. It performs then ki + 7 hash function executions.
It also encrypts and sends messages JM1 , JM2 and, for
each group sharing services with Gi , the message JM3 . As
the number of groups reaches maxg , in the worst case, the
MGKM can encrypt and send up to maxg + 1 messages.

When u leaves the network, the MGKM generates KR,
4 KEKs and updates KSi

j
, KGi , ki service keys, m i

j − 2
node tokens and pi − 1 subgroup tokens. It performs then
pi +m j

i + ki + 4 hash function executions. It also encrypts
and sends the messages LM1 , LM2 and, for each group which
shares services with Gi , the message LM3 . The MGKM
encrypts and sends then maxg + 1 messages in the worst case.

When u changes group, the MGKM generates KR, tM
and 4 KEKs , updates 2 group keys, 2 subgroup keys, m i

j − 2
node tokens, pi − 1 subgroup tokens and the ku service keys
to which the node subscribes or unsubscribes. It performs then
pi +m j

i + ku + 7 hash function executions. It also encrypts
and sends the messages EM1 to EM4 and, for each group
associated with a compromised service, the message EM5 .
The MGKM encrypts and sends then maxg + 3 messages in
the worst case.

The worst case for a recovery from collusion attack is when
all nodes are rekeyed using the unicast message RM2 (all
subgroups and all their node tokens are compromised). In
this case, the MGKM encrypts and sends n − c messages.
It also updates all subgroup, group and service keys. The
communication and computing are then of the order of O(n).

To sum up, the storage overheads for the MGKM are of the
order of O(n). Also, the communication and computing costs
are proportional to maxg (if a node joins, leaves or changes
group) or of the order of O(n) (in the case of collusion attack).
Figure 4 illustrates the variation of maxg according to n and
e . However, in our analysis, we consider the worst case whose
probability of occurring is low. The costs are much lighter in
the general case. Moreover, this is usually not a problem in
practice, since the MGKM has plentiful of resources. It is on
the side of nodes that the protocol must be light.

B. Overheads on nodes

A node u , belonging to a subgroup S i
j in Gi , stores Ku ,

KSi
j
, KGi , ki service keys, m j

i − 1 node tokens and pi − 1

subgroup tokens. It holds then pi +m j
i + ki + 1 keys.



The worst case for u when a node v joins Gi (v joins the
network or changes group) is that v is assigned to S i

j . The
node receives then one message, decrypts two keys, generates
tFv and updates KSi

j
, KGi

and ki service keys. It performs
then 2 decryptions and ki + 3 hash function executions.

The worst case for u when a node v leaves Gi (v leaves
the network or changes group) is that they are cognates. The
node u receives then one message, decrypts one key, calculates
one KEK and updates KSi

j
, KGi

, ki service keys, m j
i − 2

node tokens and pi − 1 subgroup tokens. It performs then
one decryption and pi +m j

i + ki hash function executions.
When a recovery from collusion attack is performed, the

worst case for a node u is that some of its cognates are evicted.
The node receives then one message, decrypts one key and
updates KSi

j
, KGi

, ki service keys, m j
i − c − 1 node tokens

and pi − 1 subgroup tokens. The node performs then one
decryption and pi +m j

i + ki − c hash function executions.
To sum up, the communication for nodes is constant

(O(1 )) and the storage and calculation are proportional
to pi +m j

i + ki . If the number of services is negligible
when compared to the size of the network and if the n
nodes of the network are uniformly distributed (i.e. ∀i , ∀j ,
pi 	 m j

i 	 √
n), the costs will be on average of the order of

O(
√
n). Our solution is then efficient and scalable as, even if

n increases, the protocol is affordable for constrained nodes.

Fig. 4: Variation of maxg according to n and e .

VI. CONCLUSION

In this paper, we presented a highly scalable Multi-Group
Key Management protocol for IoT which ensures the forward
and backward security, efficiently recovers from collusion
attacks and guarantees the secure coexistence of several ser-
vices in the network. Our protocol manages several groups
having independent security parameters. Each group is then
associated to a combination of services. When a node joins the
network, the protocol assigns it to the group associated to the
combination of services to which it subscribes. When an actual
member subscribes or unsubscribes from services, it migrates
from a group to another according to the new combination
of services. Our protocol efficiently rekeys groups, subgroups
and services after a node joins or leaves the network, changes
group or when a set of colluding nodes are evicted. In future
works, we intend to decentralize the protocol. Cryptographic
material will then be spread across more than one entity in
order not to have a single point of failure and to make it more
difficult to access or modify this secret material.
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