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InAlN/GaN heterostructures are a new alternative to AlGaN/GaN HEMT device structures with high 2DEG 
channel charge density [1] and thermal stability above 1000°C in the lattice matched configuration [2]. High 
aspect ratio devices with ultra thin barrier layers down to 5 nm, high transconductance (about 500 mS/mm) and 
high current density have been fabricated without recess [3]. Recently, large signal measurements have resulted in 
6.8 W/mm output power at 10 GHz [4]. However, these devices have often suffered from high gate leakage 
current. Thus, a 5 nm thin Al2O3 layer (deposited by ALD) has been inserted to reduce gate leakage [5]. 
Nevertheless, the properties of such MOSHEMTs with ALD-Al2O3 have been found difficult to reproduce and 
scale due to a high density of interface traps generating extensive current lagging effects.  
 
On the other hand the high thermal stability of InAlN/GaN heterostructures may enable high temperature thermal 
oxidation comparable to the oxidation of silicon. Thus, in this study, we have investigated the possibility to realize 
high performance InAlN/GaN MOSHEMTs with thermally grown oxide. Therefore a MOSHEMT technology for 
proof of concept experiments has been developed, where the HEMT structure has been conventionally processed 
up to the ohmic contact level and then the entire surface thermally oxidized (see Fig. 1). This step was then 
followed by gate metal deposition. Therefore, also the ohmic contacts have been subject to oxidation, slightly 
degrading the contact resistance of the Ti/Al/Ni/Au contacts. Gate length of all structures was 0.25 µm. Finally, a 
PECVD SiN passivation has been applied. 
Used in this study has been a heterostructure with a 10 nm thick lattice matched InAlN. Oxidation was performed 
in O2 at 800 °C. Fig. 2 shows the IV characteristics of Ni/Au contacts on the surface before oxidation and after 
oxidation up to 10 min. As can be seen, the reverse leakage current is in essence reduced exponentially with 
oxidation time and by 5 orders of magnitude for 10 min oxidation. This points towards a reduction of the leakage 
current by suppression of residual tunnelling. This may allow to speculate on the oxidation mechanism. A close 
analysis reveals indeed that the oxidation is diffusion limited (like in the case of Si) with an initial oxidation rate 
of approx. 1 nm/min (although final verification can only be obtained by TEM cross sections). Thus, a highly 
insulating oxide film can be grown. This is also seen in forward direction of the IV characteristics by a shift in 
turn-on voltage from approx. 1.5 V to 4.0 V.  
 
MOSHEMT output characteristics with an oxide grown for 2 min are shown in Fig. 2. The initial maximum open 
channel current density of 2 A/mm has not been changed by the oxidation treatment. Thus no additional stress is 
induced in the heterojunction and the polarization discontinuity fully preserved. A peak transconductance of 340 
mS/mm, a fT and fmax of 42 GHz and 61 GHz (without T-gate) respectively have been extracted (Fig. 3), 
indicating no degradation in the small signal channel transport properties. 
The open channel current could also be preserved in gate pulse experiments (see Fig. 3). Pulse duration was 500 
ns with 10 µs intervals. The quiescent bias points (VDS0 = 0 V, VGS0 = pinch-off voltage) have been chosen to 
reveal gate lag, avoiding thermal effects. The gate lag characteristics indicate still a low number of traps, which 
still may to be removed by an additional annealing step. 
 
Although thermal oxides have not been suitable for MOSFET application in the case of III-V semiconductors and 
also AlGaN/GaN heterostructures, these initial results on InAlN-MOSHEMTs with thermally grown oxide gate 
dielectric show already promising small signal and large signal characteristics. The reason is thought to be related 
to the high chemical and thermal stability of the (In,Al)-oxide with a well defined stoicheometry. Certainly, high 
resolution analysis is needed to further identify the structural properties. It is thought that this new technology will 
enable MOSHEMTs with extremely thin barriers, high aspect ratio and improved breakdown conditions as needed 
for sub-mm wave power devices.  
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Fig. 1: Technological process for fabricating ultra thin barrier InAlN/GaN MOSHEMT:  

a) MESA and ohmic contacts b) Thermal oxidation in oxygen at 800°C c) Ni/Au gate contact deposition d) SiN passivation  
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Fig. 2: Gate diode characteristics after various thermal oxidation (TO) times at 800°C (left) and 0.25×50 μm2 DC output 
characteristics at RT thermally oxidized after ohmic contact deposition (right) of a 10 nm barrier of In0.18Al0.82N/GaN HEMT. 
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Fig. 3: Pulsed ID-VDS characteristics (VGS swept from -6 to 2V by step of 2V) at the quiescent bias points VDS0 = 0 V, VGS0 = 0 V 
and VDS0 = 0 V, VGS0 = pinch-off voltage (left) and frequency performances (right) of a 0.25×50 μm2 10 nm barrier 

In0.18Al0.82N/GaN MOSHEMT on SiC substrate. 


