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PACKING AND COVERING BALLS IN GRAPHS EXCLUDING A

MINOR

NICOLAS BOUSQUET, WOUTER CAMES VAN BATENBURG, LOUIS ESPERET, GWENAËL JORET,
WILLIAM LOCHET, CAROLE MULLER, AND FRANÇOIS PIROT

Abstract. We prove that for every integer t > 1 there exists a constant ct such that for
every Kt-minor-free graph G, and every set S of balls in G, the minimum size of a set of
vertices of G intersecting all the balls of S is at most ct times the maximum number of
vertex-disjoint balls in S. This was conjectured by Chepoi, Estellon, and Vaxès in 2007 in the
special case of planar graphs and of balls having the same radius.

1. Introduction

A hypergraph H is a pair (V, E) where V is the vertex set and E ⊆ 2V is the edge set of H.
A matching in a hypergraph H is a set of pairwise vertex-disjoint edges, and a transversal is a
set of vertices that intersects every edge. The matching number of a hypergraph H, denoted by
ν(H), is the maximum number of edges in a matching. The transversal number of H, denoted
by τ(H), is the minimum size of a transversal of H. We can also consider the linear relaxation
of these two parameters: we define the fractional matching number ν∗(H) and the fractional
transversal number τ∗(H) as follows.

ν∗(H) = max
∑

e∈E(H)

we

given that


∑
e3v

we 6 1 for every vertex v of H

we > 0 for every edge e of H,

and the dual of this linear program is

τ∗(H) = min
∑

v∈V (H)

wv

given that


∑
v∈e

wv > 1 for every edge e of H

wv > 0 for every vertex v of H.

By the strong duality theorem, ν(H) 6 ν∗(H) = τ∗(H) 6 τ(H) for every hypergraph H.
Given a class C of hypergraphs, a classical problem in combinatorial optimization is to decide
whether there exists a function f such that τ(H) 6 f(ν(H)) for every H ∈ C. If this is
the case the class C is sometimes said to have the Erdős-Pósa property. Classical examples
include the family of all cycles of a graph [12] (i.e. given a graph G = (V,E) we consider
the hypergraph with vertex set V whose edges are all the cycles of G), and the family of all
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directed cycles of a directed graph [23]. A desirable property is the existence of a constant c
such that τ(H) 6 c · τ∗(H) or ν∗(H) 6 c · ν(H), or (even better) τ(H) 6 c · ν(H) for every
H ∈ C. These properties are often useful in the design of approximation algorithms using a
primal-dual approach (see for instance [16, 14]).

Given a graph G = (V,E), an integer r > 0, and a vertex v ∈ V , we denote by Br(v) the
ball of radius r in G centered in v, that is

Br(v) := {u ∈ V (G) | dG(u, v) 6 r} ,

where dG(u, v) denotes the distance between u and v in G (we will omit the subscript G when
the graph is clear from the context). We say that a hypergraph H is a ball hypergraph of G if
H has vertex set V = V (G) and each edge of H is a ball Br(v) in G for some integer r and
some vertex v ∈ V . If all the balls forming the edges of H have the same radius r, we say that
H is an r-ball hypergraph of G.

Chepoi, Estellon, and Vaxès [7] proved the existence of a universal constant ρ such that
for every r > 0 and every planar graph G of diameter at most 2r, the vertices of G can be
covered with at most ρ balls of radius r. This result was extended to graphs embeddable on a
fixed surface with a bounded number of apices in [1]. Note that G has diameter at most 2r if
and only if there are no two disjoint balls of radius r in G. Also, a set of balls of radius r in G
covers all of V (G) if and only if their centers intersect all balls of radius r in G. Thus, these
results state equivalently the existence of a universal constant ρ such that for every r > 0 and
every planar (or more generally bounded genus) graph G, if the r-ball hypergraph H consisting
of all balls of radius r satisfies ν(H) = 1, then τ(H) 6 ρ. With this interpretation in mind,
Chepoi, Estellon, and Vaxès [3] conjectured the following generalization in 2007 (see also [13]).

Conjecture 1 (Chepoi, Estellon, and Vaxès [3]). There exists a constant c such that for
every integer r > 0, every planar graph G, and every r-ball hypergraph H of G, we have
τ(H) 6 c · ν(H).

If one considers all metric spaces obtained as standard graph-metrics of planar graphs, then
Conjecture 1 states that these metric spaces satisfy the so-called bounded covering-packing
property [6]. Recently, Chepoi, Estellon, and Naves [6] showed that other metric spaces do
have this property, including the important case of Busemann surfaces. (Quoting [6], the latter
are roughly the geodesic metric spaces homeomorphic to R2 in which the distance function is
convex; they generalize Euclidean spaces, hyperbolic spaces, Riemannian manifolds of global
nonpositive sectional curvatures, and CAT(0) spaces.)

Going back to Conjecture 1, let us emphasize that a key aspect of this conjecture is that the
constant c is independent of the radius r. If c is allowed to depend on r, then the conjecture is
known to be true. In fact, it holds more generally for all graph classes with bounded expansion,
as shown by Dvořák [10].

Some evidence for Conjecture 1 was given by Bousquet and Thomassé [2], who proved that
it holds with a polynomial bound instead of a linear one. More generally, they proved that for
every integer t > 1, there exists a constant ct such that for every integer r > 0, every Kt-minor
free graph G, and every r-ball hypergraph H of G, we have τ(H) 6 ct · ν(H)2t+1.

The main result of this paper is that Conjecture 1 is true, and furthermore it is not necessary
to assume that all the balls have the same radius.

Theorem 2 (Main result). For every integer t > 1, there is a constant ct such that τ(H) 6
ct · ν(H) for every Kt-minor-free graph G and every ball hypergraph H of G.
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A set S of vertices of a graph G is r-dominating if each vertex of G is at distance at most r
from S, and r-independent if any two vertices of S are at distance at least 2r + 1 apart in
G. Note that if we take H to be the r-ball hypergraph consisting of all balls of radius r in G,
Theorem 2 has the following interesting graph-theoretic interpretation: if G is Kt-minor-free,
then the minimum size of an r-dominating set is at most ct times the maximum size of an
r-independent set in G.

Our proof of Theorem 2 follows a bootstrapping approach. It relies on the existence of
some function ft such that τ(H) 6 ft(ν(H)), i.e. on the Erdős-Pósa property of the ball
hypergraphs of Kt-minor-free graphs, which is used in the proof when ν(H) is not ‘too big’.
However, showing this property was an open problem. This was known for r-ball hypergraphs,
by the result of Bousquet and Thomassé [2], but their proof method does not extend to the
case of balls of arbitrary radii. For this reason, as a first step towards proving Theorem 2,
we prove Theorem 3 below establishing said Erdős-Pósa property. We also note that, while
the bounding function in Theorem 3 is not optimal, it is a near linear bound of the form
τ(H) 6 ct · ν(H) log ν(H) where ct is a small explicit constant polynomial in t. This is in
contrast with the constant ct in our proof of Theorem 2 which is large, exponential in t. Thus,
the bound in Theorem 3 is better for small values of ν(H). (We note that logarithms in this
paper are natural, and the base of the natural logarithm is denoted by e.)

Theorem 3 (Near linear bound). Let G be a graph with no Kt-minor and such that every
minor of G has average degree at most d. Then for every ball hypergraph H of G,

τ(H) 6 2e(t− 1) d · ν(H) · log(11e d · ν(H)).

In particular, τ(H) 6 ct2
√

log t · ν(H) · log(t · ν(H)) for some absolute constant c > 0, and if
G is planar then τ(H) 6 48 e · ν(H) · log(66 e · ν(H)).

The proof of Theorem 3 uses known results on the VC-dimension of ball hypergraphs of G
when G excludes a minor, together with classical bounds relating τ(H) and τ∗(H) when H
has bounded VC-dimension, as well as the following theorem.

Theorem 4 (Fractional version). Let G be a graph and let d be the maximum average degree
of a minor of G. Then for every ball hypergraph H of G, we have ν∗(H) 6 e d · ν(H).
In particular, if G is planar then ν∗(H) 6 6e · ν(H) and if G has no Kt-minor then ν∗(H) 6
c · t
√

log t · ν(H), for some absolute constant c > 0.

We note that results on the VC-dimension of ball hypergraphs in graphs excluding a minor
have also been used recently to obtain improved algorithms for the computation of the diameter
in sparse graphs [9, 20].

The proofs of Theorems 2, 3, and 4 are constructive, and can be transformed into efficient
algorithms producing transversals (in the case of Theorems 2 and 3) or matchings (in the case
of Theorem 4) of the desired size.

The paper is organized as follows. Sections 2 and 3 are devoted to technical lemmas that
will be used in our proofs. Theorems 3 and 4 are proved in Section 4. Theorem 2 is proved in
Section 5. Finally, we conclude the paper in Section 6 with a construction suggesting that
Theorem 2 does not extend way beyond proper minor-closed classes.

2. Hypergraphs, balls, and minors

We will need two technical lemmas, whose proofs are very similar to the proof of [2, Theorem
4] and [7, Proposition 1]. We start with Lemma 1, which will be used in the proofs of Theorem 4
and Theorem 2. We first need the following definitions.
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We say that two balls B1 and B2 are comparable if B1 ⊂ B2 or B2 ⊂ B1 (where ⊂
denotes the strict inclusion), and otherwise they are incomparable. Note in particular that if
B1 = B2 then B1 and B2 are incomparable. Consider two intersecting and incomparable balls
B1 = Br1(v1) and B2 = Br2(v2) in a graph G, and let d := dG(v1, v2). A median vertex of

B1 and B2 is any vertex u lying on a shortest path between v1 and v2, at distance b r1−r2+d
2 c

from v1 and at distance d r2−r1+d
2 e from v2, or symmetrically at distance d r1−r2+d

2 e from v1
and at distance b r2−r1+d

2 c from v2. Since B1 and B2 intersect, we have r1 + r2 > d and
since B1 and B2 are incomparable, we have r2 6 r1 + d and r1 6 r2 + d, and in particular
b r1−r2+d

2 c > 0 and d r2−r1+d
2 e > 0 (so the distances above are well defined). Moreover,

b r1−r2+d
2 c = b2r1−r1−r2+d

2 c 6 r1 and d r2−r1+d
2 e = d2r2−r1−r2+d

2 e 6 r2, so any median vertex of
B1 and B2 lies in B1 ∩B2. Finally, note that by the definition of a median vertex u of B1 and
B2,

• for every {i, j} = {1, 2} we have rj − d(vj , u) 6 ri − d(vi, u) + 1, and
• if v1 = v2 (which implies B1 = B2 since the balls are incomparable), then u = v1 = v2.

Lemma 1. Let G be a graph, let S = {Bi = Bri(si)}i∈[n] be a set of n pairwise incomparable

balls in G, with pairwise distinct centers, and let ES ⊆
(
S
2

)
be a subset of pairs of intersecting

balls {Bi, Bj} ⊆ S, each of which is associated with a median vertex x{i,j} of Bi and Bj, and
such that the only balls of S containing x{i,j} are Bi and Bj. Then the graph H = (S,ES) is
a minor of G.

Proof. Let us fix a total ordering ≺ on the vertices of G. In the proof, all distances are in the
graph G, so we write d(u, v) instead of dG(u, v) for the sake of readability. For every pair of
balls {Bi, Bj} ∈ ES , we write xij or xji instead of x{i,j}, for the sake of readability (xij , xji,
and x{i,j} all correspond to the same median vertex of Bi and Bj). We also let P (si, xij) be a
shortest path from si to xij , and we assume that the sequence of vertices from si to xij on the
path is minimum with respect to the lexicographic order induced by ≺ (among all shortest
paths from si to xij). By the assumptions, we know that Pij := P (si, xij) ∪ P (sj , xij) is a
shortest path from si to sj .

For every i ∈ [n], we define

Ti :=
⋃

j : {Bi,Bj}∈ES

P (si, xij).

Claim 1. For every i ∈ [n], Ti is a tree.

Assume for the sake of contradiction that there is a cycle C in Ti. Observe that, by construction,
if uv is an edge of Ti then |d(si, u)− d(si, v)| = 1. Let y be a vertex of C maximizing d(si, y),
and let z1, z2 denote its two neighbors in C. Then d(si, z1) = d(si, z2) = d(si, y)− 1, and there
exist j1, j2 such that z1y is an edge of P (si, xij1) and z2y is an edge of P (si, xij2). Let P1 and
P2 be the subpaths from si to y of P (si, xij1) and P (si, xij2), respectively. Then P1 and P2

are two different paths from si to y, and one of them is not minimum either in terms of length,
or with respect to the lexicographic order induced by ≺. This contradicts the definition of
P (si, xij1) and P (si, xij2).

Claim 2. For every two pairs of balls {Bi, Bk}, {Bj , B`} ∈ ES with i 6= j, if P (si, xik) and
P (sj , xj`) intersect in some vertex y such that d(y, xik) 6 d(y, xj`), then j = k and y = xij .

Note that d(sj , xik) 6 d(sj , y) + d(y, xik) 6 d(sj , y) + d(y, xj`) = d(sj , xj`). Since xj` is a
median vertex of Bj and B`, we have d(sj , xj`) 6 rj , which implies that d(sj , xik) 6 rj and
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thus xik ∈ Bj . By definition, xik is only contained in the balls Bi and Bk of S and thus j = k.
If we also have i = `, then necessarily y = xij .

From now on, we assume that i 6= `. Since Pij = P (si, xij) ∪ P (sj , xij) is a shortest path
containing the vertex y, the sj–y section of that path (which contains xij) has the same length
as the sj–y section of P (sj , xj`). Replacing the latter section by the former, we obtain a
shortest path from sj to xj` containing xij , which we denote Q(sj , xj`). As a consequence,

d(xj`, xij) = d(xj`, sj)− d(sj , xij) 6 rj − d(sj , xij) 6 ri − d(si, xij) + 1,

where the last inequality follows from the definition of xij . We now use the fact that y appears
on the path P (si, xij) and on the xij–xj` section of Q(sj , xj`), and obtain

d(si, xj`) 6 d(si, y) + d(y, xj`) = d(si, xij) + d(xij , xj`)− 2d(y, xij) 6 ri + 1− 2d(y, xij).

Since xj` /∈ Bi by definition (and so d(si, xj`) > ri), this implies that y = xij , as desired.

This claim immediately implies that for every i, j ∈ [n] with i 6= j, we have V (Ti)∩ V (Tj) =
{xij} if {Bi, Bj} ∈ ES , and V (Ti) ∩ V (Tj) = ∅ otherwise. Another consequence is that for
every {Bi, Bj} ∈ ES , the vertex xij is a leaf in at least one of the two trees Ti and Tj (since
otherwise there exist k 6= j and ` 6= i such that xij ∈ P (si, xik) and xij ∈ P (sj , xj`), which
readily contradicts Claim 2 above).

In the subgraph
⋃

i∈[n] Ti of G, for each i ∈ [n] we contract each edge of Ti except the ones

incident to a leaf of Ti. It follows from the paragraph above that the resulting graph is precisely
a graph obtained from H = (S,ES) by subdividing each edge at most once, and thus H is a
minor of G. �

The next result has a very similar proof1, but the setting is slightly different. It will be used
in the proof of Theorem 2.

Lemma 2. Let G be a graph and S = {Bi = Bri(si)}i∈[n] be a set of n pairwise vertex-disjoint

balls in G, and let ES ⊆
(
S
2

)
be a subset of pairs of balls {Bi, Bj} ⊆ S, each of which is

associated with a ball B{i,j} /∈ S of G which intersects only Bi and Bj in S. Then the graph
H = (S,ES) is a minor of G.

Proof. Let us fix a total ordering ≺ on the vertices of G. As before, all distances are in the
graph G, and we write d(u, v) instead of dG(u, v). For every {Bi, Bj} ∈ ES we write Bij or
Bji interchangeably for B{i,j}, and we denote by xij the center of the ball Bij , and by rij its
radius (xij = xji and rij = rji). We can assume that the centers xij are chosen so that the
radii rij are minimal (among all balls of G not in S that intersect only Bi and Bj in S).

We let P (si, xij) be the shortest path from si to xij which minimizes the sequence of vertices
from si to xij with respect to the lexicographic ordering induced by ≺ (among all shortest
paths from si to xij). Observe that P (si, xij) and P (sj , xij) only intersect in xij (if not, we
could replace xij by a vertex that is closer to si and sj and reduce the radius rij accordingly
– the new ball Bij would still intersect Bi and Bj , and no other ball of S, and this would
contradict the minimality of rij). We may also assume that ri + rij − 1 6 d(si, xij) 6 ri + rij
(otherwise we could replace xij by its neighbor on P (sj , xij) and decrease rij by 1).

For every i ∈ [n], we define

Ti :=
⋃

j : {Bi,Bj}∈ES

P (si, xij).

1Despite our best effort, we have not been able to prove the two results at once in a satisfactory way, i.e.
with a proof that would be both readable and shorter than the concatenation of the two existing proofs.
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Claim 1. For every i ∈ [n], Ti is a tree.

The proof is exactly the same as that of Claim 1 in the proof of Lemma 1 (we do not repeat it
here).

On the path P (si, xij), we let zi,ij be the vertex at distance ri from si (and since xij = xji we
use zi,ij and zi,ji interchangeably). As we assumed above that ri +rij−1 6 d(si, xij) 6 ri +rij ,
we also have rij − 1 6 d(xij , zi,ij) 6 rij . In particular, d(xij , zj,ij) − 1 6 d(xij , zi,ij) 6
d(xij , zj,ij) + 1.

Claim 2. For every two pairs of balls {Bi, Bk}, {Bj , B`} ∈ ES , with i 6= j, if P (si, xik) and
P (sj , xj`) intersect in some vertex y such that d(y, zi,ik) 6 d(y, zj,j`), then i = ` and y = xij .

We first argue that y appears after zj,j` when traversing P (sj , xj`) from sj to xj`. Indeed,
otherwise we would have

d(sj , zi,ik) 6 d(sj , y) + d(y, zi,ik) 6 d(sj , y) + d(y, zj,j`) = d(sj , zj,j`) = rj ,

which means that Bi and Bj intersect, contradicting the assumptions that i 6= j and all balls
in S are vertex-disjoint. So y lies on the zj,j`–xj` section of P (sj , xj`), and we infer that

d(xj`, zi,ik) 6 d(xj`, y) + d(y, zi,ik) 6 d(xj`, y) + d(y, zj,j`) = d(xj`, zj,j`) 6 rj`.

It follows that the ball Bj` intersects the ball Bi. By the assumption, this means that i = `,
and thus s` = si and zj,j` = zj,ij . We now argue that y lies in the zi,ik–xik section of P (si, xik).
Suppose for a contradiction that y appears strictly before zi,ik when traversing P (si, xik) from
si to xik. By definition of zi,ik, it then follows that d(si, y) 6 ri − 1. On the other hand

d(sj , y) = d(sj , xij)− d(y, xij) = d(sj , zj,ij) + d(zj,ij , xij)− d(y, xij).

Note that ri + rij − 1 6 d(si, xij) 6 d(si, y) + d(y, xij) 6 ri − 1 + d(y, xij), and thus
d(y, xij) > rij > d(zi,ij , xij). We obtain that d(zj,ij , xij) 6 d(zi,ij , xij) + 1 6 d(y, xij) + 1, and
it follows that d(sj , y) 6 d(sj , zj,ij) + 1 = rj + 1. Hence d(si, sj) 6 d(si, y) + d(y, sj) 6 ri + rj ,
so Bi and Bj intersect, a contradiction. We conclude that y lies in the zi,ik–xik section of
P (si, xik), and thus d(xik, y) + d(y, zi,ik) = d(xik, zi,ik).

Recall that by the initial assumption of the claim, combined with i = `, we have d(y, zi,ik) 6
d(y, zj,ij). Assume first that d(y, zi,ik) = d(y, zj,ij). Then

d(xik, zj,ij) 6 d(xik, y) + d(y, zj,ij) = d(xik, y) + d(y, zi,ik) 6 rik,

which implies that Bj intersects Bik. Thus j = k, P (si, xik) = P (si, xij), and P (sj , xj`) =
P (sj , xij). Since these two paths have only xij in common, in this case we conclude that
y = xij . We can now assume that d(y, zi,ik) 6 d(y, zj,ij)− 1. Recall that by definition of xij ,
we have d(xij , zi,ij) > d(xij , zj,ij)− 1, which implies that

d(y, zi,ik) + d(y, xij) 6 d(y, zj,ij)− 1 + d(y, xij) = d(zj,ij , xij)− 1 6 d(zi,ij , xij).

Since zi,ik and zi,ij are both at distance ri from si and P (si, xij) is a shortest path from si to
xij , it follows that the concatenation of the si–y section of P (si, xik) and the y–xij section of
P (sj , xij) is a shortest path from si to xij (containing y). As y is also on a shortest path from
sj to xij , if we had d(y, xij) > 0, then we could replace xij by y and reduce rij to rij −d(y, xij)
(Bij would still intersect Bi and Bj and only these balls of S), which would contradict the
minimality of rij . It follows that y = xij , as desired.

As in the proof of Lemma 1, the claim implies that for i 6= j ∈ [n], Ti ∩ Tj = {xij}
if {Bi, Bj} ∈ ES , and otherwise the trees Ti and Tj are vertex-disjoint. Another direct
consequence is that for every {Bi, Bj} ∈ ES , the vertex xij is a leaf in at least one of the two
trees Ti and Tj . As before, we can contract the edges of each tree Ti not incident to a leaf of
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Ti, and the resulting graph is precisely a graph obtained from H = (S,ES) by subdividing
each edge at most once, and thus H is a minor of G. �

3. Hypergraphs and density

A partial hypergraph of H is a hypergraph obtained from H by removing a (possibly empty)
subset of the edges. In addition to hypergraphs, it will also be convenient to consider multi-
hypergraphs, i.e. hypergraphs H = (V, E) where E is a multiset of edges. The rank of a
hypergraph or multi-hypergraph H is the maximum cardinality of an edge of H.

We start with a useful tool, inspired by [15] (see also [4]), itself inspired by the Crossing
lemma. Given a graph G = (V,E), we denote by ad(G) the average degree of G, that is
ad(G) = 2|E|/|V |.

Lemma 3. Let H = (V, E) be a multi-hypergraph of rank at most k > 2 on n vertices, and

let E ⊆
(
V
2

)
be a set of pairs of vertices {u, v} of V such that there exists an edge euv of H

containing u and v. (Note that we allow that euv = exy for two different pairs {u, v} and

{x, y}.) Then the graph (V,E) contains a subgraph H such that ad(H) > 2|E|
nek and for every

edge uv of H, the corresponding edge euv of H contains no vertex from V (H)− {u, v}.

Proof. Let H be the (random) graph obtained by selecting each vertex of H independently
with probability 1/k, and keeping a single edge (of cardinality 2) between u and v whenever
the only selected vertices of euv are u and v. Then we have

E (|V (H)|) =
n

k
, and

E (|E(H)|) > |E| · 1

k2

(
1− 1

k

)k−2
>
|E|
ek2

,

since k > 2. It follows that E
(

2|E(H)| − 2|E|
nek |V (H)|

)
> 0. In particular, there exists a

subgraph H of (V,E) such that ad(H) > 2|E|
nek and for every edge uv of H, the edge euv of H

contains no vertex from V (H)− {u, v}, as desired. �

The proof actually gives a randomized algorithm producing the graph H. This algorithm can
easily be derandomized using the method of conditional expectations, giving a deterministic
algorithm running in time O(|E|+ n).

Given a hypergraph H and a matching B in H, we define the packing-hypergraph P(H,B)
as the hypergraph with vertex set B, in which a subset B′ ⊆ B is an edge if some edge of H
intersects all the edges in B′ and no other edge of B.

Lemma 4. Let G be a graph such that each minor of G has average degree at most d, let H
be a ball hypergraph of G, and let B be a matching of size n in H. For every integer k > 2, the
number of edges of cardinality at most k in the packing-hypergraph P(H,B) is at most

(1 + dek)k−1 · n.

Proof. Let P ′ be the partial hypergraph of P(H,B) induced by the edges of cardinality at
most k. Let H be the graph with vertex set B in which two distinct vertices are adjacent if
they are contained in an edge of P ′ (i.e. an edge of P(H,B) of cardinality at most k). Let m
be the number of edges of H. Applying Lemma 3 to P ′, we obtain a subgraph H ′ of H of
average degree at least 2m

nek , and such that for any pair x, y of adjacent vertices in H ′, there is
an edge of P ′ that contains x and y and no other vertex of H ′. The vertices of H ′ correspond
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to a subset S of pairwise disjoint balls of G (since B is a matching), and each edge of H ′

corresponds to a ball of G that intersects some pair of balls of S (and does not intersect any
other ball of S).

By Lemma 2, H ′ is a minor of G, so in particular 2m
nek 6 ad(H ′) 6 d, and hence m 6 1

2 dekn.
It follows that H contains a vertex of degree at most dek, and the same is true for every induced
subgraph of H (since we can replace B in the proof by any subset of B). As a consequence, H
is bdekc-degenerate. It is a folklore result that `-degenerate graphs on n vertices have at most(

`
t−1
)
n cliques of size t (see for instance [28, Lemma 18], where the proof gives a linear time

algorithm to enumerate all the cliques of size t when t and ` are fixed), and hence there are at
most

n ·
k∑

i=1

(
bdekc
i− 1

)
6 n · (1 + dek)k−1

cliques of size at most k in H, which is an upper bound on the number of edges of cardinality
at most k in P(H,B). �

Note that the proof gives an O(n) time algorithm enumerating all edges of cardinality at
most k in the packing-hypergraph P(H,B), when k and d are fixed (note that since H is
bdekc-degenerate, it contains a linear number of edges, and thus the application of Lemma 3
takes time O(n)).

4. Fractional packings of balls

We now prove Theorem 4. The proof is inspired by ideas from [22].

Proof of Theorem 4. Let H be a ball hypergraph of G. Since ν∗(H) is attained and is a rational
number (recall that ν∗(H) is the solution of a linear program with integer coefficients), there
exists a multiset B of p balls of G, such that every vertex v ∈ V (G) is contained in at most
q balls of B, and ν∗(H) = p/q (see for instance [22], where the same argument is applied to
fractional cycle packings). We may assume that q is arbitrarily large (by taking k copies of
each ball of B, with multiplicities, for some arbitrarily large constant k), so in particular we
may assume that q > 2. We may also assume that G contains at least one edge (i.e. d > 1),
otherwise the result clearly holds. Enumerate all the balls in B as B1, B2, . . . , Bp (and recall
that since B is a multiset, some balls Bi and Bj might coincide). We may assume that there
is no pair of balls Bi, Bj such that Bi ⊂ Bj (otherwise we can replace Bj by Bi in B, and we
still have a fractional matching). It follows that the balls of B are pairwise incomparable (as
defined at the beginning of Section 2). For any two intersecting balls Bi and Bj we define
xij as a median vertex of Bi and Bj (also defined at the beginning of Section 2). Recall that
it implies in particular that whenever Bi and Bj intersect, xij ∈ Bi ∩ Bj , and if Bi and Bj

coincide then xij is the center of Bi and Bj .
We let G be the intersection graph of the balls in B, that is V (G) = B and two vertices

Bi, Bj ∈ B = V (G) with i 6= j are adjacent in G if and only if Bi ∩Bj 6= ∅. (In particular,
there is an edge linking Bi and Bj when Bi and Bj are two copies of the same ball.) Let m be
the number of edges of G. Let B∗ denote the multi-hypergraph with vertex set B, where for
every vertex of G of the form xij there is a corresponding edge consisting of the balls in B that
contain xij . Note that two distinct such vertices could possibly define the same edge, which is
why edges in B∗ could have multiplicities greater than 1. The multi-hypergraph B∗ has rank
at most q and contains p vertices. Note moreover that the number of pairs of vertices Bi, Bj

of B∗ with i 6= j such that there exists an edge of B∗ containing Bi and Bj is precisely m.
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By Lemma 3 applied to the multi-hypergraph B∗, we obtain a graph H = (S,ES) satisfying
the following properties:

• S ⊆ B;
• for each edge {Bi, Bj} ∈ ES , xij is contained in Bi and Bj but in no other ball from
S, and
• ad(H) > 2m

peq .

We would like to apply Lemma 1 to H but this is not immediately possible, since some
balls of S might coincide (recall that B is a multiset), and therefore the centers of the balls
of S might not be pairwise distinct. However, observe that if two balls of S coincide, then
by definition the two corresponding vertices of H have degree either 0 or 1 in H (and in the
latter case the two vertices are adjacent in H). Indeed, if two balls Bi, Bj of S coincide and
Bi is adjacent to Bk in H with k 6= j, then the only balls of S containing xik are Bi and Bk,
contradicting the fact that xik is also in Bj .

Let S1 ⊆ S be the subset of balls of S having multiplicity 1 in S. Since no ball of B is a
strict subset of another ball of B, the centers of the balls of S1 are pairwise distinct. As a
consequence of the previous paragraph, if we consider the subgraph H1 of H induced by S1,
then ad(H) 6 max(1, ad(H1)).

By Lemma 1 applied to the set of balls S1 in G, we obtain that H1 is a minor of G and thus
ad(H1) 6 d. It follows that 2m

peq 6 ad(H) 6 max(1, d) 6 d (since d > 1). This implies that

the average degree 2m/p of G is at most e dq. By the Caro-Wei inequality [5, 27] (or Turán’s
theorem [25]), it follows that G contains an independent set of size at least

|V (G)|
ad(G) + 1

>
p

e dq + 1
=

ν∗(H)

e d+ 1/q
.

An independent set in G is precisely a matching in H, and thus ν(H) > 1
e d+1/q · ν

∗(H) and

ν∗(H) 6 (e d + 1/q) · ν(H). Since we can assume that q is arbitrarily large, it follows that
ν∗(H) 6 e d · ν(H), as desired.

The rest of the result follows from well known results on the average degree of graphs. On
the one hand, an easy consequence of Euler’s formula is that planar graphs have average degree
at most 6. On the other hand, it was proved by Kostochka [18] and Thomason [24] that every
Kt-minor-free graph has average degree O(t

√
log t). �

The linear program for ν∗ has coefficients in {0, 1}, and can thus be solved in time O(n3),
since we can assume that the balls have pairwise distinct centers (and so the number of variables
and inequalities is linear in the number of vertices). The associated rational coefficients we

can thus be found in time O(n3). It is then convenient to define w′e as the largest `
n 6 we

with ` ∈ N. Note that the coefficients (w′e) still satisfy the inequalities of the linear program
for ν∗, and their sum is at least ν∗ − 1 since we can assume that there are at most n balls
(since there centers are pairwise distinct). There is a small loss on the multiplicative constant
(compared to the statement of Theorem 4), but we can now assume that in the proof we have
q 6 n and thus p 6 n2 and m = O(n3). It follows that the application of Lemma 3 can be
done in time O(m) = O(n3), and the construction of a stable set of suitable size in G can
also be done in time O(m) = O(n3). Therefore, the proof of Theorem 4 gives an O(n3) time
algorithm constructing a matching of size Ω(ν∗(H)) in H.

The VC-dimension of a hypergraph H is the cardinality of a largest subset X of vertices
such that for every X ′ ⊆ X, there is an edge e in H such that e ∩X = X ′. Bousquet and
Thomassé [2] proved the following result.
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Theorem 5. If G has no Kt-minor, then every ball hypergraph H of G has VC-dimension at
most t− 1.

A classical result is that for hypergraphs of bounded VC-dimension, τ = O(τ∗ log τ∗). We
will use the following precise bound of Ding, Seymour, and Winkler [8].

Theorem 6. If a hypergraph H has VC-dimension at most δ, then

τ(H) 6 2δτ∗(H) log(11τ∗(H)).

Combining Theorems 4, 5, and 6, and using that ν∗(H) = τ∗(H), we obtain Theorem 3 as a
direct consequence.

As before, the linear program for τ∗ has coefficients in {0, 1}, and can thus be solved in time
O(n3), since we can assume that the balls have pairwise distinct centers (and so the number
of variables and inequalities is linear in the number of vertices). The associated rational
coefficients wv can thus be found in time O(n3). Using algorithmic versions of Theorem 6
(see [17, 21]) and the coefficients (wv), a transversal of H of size O(τ∗ log τ∗) = O(ν log ν)
can be found by a randomized algorithm sampling O(τ∗ log τ∗) vertices according to the
distribution given by (wv), or a deterministic algorithm running in time O(n(τ∗2 log τ∗)t). So
the overall complexity of obtaining a transversal of the desired size is O(n3) (randomized) and
O(n3 + n(τ∗ log τ∗)t) (deterministic). In the remainder of the paper, the result will be used
when τ∗ is a fixed constant, in which case the complexity of the deterministic algorithm is also
O(n3).

5. Linear bound

In this section we prove Theorem 2. Recall that by Theorem 3, there is a (monotone)
function ft such that τ(H) 6 ft(ν(H)) for every ball hypergraph H of a Kt-minor-free graph.
In the proof, we write dt for the supremum of the average degree of G taken over all graphs G
excluding Kt as a minor. Recall that dt = O(t

√
log t) [18, 24].

Let t > 1 be an integer and let ct := 2 · (1 + 3
2d

2
t e)3dt/2 · ft(32dt). We will prove that every

ball hypergraph H of a Kt-minor-free graph satisfies τ(H) 6 ct · ν(H).

Proof of Theorem 2. We prove the result by induction on k := ν(H). The result clearly
holds if k = 0 so we may assume that k > 1. If k 6 3

2dt then by the definition of ft we have

τ(H) 6 ft(32dt) 6 ct 6 ct · k, as desired.

Assume now that k > 3
2dt and for every ball hypergraph H′ of a Kt-minor-free graph with

ν(H′) < k, we have τ(H′) 6 ct · ν(H′). Let G be a Kt-minor-free graph and H be a ball
hypergraph of G with ν(H) = k. Our goal is to show that τ(H) 6 ct · k. Note that we can
assume that H is minimal, in the sense that no edge of H is contained in another edge of H
(otherwise we can remove the larger of the two from H, this does not change the matching
number nor the transversal number).

Consider a maximum matching B (of cardinality k) in H. Let E1 be the set consisting of all
the edges of H that intersect at most 3

2dt edges of B. Note that each edge of B lies in E1, and
therefore E1 is non-empty. By Lemma 4, the packing-hypergraph P(H,B) contains at most

(1 + 3
2d

2
t e)3dt/2 · k edges of cardinality at most 3

2dt. For each such edge e of P(H,B), consider

the corresponding subset Be of at most 3
2dt edges of B, and the subset Ee of edges of H that

intersect each ball of Be, and no other ball of B. Denoting by He the partial hypergraph of
H with edge set Ee, observe that by the maximality of the matching B we have ν(He) 6 3

2dt
(since in B, replacing the edges of Be by a matching of Ee again gives a matching of H). It
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follows that τ(He) 6 f(32dt). And thus, if we denote by H1 the partial hypergraph of H with
edge set E1, we have

τ(H1) 6 (1 + 3
2d

2
t e)3dt/2 · f(32dt) · k = 1

2ct · k.

Consider now the subset E2 consisting of all the edges of H that intersect more than 3
2dt

edges of B, and let H2 be the partial hypergraph of H with edge set E2. Note that E1 and E2
partition the edge set of H and thus τ(H) 6 τ(H1) + τ(H2). Let B2 be a maximum matching
in H2, and let ` = ν(H2) = |B2|. Let H be the (bipartite) intersection graph of the edges of
B ∪B2, i.e. each vertex of H corresponds to an edge of B ∪B2, and two vertices are adjacent if
the corresponding edges intersect. (The graph is bipartite because B and B2 are matchings.)

Note that since H is bipartite, for every two distinct edges {B,B′} and {C,C ′} of H, the
sets B ∩B′ and C ∩ C ′ are disjoint. Moreover, no ball of B ∪ B2 is a subset of another ball of
B ∪ B2, and thus the balls of B ∪ B2 are pairwise incomparable (as defined at the beginning of
Section 2). So, enumerating the balls in B∪B2 as B1, B2, . . . , Bn, we can choose, for each edge
{Bi, Bj} of H, a median vertex xij of Bi and Bj (also defined at the beginning of Section 2).
Recall that xij ∈ Bi ∩Bj , and thus it follows from the property above that the only balls of
B ∪ B2 containing xij are Bi and Bj . By Lemma 1, H is a minor of G and thus has average
degree at most dt. On the other hand, the vertices of H corresponding to the edges of B2 have
degree at least 3

2dt in H, and thus

3
2dt · ` 6

1
2 ad(H)(k + `) 6 1

2dt · (k + `),

where the central term counts the number of edges of H. It follows that ν(H2) = ` 6 k
2 , and

thus by the induction hypothesis we have τ(H2) 6 ct · ν(H2) 6 ct · k2 . As a consequence,

τ(H) 6 τ(H1) + τ(H2) 6 1
2ct · k + ct · k2 = ct · k,

which concludes the proof of Theorem 2. �

The first part of the proof of Theorem 2 uses Theorem 3 when ν (and thus τ∗, by Theorem 4)
is bounded by a function of the constant t, and in this case, by the discussion after the proof
of Theorem 3, a transversal of the desired size can be found deterministically in time O(n3).

The second part of the proof of Theorem 2 can be made constructive by performing the
following small modification. We observe that we have not quite used the fact that B is a
maximum matching of H, simply that it has the property that, for any edge e in the packing-
hypergraph P(H,B) of cardinality at most 3

2dt, the matching number of He is bounded. As
we have explained after Lemma 4, such edges can be enumerated in linear time when t is
fixed. We can then compute each τ∗(He) = ν∗(He) in time O(n3) and if this value is more
than e dt · |e|, then we can find a matching of size more than |e| = |Be| in He in time O(n3) by
Theorem 4, and replace Be by this larger matching in B, thus increasing the size of B (this
can be done at most ν(H) times). On the other hand, if for all the (linearly many) edges e as
above, we have τ∗(He) 6 e dt · |e| = O(dt

2), then by Theorem 3, we can find a transversal of
size O(dt

2 log dt) in each hypergraph He in time O(n3). So overall we find a matching B that
has the desired property, and a transversal of the partial hypergraph of H with edge set E1 of
the desired size in time O(ν(H) · n4). Taking the induction step into account (which divides ν
by at least 2), we obtain a deterministic algorithm constructing a transversal of size O(ν(H))
in H, in time O(

∑
i>0

1
2i
· ν(H) · n4) = O(ν(H) · n4), when t is a fixed constant.
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6. Conclusion

The proof of Theorem 2 gives a bound of the order of exp(t log3/2 t) for the constant ct. It
would be interesting to improve this bound to a polynomial in t.

It is also natural to wonder whether Theorem 2 remains true in a setting broader than proper
minor-closed classes. Natural candidates are graphs of bounded maximum degree, graphs
excluding a topological minor, k-planar graphs, classes with polynomial growth (meaning that
the size of each ball is bounded by a polynomial function of its radius, see e.g. [19]), and classes
with strongly sublinear separators (or equivalently, classes with polynomial expansion [11]).
We now observe that in all these cases, the associated ball hypergraphs do not satisfy the
Erdős-Pósa property, even if all the balls have the same radius. That is, we can find r-ball
hypergraphs in these classes with bounded ν and unbounded τ . Our construction shows that
this is true even in the seemingly simple case of subgraphs of a grid with all diagonals (i.e.
strong products of two paths).

Fix two integers k, ` with k > 3, and ` sufficiently large compared to k and divisible by
2(
(
k
2

)
− 1). Given k vertices v0, v1, . . . vk−1, an `-broom with root v0 and leaves v1, . . . , vk−1 is

a tree T of maximum degree 3 with root v0 and leaves v1, . . . , vk−1 such that

(1) each leaf is at distance ` from the root v0,
(2) the ball of radius `/2 centered in v0 in T is a path (called the handle of the broom),

and
(3) the distance between every two vertices of degree 3 in T is sufficiently large compared

to k.

We now construct a graph Gk,` as follows. We start with a set X of k vertices x1, . . . , xk,

and a path of
(
k
2

)
vertices with vertex set Y = {y{i,j} | 1 6 i < j 6 k}, disjoint from X. We

then subdivide each edge of the latter path `
2

1

(k2)−1
− 1 times, so that the subdivided path

has length `/2. Finally, for each 1 6 i 6 k, we add an `-broom Ti with root xi and leaves
Yi = {y{i,j} | j 6= i}.

x1

x2

x3

x4

y{1,4}

y{1,2}

y{1,3}

y{2,3}

y{3,4}

y{2,4}

`/2

`/2

`/2

Figure 1. An embedding of the graph G4,` in the 2-dimensional grid with all
diagonals (the grid itself is not depicted for the sake of clarity).

We first claim that Gk,` is a subgraph of the 2-dimensional grid with all diagonals (i.e. the
strong products of two paths). To see this, place X on a single column on the left, and Y
on another column on the right (in the sequence given by the path), at distance ` from the
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column of X, then draw each of the brooms in the plane (with crossings allowed). Since the
distance between two vertices of degree 3 in a broom is sufficiently large compared to k, we
can safely embed each topological crossing in the strong product of two edges (see Figure 1 for
an example).

Let Hk,` be the `-ball hypergraph of Gk,` obtained by considering all the balls of radius ` in
Gk,`. We first observe that ν(Hk,`) = 1: this follows from the fact that each ball of radius `
centered in a vertex that does not belong to the handle of a broom contains all the vertices of
Y , while every two vertices on the handles of two brooms Ti and Tj are at distance at most `
from y{i,j}. Finally, for every two vertices xi and xj of X, note that y{i,j} is the unique vertex

of Gk,` lying at distance at most ` from xi and xj , and thus τ(Hk,`) >
k
2 . It follows that there

is no function f such that τ(H) 6 f(ν(H)) for every ball hypergraph of a subgraph of the
strong product of two paths (even when all the balls in the ball hypergraph have the same
radius).
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Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium.
E-mail address: wcamesva@ulb.ac.be

Laboratoire G-SCOP, CNRS, Univ. Grenoble Alpes, Grenoble, France.
E-mail address: louis.esperet@grenoble-inp.fr
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