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Abstract

The construction of exact absorbing boundary conditions (ABCs) for the one-dimensional nonlocal
fully-discrete Schrodinger equation is proposed. The computation of the Green’s functions for the
discrete nonlocal Schrodinger equation is stated and used to build the ABCs. Numerical error
estimates are then proved for the case of a singular interaction kernel. The theory and numerical
analysis is supported by numerical examples.

Keywords: Nonlocal Schrédinger equation, exact absorbing boundary condition, stability and
error analysis

1. Introduction

Two decades ago, Laskin [1, 2, 3, 4] proposed a time-dependent space Fractional Schrodinger
Equation (FSE) which can be used e.g. to describe the fractional oscillator of Bohr atom [1] or long-
range dispersive interactions properties [5]. The specificity of the FSE is that it involves a fractional
Laplacian term (—02)*/2, usually for 1 < s < 2, instead of the standard local Laplacian (s = 2). The
FSE led to many developments, from both the applications, theoretical and numerical sides (see
e.g. [6,7,8,9,10, 11, 12, 13, 14, 15, 16]), and has shown to produce specific behaviors compared
with the local Schrodinger equation. More generally, fractional PDE models can be embedded into
the framework of nonlocal PDEs [17] to include more advanced long range interactions that are not
met in the fractional situation. From this view point, the fractional PDE model can be interpreted
as a nonlocal model for a specific kernel. In the present paper, we consider the one-dimensional
system with nonlocal Schrodinger equation: find the function ¢ solution to

iy (z,t) = Ls(x,t), z€R, te(0,T],
P(,0) =9¢°(z), zeR, (1)
hm|:r:\—>+oo 1/1(33;0 =0, te (O,T]’

where i = v/—1 and ¢V is a given initial data. The maximal time of computation is 7. The nonlocal
operator L5 appearing in (1) extends the fractional Laplacian [17] and is given by

Lsila) = [ 2ty =2 ) w(@) = vl )

We assume that the interaction kernel function -5 has the following properties
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e positiveness: vs(a,b) > 0;
e symmetry according to the first argument a: vs(—a, b) = ys(a, b);
e finite horizon: 30 > 0 such that v5(a,b) =0 if |a| > § > 0.

In the above notations, a = x — y measures the distance between the two points x and y, and
(x + y)/2 controls the local horizon. We also need to precise some additional assumptions that are
used later [18, 19] to solve the nonlocal model set in a finite computational domain Jz_, x|

e Al: we assume that the initial data ¥° is compactly supported in le_,z4];
e A2: ~; is compactly supported in [—4,d] x R for § < (x4 —x_)/2;
e A3: s is homogeneous in the exterior domain, i.e.

vs(a,b) =v5-(a), forbe (—oo,z_ + 0], (3)
vs(a,b) = v54(a), forbe [zy —0,+00).

Here, we consider that 75+ =: 7o to simplify the presentation. Finally, similar problems to (1)
could also arise for nonlocal diffusion [17, 20].

The aim of the paper is to develop truncation techniques for computing the solution to (1) in the
finite computational domain |z_, x4 [. Many contributions were proposed to solve this problem for
integer order partial differential equations, usually by considering transparent/artificial/absorbing
boundary conditions (ABC) at a fictitious boundary, or alternatively absorbing layers or Perfectly
Matched Layer (PML). We refer e.g. to [21, 22] for details about this topic in the case of quantum
mechanics equations. Developing ABC or absorbing layers/PML truncation techniques for spa-
tially nonlocal and fractional models remains much less studied than for local PDEs. For ABCs,
techniques based on DtN operators have been introduced in [23, 24] in the case of nonlocal heat equa-
tions. Furthermore, a full numerical analysis of ABCs is available in [25]. For the two-dimensional
nonlocal wave equation, ABCs were constructed in [26, 27] while for nonlocal Schrédinger equa-
tions, ABCs were proposed and numerically approximated in [19, 28]. In the framework of the
absorbing layers/PML approach, efficient and precised methods were designed in [29, 30, 31, 32| for
time-dependent heat and Schriédinger equations involving fractional operators, most particularly
the fractional Laplacian. It is nevertheless unclear if these approaches can be extended to more
general nonlocal models as the one considered here.

The goal of the present paper is to propose the construction of ABCs for a fully discretized
version of (1) and to develop the error analysis of the scheme. To this end, in section 2.1, we
discretize (1) by using a Crank-Nicolson scheme in time and an asymptotically compatible scheme
in space. This allows us to derive the exact ABC for the fully discrete scheme in subsection 2.2.
In addition, we propose a numerical algorithm for computing the kernel functions involved in the
definition of the ABCs in subsection 2.3. After stating some properties of these kernel functions
in section 3, we prove the stability of the boundary condition. We next develop in section 4 the
error analysis between the exact solution of (1) and the solution of the semi-discretized system
associated with (1) in the nontrivial case of a singular interaction kernel 7s. This shows that the
error is second-order both in space and time. In section 5, we study the error analysis for the
numerical solution of (1) with given boundary condition, showing the second-order convergence of
the scheme. We end the paper by some numerical examples in section 6, a conclusion in section 7
and the technical Appendix A.



2. Exact absorbing boundary conditions for the fully discrete nonlocal Schrédinger
equation

To design some exact absorbing boundary conditions for the nonlocal Schrodinger equation
appearing in system (1), we first fully discretize the equation in subsection 2.1 and next extract the
corresponding boundary conditions in subsections 2.2 and 2.3.

2.1. Full discretization of the 1D nonlocal Schrédinger equation

For the spatial discretization, we use the Asymptotic Compatibility (AC) discretization scheme
derived in [26] to approximate the nonlocal operator Ls given by (2) (see [33, 34] for other AC
schemes). Let us set discretize [x_, 2] by using J + 1 equally spaced grid points x; = x_ + jh,
0 < j < J, for the uniform spatial step h := (x4 —x_)/J > 0, with g = z_ and z; = z+. We
introduce ¢; as the standard hat function of width h centered at point x;. Then, we have the
following spatial approximation, for j € Z,

Lso(zj) ~ Lopth; = > biw(thy — ), (4)

keZ
where 1; = 9(z;,-) and the real-valued coefficients b, j, are given by
1 T+ Tk .
7 - LTy, k.
bjr=—Cj_j = (5 —k)h /Ry(ﬁj k(Y)vs(y 5 )dy, j#
0, ik,

and by ; = b; . Since the kernel function - is compactly supported, then one gets: b;; = 0 for
|7 — k| > K := [0/h] + 1, where [-] is the floor function. Therefore, the sum in (4) is finite with
index k= —-K, ..., K.

Let us now consider a Hilbert space H equipped with an inner product (-, )% and induced norm
|| - [[%. We introduce the semi-infinite sequence space

) = {u= (gt €M, Jullagy = (3 I 3)F < oof.
n=0

with the inner product: (u,v)pe ) = Yo ,—o(u™, v")y, Yu,v € ¢2(H). For a sequence u = {u"}>° , €
(%(H), we define the operator S by: Su = {u""1}22,. The average operator E and the forward
difference quotient operator D, with uniform time step 7 are given by E = (S + I)/2 and D, =
(S — I)/7, respectively. We also need the following notations: Su"™ = (Su)", Eu™ = (FEu)"™ and

D;u"™ = (D;u)". Let us define the coefficients:
K
aozfQch, and ap=c¢,, k=1,.. K. (5)
k=1

After some calculations, we obtain the discretized nonlocal Schrédinger equation approximating (1)
and based on the Crank-Nicolson time scheme at time t,, = n7, n € N, and AC discretization

K

iD} = ELsptb} = aoBYY + Y a(BY}yy, + Byj ), for j € Z, (6)
k=1

where we denote by 47 the numerical approximation of (), tn).



2.2. Ezact absorbing boundary condition for the fully discrete nonlocal Schrodinger equation

For ¢?, j=0,...,J, compactly supported in [zg, z s], we need to introduce some artificial bound-
ary conditions to complete (6) written for j = 0,...,J. To this end, we derive in Theorem 1 a
relation between the left exterior unknowns ¢7 (red dots in Figure 1), j < —1, and the interior left
values ¢ (blue dots) (0 < j < K —1) in the computational domain, which will play the role of left
absorbing boundary condition. A similar relation is given for the right ABC as shown on Figure 1
for the nodes J+1<j < J+ K.

T = Computational domain T4
+«« Left exterior domain «++Right exterior domain
T L . . /\n \n fn [ . L T L
Yo V2 V2 Vi1 Yk Vi Vi-k-1YJ-kVi-k+1¥i-k+2 Yi-1 Vg
©:-cc@:ooccennee [P IR Y N NS i N S A Ny "y Ny Ny G SRy Sy ———— o--0
. N b H Db
P_K (K1) o Yoy ‘—’} Vi1 Y2 Pr+k -1V I+ K
. ) .
@ Left boundary nodes © Right boundary nodes
© Interior connected left nodes O Interior nodes @ Interior connected right nodes

Figure 1: Discretization of the domain and unknowns.

Before giving Theorem 1, we introduce the convolution of two sequences (¢"), and (f"), as:
(fxg)" =31 9" " f" For two sequences of matrices (A"),, and (B"), of size K x K, and for
a K components vector sequence (v"),, we define the K x K matrix (A «B)" := > " A" "B",
and the vector (of size K) (Axv)™:=>"" A" "v". For the tools related to the Z-transform, we

introduce: f(z) := Yoneo [z, A2) == Yol gA"z7" and V(z) := > 2 v"z~". Finally, we set:
prc(z, @) =151 — 2L A (), with Ak (z) := ag + 2 S ag cos(kx).
Under these notations, the following result holds.

Theorem 1. Let n € N. The left and right absorbing boundary conditions associated with (6) can
be respectively written as

K
W=D (Cgprn)", for —K <j<—1, (7)
k=1
K
Wi = (Cipxtbpp)", forl<j<K, (®)
k=1

~

where the sequence of K x K matrices (C"),, is given by: C(z) = B(2)A™1(2), z € C. In the above
relations, we have: sz = f;‘+k_1 and A?,k = fﬁ_k', for1 <4,k <K, with

~ 2
~ gi(z . 1 _ Y
o =25 g6 = o [ o e . (9)
T Jo
Let us introduce (5;-) as the Krénecker symbol such that §) = 1 and (5? =0 for j # 0. To prove

Theorem 1, we first state the following Lemma.

Lemma 1. The functions E(z), for 7 € Z, satisfy

z—1~ z ~ K ~ -~ &Y
i) = [0+ Y el Fane) + esl)] + = (10)

k=1

4



Proof of Lemma 1. Let j € Z. A simple calculation based on (9) leads to

K 27
~ ~ -~ 1 — —ijx
aofi+ > an(fion+ k) = 27@0(2)/0 P (2 2) Ak ()e™ " dx
k=1

2 1 [ 2—1 2 2—1
= ——| — =— e Vdr +1 A-) = = i gi(z) =69,
(z—l—l)go(z)( 27r/0 T )T G D) T 9i(2) = 9;

which provides (10). W
Let us now prove the following result.

Lemma 2. Let us assume that the kernel functions {f]n}nGN satisfy (9), for j € Z, j # 0. We
consider K given sequences {ull }nen, such that u) =0, for 0 <k < K — 1. If we define

K-1

W = (fik*uR)", forj <K-—1, (11)

k=0
then, for any integer j < —1, we have
iD " = ELs 7, (12)
with 1/1? =0.
Proof of Lemma 2. From (11), we obtain

K-

,_.

] k k , fOl"jSK*l. (13)
k=0

For j < —1, we have j —k < 0, with 0 < k < K — 1, and (5? = 0. Hence, from (10), the functions
’(ZJ\]'(Z) satisfy

1. z+1 K- K-1 K )
7 - 1/) = [kz of] + Zlap f] k— p +fj k+p( ))uk('z)
=0 k=0 p=
1
= a0tz 2) +dyep(2),

which leads to (12) after Z-inversion. Finally, we have wo Z fjofkug =0 from (13). ®
Lemma 2 implies that the functions v, g < -1, sa‘msfy the governing fully discrete nonlocal
Schrodinger equation on the left exterior domain. Consequently, if we can compute {u}},, for
0 <k <K —1, we obtain the ABC at the left boundary given by (11) and leading to (7).
Let us now admit the following Lemma. Its proof is available at the end of this section since it
requires some preliminary analytical results.

Lemma 3. For K given sequences {zﬁ?}n, with ? =0and0 < j < K—1, we can find K sequences
{ultn, with 0 < k < K —1, such that,

K-1

W= (fioeruw)", 0<j<K-—1. (14)
k=0



Lemma 3 shows that, being given the interior values {¢?}n, 0 <j < K-—1, we can compute
{u}}n through (14) and then obtain {¢7'},, j < K — 1, satisfying (11) and the exterior left problem
(12), for j < —1. Based on the two previous Lemmas, we prove Theorem 1.

Proof of Theorem 1. By using Lemma 3, we can find K sequences {u}'},, 0 < k < K — 1, such
that (14) holds for the boundary values {¢7'},, 0 < j < K —1. Now, for the same sequences {uy },
we can define {¢]}, based on (11), for j < —1. Therefore, {¢7}, satisfy (12), —K < j < —1, by
Lemma 2. Combining (11) and (14) provides the left boundary condition. More precisely, we have

K
U =) (fojrhor *up—)”, —K <j< -1,
"l (15)
Vi1 = Z(fk—é*UZ—l)n7 1<k <K,
=1

since f7; .1 = f1'" ;- Now, by applying the Z-transform to (15) and eliminating u(z), we directly
obtain the equivalent expression w” Zk 1(Cjp* 1), —K < j < —1, where A, B and C are
K x K matrices such that C(z) = B(2)A (), (B")jk = fiyp—1 and (A"); = fi ), 1< jk < K.
Similar calculations on the right domain lead to (8). W

Let us note that, from the definition of A and B, and since the index of f}ﬂrkfl is such that
0<j+k—-1<2K-1, from f; = fI and (B");x = f}';_;, we only need to compute f}' for

0 <j <2K —1 to determine (C( ) = IB%(z)A_l(z) in subsection 2.3. In addition, we remark that
considering g, (z) instead of fn( ) is sufficient to compute C. Indeed, since ]B%] k(%) = Gj+k—-1(2)/90(2)
and Ajx(2) = g)j—k/(2)/go(z), for 1 < j,k < K, from the relation C = BA™!, we can modify the

two matrices to be Bj4(2) = §jx_1(2) and A, x(z) = Gj—k|(2), with g;(z) given by (9).

2.3. Computation of the functions {g ”}n, for0<j<2K —1

Let us define {g}}, as the inverse discrete Z-transform of g;(z). Since gj = ¢";, from (9), we
only need to compute gj', for 0 < j < 2K — 1, to derive the absorbing boundary conditions (7) and
(8). From Lemma 1, the functions g;(z), for j € Z, satisfy

z—1__ z+1 . ~ 0
i———0;(z) = —— [aogy ) + Zak Gi+k(2) + gj—k(2)) | + 05, (16)
leading to 1D-g7 = ELspg; + 5?, with g? = 0.

Let us now state the following Lemma.

Lemma 4. The sequences {g}l}n, for any integer j € Z and n > 2, are such that

K-1
277“_ n—1

9; = 9gj- 2K+K;kak 95— K-k — 9i— K+k)+ KaKZkak j— Kk — 9 Kk)

4G -K) 1, ,

k n—2 —_— 17

n—lKaKZ a(g ~9j-kk) (n—l)KaKTg —xe (17)

Proof of Lemma 4. For any integer j € Z, we define Bj(z) = (2 +1)gj(2). Then, we have



d & 1 d [* 4ij
7 7 _ . —1 ' —ij _ .
% ;kak(hj_k — h]+k) = %£ ) 21(1 + Z)pK (Z,$)AK(CL')€ ]$d$ = —mg],
which leads to
d . 4ij
Zkak (9j-k(2) = Gj41(2)) + (2 +1 Zkak —k(2) = - Gj4k(2)) = —mgj(z)- (18)

After multiplying (18) by (1 4 z), we obtain

K 00
(Y 3 e~ e 4 Y 3 ) = 3o
k=1 n=0

After some manipulations, we deduce

1 (2
n+1 n+1 n+1 n+1 n
9j+K = 95—k T Kag Z kar(g;”y = 9535) + e nKag ;kak ik ~ Ij+k)
(n—1) 4ij 1
k P = ————g}.
nKaK Z k(95 k — j4k) ~ nKaKng

Finally, we can rewrite the above expression for g as (17). W
We still need to compute gjl-, J € Z. To this end, we write
. 1 2T eliz det® 1 LK4j-1
9; = 5= : - - = o
Tooomy ift —ap/2 — Yr, ag(etkz 4 e—ike) /2 de™  2mi Ji - q(z)

dz,

defining: q(2) = (i/7 — ag/2)z" — 21]::1 ap(25HF + 2K=F) /2 which has 2K different roots ry,
1 <k <2K. We suppose that K zeroes are such that: |ry| <1, 1 <k < K; < K. Then, we have

1 K-‘rj 1
1
9 zm-/w Z es

Relation (16) can be used to compute the 2K sequences {g;l}n, for 0 < j < 2K — 1. To this
end, the sequences {g;?}n, for 2K < j < 3K —1 and —K < j < —1, need to be determined to close
(16). Furthermore, {g}q’}n, for —K < j < —1, can be obtained by the property: gZ; = g7, and the
sequences {g;-"”}n, for 2K < j < 3K — 1, can be computed based on (17). Therefore, we determine
the discrete system for {g} }», with 0 < j <2K — 1, and obtain B = Cx A.

Finally, we prove Lemma 3.

Proof of Lemma 3. To solve (14) with 1/1? =0,0<j <K —1, we can equivalently consider

SK+j-1 Ky  K+j-1

)z:rk =2 Tz (r)

k=1

|
7
Sh)
\

up(z), 0<j<K-—1. (19)
k=0

Since J/"},k(z) = gj—k/Jo, then one gets the new form of (19)

Goj = Zgj )iy, 0<j<K-—1 (20)



If we define the two vectors ¢K = (90¢0,901/J1,- Gor— )T and g = (Uo, U1, ...ux_1)", then (20)
can be rewritten under the matrix form: 1,[) K= = Al K, where A is the K x K matrix with coefficients:
A]’k( s) = gj—|(2), 0 < j, k < K — 1, since g = gr—j. In addition, we obtain

o0

LT L& 1T (i A2,
R e O ey e T

1 [ 1 iy T ;i T
= —17zq o(=)= L 0o(=
z/o /T = Ar@)yy° | w0 = +05)
for large values of |z|. Moreover, we have ~; = —176;-) + O(72). Therefore, we deduce that A =
—irz Y1+ O(r) + O(z ~1)), where I is the K x K identity matrix. For z large enough and small
T, we have: 1,b KR Al K, Where A= —irz ~I1, and (20) has a unique sequence solution i, ending

hence the proof of Lemma 3. B

3. Properties of the kernel {C"},, and stability analysis

3.1. Properties of the kernel {C"},,

Let us now prove some useful properties of {C"},, for the stability and error analysis. From now
on, Z is the complex conjugate of z € C, and M7 is the transpose of any complex-valued matrix M.

Proposition 1. For any sequence v = {v"}, of elements v"* € CX such that v° = 0, the following
iequality holds, for N > 1,

N-1
[ S EC sy 2o, 1)
n=0
with v* = [, v}, ..v% |7 and S is the K x K Hankel matriz based on {ay k=1, x defined by (5)
(on the first row), with zeroes under the anti-diagonal.

Proof of Proposition 1. Let us first prove (21). By Lemma 3, for any vector sequence v = {v"},,
such that v0 = 0, we can find some sequences {u?},, 1 < k < K, such that: vy = Z,f:_ol(fj_k*uk)”,
0 <j < K —1. Hence, one can directly define: v} = kK:_Ol(fj_k * ug)", for j < —1. Since
ag = —2 Zk;K:1 ay, then {U}’}n, j < —1, satisfy the fully discrete nonlocal Schrodinger equation (12)

K
iD;v} = agBv} + Z ar(Evi_j + Eviy,) =
k=1 k=1

M=

K
ar(Ev;_ — Evi) + Z ar(Evl, ) — Evy).
k=1

Multiplying the above equality by Ev?, and summing from j = —J to j = —1 yields

L T 03
3 S S B - EOET - E ¢ 33 Bt - EET
j=—J j=—J k=1 gf—ch 1
-1 K
+ Z Zak(Ev?_k —EUZ)(EU —Ev Z Zak (Bvj_y, — Ev})Evl ) .(22)
j=—J k=1 j=—J k=1



Computing (22)-(22) leads to

-1 "1};—’—1’2 ‘vn‘Q

5SS o pE S Y e,

j=—J k= 1]_fk k=1j=—k
K —J-1 —J-1

—Z Z akEv]JrkEv +Z Z akEvj+kEv (23)
k=1j=—J—k k=1j=—J—k

Taking J — 400 in (23), and since v? — 0 when |7] = +o0, we obtain

SRl
Z i Z Z akEv”EUJ+k —G—Z Z akEv"Ev (24)
j=—00 k=1j=—k k=1j=—k
Let us define u™ = [uf,ul, -+ ,u% |7, v = [vf, o, -+, 0% |7 and w™ = [v" ], 0", 0" k] L.

n
0>
By Lemma 3 we have v* = (A xu)” and w” = (B ) , implying that: w" = (Cx v)". Summing
p (24) from n =0 to N — 1, one finally gets (21) since

—1 ’UN‘Q N-1 T
Py JT =23() _ (E(Cxv))* -S(Ev)"). (25)
j=—00 n=0

3.2. Stability analysis
For 4™ := (¢7);=0,..,s, n € N, we introduce the norm \|1,b”||43 = h1/2(2‘j]:0 |@ZJ}"‘\2)1/2. We now
prove the 63—stability of the fully-discrete scheme with ABC.

Theorem 2. Let N € N. The solution of the fully discrete scheme (6) with ABCs (7)-(8) satisfies
the stability inequality
9Vl < 19/l (26)

Proof of Theorem 2. Repeating the same procedure as in the proof of Proposition 1 by multiplying
(6) by Ev? and summing up all the terms from j = 0 to j = J, we obtain

n

J n+l -
Zi%T]Ewn = E g ax(EYy — By )(Ewn Ewﬁk )+ Z
=0

Mw

ag Ew;ch E/(/}j )E itk

J=0 J=0 k=1 J=0 k=1
J K L J K
+3 0 an(BY) — By (BT — EPT ) + Z > a(BY} — BYR) EYT.(27)
j=0 k=1 J=0 k=1
Let us define (V+ [w])n = [?ﬂ?? Qﬂ?_l, T 7¢9_K+1]T7 (W+[w])n = [¢3+1> ¢9+27 e 7¢?+K]T and

(Vo[ = [, by, - T (Wo ) = [, ", " )T The boundary conditions read
(Wi [])" = (Cxvi[p])", (W-[])" = (Cxv_[¢])". Computing (27)-(27) yields (26)

T N2 — [99)? = T = T
S i = 2 Y BCA V)" SEv-[]" + Y (BC*vi[0])" -SEv.[u]").
j=0 n=0 n=0



4. Truncated and boundary errors analysis

Let us introduce the following norms

Hmm—%@mwrwm—%u@mw&
1Al = [ 1f@de, Uiz, = max 1)

yElxz—d;2+9]

for § > 0. We recall that ;5 is assumed to be homogeneous in the exterior domain according to
assumption A3 (see (3)). In the computational domain, it may be a priori inhomogeneous. However,
to simplify the presentation of the proofs, we suppose from now on that 75 is also homogeneous
inside the computational domain, has a singularity behaviour vs(a) ~ |a|~%, a < 1/2, and that
vs] rp < +oo. Nevertheless, if 75 is non homogeneous in the domain of computation, the proofs
can be adapted for similar singularity types but at the price of more complexity.

4.1. Error estimates: main result

For u™ := (u?)jez, n=0,---,N,and UY = (u")g<p<n_1, with N > 1, we define the norms
K
[l = max|ugl, [[u®]]2 := RGP (e = RO )Y,
I jez =1
N-1
N — N . 1/2 2\1/2
(O oo = Ogglga&(_ll\u”lleoo U)oy =7 (Z;)lu"Hez) 2,
n—=

For 1) solution to (1), we set 1;(t) := (z;,1), for j € Z. The error e} for (6) is then

n

2 (W5 (tns1) — 5 (tn)) — L (5 (tns) + 3 (1),

ej = l;
where 0 <n < N —1and j € Z. We set e" := (e])jez, n=0,---, N, and EN = (€")o<n<n_1. We
define the backward derivative operator V_e := (e} —e7_;)/h, and V_EV := (V_e")g<n<n_1, for

e" := (e7)jez. Let usintroduce the time-dependent K components vectors V_¢) = ((¢;) =0, x-1)7T,
W_tp = () j=—1,,-1) " Voo = (Yy—j)j=0,..k-1)" and Watp = ((¢))j=g41, s+x)". We also
need to define the boundary operators G4+ = Cx Vi — W such that: CxVi(t) =) > (C"V(t—
tm), setting V() =0 for ¢ < 0.

The main result of this section concerns the following Theorem which shows that both the
truncated and boundary errors of the interior scheme are of order O(h? + 72).

Theorem 3. For N > 1, we have the following error bounds

IEN||joev < C(7% 4 h?), (28)
IEN||ev < C(7% 4 h?), (29)
IV_EN||on < C(72 + 1), (30)
IGLllp < CE*+h?), 0<n<N, (31)

where C' > 0 are some constants that only depend on v5, 6, T and the initial data °.
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4.2. Estimates for the solution ¢ of system (1)

We first derive some useful estimates for the solution ¢ of the continuous problem (1).

Lemma 5. Let us assume that 0540 is in L%, for a positive integer £ > 0. Then, we have:
10%4h]| 12 = (10540 | 2. In addition, if 95140 is in L™, then the following bound holds

1053 | oo < C(1|OST 00| 2 + 1054 2),
where C > 0 is a constant.

Proof of Lemma 5. Let us consider the governing equation

+6
0z, 1) = / ) () = vl = 5. ). (32)

Summing up (32) multiplied by 1 and the conjugate of (32) multiplied by —, and integrating the
equality from —L to L(> 0), we obtain

o[ wir= [ (- [ [ ot 0wy

Since [¢(z,t)| — 0 as || — oo, taking L — +oo in the above expression leads to &|¢]|3, = 0,
providing [[1|[2, = [|¢°||2,. It is easy to see that [|05¢[|2, = ||054°||2, also holds. In addition, we
have the following inequality which proves the result for £ = 0

1]l < / (L+ €)M A+ [EDIDE)IdE < Ol L2 + 1022l 12)-

—00

Similarly, we obtain ||95|2, = |[954°]|2, by considering 8;951 instead of 1 in (32). W
A consequence of Lemma 5 is given in the next result.

Lemma 6. Let k> 1 and ¢ € N. For¢° and v sufficiently smooth, and for ¢)° compactly supported
in |x_;x4[, we have, for x € R and t > 0,

07 ()| < O2° s, (110510072 + [1050°[72). (33)
Proof of Lemma 6. From (32), we have: |0 (x,t)| < ||75|\L(1; ||%|| o=, and by iteration
07 (2, 1)) < 2lslly 10F el < 2(ysl| 7 1l 2o < C2 sl (100172 + [19°1122)-
Similarly, we prove (33)
[0F (e, 1) < 2lslly 1105 Obllzoe < 28M1sl| 72 105wl Lo < C2F (sl 7, (1950022 + [10,0°122).

11



4.3. Boundary error estimates
Let us introduce ¢; such that

K
€i(t) = aot; (t) + > an(jx(t) + k() — Loy;(t), (34)
k=1

for j € Z, where 1) designates the solution to (1). We rewrite €; as,

(k+1)h
6 = ij — %yt Yo / H(S)s5()ds

(k—1)h

%— —2¢; + Yk (K" 35
+ *h /(K n OK ($)sy5(s)ds (35)

1)
—/0 (P(zj —<,t) — 2¢(w5,t) + Y(x; + 5, ))vs()d,

where we recall that ¢ is the hat function of width h centered at kh.
Then, the following technical Lemma holds (see Appendix A for the proof).

Lemma 7. Let us assume that (z,t) € C3([—00,00] x [0,T]). Then, we have: €;(t) = h?Q(x;,1),
for j € Z and t > 0, with

RS QP < C / Z|a%y, 0)2dy, (36)

JEZ
setting

K-1 .1 1
Q(mnﬁ)zhz [ outstistas [ atin-+un a1~ )iy

0

1
¢0 (ch) §d§/ qx (Kh +cyh,x,t)dy (37)
0

—h/o ¢2do(sh)vs(sh) dq/ / O2p(x + c&ah, t) + 02 (x — cEoh, t))déadEy.

In the above relation, we defined

1 khé
gr(6.2,1) = 5(s) /0 / (2 + 1) + Do — o, 1)) dnde, (38)

and (s, x,t) designates the second-order derivative of qy(s,x,t) with respect to .

Let us now prove Theorem 3.
Proof of Theorem 3. Let us start with (28) and (29). Using Taylor’s expansions of ¢ (z, t,) and
¥(x,th4+1) and after some computations, we deduce

en(x) = i§(¢(x7tn+1) - 711(33,75n)) - L6,h(¢(xa thrl) + 111(33,tn))

’7'2h2
= —20°Q(%, tyy1/2) — ﬁan(ﬂfath/z) - (ﬁaafw(a?,tnﬂ/g) + h26t2Q(:c,th/2)>7-2/6
: T/2
1
1o, ; (O (x, tyy1j2 +€) — 0@, b1 2 — <))(7/2 — <) ds

1

T/2
_é /0 (Lg’hazlw(l',tn+1/2 + §) =+ L57ha?¢(.%',tn+1/2 — C)) (7‘/2 — g)3d§-

12



By using: L(;,hﬁfw(xj,t) = Eg(?fd)(ﬂ:j,t) + hzﬁfQ($j,t), and since

T/2 2
(/0 (Lsp0ib (2, tyi1jo + <) + Lopdf (@, g1 2 — <)) (T/2 — <)3d<)
7 /2 4 2
< Cr / ‘L(S,hat ¢(JU, tn+1/2 + §) dg7
—7/2

one gets
|e§L|2 = |en(xj)|2 < Ch4|Q(xj>tn+l/2)|2 + T4h4’8t2Q($ja xn+1/2)|2 + CT4‘[’567€2¢($]'7tn+1/2)|2

T/2
+CT7/ P (|£(5a;1¢($]>tn+1/2 + §)|2 + h4‘8?Q($j7tn+l/2 + §)|2 + |8t5w(xj7tn+1/2 + §)|2)d§'

From Lemmas 5-7 and the above equality, we deduce (28) since from (A.10) (see page 23) we have
0£QUa,1)] < C (1020w, ) lnce, + 103000 (v, )l e=s, ), £=0,2,4,

with L5029 (z,t) = 103 (x,t) and Lsdfh(x,t) = 10p(x,t).
To prove (29), we remark for example that, for N7 < T, we have

N-1 T
TEJQmmHmFsoA|mam%t
n=0

All the other terms can be treated similarly. This yields

N-1 -1 T
S eRhr < ot + 74)/ / S |orote(e, 1) Pudt < C(h* + ),
0 R

n=0 j=—o0 0<p,£<h

which provides (29). We obtain (30) similarly.
Let us now prove (31). For the sequence {¢}'}, = {¢j(tn)}, based on the solution of (1), with
¢? =0, for 0 < j < K —1, from Lemma 2 we can find K sequences {u},, with 0 < k < K —1,

such that
K—-1

WP = (fjkxup)", 0<j<K—1. (39)
k=0

Then, the values 7, for j < —1, can be defined by

K

U= "(fmexw)", j<-L (40)

k=1

In this case, the solution satisfies: 1(1/1;7“ — ) /T = Lsp B0}, j < —1, with [¢7] — 0 as j — —oc.
Now, let us consider wj = ¢ — (xj,tn). For j < —1, we have

K
. 1
iD;w} = agBw? + E ar(Bwj_y + Ewjyy) — 56?.
k=1

13



Multiplying the above equality by Ew?, and summing up all the term from j = —J to —1 we get

Z i L Euwn
- J
j=—d
-1 K K
= Z [Zak(Ew Ew?)Ew —i—Zak Ew}_, — Ew})Ew } - = Z e’ Bw?. (41)
j=—J k=1 k=1 j==J

Repeating the same procedures, we compute (41)-(41). Taking J — oo, since ¢ — 0 as |j| — oo
we have

0 |wn+1|2 |wn|2
’ N—I—T 1 -1 - 1 -1 o
:2¢%(Z(E(w,[w]))n .S(E(v,[w]))n) —5 O SR+ Y @Buf. (42)
n=0 j=—00 j=—00

From the choice of {¢§L}n for 0 < j < K —1, it is clear that: w] = ¢} — ¢(z;,t,) = 0 for
0 <j <K —1, and hence v_[w] = 0. Summing up (42) from n =0 to N — 1, we obtain
-1 | N|2 -1 -1 N-1
> oY TEEe Y S e
j=—00 j=—00 n=0 j=—00 n=0

Then, using (29) and Gronwall’s inequality [35] leads to

—1
h Z lwi > < Crh ) Z|e”|2 (h* + THC(W(,0),7,8,T).

j=—o00 j=—00 n=0

From (39) and (40), we have (w_[¢)])" = (Cx v_[¢)])™ = (Cx V_[¢)])". Therefore, we deduce:
(W, Wy, ™ )T = (Wo[Y])" = W_(t) = (Cx V_[{])" —W_(t) = G_(t). &

5. Error estimates of the scheme

Let us recall that w} = Y(zj,ty), where ¥(z;,t,) is the solution of the nonlocal Schrédinger
equation (1) evaluated at (:U],tn) and 97 solves the fully discrete version (6). In addition, let
us define the norm: |[|w"[|; = maxo<j<s|w]|. We set the discrete forward derivatives as:

V() tn) = ((xj41,tn) — (), t0)) /b and Vit = (47, — ¢F)/h.

Let us give the main result concerning the error estimate.

Theorem 4. For 7 >0 and N7 < T, we have the error bounds

W™ < Cr2, (43)
IVow™g | <0, (44)
| < O, (45)

for some constants C > that only depend on ~s, 6, T and 1°.
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It is straightforward to check that the error w? satisfies for n > 0

i;(w;”rl —w}) = =Lp(wt +w]) —

(Crvifw]))" — (Wi [w])" = G (tn),

with wQ = 0, where e} (respectively G (t,)) is the interior (respectively boundary truncation) error

according to the time and space discretizations defined in Theorem 3.
The proof of Theorem 4 is a consequence of Theorem 3 and the following Lemma.

Lemma 8. Let us assume that the singular behavior of s around 0 is vs(a) ~ |a|~%, a < 1/2.
Then, the coefficients ay, in Lsp, given by (5)-(6) satisfy the following inequality: |ax| < Ch'=2, for
k=1,.. K.

Proof of Lemma 8. Since ar = a_g, we only need to estimate ay for £ > 0. For kK = 1, one gets

\ak\—‘/2h¢k Jovs(s d’<C‘/2h1adg’<0h1°‘

for a constant C' > 0. In addition, for £ > 2, we obtain

(k+1)h (F+Dh d-a (k+1)h
]ak!—‘/ gfy(; d’<C‘/ ’7 / gdg<0h1°‘
k—1)h k—1)h h® Jk—1)n kh

|
We can now prove Theorem 4.
Proof of Theorem 4. Let us start with (43). For a time step 7, we have

@i~ w) = SLa(l ) - el
By a procedure similar to the one given in Proposition 1, we obtain
i J N—-1 T
. > (lw? = [wif?) = —21'%( > (EBEw_w))" - SE(v-_[w])" (46)
i—=0 n=0
. -1 T N—-1 J 1
+ Y Bl SEE ") + 35 5 (- By + )
n=0 n=0 j=0
which leads to
J
> (i P = wl)?)
j=0
N—-1 T N—-1
< =273 S (BC*va[uw]))" -S(E(v[w])" = Y B(G () - S(E(vs[w])")
NT . Nt . (47)
—27hS( > (BCHv_ )" - SEN-[)" — 3 EG (t) S (B(v-[e])")
i N_ln?O n=0
330 3 (el + [ty )
n=0 j=0
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In addition, from ay = O(h'~%), for 1 < k < K, and the expression of S, we derive

K K
|(sBvaw))) | < ont= (3 gl + 3 it )- (48)
q=1 qg=1
Thus, for a < 1/2, from (48) and (31), (47) can be written as
N-1 N-1

—2rhS( Y (BCrvalul))

N
< C(h2+72)2+CTZHW”H%. (49)
n=0
Finally, (29), (46) and (49) lead to

N
V2~ ([w0I2 < OO 4 h2)% 4 07 3 (w4
n=0
which proves (43): HWNH@] < CeONT (12 + h?) < CeCT (72 + h?).

Let us now focus on (44). For {¢7}, solution to (6), with 1/1? =0for 0 <j < K-—1, from
Lemma 3 we can find K sequences {uj },, with 0 <k < K —1, such that: ¢} = Zf;ol(fj_k*uk)”,
0 <n < K —1. Then, 97, for j < —1, can be defined by: ¢} = Zle(fj_k *ug)". In this case, the
solution satisfies: iT_l(l/J;H_l — %) = LopEY7, j <0, and |@bj”\ — 0 as j — —oo. This leads to

ivw;?“ — Vif

T

= L(;,hEv-i-w?? .7 < -1

Introducing go? = V+1/);?, for 0 < j < K — 1, from Lemma 2 we can find K sequences {v} },, with
1 <k < K, such that: ¢ = Zi{:_ol(fj—k *v)", 0 < j < K —1. The terms ¢7, for j < —1, can be
defined by: ¢} = Zle(fj,k *v)", 7 < —1. In this case, we have

(anrl — "
i ! T J = L(s,hESO?a j S _17
and |¢}| — 0 as j — —oc. By defining w = V97 — 7, we obtain
w?}—l—l —

i = LypBuf, j< -1

and (v_[w])" = [V — QOZ]%ZO"MKfl = 0. Repeating the procedure as for (25), we deduce

—1 |wN 2 N—17T
> jT = 23( > (Bw_w])” -S(Evf[w])”> =0.
Jj=—00 n=0

<

Then, we have V97 — ¢} = w}! = 0 for j < —1. By defining (v_ [V ¢])" = [Vg/}?]fzow,[(_l
and (w_[Voyl)" = [V 07 JT_, . we obtain: (w_[w])" = (w_[V4u])" — (v_[g])" = 0. From
(w_[g])" = (Cxv_[p])", ome gets

(W-[Vig])" = (w[p])" = (Cxv_[p])" = (Cxv_[V19])". (50)
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Similarly, we derive: (wy[V_#]|)" = (Cx vy [V_¢])", with (vi[V_9])" = [v*@%—k];{:o,...,l{—l and
(Wi [V_y])" = [V_wz+k+1]£:07_._7[(_1. From (34) and Lemma 7, we have

K
Viei(t) = agViv;(t) + > an(Vivjpk(t) + Vb n(t) — L5V 4th(t) = h°V 1 Q(;, 1),
k=1

for Viu;(t) = (uj+1(t) —u;(t))/h. From Lemma 7, we deduce

6
Y VL Qa b < © /R S (0P (y, 0) dy.
p=3

JET

Therefore, we obtain

N—-1 -1 T
S X Wafrr ot ety [T jagafuelded < O £ ),
0 R

n=0 j=—oo 0<p<6,0<k<5
For the sequence {1;(t,)}n solution of (1), with wJQ =0, for 0 <j <K —1, from Lemma 2 we can
find K sequences {u} },, with 0 <k < K — 1, such that

K-1

X = Vathi(ta) = ) (fimerun)", 0<j<K-1. (51)
k=0

Then, the values x7, for j < —1, can be defined by

K

X = (fimexuw)”, j<-—1 (52)
k=1
In this case, the solution satisfies
n+1 )
e Y
-

with [x}| — 0 as j — —oc. Now, let us consider d} = x7 — V¢ (z;,t,). For j < —1, we have
K

1
iD-dj = aoBdy + ) ap(Bdj_y + Bdj, ) — SV .
k=1

Multiplying the above equality by Ed?, and summing from j = —J to —1 we get

—1 n—+1 m -1 K K
d" — "
d it — —Ed;} = > [Zak(Edy+k — Ed))Ed} + Y ap(Ed}_;, — Ed})Ed}
j=—J j=—J k=1 k=1
-1
1 _
—5 > V4 Edy. (53)
j=—J

Computing (53)-(53), taking J — oo in (53), since ¢} — 0 when |j| — oo we have

0 ‘dn+1‘2_ ‘dn|2 N-1 T
S =g Y (B )" - S(E(v-[d)")
g S T
=5 2 V4GB +5 > VieEd]. (54)
j=—o0 j=—00
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From the choice of {x} } for 0 < j < K —1, we have: dj = X} — V¢ (xj,t,) =0for 0 <j < K—1,
and then v_[d] = 0. Next summing up (54) from n =0 to N — 1 provides

’dN’2 ’dn—l—l’z ‘d"‘Q 1 N—-1 -1 — N—-1 -1 -
j=—00 n=0 j=—oco n=0 j=-—o0 n=0 j=-o00

-1 N-1 -1 N-1
<O Y wgle Y Yt

j=—o00 n=0 j=—00 n=0

Then, combining (51) and a Gronwall inequality [35] yields

-1
h Z dY[> <CTh Y Z|v+e”|2 (Wt + 710, 75,6,T).

j=—o00 j=—o00 n=0

From (51) and (52), we have (w_[x])" = (Cxv_[x])" = (Cx V_[V_4;(t,)])". We deduce

[dzla d7127 dﬁK]T = [XT—Ll - Verfl(tn)v XEQ - v+7/}72(tn)a X7_LK - V+w—K(tn)]T
= (W_[X])" = Ve W_(tn) = (Cx V_[V1j(tn)])" = VLW _(tn) = VL G_(tn),

and similarly to the previous calculations, by (51),
IVie"llz < C(r*+h%), [[V5Glllp <C(°+h%), 0<n<N.
From w} = ¢} —(z;,tn), we have
i%(Ver;?“ V) = Lyp(Vaw + Vowl) %mey.
By (we[Vi])" = (Covx[Viy])™ in (50), we have (W [Viw])" = (W_ [V 9])" = (W [V 19(tn)]) =

(Cxv_[Vi])"—(w_[V11(t,)]) which leads to: (w_[Viw])"—(Cxv_[Viw])" = (Cxv_[V)(t,)])—
(W_[V4+9(tn)]) = V4 G_(t,). Thus repeating a procedure similar as in Proposition 1, we obtain

. N-—1
- Z (V2w = [Vauf?) = =2i3( Y- BW-[Vu)))" - S(E(v-[Viw))”
n=0
?\f T N—-1J-1 1
Z WoV_u]))" - S(E(v4[V_w]) )+ZZ§( Vi BV w) + Vi BV ! )
n=0 j=0
which leads to
1
Z h(|V 1w [P = [V ywd]?)
N—-1 T N—-1 T
= —20nS( Y (BCxvi [V-w))" -S(E4[V-u)" = 3 BGi (k) -S(E(v4[V-u])")
N i Nt )
—27S( 3 BCHv_[Voul)) - SE(v-[Viw])" = S EG (6) S+ (B(v-[Vyul])")
v
EPD (I e IV ) + 94|V w1,
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We have

N
IVew™E (9wl

N N-1J-1
Th
SO+’ + 01y |IVewl[  + 5D ) (IV eV w)| + Vel [V 4wy
n=0 n=0 j=0

N
2 2\2 ni2
SO+ +Cr> [[Viw 72

n=0

which implies: ||V4w?|| e < Ce®T (72 + h?), and proves (44). Finally, by the discrete Sobolev
imbedding theorem, we obtain (45). W

6. Numerical examples

6.1. Example 1

Let us start by considering the nonlocal Schrodinger equation (1) with the constant kernel
function v;5(a, b) = 2673, for a € [~6,d]. The computational domain is [z_, ] := [~3, 3], and the
final time is set to T = 2, for the initial gaussian data 1(z, 0) = 5e2ie—252%/4,

Let us fix the spatial discretization step to h = 5x 1072 and analyze the {F-norm error defined by:
eZC’:T = H@Z)JN —¢N’ref|\[3o thanks to 7, with N7 =T Here, we introduced ||u;|[s := maxo<j<s [uj]-
The reference solution ™' is computed for the discretization parameters h = 5 x 10~2 and
7 =1 x 10~%. For different values of §, we report the error eZéTT at time 17" = 2 in Table 1. This
example shows that the scheme is second-order in time as expeéted. Let us now fix the time step
to 7 =1 x 1073. The reference solution ™! is obtained for h = 2.5 x 1073 and 7 = 1 x 1073. We
give in Table 2 the error eZ(’}TT at T = 2 with respect to the mesh refinement h where we observe
that the convergence rate is equal to 2.

L [ r=1x102[7=5x107 [ 7=4x10"3 | 7 =25x 1073 | rate |
5=041] 400x1072 | 1.01x1072%2 | 6.44 x 1073 252 x 1073 | 2.00
5=0.51 3.16x1072 | 5.06x 1072 | 7.79 x 1073 1.98 x 1073 | 1.99
5=081 571x103 | 1.43x103 | 9.13x 1074 3.56 x 107% | 2.00

s=1 220x 1073 | 550x107% | 3.52x 1074 1.37x 1074 [ 1.99

Table 1: Example 1: /5 -norm error eZ(;TT (h=5x 1072) and convergence rate vs. 7 for various values J.

h,T

e [ h=5x10"2[h=25x10"2 | h=2x10"2 ] h=125x10"2 | rate |
=04 3.76 x 1072 9.30 x 103 5.92 x 1073 2.25 x 1073 2.02
5=051 4.74x102 1.17 x 1072 7.46 x 1073 2.84 x 1073 2.02
=081 241 x102 5.98 x 1073 3.80 x 1073 1.45 x 1073 2.02

5=1 1.39 x 1072 3.45 x 1073 2.19 x 1073 8.36 x 10714 2.03

Table 2: Example 1: {7°-norm error eZO’TT (1 =1x 107%) and convergence rate vs. h for various values 4.

Figure 2 (left) gives the evolution of the numerical solution with discrete ABC in the bounded
domain by setting 7 = 1 x 1072 and h = 1.25 x 1072, for § = 0.4. For completeness, we also provide
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Figure 2: Example 1 for 6 = 0.4: left: numerical solution; right: error between the reference and numerical solutions
(in log,, scale).

- ¢;z,ref| (in log;, scale) between the computed solution

™ (in [=3;3] x [0;2]) and a reference solution ™™ computed on a very large spatial domain
for h = 2.5 x 1072 and 7 = 1 x 1073 and then restricted to the smaller computational domain
[—3; 3] x [0;2]. We observe that the reflection at the boundary related to the ABC is small and has
an amplitude similar to the numerical error of the interior scheme.

on Figure 2 (right) the pointwise error |7

6.2. Example 2

We consider now the singular kernel 7(a, b) = MW, with a € [—0, 6] and the singular kernel
exponent o = 3/8. We still have [z_, 2] = [-3,3] and T = 2, with the same initial data as in
Example 1. We choose a fixed spatial discretization step h = 5 x 1072 and analyze the error eZgT

at T = 2 vs 7 in Table 3 for various values of §. The reference solution ¥"™* is evaluated for the
parameters h = 5 x 1072 and 7 = 1 x 104, We again observe that the scheme is second-order
accurate in time. Let us now fix the time step to 7 = 1 x 1073, The reference solution ™! is
obtained for h = 2.5 x 1073 and 7 = 1 x 1073. We report in Table 4 the error eZgT at T' = 2 with
respect to the mesh refinement h. For the various values of §, we observe that the Eonvergenee rate
is equal to 2 according to h in Table 4. For the same parameters values, we finally plot in Figure
3 (left) the evolution of the solution and the error (right) between the numerical and the reference
solutions which again attest of the accuracy of both the scheme and discrete ABC.

e [ r=1x102[r=5x107 | 7=4x107° [ r=25x10"% | rate |

§=041 688x1072 | 1.96 x 1072 | 1.26 x 10~2 4.94 x 1073 | 1.90
=051 814x1072 | 2.06x 1072 | 1.32x 1072 5.15 x 1073 | 1.99
=081 206x10"2% | 517x1073 | 3.30 x 1073 1.29 x 1073 | 2.00
5=1 858 x 1073 | 2.15x 1073 | 1.37x 1073 5.36 x 10~* | 2.00

Table 3: Example 2: ¢{3°-norm error eZC’IT (h =5 x 107?) and convergence rate vs. 7 for various values §.
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e [ h=5x10"2[h=25x10"2 | h=2x10"2 | h=125x 1072 | rate |

5=041 3.07x102 7.70 x 1073 4.90 x 1073 1.87 x 1073 2.02
§=0.5 | 5.06x 1072 1.25 x 1072 7.97 x 1073 3.04 x 1073 2.03
=081 3.07x107? 7.60 x 1073 484 x 1073 1.84 x 1073 2.03
§=1 2.19 x 102 5.42 x 1073 3.45 x 1073 1.31 x 1073 2.03

Table 4: Example 2: {7 -norm error eZO’TT (1 =1 x 107%) and convergence rate vs. h for various values §.

2 5
1.8 45 .
1.6 4 .
1.4 35 .
1.2 3 .

- 1 25 +

0.8 2 .
0.6 1.5 .
0.4 1 .
0.2 0.5 g

, -

-3 2 -1 0 1 2 3
X

Figure 3: Example 2 (§ = 0.4): left: numerical solution; right: error between the reference and numerical solutions
(in log,, scale).

7. Conclusion

We provided the construction of fully discrete ABCs for the one-dimensional nonlocal Schrodinger
equation discretized by the Crank-Nicolson scheme in time and an asymptotically compatible scheme
in space. An algorithm is given for evaluating these ABCs. In addition, the stability and error anal-
ysis of the scheme are developed for a singular kernel. Numerical examples confirm the accuracy of
the ABCs. Further works include the extension to the singular cases for o > 1/2, higher dimensional
problems as well as considering nonlinearities into the equation.
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Appendix A. Proof of Lemma 7

From the identity u(z —¢) — 2u(z) + u(x +¢) = ¢2 fol Jot (W' (z 4 <€) +u” (x — <&2))dEadEy, the

third term on the right hand side of (35) can be written as
1
0 =)= 20600+ 0ty + < O)s(6)ds
51
=1 / 2go(sh)s(sh)ds / | @0t staot) + O2uta; = ceah ) dead
0
2 S 2
+Z/ Pr(s) [G 76(€)d§/ (070 (x5 + <62, t) + Optp(zj — §§2,f))d€2d€1].
170 0 Jo
In the same way, the two first terms on the right hand side can be recast as

-2 k+1 i—K — 2¢; j o
Z o 1/& + Yjtk /M_1 B(s)s3(6)ds + LK ig}é Vi /W_1 INORHOLS

L r&
=Z /O Ok(s) [ khss(<)ds /O | (O + Lakhat) + 00t (@ — Eakh, ) dEads |
k=1

Thus, from (A.1) and (A.2), (35) can be rewritten as

K s
_Z/ ¢k<§)Qk(§,$]‘,t>dg

§1
e /0 o (ch)ys5(sh)dr / / Wy + sbahit) + O2(x; — cEoh, 1)) désdey,

where g (s, z,t) is defined by (38). It is easy to see that

<

Qk(g,l',t) = Qk(kh7x7t> + Qk(kh, Q?,t)(( - kh) + / Qk(ya $,t)(§ - y)dy7
< kh

Qk(§,$,t) = Qk(kh,$,t) +/ qk(y,x,t)dy,
kh

(A1)

(A.2)

(A.4)

where we use the dots to represent the derivative of gx(s,x,t) with respect to the first variable .

By using (A.4) and g (kh,z,t) = 0, we deduce after some calculations

K 5 K-1 1 1
S [ ot i tnds = S0 [ on(ehis?as [ aulkh-+ syb.a (1~ iy
k=170 k=1 -1 0

0 1
12 [ dolch)eds / dxc(Kh + syh, 2, 1) dy.
—1 0

Therefore from (A.3) and (A.5), we obtain: €;(t) = h2Q(z;,t), with Q(z,t) defined by (37).

Now, the last term of (37) satisfies

1 1 r&
h / Co(sh)(sh)ds / / (2w + <oh, 1) + O2(x — cEah, £))désdé]
0 0

C
< o [ ovte v,
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Consequently, we deduce
(w1 <O Z/ s [ (st + g 1

h
e / ds / ik (Kh + y, 2, 8)Pdy /b + C / 02z +y. )Pdy /B (A6)
0 —ch —h

From (38), the terms ¢x(s, z,t) and (s, z,t) satisfy

2 1 rkhé&
ils,2,0) = 55(65(6) /0 / (2 + o) + O2(x — 60, 0))dender  (AT)

1
—Qdi(wzs(@) / (£1020(x + €16, 1) + £100 (2 — £16,1))d&
S 0

1
—575() /O (LY (x + &is,t) — §O3(x — 16, 1)) dE

and

thl
i (s..t) = (< / / O (x + Ea,1) + 02 — . 1)) dEadly

—(s7s(<)) /0 (&02¢(z + &6, t) + &102Y(z — €16, 1)) dé;.

Now, 7s takes its values on [—d,d] and has a singularity at 0 of the form |¢|~®. Thus, we can find
a constant C' > 0 such that: ’jl:n 75(s)| < Cls~@+m)| for ¢ € [~6,0] and m = 0,1,2. In addition,
n (A.5), §r(s,x,t) only takes its values ¢ on [(k — 1)h, (k 4+ 1)h]. Recalling that kh < Kh = 4, for
example the function 029 (z + &o,t) in (A.7) has values for & € [—§,0]. Thus, for (k —1)h < ¢ <
(k + 1)h, from the above expression and (38), we have

(s, 2, 0)* < C(R220H) 720 1 27211070 (y, )] + 1934 (5, 1))l ze,
(<2, 1) < C(W*72* + 21070 (y, )P |2,

The above inequality gives after some computations
1 h
s [ =Pt + .0y 02 (A8)
0 —sh
2 3 2 (k+1)h 1 2 3 2
< Ol[(1059(y, D) + 1039y, D)7 | ee, o 10 |2ady+ChH(\3 2V, )]+ 1079 (y, 1))l ey,
and
1 0
s [ lalEh e 0Payin < €020 Pl (A.9)
—<
Taking (A.8), (A.9) into (A.6), for v < 1/2 we have

Q)7 < (1924 (y, )] + 1020 (y, ))? || 122, - (A.10)
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On the other hand, there exists x5 € [x — d,x 4 ¢] such that

0
!Wﬁw%ﬂﬂhm=ﬂﬁ¢@&ﬂﬁS(%ﬁw@¢w+4?/J@¢@+yJW@L (A.11)

Combining (A.10) and (A.11), we have

[e%) 4
By QP <0 /R S 02y, 0) dy
p=2

j=—o0

from Lemma 5. Thus, this ends the proof of (36). W
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