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Abstract—Object tracking allows for localizing moving objects
in sequences of frames providing detailed information regarding
the trajectory of objects that appear in a scene. In this paper, we
study active object tracking, where a tracker receives an input
visual observation and directly outputs the most appropriate
control actions in order to follow and keep the target in its field of
view, unifying in this way the task of visual tracking and control.
This is in contrast with conventional tracking approaches, as
typically developed by the computer vision community, where
the problem of detecting the tracked object in a frame is
decoupled from the problem of controlling the camera and/or
the robot to follow the object. Deep Reinforcement Learning
(DLR) methods hold the credentials for overcoming these issues,
since they allow for tackling both problems, i.e., detecting the
tracked object and providing control commands, at the same
time. However, DRL algorithms require a significantly different
methodology for training compared to traditional computer
vision models, e.g., they rely on dynamic simulations for training
instead of static datasets, while they are often notoriously difficult
to converge, often requiring reward shaping approaches for
increasing convergence speed and stability. The main contribution
of this paper is a DRL, vision-based active tracking method, along
with an appropriately designed reward shaping approach for
active tracking problems. The developed methods are evaluated
using a state-of-the-art robotics simulator, demonstrating good
generalization on various dynamic trajectories of moving objects
under a wide range of different setups.

Index Terms—Active Tracking, Deep Reinforcement Learning,
Reward Shaping, Webots

I. INTRODUCTION

In recent years, object tracking has shown a significant
growth and is used in a wide range of applications [1],
[2], including but not limited to robotics applications [3]
and human computer interaction [4]. Object tracking aims to
localize a moving object in a stream of frames, enabling us
to keep detailed information regarding the trajectory of the
corresponding object through time. This information can be
used either for extracting higher level information regarding
the qualities and behavior the tracked object, or for controlling
various parameters of the camera used for acquiring the
video stream. The latter is especially important in various
applications, such as autonomous cinematography [5], or even

just ensuring that an appropriate view of the object of interest
has been obtained, e.g., in surveillance applications [6], [7].

It is worth noting that the goal in many tracking appli-
cations is control [8], instead of tracking per se, leading to
passive tracking approaches, where tracking is disconnected
from the actual task at hand. On the other hand, the emer-
gence of powerful Deep Reinforcement Learning (DRL) ap-
proaches [9], [10], enabled the development of active tracking
approaches [11], [12]. Such approaches are capable of learning
end-to-end control policies, directly from raw RGB input,
without any intermediate pre-processing step. In this way, the
developed algorithms can be directly optimized for the task
at hand, without involving separate intermediate tasks. At the
same time, this unified approach also holds the credentials for
providing less complex and more robust systems [12].

Despite their apparent advantages, little work has been
done so far for active tracking approaches [11], [12], since
active tracking requires using advanced and realistic simula-
tion environment for simulating the effects of various control
commands instead of relying on static datasets. At the same
time, active tracking typically relies on reward signals for
the training process instead of ground truth bounding boxes
that are usually used in passive tracking approaches. However,
defining the appropriate reward functions for such tasks is not
trivial, since there are many alternative ways to formulate the
goal of the system [13]. This is in contrast with other DRL
applications, such as games [14], where the reward function
is intrinsic to the problem. Indeed, the way that the reward
function is defined can have a significant effect on the behavior
of the resulting DRL model, especially for complex control
tasks [15]. At the same time, providing additional rewards,
in the form of reward shaping [16]–[18], can often allow for
further increasing the stability of the training process, along
with its convergence speed.

The contribution of this work is two-fold. First, we de-
velop and evaluate an active tracking simulation environment,
demonstrating that active tracking methods can be indeed
trained in an end-to-end fashion operating directly on raw RGB
inputs. To this end, a realistic robot simulation environment
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Fig. 1. Overview of the proposed DRL-based active tracking setup. First, the agent (DRL Model) is trained using the developed Webots-based simulation
environment. Then, the trained agent is evaluated on a number of different scenarios (described in Section III).

was constructed using the Webots simulator [19], while the
proposed method was evaluated using a real robot, the e-puck
robot [20], and two different setups, involving different move-
ment patterns of the robots. Furthermore, two different control
scenarios were evaluated, corresponding to the two main
approaches that are typically used for control: a) control using
discrete actions/steps and b) control using continuous action
spaces. Second, a simple, yet effective temporal difference-
based reward function is introduced and evaluated for active
tracking, improving the tracking error and allowing for directly
performing control based on a tracking objective. Indeed,
it is demonstrated, through extensive experiments, that the
employed reward function can indeed lead to improvements
in tracking accuracy, under a wide range of different setups.

The rest of the paper is structured as follows. First, back-
ground information and the proposed method are presented in
Section II. Then, the experimental evaluation is proposed in
Section III. Finally, conclusions are drawn in Section IV.

II. PROPOSED METHOD

The proposed approach is provided in this Section. First,
we briefly introduce the developed simulation environment.
Then, the employed DRL method is provided, along with
the network architectures used for training the corresponding
agents. Finally, three different reward functions for active
tracking are introduced and discussed. An overview of the
proposed approach for developing DRL agents for active
tracking is provided in Fig. 1.

A. Simulation Environment and DRL agent

The simulation environment was built using the Webots
simulator [19], which is an open source highly realistic robot
simulator. The developed simulation environment contains two
GCtronic e-puck robots [20], with the first one being the
tracked target and the second one carrying an RGB camera
(64 × 64 pixels) and aiming to track the first robot. E-puck

robot moves by appropriately setting the velocity of its two
wheels. Two different kinds of agents were employed in this
paper: a) discrete action space agents and b) continuous action
space agents. For agents that work with discrete actions,
there are 2k + 1 possible velocity values within the range
[−maxSpeed,+maxSpeed], splited by 2k equally spaced
partitions. Therefore, the total number of actions for the agent
is (2k + 1)2, given that both wheels of the robot must be
controlled. On the other hand, for continuous agents, two real
numbers, one for each wheel, are used. The output of the agent
is constrained between the minimum and the maximum speed
supported by the robot, ensuring that all control actions will
be within the hardware capabilities of the robots.

For training the agent, a state-of-the-art DRL optimization
method, the Proximal Policy Optimization (PPO) [9], was
employed. An actor-critic architecture was used to this end,
where the actor is responsible for selecting the next action,
while the critic was used for estimating the value of each
state. PPO relies on the advantage for each performed action
a when the agent is at state s:

Aθ(s, a) = Qθ(st)−
T−1∑
t=0

γtrt, (1)

where Qθ(st) denotes the critic’s network estimated value, γ
is the discount factor and rt is the obtained reward at time t for
a total number of T time-steps. To ensure the stability of the
optimization process, PPO uses a probability ratio between
new and old policy. Clipping this ratio, as proposed in [9],
improves the behavior of the training process. Finally, note
that in training phase PPO collects samples from the older
policy using importance sampling.

The architecture used for both the actor and critic is
depicted in Fig. 2. Three 2D convolutional layers were used,
followed by three fully connected layers. The ReLU activation
function was used after each layer [21], while average pooling



Image
(64 x 64)

Convolutional Layer (16 3 x 3 filters)

Fully Connected Layer (128 neurons)

Fully Connected Layer (64 neurons)

Convolutional Layer (16 3 x 3 filters)

Convolutional Layer (16 3 x 3 filters)

ReLU

ReLU

ReLU

ReLU

Output Fully Connected Layer

ReLU

2 x 2 Average Pooling

2 x 2 Average Pooling

Fig. 2. Network architecture used for the actor and critic models

was employed instead of max pooling to avoid discarding
potentially useful information. For discrete agents, the final
layer of the actor has the same number of neurons as the
number of possible actions, i.e., (2k+1)2, while for continuous
agents two output neurons are used (one for controlling the
speed of each wheel). In the latter case, the output of the
network is passed through the tanh activation, to ensure that
it will range between -1 (maximum speed backward) and 1
(maximum speed forward). When the network outputs a value
of 0, then the corresponding wheel stays stationary.

B. Reward

The RL agents must learn to follow the moving target as
close as possible over a safe distance, while the camera looking
at the center of the target. To this end, we define the distance
error as:

ed(t) = |d(t)− s|, (2)

where d(t) is the distance between the robots at time t and s
is a predefined distance that must be kept from the robot (safe
distance). Also, we define the angular error ea(t) at time t
as the absolute value of the angle between the optimal look-
at vector of the camera and the speed vector of the target
robot, as shown in Fig. 3. A separate reward is calculated
for each of these two errors, i.e., rd(t) and ra(t) respectively,
while the total reward is calculated as the sum between the
corresponding rewards:

r(t) = rd(t) + ra(t) (3)

For defining these two individual rewards, i.e., rd(t) and
ra(t), that contribute to the final reward provided in (3) several

Fig. 3. Distance and angular errors

methods can be considered. Perhaps the simplest one is to
directly use the negative of error, i.e.,

r(t) = −error(t), (4)

where r(t) refers to either rd(t) and ra(t) (according to the
value used in place of error(t)), aiming to directly minimize
the control error. However, as we experimentally demonstrate
in Section III, this naive way of defining the reward leads to
suboptimal results. Recent works in vision-based DRL control
proposed to use hint-based rewards inspired by reward shaping
methods [15], [22], i.e.,

r(t) =


cg, error(t) < margin

cm, error(t) < error(t− 1)

cp, otherwise
, (5)

where cg corresponds to the reward for achieving the desired
target, cm to the reward for moving towards a direction that
reduces the error , while cp corresponds to the penalty the
agent receives in any other case (its absolute value must be
larger than cg to avoid oscillations). We set these parameters
to cg = 1, cm = 0.5 and cp = −1.2 following the protocols
proposed in the literature and experiments conducted to select
the optimal parameters. However, setting these parameters
can require a significant amount of effort, involving repeated
experiments to determine the optimal values. Therefore, to
overcome this limitation, in this work we propose using a
simpler, yet more effective approach for calculating the reward
based on the temporal difference between two subsequent error
values, i.e.,

r(t) = error(t− 1)− error(t). (6)

This approach does not require any kind of additional fine-
tuning, while it leads to more accurate control, as we demon-
strate in Section III. Note that the first and third reward
functions are directly linked to the (unnormalized) values of



TABLE I
HYPERPARAMETER USED FOR ALL THE CONDUCTED EXPERIMENTS

Clip parameter (PPO) 0.2
Number of update iterations (PPO) 10

Gradient norm clipping (max) 0.5
Batch size 64

Actor / Critic learning rate 0.0001 / 0.0003
Number of episodes 100

the error, therefore min-max normalization is required after the
end of each episode, to ensure the stability of the optimization
process. This is not necessary for the hint-based reward, since
the values of this reward are already bounded.

III. EXPERIMENTAL EVALUATION

The different agents and reward functions are evaluated
under different setups in this Section. The hyperparameters
used for all the conducted experiments are summarized in
Table I. The number of update iterations refers to the number
of gradient descent steps performed after each simulation
episode, while the gradient norm clipping refers to the clipping
of the training gradients that are larger than the specific
threshold, which improves training stability. The former was
set to 10, while the later to 0.5 The safe distance was set to
s = 0.2m (meters), while the margin for the hint-based reward
function was set to 0.05.

The developed agents were evaluated in two different se-
tups:

1) random movement, where the velocity of both wheels of
the front robot is selected randomly (therefore the first
robot moves on a non-straight trajectory). The velocities
remain the same during the entire episode. This setup
was used both for training and evaluation of the trained
agents.

2) random movement with velocity changing, where the
same setup as before is used, but the speed of the wheels
changes every 200 steps. As a result, the trajectory of
the first robot changes several times within the same
episode, requiring the tracking robot to promptly adjust
in order to avoid losing the target robot. This setup was
used for evaluating the agents trained with the first setup.

Each episode consists of 1000 steps, while an episode ends
early when the tracking robot loses its target. For evaluation
we report two different metrics:

1) average distance error (“Distance error”), which mea-
sures whether the agents keeps the desired distance from
the tracked robot, and

2) average control steps per episode (“Steps per episode”),
which measures the ability of the agent to track the front
robot (note that an episode ends when the tracking robot
loses its target).

First, the proposed method was evaluated using the first
setup (random movement evaluation). The evaluation results
for the discrete agent are reported in Table II, while for the

TABLE II
EVALUATION SETUP 1: DISCRETE AGENT

Reward Distance error Steps per episode

Negative of error 0.014 1000

Hint-based 0.054 969

Proposed 0.009 969

TABLE III
EVALUATION SETUP 1: CONTINUOUS AGENT

Reward Distance error Steps per episode

Negative of error 0.02 954

Hint-based 0.03 966

Proposed 0.01 1000

continuous agent in Table III. The best discount factor was
selected through validation experiments for all the evaluated
reward functions (γ = {0.01, 0.25, 0.5, 0.75, 0.99}). First, note
that for all the evaluated reward functions, the agents are
indeed successfully trained, since they solve almost all the
test episodes perfectly (the average number of steps is larger
than 950 out of a maximum of 1000). At the same time, the
temporal difference reward seems to lead to the overall best
distance error (both for the discrete and continuous agent).
However, it leads to slightly worse behavior for the discrete
agent, failing to correctly track the target robot in a few cases,
since the average number of steps per episode is reduced from
1000 to 969.

However, the opposite behavior is observed in the second
evaluation setup reported in Table IV, where the proposed
reward leads to both the best distance error, as well as leads
to never loosing the target robot for all the evaluated episodes.
The same results are achieved for the hint-based reward, even
though hint-based rewards seem to always lead to higher
distance error. This can be explained, since hint-based rewards
are disconnected from the actual value of the error. Even

TABLE IV
EVALUATION SETUP 2: DISCRETE AGENT

Reward Distance error Steps per episode

Negative of error 0.016 985

Hint-based 0.035 1000

Proposed 0.007 1000

TABLE V
EVALUATION SETUP 2: CONTINUOUS AGENT

Reward Distance error Steps per episode

Negative of error 0.014 1000

Hint-based 0.030 974

Proposed 0.006 1000



TABLE VI
EVALUATION SETUP 2 (WITH OBSTACLES): CONTINUOUS AGENT

Reward Distance error Steps per episode

Negative of error 0.037 961

Hint-based 0.072 853

Proposed 0.007 965

though in previous works this has been shown to improve
the training stability when combined with Q-learning based
algorithms [15], this reward function does not seem to lead to
similar improvements for the problem at hand. The ability of
the proposed reward function to improve the distance error
is again validated using the second evaluation setup using
continuous action spaces (Table V).

Finally, we also evaluated the ability of the trained agents to
work on an even more challenging environment by including
additional obstacles, in the second setup. The evaluation results
for the continuous agent are reported in Table VI. Again, it is
confirmed that the proposed reward leads to the best results
for the continuous agents, both regarding the distance error
and the ability of the agent to keep the target in view, despite
the presence of obstacles.

IV. CONCLUSIONS

In this paper a deep reinforcement learning-based approach
for solving active tracking problems was presented. The pro-
posed method can be trained in end-to-end fashion, while op-
erating directly on raw RGB inputs without requiring solving
any intermediate tracking problem, like most of the existing
passive tracking methods. At the same time, a simple, yet
effective reward function for active tracking problems was
introduced and demonstrated that it can lead to improved
tracking performance, under two different evaluation setups
and DRL agents using a realistic simulation environment
developed using the Webots simulator and a model of a real
robot, the e-puck robot. The results provided in this paper
pave the way for developing more sophisticated active tracking
methods, ranging from methods that can track a wide variety
of objects, to methods that can control simultaneously both the
robot and the camera, choosing the most appropriate action to
be performed, increasing the perception accuracy.
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