

Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, St. Bartholomew, French West Indies)

Vincent Caron, Julien Bailleul, Frank Chanier, Geoffroy Mahieux

▶ To cite this version:

Vincent Caron, Julien Bailleul, Frank Chanier, Geoffroy Mahieux. Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, St. Bartholomew, French West Indies). Sedimentary Geology, 2019, 387, pp.104-125. 10.1016/j.sedgeo.2019.04.011. hal-03281151

HAL Id: hal-03281151 https://hal.science/hal-03281151v1

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 DEMISE AND RECOVERY OF ANTILLEAN SHALLOW MARINE CARBONATE 2 FACTORIES ADJACENT TO ACTIVE SUBMARINE VOLCANOES (LUTETIAN-3 BARTONIAN LIMESTONES, ST. BARTHOLOMEW, FRENCH WEST INDIES) 4 Vincent CARON¹, Julien BAILLEUL², Frank CHANIER³, Geoffroy MAHIEUX¹ 5 6 7 ¹EA 7511, Basins-Reservoirs-Resources (B2R), University of Picardie Jules Verne, Amiens, 8 France 9 ²EA 7511, Basins-Reservoirs-Resources (B2R), Institut UniLasalle, Beauvais, France 10 ³UMR 8187, Laboratoire d' Océanologie et de Géosciences (LOG), Lille, France 11 corresponding author (E-mail: vincent.caron@u-picardie.fr) 12 13 **ABSTRACT** 14 Among other parameters, volcanic activity adjacent to shallow marine environments influences 15 the development of ecosystems and their carbonate-producing communities. Volcaniclastic 16 sediment influx in particular has potential to cause rapid and drastic environmental changes 17 affecting biological systems in their composition and activity, and ultimately leading to changes 18 to and breaks in carbonate sedimentation. Such sedimentary breaks that form in response to 19 volcanic processes are rarely described in detail despite the common occurrence of carbonate 20 platforms adjacent to active volcanoes both in the recent and past geological record. The island of 21 St. Bartholomew (St. Barths), French West Indies, exposes sections of middle Eocene limestones 22 intercalated with thick volcaniclastic deposits and lavas. Theses carbonates provide an example 23 of a low-latitude tropical platform where non-framework building biota were important, if not

dominant, sediment contributors. The carbonate system records the repeated collapse and renewal of carbonate production, as a result of episodic volcaniclastic material input. The discontinuous nature of the carbonate sedimentation is reflected in contrasted depositional systems across sedimentary surfaces and gradational contacts. The studied Eocene deposits provide a sedimentary record of how volcanic events impacted warm-water carbonate factories, both in their disturbance, demise and recovery.

Keywords: Eocene, Caribbean, carbonate ramp, skeletal carbonates, volcaniclastics

1. Introduction

Volcanism may be intuitively regarded as critically detrimental to shallow-water benthic communities, and as such as one environmental parameter impacting the development of carbonate platforms. Lava flows and large pyroclastic eruptions, either subaqueous or reaching subtidal environments from emerged volcanoes, can undeniably result in mass mortality of carbonate producers and therefore cause carbonate production to cease (Tomascik et al., 1996; Vroom and Zgliczynski, 2011). However, recent studies have shown that volcaniclastic influx may also allow carbonate-producing organisms with higher surviving capabilities to thrive, and may promote a change of benthic communities, prolonging the existence of carbonate factories (Wilson and Lokier, 2002; Lokier et al., 2009). These biota prove to be adapted to post-eruption environmental conditions such as reduced luminosity and increased turbidity due to suspended ash, change of substrate, change of nutrient levels and of water chemistry through alteration of volcanic material (Reuter and Piller, 2011). It follows that volcanic events, even of short duration and/or limited in the volume of material delivered to the marine realm, may be diversely

expressed in otherwise carbonate-dominated settings and ultimately in outcrops. Expected physical, stratal and facies expressions of volcaniclastic influx include: (1) erosion of the seafloor and of reefal buildups (Wilson, 2000); (2) reduction of or temporarily arrested carbonate production; (3) deposition of volcaniclastic material; and (4) a change in the depositional systems and in the biotic assemblages (Wilson and Lokier, 2002; Dorobek, 2008; Lokier et al., 2009; Reuter et al., 2012).

Herein, we propose a depositional model for Eocene tropical carbonates that formed in a volcanically active area, namely the Lesser Antilles Volcanic Arc, West Indies. Here, carbonate and mixed carbonate-volcaniclastic units are intercalated between volcaniclastics and lava flows, pointing to the repeated demise and foundering of carbonate factories, but also to the interplay between volcanic activity and penecontemporaneous carbonate production. This study is the first to document in detail the compositional characteristics of the Antillean carbonate successions on St. Barths Island.

2. Geological setting

The Lesser Antilles arc is related to the westward-dipping subduction zone where the oceanic crust of the American plate is underthrusting the Caribbean plate, hence causing important volcanic and seismic activities (Fig. 1A).

North of the Island of La Martinique, the Lesser Antilles arc consists of two divergent volcanic lines, namely the now extinct outer arc active from the early Eocene to middle Oligocene, and the still active inner arc (Bouysse et al., 1990). Owing to this evolution and subsequent uplift, the outer arc system became the locus of abundant carbonate production and accumulation during the late Paleogene and Neogene. It evolved into extended carbonate platforms that correspond to the

so-called Limestone Caribbees, whereas to the west, intense volcanic activity led to the construction of an archipelago of islands referred to as the Volcanic Caribbees (Bouysse et al., 1990).

The Island of St. Barths lies on the northeastern sector of the Lesser Antilles outer arc and belongs to the present-day platform. It consists predominantly of limestone beds intercalated between volcanics (Fig. 1B). The latter includes hyaloclastite deposits generated by hydroexplosions interbedded with andesitic and basaltic submarine lava-flows. Up to six limestone sheets from 3 up to 40 m thick have been recognized and previously interpreted as peri-reefal carbonates that were given a late middle Eocene (Lutetian and Bartonian) age on the basis of microfaunal content (Westercamp and Andreieff, 1983a, 1983b; Gradstein et al., 2012). This study concentrates on the limestone units and their under- and overlying contacts with volcanics.

3. Methods

3.1. Field and laboratory analysis

The bulk of information used in this study comes from field observation and description of 13 stratigraphic sections along the coasts of St. Barths and on two islets located southwest and southeast off the main island, namely Pain de Sucre and Île Coco, respectively (Figs. 1C, 2). Due to their common occurrence in the carbonate strata and locally in volcaniclastic units, and to their relative abundance in some horizons associated with key sedimentary surfaces, echinoid macrofossils were given special attention (Fig. 2). Field characteristics (diversity, abundance, orientation and preservation) of spatangoid (*Schizaster* L. Agassiz, *Agassizia* L. Agassiz and Desor, *Eupatagus* L. Agassiz, *Antillaster* Lambert) and oligopygoid (*Haimea* Michelin) echinoids

in particular, were determined prior to being collected where possible for taxonomic identification. Echinoids include epibenthic dwellers and shallow to deep endobenthic burrowers (Kier, 1984; Kanazawa, 1992; Donovan and Rowe, 2000). As such, echinoids are useful indicators of paleoenvironmental conditions, including trophic resources, absence/presence of seagrass beds, and substrate (Fig. 3). Characteristics of other dominant macrofossils, such as corals and pinnids, were also evaluated qualitatively in the field (living position, mechanical erosion, bioinfestation). In this study, the taxonomy of coralline algae uses at best generic names only. Genus circumscription follows Rasser and Piller (1999) and Braga et al. (2009). Family to subfamily names follow Harvey et al. (2003). Coralline algal growth-form terminology follows Woelkerling et al. (1993). The taxonomy of larger foraminifera is restricted to Family level and at best genus level except for those listed in Westercamp and Andreieff (1982, 1983). The Eocene limestone units were analyzed petrographically using 110 thin-sections cut in samples selectively collected below and above sharp, erosive, and burrowed contacts. The aim was to provide estimates of the relative abundances of skeletal and non-skeletal constituents, and to assess facies changes across sedimentary surfaces. Results were converted for the dominant taxa at subfamily level and grain types into abundance indices of rare (one or two grains seen), occasional (about 10%), common (conspicuous throughout, i.e., 20-30%), and abundant (the grain category considered is the dominant skeletal component, i.e., ≥50%). The data obtained were used to determine the composition of the skeletal associations only, and are not suitable for statistical analysis. These qualitative data were complemented by textural information using the criteria of Embry and Klovan (1971). In addition, a series of specific scales of taphonomic features have been defined for various fossil types observed in thin section to help assess the effects of early sea-floor processes, namely fragmentation, abrasion, bioerosion and encrustation

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

119 (Fig. 4).

120

121 3.2. Skeletal associations

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Because pervasive bioturbation has obliterated, but in a few examples, primary wave- and current-induced sedimentary structures, interpretation of the facies in terms of depositional conditions was based on comparative ecology and sedimentology with ancient and modern shallow marine environments (e.g., Hallock and Glenn, 1986; Hottinger, 1997; Bassi, 1998, 2005; Braga and Aguirre, 2001; Hallock, 2001; Hohenegger and Yordanova, 2001; Beavington-Penney and Racey, 2004; Hallock et al., 2006; Hohenneger, 2009; Payros et al., 2010). Results of the petrographic analysis highlight a diverse array of biotic constituents and skeletal associations, which can satisfactorily be classified as chlorozoan, chloralgal and foramol (Lees and Buller, 1972; Lees, 1975; James, 1997), rhodalgal (Carannante et al., 1988), echinofor and foralgal (Hayton et al., 1995). Although chloralgal and chlorozoan associations dominated by zooxanthellate corals, calcareous green algae and non-skeletal carbonates (e.g., ooids, peloids and oncoids) are robust indicators of relatively oligotrophic clear sea waters inside the tropical climate belt, interpretation of the majority of skeletal associations in terms of temperature, climate and paleoecology needs to integrate additional palaeoenvironmental information such as nature of the substrate, siliciclastic fluxes and trophic resources (e.g., Hallock and Schlager, 1986; Hallock, 1985, 1987; Allmon, 1992; Brasier, 1995a, b; Pomar et al., 2004; Wilson and Vecsei, 2005; Lokier et al., 2009; Reuter and Piller, 2011).

140

3.4. Paleoenvironments and paleodepths

142

Although small isolated coral bioherms (patch-reefs s.l.) and coral carpets are present in some of the limestone units, the absence of major reefal constructions (e.g., barrier coral-reef) and the sedimentological characteristics of facies within the St. Barths limestones suggest that the general depositional setting was a carbonate ramp (i.e., following the terminology of Burchette and Wright, 1992) attached to and/or surrounding the flanks of active submarine volcanoes. The subdivision of the carbonate ramp system into inner, middle and outer ramp depositional settings follows the criteria proposed by Pomar (2001). The term inner ramp refers to depositional environments between upper shoreface (i.e., the zone of breaking waves or lagoonal shorelines) and Fair-Weather Wave Base (FWWB), middle ramp between FWWB and Storm-Wave Base (SWB), and outer ramp below SWB (Burchette and Wright, 1992). The division of photic zones with respect to water depths is based on the criteria of Pomar (2001). The low-light conditions can be inferred from the absence or very rare co-occurrences of miliolids and calcareous green algae (dasycladaleans), which typically are indicative of inner ramp environments when they are the dominant biotic constituents (Geel, 2000; Zamagni et al., 2008). The presence and abundance of taxa indicative of specific depth constraints known from modern environments and interpreted from ancient deposits were only used to discriminate between euphotic and oligophotic conditions (Pomar, 2001). Shallow-water biotic indicators include zooxanthellate corals, pinnid bivalves, miliolids, conical agglutinated foraminifera and seagrass dwellers such as small benthic rotaliids (Geel, 2000; Vecchio and Hottinger, 2007). The estimation of paleodepth using trends in test flattening of larger benthic foraminifera, combined with textural attributes of host sediments, namely siliciclastic content, grain size, and presence of carbonate/argillaceous mud (Hohenegger et al., 2000; Beavington-Penney and Racey, 2004; Cosovic et al., 2004; Hohenegger, 2009), suggests deposition in inner- to outer-ramp settings for amphisteginids- and nummulitids-bearing deposits. Foralgal associations that include coralline

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

algae, such as dominant melobesioids (*Lithothamnion*, *Mesophyllum*) and subordinate mastophoroids (*Lithoporella*) with rare sporolithales (*Sporolithon*) are generally associated with middle-ramp to outer ramp settings (Nebelsick and Bassi, 2000; Braga and Aguirre, 2001; Pomar et al., 2004). The abundance of flattened orthophragminids and planktic foraminifera points to distal middle ramp to outer ramp settings (Bassi, 2005; Zamagni et al., 2008).

Changes in the depositional environments and in water depth thresholds for photodependent biota are however to be expected in the immediate aftermath of volcanic eruptions due to clastic influx and ash suspended in water (Wilson and Lokier, 2002; Lokier et al., 2009; Reuter and Piller, 2011; Reuter et al., 2012).

4. Description of volcaniclastic deposits

Volcaniclastic deposits represent the products of submarine eruptive episodes (Westercamp and Andreieff, 1983a), and include a basal ensemble of arc tholeiites and an upper ensemble of calcalkaline series (Fig. 1B-C). Volcaniclastic deposits range in thickness from several tens of meters to hundreds of meters. They are dominated by maar-type breccia (Vbr), coarse-grained hyaloclastites (Hy), and medium- to fine-grained tuffs (Tu), in a proximal to distal distance gradient from eruptive centers.

Coarse volcaniclastic breccia (Vbr) are massive to crudely bedded and contain heterometric angular clasts ranging in size from gravel to boulder, in a coarse-grained tuffitic matrix. These deposits are generally azoic, but may contain limestone clasts and coral heads reworked from underlying limestone units (Fig. 5A-B).

Lithologies of coarse-grained hyaloclastites (Hy) and fine- to medium-grained tuffs (Tu) are highly variable (see Westercamp and Andreieff, 1983b). The former can be subdivided into two

191	major groups, based on bedding structure and clast shape.
192	The first group (Hy1) consists of horizontal and low-angle tabular, fining-upward, dm-thick beds
193	having erosional bases. The basal contact is overlain by gravel- to cobble-sized (sub-)angular
194	volcanic clasts in a poorly-sorted sandy/gravely matrix that grades into moderately sorted
195	volcanic sands (Fig. 5C).
196	The second group (Hy2) represents reworked hyaloclastites (Fig. 5D-E). The deposits
197	conformably overlie mixed carbonate-volcaniclastic limestones and exhibit alternating
198	poorly/moderately-sorted conglomeratic beds that contain sub-rounded coarse sand- to pebble-
199	sized volcanic clasts, and moderately-sorted coarse-grained volcaniclastic sandstones (Fig. 5E).
200	Bioclasts and macrofossils, including bivalves, gastropods, bryozoans, fragmented coral branches
201	and echinoids are common in the deposits.
202	Tuffs (Tu) include cm- and dm-thick tabular beds of silty to sandy, moderately- to well-sorted
203	deposits (Fig. 5F). Tuffs may be bioturbated and fossiliferous, with larger benthic foraminifera,
204	solitary corals, and spatangoids.
205	
206	5. Carbonate facies description
207	
208	A total of 15 facies have been distinguished that point to various environmental and
209	hydrodynamic conditions (Table 1). Features common to all facies are that none contain ooids or
210	evaporitic features.
211	
212	5.1. Mixed carbonate-volcaniclastic facies association (Mf1 to Mf5)
213	
214	The abundance of volcaniclastic, tuffitic, feldspar crystals and quartz grains characterize this

facies association. It can be subdivided into five major facies depending on the characteristics of volcaniclastic components and on the biotic/non-skeletal carbonate particle content. Tuffitic sediments, angular/subangular volcaniclastic fine sand to granule sized-debris and quartz fine-to medium sand represent 20% to 50% of the sediment fraction.

219

220

215

216

217

218

5.1.1. Smaller foraminiferal – dasycladalean - coral photozoan mixed facies (Mf1 and Mf2)

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Two biotic associations comprise this facies. Mf1 is a smaller foraminiferal-dasycladalean association, and includes moderately- to well-cemented wackestones/floatstones, packstones and more rarely grainstones. Mf2 includes dasycladalean-coral floatstones and coral boundstones. Intense bioturbation produces a typical nodular aspect to facies Mf1 and Mf2 beds, though massive bedding also occurs. Facies Mf1 and Mf2 strata may either overlie volcaniclastic units across sharp and gradational contacts, or carbonate beds across sharp undulating and erosional surfaces penetrated by *Thalassinoides* burrows. In general, facies Mf1 is characterized by a low-diversity biota with a relative abundance of smaller benthic foraminifera, and subordinate miliolids and dasycladalean algae (Fig. 6A). Peloids may be common to abundant, and micritized grains are generally present. Agglutinated conical foraminifera and laminar crusts of coralline red algae (Lithoporella) are occasional to common (Fig. 6B). Other organisms, such as echinoids (Eupatagus, Antillaster), thin-walled gastropods, bivalves, branching corals in living position and rare amphisteginids are also present. Macrofossils and microfossils in micritic floatstones and wackestones/packstones show low to moderate degrees of fragmentation and abrasion, low degrees of encrustation and moderate degrees of bioerosion, except for corals which may be intensely bored. Grainstones typically

exhibit higher degrees of fragmentation and abrasion, lower encrustation, and similar bioinfestion

of skeletal grains.

Facies Mf2 differs from Mf1 facies in being dominated by branching corals, which occur as spar-filled moulds in a micritic matrix and constitute coral boundstones that locally build up small patchreef frameworks. Thick-shelled gastropods, dasycladalean algae and miliolids may be common. Large photosymbiont-bearing foraminifera are rare to common in places and include amphisteginids and nummilitids. Agglutinated conical foraminifera and echinoid fragments are present in small amounts. Other fossils include epifaunal spatangoids such as *Antillaster*. Skeletons in facies Mf2 show low to moderate degrees of fragmentation and abrasion leaving gastropods with their tubercules left intact for example. Corals are commonly partly micritized and encrusted by cyanobacterial micritic laminae.

5.1.2. Echinoid – Red algal photozoan facies (Mf3)

Textural attributes of facies Mf3 are variable and range from wackestone to packstone/grainstone (Fig. 6C). Massive bedding is typical, although nodular bedding also occurs pointing to intense bioturbation that likely obliterated primary sedimentary structures.

Facies Mf3 is characterized by low-diversity biogenics with a relative abundance of echinoids (plates and spine fragments) and fragments of rhodoliths, branches and laminar crusts. Larger foraminifera are unusual, but when present consist predominantly of orthophragminids, and rare nummulitids and amphisteginids. Micritic grains, such as peloids and cortoids, may be abundant. Subordinate biogenics include bivalves and corals. Intraclasts are present and consist of skeletal grains bearing rims of palisadic spar crystals with scalenohedral terminations and echinoid plates with dirty spar syntaxial overgrowths. Facies Mf3 has moderate to high degrees of fragmentation and abrasion, and relatively low to moderate degrees of bioerosion and encrustation.

5.1.3. Mixed larger foraminiferal – mollusk photozoan facies (Mf4)

The massive beds of facies Mf4 are sharp-based. Mollusks, larger ovate nummulitids, amphisteginids and agglutinated conical foraminifera with particularly high amounts of coarse sand to granule sized-volcaniclastics dominate these sediments. Volcaniclastic grains are subangular and poorly- to moderately-sorted. Coral and coralline algal debris, and bryozoans are occasional to common and typically show moderate to high degrees of fragmentation and abrasion, little if any encrustation, and low bioerosional features. Echinoids are generally found fragmented and include sand-dwellers *Eupatagus*, *Meoma* and *Haimea* (Fig. 3). Sedimentary structures vary from planar bedding to sigmoidal and hummocky cross-stratifications. Facies textures are volcaniclastic rudstones with a packstone and/or grainstone matrix.

5.1.4. Mixed Bioclastic – peloidal facies (Mf5)

Beds of facies Mf5 are either massive with a wavy basal contact or nodular grading from underlying volcaniclastic deposits across a transitional interval of carbonate nodules in an argillaceous matrix. Moderately to well-sorted silt and fine sand-sized bioclastic and tuffitic material dominate this facies (Fig. 6D). The carbonate fraction consists predominantly of peloids originating in micritized skeletal fragments, such as red algal debris, and of cortoids in a packstone matrix. Subordinate components include fragmented benthic foraminifera, echinoid plates and spines, and corals. Thin-shelled disarticulated bivalves may be present. Fragmentation and abrasion are moderate, bioerosion is high and encrustation is rare.

287 5.2. Dasycladalean - miliolid photozoan facies (DaMi)

Beds of facies DaMi are massive. Wackestones and packstones are the dominant textures (Fig. 6E). Facies DaMi is similar to mixed facies Mf1 and Mf2, but is free of volcaniclastic content. Smaller benthic foraminifera are common, and are associated with common to abundant miliolids, dasycladalean algae and peloids. Accessory components include micritized grains (cortoids), bivalves, agglutinated conical foraminifera (*Heterodictyoconus*), and occasional amphisteginids. Laminar crusts of melobesioids are locally present. Rocks of facies DaMi contain common branching corals and articulated bivalves in living position. Degrees of fragmentation and abrasion are generally low, and bioerosion and encrustation are moderate to high.

5.3. Larger benthic foraminiferal – coralline algal facies (LfRh, LfCa)

This biotic association consists of packstones, rudstones and bindstones. Coralline algae are represented by members of the subfamilies Mastophoroids (*Lithoporella*), Melobesioids (*Mesophyllum, Lithothamnion*) and Sporolithalean (*Sporolithon*). Larger foraminifera are present in all facies and are represented by amphisteginids, nummulitids (*Nummulites*), orthophragminids such as *Discocyclina*, *Pseudophragmina* and *Asterocyclina*, and by the lepidocyclinid *Polylepidina*. Accessory components comprise small benthic foraminifera (textulariids, miliolids), encrusting foraminifera (acervulinids), fragments of bryozoans, bivalves, and corals. Echinoid plates are locally common. Non-skeletal carbonates (peloids, oncoids, cortoids) are generally present and may be abundant in places.

5.3.1. Larger benthic foraminiferal – rhodolith photozoan facies (LfRh1 to LfRh3)

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

These facies consist of coarse-grained packstones, sparitic rudstones/grainstones and rare bindstones dominated by larger benthic foraminifera and coralline red algae. Decimeter-thick beds have wavy bedding planes and are intensely bioturbated, resulting in a typical nodular texture. Medium-scale (up to 1 m large and dm deep) trough cross-stratifications and low- to high-angle foresets are locally present. The larger foraminiferal assemblage of facies LfRh1 consists of common amphisteginids, rare to occasional nummulitids, and lepidocyclinids. Facies LfRh2 is a nummulitid-lepidocyclinid packstone-rudstone. Fragments of fruticose coralline thalli and rhodoliths are also present in both facies and may be common to abundant within the carbonate matrix. In addition, other biogenic components include occasional textulariids, rare miliolids, occasional mollusks dominated by epifaunal bivalves, occasional coral fragments and planktonic foraminifera. Peloids and cortoids range in abundance from rare to common. Coralline bindstones are present locally in facies LfRh2 as intraclasts. The binding structure is composed of laminar coralline thalli 0.5-1.0 mm thick and cyanobacterial laminae with a stromatolithic texture. Mastophoroids (Lithoporella) and sporolithalean (Sporolithon) are present in facies LfRh1, and rare to absent in facies LfRh2 and LfRh3. Facies LfRh3 is dominated by rhodoliths in a bioclastic grainstone matrix composed of common echinoid plates and peloids, occasional larger benthic foraminifera, mollusks, corals, and dasycladalean algae (Fig. 6F). Rhodoliths in facies LfRh 1 and LfRh2 are variable in size with a mean diameter from 1 to 10 cm, and are typically dispersed within a coarse-grained grainstone matrix. Coalescence of two rhodoliths has been observed. Rhodoliths in facies LfRh3 are more homogeneous in size ranging from 1-5 cm. The most common rhodolith morphology is sub-spheroidal with a dense inner laminar arrangement of coralline thalli. Epifaunal macrofossils include irregular echinoids Haimea and Antillaster, and large thick-shelled oysters, which may locally be abundant in facies

LfRh1. 335 336 There is no significant difference between facies LfRh1, LfRh2 and LfRh3 in their degree of 337 taphonomic alteration. Each facies consists of a mixture of poorly to highly altered skeletal 338 material with respect to fragmentation, abrasion and bioerosion. Encrusters include red algae, 339 serpulids, foraminifera, and cyanobacteria. 340 5.3.2. Larger benthic foraminiferal – coralline algal photozoan facies (LfCa1 and LfCa2) 341 342 343 Facies LfCa1 and LfCa2 consist of massive- to nodular-bedded larger foraminiferal-red algal 344 packstones and grainstones. Basal contacts are either gradational or sharp. Underlying strata are 345 mixed carbonate-volcaniclastic and carbonate units. The main components are coralline algal 346 branches, less than 1 cm-sized rhodoliths, and their debris, and larger benthic foraminifera. 347 Among the latter, amphisteginids and subordinate nummulitids dominate facies LfCa1 (Fig. 6G), whereas nummilitids associated with orthophragminids are abundant in facies LfCa2 (Fig. 6H). 348 349 Other dominant components include echinoid plates and spines, smaller benthic foraminifera 350 (rotaliids and occasional textulariids), and peloids and micritized skeletons. Subspheroid 351 rhodoliths (up to 3 cm in diameter) may also be present. Coralline branches and debris consist mostly of melobesioids and occasional mastophoroids (Lithoporella). 352 353 The foraminiferal assemblage is dominated by *Amphistegina* and *Nummulites* in LfCa1, and 354 Nummulites, Discocyclina and Pseudophragmina in LfCa2. 355 Skeletal material in facies LfCa1 has lower degrees of alteration than its counterpart in facies 356 LfCa2. In the latter, coralline thalli and larger foraminifera exhibit a wide range of alteration from

low to high for fragmentation, abrasion, bioerosion and encrustation, pointing to the mixing of

fresh and older skeletons, i.e., exposed for longer periods of time to destructive processes.

357

5.4. Echinoid facies associations (EcF1 and EcF2)

Facies EcF1 are well-cemented packstones and grainstones containing abundant echinoid fragments, common peloids and subordinate larger benthic foraminifera (Fig. 6I). Beds of facies EcF1 are massive to nodular with sharp basal contacts. Facies EcF2 are semi-lithified packstones and wackestones rich in small benthic foraminifera (rotaliids), and comprise a complex assemblage of echinoid macrofossils. Decimeter-thick beds of facies EcF2 generally overlie wavy surfaces pervasively bioturbated by *Thalassinoides*.

5.4.1. Echinoid – non-skeletal carbonate photozoan facies (EcF1)

Irregular echinoids, including spatangoids (*Haimea*) and cassiduloids (*Echinolampas*) are common in these rocks. Branching zooxanthellate corals in growth position are ubiquitous at some localities. Gastropods and disarticulated bivalves are present. The fine- to medium-sand sized biogenic particles comprise common to abundant echinoid plates (Fig. 6I), occasional larger benthic foraminifera, particularly amphisteginids and nummulitids, molluskan fragments, geniculate and non-geniculate coralline debris, and less common miliolids, small agglutinated foraminifera, coral debris, and bryozoans. Peloids are common to abundant. Frequent presence of micritized skeletons suggests that the majority of peloids may be small micritized grains.

Degrees of fragmentation and abrasion are moderate to high, and common micritization indicates

that bioinfestation is pervasive. Encrustation of coral fragments and mollusks is low to moderate, and involves cyanobacteria, red algae and foraminifera.

5.4.2. Echinoid – smaller benthic foraminiferan photozoan facies (EcF2)

The co-occurrence of spatangoids, cassiduloids, and oligopygoids with different living habitats and substrate dependencies is frequent in facies EcF2 deposits. The co-occurrence of *Haimea*, *Schizaster*, *Agassizia*, *Eupatagus*, and *Echinolampas* provides an example of such complex diverse echinoid assemblages (Fig. 3) that point to contrasted depositional conditions over time. Results show that about 30% echinoids are in living position, a majority of which (80%) being represented by shallow (*Agassizia*) and deep (*Schizaster*) infaunal dwellers. Other macrofossils include large thick-shelled gastropods and pinnid bivalves dispersed in the deposits. Foraminifera comprise the porcelaneous and hyaline smaller benthic majority. Larger forms are occasional. Coralline fragments are rare and tend to be dominated by geniculate forms. Small agglutinated foraminifera, mollusks, miliolids, and calcispheres are occasional. Peloids may be abundant, whereas cortoids and oncoids are unusual. Volcaniclastic content is low.

The skeletal fraction has moderate to high degrees of fragmentation and abrasion, low to moderate degrees of bioerosion and encrustation. However, echinoid plates are typically less affected by destructive processes than other skeletons.

5.5. Coral photozoan facies (CoP1 and CoP2)

Two facies that reflect different biohermal geometries, hydrodynamic conditions and coral shapes are present. Members of the genera *Astrocoenia*, *Hydnophora*, and *Cladocora* have been identified. Small bioherms with lenticular geometry, a few meters large and up to 2-4 m high, and coral carpets characterize facies CoP1. Branching and platy corals in growth position constitute the coral framework. Corals are enclosed in a peloidal-micritic matrix. Other components include

encrusting coralline algae, gastropods and small benthic foraminifera. Meter-sized lenticular bioherms exhibit several growth-phases, each one being laterally correlated to tabular beds of facies Mf2, EcF2, and DaMi (Fig. 7A), a geometry that reflects a strong interaction between biohermal building and ambient sedimentation (Gaillard, 1983). Massive coral framework and biohermal rudstones compose facies CoP2. Individual biohermal structures are up to 6-8 m-high. Massive dendroid corals in living position dominate in the upper half part of the constructional bodies (Fig. 7B). Pebble to cobble-sized reef debris constitute lateral correlatives of the coral build-ups and are deposited as structureless up to 1 m-thick beds intercalated between tabular and nodular beds of facies EcF1 and LfCa1. The base of the coral build-ups appear sharp and possibly erosional (Fig. 7B), though not confirmed by field observation, a discrepancy that may originate in differential compaction and diagenesis (Rusciadelli and Di Simone, 2007; Berra and Carminati, 2012).

6. Carbonate facies interpretation

The virtual absence of silty micrite-rich planktonic foraminifera-dominated facies indicates that St. Barths Eocene carbonates and mixed carbonate-volcaniclastic sediments were principally deposited in inner to middle ramp settings (Nebelsick et al., 2005). In addition, the rare to occasional occurrence of symbiont-bearing larger benthic foraminifera with flattened shapes (orthophragminids, lepidocyclinids), a morphological adaptation to maximize light collection in otherwise oligophotic conditions below wave influence (Hallock and Glenn, 1986; Beavington-Penney and Racey, 2004; Hohenegger, 2009), and of light-independent biota-dominated facies confirm that the studied deposits are representatives of inner ramp and proximal to possibly distal middle ramp facies belts. Figure 8 proposes a reconstruction of the depositional environments

envisaged for the St. Barths carbonate facies. We must emphasize that different microfacies associated with identical parts of the carbonate ramp may not have all developed contemporaneously, even though a mosaic of subenvironments, each being characterized by specific ecological attributes in relation to subtle or major changes in substrate, nutrient levels, water depth, salinity and/or other parameters, should be expected in settings influenced by volcanism, subsequent influxes of volcaniclastics and resulting environmental stresses.

6.1. Inner ramp: shallow back barrier setting and patch reefs

Biogenic assemblages dominated by euphotic taxa, sedimentary structures comprising thin and planar beds, and micritic textures of facies Mf1, Mf2, Mf5, DaMi, CoP1 and EcF2 (Table 1) are interpreted to signal shallow-water inner ramp environments. The abundance of smaller benthic foraminifera, including textulariids, the common occurrence of dasycladal algae, miliolids, agglutinated conical foraminifera, and the rarity of hyaline larger foraminifera in facies Mf1 suggest light-level conditions of the upper euphotic zone (Murray, 1991; Geel, 2000; Zamagni et al., 2008). The presence of delicate laminar crusts of mastophoroid coralline algae, which appear detached from their substrate and commonly exhibit hook and ring shapes (Fig. 6E), together with common calcareous green algae fragments and smaller benthic foraminifera hint for the existence of seagrass beds in the depositional environment (Sola et al., 2013).

The local abundance of coral colonies constructing isolated bioherms, the presence of larger foraminifera and the occasional occurrence of smaller benthics suggest normal marine salinities such as in facies Mf2 and DaMi.

Fossils of these facies and their taphonomic attributes, together with wackestone and packstone

textures and sedimentary structures, indicate low-energy hydrodynamic conditions in shallow-

water. The abundance of miliolids, together with spatangoids *Schizaster* and *Brissoides* (Fig. 3) points to soft fine-sand and muddy substrates. The abundance of volcaniclastics in mixed facies likely resulted in coarser substrates favorable to epifaunal and shallow endofaunal dwellers, such as Antillaster and Eupatagus (Kanazawa, 1992; Donovan and Rowe, 2000). Although the final depositional setting for facies EcF2 sediments is interpreted to be a shallow protected environment (i.e., occurrence of spatangoid dwellers and mud-dominated deposits), the diverse echinoid assemblage pointing to varied palaeoecological modes (i.e., from sand to muddy substrates; Fig. 3) associated with high fragmentation and abrasion indices of the bioclastic fraction implies a complex depositional history from high/moderate- to low-energy hydrodynamic conditions. Abundance of volcaniclastic elements in carbonate strata overlying volcaniclastic units across erosive surfaces (see discussion below) suggests reworking of underlying beds through wave action.

6.2. Open inner ramp to middle ramp: wave-dominated settings

Open inner ramp and transitional environments to middle ramp settings are dominated by wave action. The influence of currents and high-energy waves can be deduced from the lack of easily winnowed silts and micrite, relatively coarse grain sizes, moderate to high degrees of fragmentation and abrasion of skeletons and lithoclasts, and cross-stratifications. In addition, robust coral morphologies and overall thick-walled skeletons more resistant to wave-induced transportation and to waterborne projectiles constitute useful indicators of strong hydrodynamic conditions (Hughes, 1987).

Representative of inner ramp to middle ramp facies belts are facies LfRh1, LfCa1, Mf4, EcF1

479 and CoP2 (Table 1). With the exception of chlorozoan facies (CoP2), most facies are 480 characterized by diverse faunal assemblages with varied degrees of alteration. 481 The dominance of biotic assemblages with robust larger foraminifera (Amphistegina, 482 Nummulites, and subordinate Discocyclina), coralline algal branches, subspheroid rhodoliths, 483 togehther with the presence of zooxanthellate corals and smaller benthic foraminifera, miliolids 484 and dasycladal algae, indicate deposition within the euphotic zone (Pomar, 2001; Nebelsick et al., 485 2005; Afzar et al., 2011). The common occurrence of larger foraminifera argues against high 486 nutrient levels, since these foraminifera thrive in mesotrophic to principally oligotrophic waters 487 (Hottinger, 1997; Langer and Hottinger, 2000; Halfar et al., 2004). 488 Constituents of these coarse-grained facies (packstones, grainstones and sparitic rudstones) 489 possess moderate to high degrees of fragmentation and abrasion consistent with relatively high-490 energy deposition above FWWB (Burchette and Wright, 1992). Particularly, the common 491 occurrence of broken, poorly-preserved and abraded larger foraminifera not only provides 492 evidence of high-energy conditions, but also may indicate repetitive burial and exhumation due to 493 frequent physical reworking (Beavington-Penney, 2004). 494 Low- to high-angle cross-stratifications may represent internal structures of subaqueous skeletal 495 dunes that developed through the reworking of bottom sediments including inner ramp protected 496 smaller foraminiferal – miliolid – dasycladalean sediments and deeper, more open, hyaline 497 foraminiferal – coralline algal deposits. Sigmoidal and hummocky cross-stratifications record 498 wave-dominated hydrodynamic conditions (Dumas and Arnott, 2006; Tinterri, 2011). 499 Similar inner to middle ramp packstones and grainstones dominated by larger foraminifera and 500 coralline algae with comparable sedimentary attributes and occasional coral occurrences have 501 been documented in south-east Asia from Eocene to middle Miocene limestones (Adams, 1965; 502 Wilson et al., 2000; Wilson, 2002; Wilson and Lokier, 2002), in the Indus Basin from Paleogene

limestones (Afzal et al., 2011), and in other Paleogene western Tethyan deposits (e.g., Loucks et al., 1998) for example. In the Caribbean realm, the middle Eocene Swanswick Formation of the White Limestone Group of Jamaica contains a diverse larger foraminiferal-algal assemblage with common echinoderm and molluskan fragments that Mitchell (2004, 2013) similarly interpreted as open marine high-energy platform deposits.

508

509

503

504

505

506

507

6.3. Distal middle ramp facies belt: episodic wave influence

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

Middle ramp deposits are represented by foralgal and rhodalgal associations of facies LfRh2, LfRh3, Mf3, and LfCa2 (Table 1). The dominance of wackestones and packstones, and subordinate grainstones are compatible with low-energy conditions allowing settlement of fine particles, alternating with episodes of high-energy wave events (Burchette and Wright, 1992; Nebelsick et al., 2005; Afzal et al., 2011). Abraded rhodoliths and the common occurrence of algal debris, and other bioclastic, material are supportive of current or wave reworking. Similar features have been recognized in open marine platforms influenced by sporadic storms (Lund et al., 2000), and fossil examples have been described from Cenozoic successions (Braga and Martin, 1988; Bassi, 2005; Barattolo et al., 2007; Payros et al., 2010). The regime of waves and currents is an important factor that determines the shape and internal structure of rhodoliths (e.g., Freiwald, 1995; Marrack, 1999). As such, the coalescence of rhodoliths (Fig. 6F) suggests times of relative hydrodynamic quiescence between episodes of turbulence preventing burial by fine sediments. The coralline algal assemblages are dominated by melobesioids with accessory mastophoroids and sporolithaceans. Compared to facies interpreted as inner ramp deposits, there is a taxonomic variation corresponding to a relative decrease in mastopohoroids (*Lithoporella*) and sporolithaleans (Sporolithon), and an increase in melobesioids (Lithothamnion). Such

taxonomic changes in coralline assemblages showing a depth gradient have fossil analogues (Rasser, 2000; Braga and Aguirre, 2001; Aguirre et al., 2017) and have been documented in modern settings (Iryu et al., 1995). A distal middle ramp setting is compatible with the foraminiferal assemblage dominated by nummulitids and orthophragminids, with subordinate lepidocyclinids, rare amphisteginids and occasional planktonic foraminifera (Nebelsick et al., 2005). In addition, the occasional occurrence of flattened test morphologies but also of light-dependent organisms, and the abundance of coralline algae suggest depositional conditions below FWWB and above SWB (Hottinger, 1997; Hohenegger et al., 2000; Bassi, 2005; Hohenegger, 2009).

7. Discussion

Specific to carbonate systems is that any significant change of either one of the parameters, (e.g., trophic resources, depth of light penetration, turbidity, nature of substrate, etc.) influencing carbonate factories will result in either temporary or prolonged halts in carbonate production and accumulation in different sectors of the shelf (Wilson, 2000; Wilson and Lokier, 2002; Wilson and Vecsei, 2005; Lokier et al., 2009; Reuter et al., 2012). St. Barths limestones record the repeated collapse and renewal of carbonate production, as a result of episodic volcaniclastic material input (see below; Figs. 9, 10).

7.1. Demise of carbonate factories

Submersion and drowning caused by relative sea-level changes, environmental deterioration and burial by clastics are major controls on the demise of tropical carbonate platforms (Schlager,

1989). Termination of St. Barths carbonate factories relates to volcaniclastic input with accumulation rates exceeding rates of skeletal carbonate production and reef building until burial. Erosional and sharp sedimentary surfaces between carbonate deposits below and volcaniclastic above are the dominant stratigraphic expressions identified in the studied successions for the demise of carbonate factories (Figs. 11A-D, 12). Erosional surfaces are overlain by polymictic matrix-supported breccias (Facies Vbr), and represent syneruptive surfaces generated by the discharge of coarse volcanic material in the carbonate realm (Figs. 2B, 5B, 10A, 11A-B) (Trofimovs et al., 2006). Sharp surfaces represent sedimentation events (Reading, 1996) and coincide with the abrupt transition from carbonate to volcaniclastic sedimentation, dominated by hyaloclastites of facies Hy1, with minor if any evidence of erosion and bioturbation (Figs. 11C, 12A). Such sharp non-erosional surfaces have been interpreted to reflect insufficient skeletal production of carbonate systems compared to the rates of clastic accumulation (Schlager, 1989; Wilson, 2002; Lokier et al., 2009). Suffocation of carbonate factories by volcaniclastics was likely facilitated by the rarity of significant coral reef buildups and the predominance of slow carbonate producing biota (Reuter, 2011), such as foraminifera and coralline red algae, in the St. Barths limestones. Gradational contacts also occur and represent progressive burial of carbonate systems by volcaniclastics of facies Hy1 and Hy2 (Figs. 2C, 11D, 12B). They indicate that prolongation of carbonate production during volcaniclastic input was possible provided a change of benthic communities from soft muddy to gravelly-shelly substrate dwellers having the capability to escape burial such as irregular echinoids (from LfCa1 to facies Mf4; Fig. 11D). Low- to highangle cross-stratifications in the overlying volcanicastic deposits (Figs. 11D, 12B) suggest that volcaniclasts were transferred, considering the proximity of volcanic centers (Fig. 1), downslope via dunes, sand waves or in avalanche flows (Caron et al., 2004; Dorobek, 2008; Puga-Bernabéu,

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

575 2010).

576

7.2. Temporary halts in carbonate production and deposition

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

577

Within the studied Eocene carbonate successions burrowed surfaces, interpreted as omission surfaces, are of particular interest since some of them are associated with tuffitic layers (Figs. 9, 10B, 11H-J, 12). Omission surfaces are emphasized by a complex network of *Thalassinoides* burrows reaching their maximum density beneath the surface and decreasing downwards (Figs. 2D, 11I, 12C-H). Most published works relate omission surfaces to stratigraphic condensation during periods of slowed/non-deposition (e.g., Clari et al., 1995; Hillgärtner, 1998; Christ et al., 2012). Sediments by-pass, drained siliciclastic sources, wave- and/or current-induced sediment transfer and submarine erosion are major factors considered to promote non-deposition on the sea floor. Previous authors have tied the formation of omission surfaces to specific portions of relative sealevel cycles where the position of the sea floor relative to the wave base is considered a key parameter to the onset of omission (Lukasik and James, 2003; Christ et al., 2012). However, an alternative explanation for the genesis of omission surface can be proposed based on the assumption that starved sedimentation may also result from the interruption of in situ carbonate production below and above fair-weather wave base. Although some organisms (e.g., Bivalves and Echinoids) have the ability to extricate themselves if buried beneath sediments and others to remove fine particles from their surface (Hinchey et al., 2006; Lokier et al., 2009; Knoll et al., 2017), episodic volcanic eruptions delivering high amounts of volcaniclastic material including ash (Fig. 10B) will result in rapid physical burial and consequent mass-mortality of benthic communities (Heikoop et al., 1996; Tomascik et al., 1997; Alve, 1999; Reuter and Piller, 2011).

The formation of omission surfaces depends on the duration of sediment starvation, and therefore here the time span between volcanic events and the recovery of carbonate factories. Where volcaniclastics were deposited above wave base, resuspension of their finer portion is likely to result in higher turbidity and in reduced light levels, thereby delaying the reestablishment of photodependent organisms (Hallock and Glenn, 1986). In addition, the potential increase of nutrient input through chemical alteration of volcanic particles may cause eutrophication at the sea floor and prevent colonization by oligotrophic and mesotrophic communities (Hallock and Schlager, 1986; Allmon, 1992; Brasier, 1995a; Hallock, 2001; Reuter and Piller, 2011). The time frame for either full recovery of the benthic communities that existed prior to the volcanic event or the renewal of carbonate systems via a switch to different biotic assemblages is difficult to estimate from the geological record but examples in the literature point to reestablishment over decades and centuries (Heikoop et al., 1996; Tomascik et al., 1996; Pandolfi et al., 2006; Reuter et al., 2011; Vroom and Zgliczynski, 2011). This time frame is compatible with the development of a dense burrowing network and of omission (Dashtgard et al., 2008).

7.3. Recovery and renewal of carbonate factories (Fig. 13)

Besides light conditions and nutrient levels, periods of volcanic quiescence and reduced availability of volcaniclastic material were likely the principal promoting conditions for the renewal of carbonate production. In the studied successions, mixed facies (Mf1-Mf3) followed by open marine foralgal (larger foraminifera-coralline algal facies; LfCa) and rhodalgal facies (LfRh) occur above erosional surfaces cut in sandy to gravely volcaniclastic substrates (Figs. 11F, 13C). Protected lagoonal foralgal facies (dasycladalean-miliolid facies; DaMi) are found above omission surfaces capping silty-sandy substrates and above marly concretionary horizons

grading from sand-sized volcaniclastics (Figs. 2C, 11E, 13E-F). Echinofor facies (echinoidslarger foraminifera; EcF) capped by coral carpets locally represent the initial carbonate development above gradational contacts. A review of foundering photozoan carbonate facies described in the literature shows similar colonizing biota on siliciclastic substrates (e.g., Hendry et al., 1999; Wilson, 2002; Burton, 2004; Lokier et al., 2009; Reuter and Piller, 2011; Reuter et al., 2012). Rhodolith-bearing units similar to those reported here (Fig. 11F), and located above erosional unconformities cut in rocky and clastic substrates, have been interpreted as transgressive deposits sitting on surfaces of marine erosion (e.g., Nalin et al., 2007). Gradational contacts have been inferred to record a progressive decrease of siliciclastic input and subsequent colonization by carbonate producers reflected in transitional mixed facies (e.g., Hendry et al., 1999; Burton, 2004; Lokier et al., 2009). Characteristics of the renewal of carbonate production described here suggest that they may result from a combination of factors promoting the reduction of volcaniclastic influx (e.g., changes in sediment transport direction and volcanic quiescence) and relative sea-level changes. Marly horizons at the volcaniclastic-carbonate interface, erosional and sharp-cut surfaces (Fig. 13A-B) are compatible with marine flooding. However, deepening-upward trends in facies above these surfaces have not been observed. This discrepancy might be explained by a slow rise of relative sea-level allowing aggradation without significant change of carbonate-producing biota.

641

642

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

8. Conclusions

643

644

645

The main results of the present study and their broader implications for the analysis of carbonate successions in volcanically-active settings may be summarized as follows.

1 The middle Eocene limestones of St. Bartholomew Island contain marine depositional facies

characteristic of inner to distal middle ramp settings affected by episodic volcanic eruptions. The variety of carbonate-producing biota (i.e., chlorozoan, chloralgal, foralgal), in terms of their dependence to light intensity and tolerance to nutrient levels, suggests that carbonate production occurred mostly in euphotic conditions across an unrimmed platform with isolated coral bioherms and shoals. Other biogenic contributors (i.e., rhodalgal, echinofor) are consistent with oligophotic conditions related to resuspended fine material after storms or fine volcaniclastics input following eruption that diminished water transparency. The St. Barths Eocene carbonates provide an example of low-latitude tropical platform where non-framework building biota were important, if not dominant, sediment contributors, compared to other Eocene carbonate deposits. 2 This study shows that the effects of volcanism on carbonate factories range from burial and prolonged termination of carbonate factories, to temporarily arrested or slowed carbonate production. When volcaniclastic inputs ceased, carbonate systems reestablished. Foundering biotic communities include euphotic chlorozoan facies, oligophotic foralgal, rhodalgal and echinofor facies mixed in various proportions with volcaniclastics. 3 The discontinuous nature of the carbonate sedimentation in relation to volcaniclastic influx is reflected in: (a) erosional and sharp sedimentary surfaces that mark pronounced facies changes; and, (b) gradational contacts. Some sedimentary surfaces and contacts located at volcaniclastic-carbonate boundaries record the renewal of carbonate production above volcaniclastic deposits, while others record either the temporary halt of carbonate production or the demise of carbonate platforms buried beneath thick volcaniclastics. The demise of carbonate factories and their prolonged shut-down in the vicinity of active volcanoes originated in the propagation of syneruptive pyroclastic flows or in the progradation/migration of wave-reworked volcaniclastic material, eroding and burying carbonate

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

671 deposits. Temporary shut-down of in situ carbonate production also occurred and was likely a 672 result of environmental stresses caused by fine volcaniclastics, including burial, lowered light 673 levels and eutrophication. 674 The recovery of carbonate factories resulted from an interruption of volcaniclastic influx at the 675 onset of volcanic quiescence promoting the reduction of volcaniclastic influx at the locus of 676 renewed carbonate production. 677 Future investigations should concentrate, in a broader regional context, on the characterization of 678 key sedimentary surfaces and discontinuities in mixed volcaniclastic-carbonate successions of the 679 Volcanic Arc Antillean area. Correctly interpreting the origin and significance of discontinuities 680 in carbonates deposited adjacent to active volcanoes is important to avoid misinterpretation of 681 other key surfaces in a cyclostratigraphic and sequence stratigraphic context. 682 683 Acknowledgments 684 Franciane Le Quellec and Julien Le Quellec at the Réserve Naturelle de Saint-Barthélémy 685 (resnatbarth@wanadoo.fr) are gratefully acknowledged for providing practical and logistical 686 support. The authors wish to thank Eric François and Pierre Soudet for taxonomic identification 687 of echinoid fossils. Were are grateful to Sedimentary Geology associate editor and to an 688 anonymous reviewer for their contribution towards improving this manuscript.

References

691692

693

694

689

690

Adams, C.G., 1965. The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation. Quarterly Journal of the Geological Society of London 121, 283-338.

695	
696	Afzal, J., Williams, M., Leng, M.J., Aldridge, R.J., 2011. Dynamic response of the shallow
697	marine benthic ecosystem to regional and pan-Tethyan environmental change at the
698	Paleocene Eocene boundary. Palaeogeography Palaeoclimatology Palaeoecology 309, 141
699	160.
700	
701	Aguirre J., Braga J.C., Bassi D., 2017. The role of rhodoliths and rhodolith beds in the rock
702	record and their use in palaeoenvironmental reconstructions. In: Riosmena-Rodriguez R.,
703	Nelson W., Aguirre J. (Eds), Rhodolith/maerl beds: a global perspective. Springer-Verlag,
704	Berlin, special volume, pp. 105-138
705	
706	Allmon, W.D., 1992. Role of temperature and nutrients in extinction of turritelline gastropods:
707	Cenozoic of the northwestern Atlantic and northeastern Pacific. Palaeogeography
708	Palaeoclimatology Palaeoecology 92, 41-54.
709	
710	Alve, E., 1999. Colonization of new habitats by benthic foraminifera: a review. Earth-Science
711	Reviews 46, 167-185.
712	
713	Barattolo, F., Bassi, D., Romano, R., 2007. Upper Eocene larger foraminiferal-coralline algal
714	facies from the Klokova Mountain (southern continental Greece). Facies 53, 361-375.
715	
716	Bassi, D., 1998. Coralline algal facies and their palaeoenvironment in the Late Eocene of
717	Northern Italy (Calcare di Nago, Trento). Facies 39, 179-202.
718	

719	Bassi, D., 2005. Larger foraminiferal and coralline algal facies in an Upper Eocene storm-
720	influenced, shallow-water carbonate platform (Colli Berici, north-eastern Italy).
721	Palaeogeography Palaeoclimatology Palaeoecology 226, 17-35.
722	
723	Beavington-Penney, S.J., 2004. Analysis of the effects of abrasion on the tests of
724	Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments.
725	Palaios 19, 143-155.
726	
727	Beavington-Penney, S.J., Racey, A., 2004. Ecology of extant nummulitids and other larger
728	benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Science Reviews
729	67, 219-265.
730	
731	Berra, F., Carminati, E., 2012. Differential compaction and early rock fracturing in high-relief
732	carbonate platforms : numerical modelling of a Triassic case study (Esino limestone, central
733	southern Alps, Italy). Basin Research 24, 598-614.
734	
735	Bouysse, P., Westercamp, D., Andreieff, P., 1990. The Lesser Antilles island arc. In: Moore, J.C.
736	Mascle, A. et al. (Eds.) Proceedings of ODP Science Research 110, pp. 29-44.
737	
738	Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology
739	79, 3-57.
740	
741	Braga, J.C., Martìn, J.M., 1988. Neogene coralline-algal growthforms and their
742	palaeoenvironments in the Almanzora River Valley (Almeria S.E. Spain). Palaeogeography

743	Palaeoclimatology Palaeoecology 67, 285-303.
744	
745	Braga, J.C., Aguirre, J., 2001. Coralline algal assemblages in Upper Neogene reef and temperate
746	carbonates in southern Spain. Palaeogeography Palaeoclimatology Palaeoecology 175, 27-
747	41.
748	
749	Braga, J.C., Vescogni, A., Bosellini, F.R., Aguirre, J., 2009. Coralline algae (Corallinales,
750	Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeography.
751	Palaeoclimatology Palaeoecology 275, 113-128.
752	
753	Brasier, M.D., 1995a. Fossil indicators of nutrient levels. 1. Eutrophication and climate change.
754	In: Bosence, D.W.J., Allison, P.A. (Eds.), Marine Palaeoenvironmental Analysis from
755	Fossils, Geological Society of London Special Publication 83, pp. 113-132.
756	
757	Brasier, M.D., 1995b. Fossil indicators of nutrient levels. 2. Evolution and extinction in relation
758	to oligotrophy. In: Bosence, D.W.J., Allison, P.A. (Eds.), Marine Palaeoenvironmental
759	Analysis from Fossils, Geological Society of London Special Publication 83, pp. 133-150.
760	
761	Burton, L.M., 2004. Carbonate-siliciclastic Interactions; Tertiary Examples from Spain. PhD
762	Thesis, University of Durham, UK, 396 p.
763	
764	Carannante, G., Esteban, M., Milliman, J.D., Simone, L., 1988. Carbonate lithofacies as
765	paleolatitude indicators: problems and limitations. Sedimentary Geology 60, 333-346.
766	

767	Caron, V., 2011. Contrasted textural and taphonomic properties of high-energy wave deposits
768	cemented in beachrocks (St. Bartholomew Island, French West Indies). Sedimentary
769	Geology 237, 189-208.
770	
771	Caron, V., Nelson, C.S., Kamp, P.J.J., 2004. Contrasted carbonate depositional systems for
772	Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand. New
773	Zealand journal of Geology and Geophysics 47, 697-717.
774	
775	Christ, N., Immenhauser, A., Amour, F., Mutti, M., Tomás, S., Always, R., Kabir, L., 2012.
776	Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High
777	Atlas, Morocco). Sedimentology 59, 249-290.
778	
779	Christman, R.A., 1953. Geology of S ^t . Bartholomew, S ^t . Martin, and Anguilla, Lesser Antilles
780	Bulletin of the Geological Society of America 6, 65-96.
781	
782	Clari, P.A., Dela Pierre, F., Martire, L., 1995. Discontinuities in carbonate successions:
783	identification, interpretation and classification of some Italian examples. Sedimentary
784	Geology 100, 97–121.
785	
786	Cosovic, V., Drobne, K., Moro, A., 2004. Paleoenvironmental model for Eocene foraminiferal
787	limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies 50, 61-75.
788	
789	Dashtgard, S.E., Gingras, M.K., Pemberton, S.G., 2008. Grain-size controls on the occurrence of
790	bioturbation. Palaeogeography Palaeoclimatology Palaeoecology 257, 224-243.

791	
792	Donovan, S.K., Rowe, DA.C., 2000. Spatangoid echinoids from the Eocene of Jamaica. Journal
793	of Paleontology 74, 654-661.
794	
795	Dorobek, S.L., 2008. Carbonate-platform facies in volcanic-arc settings: Characteristics and
796	controls on deposition and stratigtraphic development. Geological Society of America
797	Special Papers 436, 55-90.
798	
799	Dumas, S., Arnott, R.C.W., 2006. Origin of hummocky and swaley cross-stratifications. The
800	controlling influence of unidirectional current strength and aggradation rate. Geology 34,
801	1073-1076.
802	
803	Embry, A.F., Klovan, J.E., 1971. A late Devonian reef tract on northeastern Banks Island.
804	N.W.T. Bulletin of Canadian Petroleum Geology 19, 730-781.
805	
806	Freiwald, A., 1995. Sedimentological and biological aspects in the formation of branched rhodoliths
807	in northern Norway. Beiträge zur Paläontologie 20, 7-19.
808	
809	Gaillard, C., 1983. Les biohermes à spongiaires et leur environnement dans l'Oxfordien du Jura
810	méridional. Document du Laboratoire de Géologie de Lyon 90, 515 pp.
811	
812	Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits:
813	empirical models based on microfacies analysis of Palaeogene deposits in southeastern
814	Spain. Palaeogeography Palaeoclimatology Palaeoecology 155, 211-238.

815	
816	Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012. The Geologic Time Scale 2012: Boston,
817	USA, Elsevier, DOI: 10.1016/B978-0-444-59425-9.00004-4
818	
819	Halfar, J., Godinez-Orta, L., Mutti, M., Valdez-Holguin, J.E., Borges, J.M., 2004. Nutrient and
820	temperature controls on modern carbonate production: An example from the Gulf of
821	California, Mexico. Geology 32, 213-216.
822	
823	Hallock, P., 1985. Why are larger foraminifera large? Paleobiology 11, 195-208.
824	
825	Hallock, P., 1987. Fluctuations in the trophic resource continuum: a factor in global diversity
826	cycles? Palaeoceanography 2, 457-471.
827	
828	Hallock, P., 2001. Coral reefs, carbonate sedimentation, nutrients, and global change. In: Stanley
829	G.D. (Ed.), The History and Sedimentology of Ancient Reef Ecosystems, Amsterdam
830	(Kluwer), pp. 387-427.
831	
832	Hallock, P., Glenn, E.C., 1986. Larger foraminifera: a tool for palaeoenvironmental analysis of
833	Cenozoic depositional facies. Palaios, 1, 55-64.
834	
835	Hallock, P., Schlager, W., 1986. Nutrient excess and the demise of coral reefs and the demise of
836	coral reefs and carbonate platforms. Palaios 1, 389-398.
837	
838	Hallock, P., Sheps, K., Chapronière, G., Howell, M. 2006. Larger benthic foraminifers of the

839	marion plateau, northeastern Australia (ODP leg 194): comparison of faunas from bryozoan
840	(sites 1193 and 1194) and red algal (sites 1196-1198) dominated carbonate platforms. In:
841	Anselmetti, F.S., Isern, A.R., Blum, P., Betzler, C. (Eds.), Proceedings of the Ocean Drilling
842	Program, Scientific Results 194, pp. 1-31.
843	
844	Harvey, A.S., Broadwater, S.T., Woelkerling, W.J., Mitrovski, P.J., 2003. Choreonema
845	(Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for
846	the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. Journal of
847	Phycology 39, 988-998.
848	
849	Hayton, S., Nelson, C.S., Hood, S.D., 1995. A skeletal assemblage classification system for non-
850	tropical carbonate deposits based on New Zealand Cenozoic limestones. Sedimentary
851	Geology 100, 123-141.
852	
853	Heikoop, J.M., Tsujita, C.J., Heikoop, C.E., Risk, M., Dickin, A.P., 1996. Effects of volcanic
854	ashfall recorded in ancient marine benthic communities: comparison of a nearshore and an
855	offshore environment. Lethaia 29, 125-139.
856	
857	Hendry, J.P., Taberner, C., Marshall, J.D., Pierre, C., Carey, P.F., 1999. Coral reef diagenesis
858	records pore-fluid evolution and paleohydrology of a siliciclastic basin margin succession
859	(Eocene South Pyrenean foreland basin, northeastern Spain). Geological Society of America
860	Bulletin 111, 395-411.
861	
862	Hillgärtner, H., 1998. Discontinuity surfaces on a shallow marine carbonate platform (Berriasian-

863	Valanginian, France and Switzerland). Journal of Sedimentary Research 68, 1093-1108.
864	
865	Hinchey, E., Schaffner, L., Hoar, C., Vogt, B., Batte, L., 2006. Responses of estuarine benthic
866	invertebrates to sediment burial: the importance of mobility and adaptation. Hydrobiologia
867	556, 85-98.
868	
869	Hohenegger, J., 2009. Functional shell geometry of symbiont-bearing foraminifera. Research
870	Galaxea, Journal of Coral Reef Studies 11, 81-89.
871	
872	Hohenegger, J., Yordanova, E., 2001. Displacement of larger Foraminifera at the western slope
873	of Motobu Peninsula (Okinawa, Japan). Palaios 16, 53-72
874	
875	Hohenegger, J., Yordanova, E., Hatta, A., 2000. Remarks on West Pacific Nummulitidae
876	(Foraminifera). Journal of Foraminiferal Research 30(1), 3-28.
877	
878	Hottinger, L., 1983. Processes determining the distribution of larger foraminifera in space and
879	time. Utrecht Micropaleontogy Bulletin 30, 239-253.
880	
881	Hottinger, L., 1997. Shallow benthic foraminiferal assemblages as signals for depth of their
882	deposition and their limitations. Bulletin de la Société Géologique de France 168, 491-505
883	
884	Hughes, T.P., 1987. Skeletal density and growth form of corals. Marine Ecology – Progress
885	Series 35, 259-266.
886	

887	Iryu, Y., Nakamori, T., Matsuda, S., Abe, O., 1995. Distribution of marine organisms and its
888	geological significance in the modern reef complex of the Ryukyu Islands. Sedimentary
889	Geology 99, 243-258.
890	
891	James, N.P., 1997. The cool-water carbonate depositional realm. In: James, N.P., Clarke, J.
892	(Eds.), Cool-Water Carbonates. SEPM Special Publication 56, pp. 1-20.
893	
894	Jeans, C.V., Wray, D.S., Merriman, R.J., Fisher, M.J., 2000. Volcanogenic clays in Jurassic and
895	Cretaceous strata of England and the North Sea Basin. Clay Minerals 35, 25-55.
896	
897	Kanazawa, K., 1992. Adaptation of test shape for burrowing and locomotion in spatangoid
898	Echinoids. Paleontology 35, 733-750.
899	
900	Kier, P.M., 1984. Fossil Spatangoid Echinoids of Cuba. Smithsonian Contribution to
901	Paleobiology 55, 336 pp.
902	
903	Knoll, K., Chamberlain, R.B., Chamberlain, J.A. Jr., 2017. Escape burrowing of modern
904	freshwater bivalves as a paradigm for escape behavior in the Devonian bivalve Archanodor
905	catskillensis. Geosciences 7, 37 pp.
906	
907	Langer, M.R., Hottinger, L., 2000. Biogeography of selected larger foraminifera.
908	Micropaleontology 46, 105-126.
909	
910	Lees, A., 1975. Possible influence of salinity and temperature on modern shelf carbonate

911	sedimentation. Marine Geology 19, 159-198.
912	
913	Lees, A., Buller, A.T., 1972. Modern temperate water and warm water shelf carbonate sediments
914	contrasted. Marine Geology 13, M67–M73.
915	
916	Lokier, S.W., Wilson, M.E.J., Burton, L.M., 2009. Marine biota response to clastic sediment
917	influx: a quantitative approach. Palaeogeography Palaeoclimatology Palaeoecology 175,
918	249-272.
919	
920	Loucks, R.G., Moody, R.T.J., Bellis, J.K., Brown, A.A., 1998. Regional depositional setting and
921	pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore
922	Tunisia. In: Macgregor, D.S., Moody, R.T.J., Clark-lowes, D.D. (Eds.), Petroleum geology
923	of North Africa, Geological Society of London Special Publication 132, pp. 355-374.
924	
925	Lukasik, J.J., James, N.P., 2003. Deepening-upward subtidal cycles, Murray Basin, South
926	Australia. Journal of Sedimentary Research 73, 653-671.
927	
928	Lund, M., Davies, P.J., Braga, J.C., 2000. Coralline algal nodules off Fraser Island eastern
929	Australia. Facies 42, 25-34.
930	
931	Marrack, E.C., 1999. The relationship between water motion and living rhodolith beds in the
932	southwestern Gulf of California, Mexico. Palaios 14, 159-171.
933	
934	Mitchell, S.F., 2004. Lithostratigraphy and palaeogeography of the White Limestone Group.

935	Cainozoic Research 3, 5-29.
936	
937	Mitchell, S.F., 2013. Stratigraphy of the White Limestone of Jamaica. Bulletin de la Société
938	Géologique de France 184, 111-118.
939	
940	Murray, J.W., 1991. Ecology and distribution of benthic foraminifera. In: Lee, J.J., Anderson,
941	R.O. (Eds.), Biology of Foraminifera. Academic Press, London, pp. 221-284.
942	
943	Nalin, R., Massari, F., 2009. Facies and stratigraphic anatomy of a temperate carbonate sequence
944	(Capo Colonna terrace, Late Pleistocene, Southern Italy). Journal of Sedimentary Research
945	79, 210-225.
946	
947	Nalin, R., Nelson, C.S., Basso, D., Massari, F., 2007. Rhodolith-bearing limestones as
948	transgressive marker beds: fossil and modern examples from North Island, New Zealand.
949	Sedimentology 55, 249-274.
950	
951	Nebelsick, J.H., Bassi, D., 2000. Diversity, growth forms and taphonomy: key factors controlling
952	the fabric of coralline algae dominated shelf carbonates. In: Insalaco, E. Skelton, P.W.,
953	Palmer, T.J. (Eds.), Carbonate Platform Systems: components and interactions, Geological
954	Society of London Special Publication 178, pp. 89-107.
955	
956	Nebelsick J.H., Rasser M., Bassi D. 2005. Facies dynamics in Eocene to Oligocene circumalpine
957	carbonates. Facies, 51, 197-216.
958	

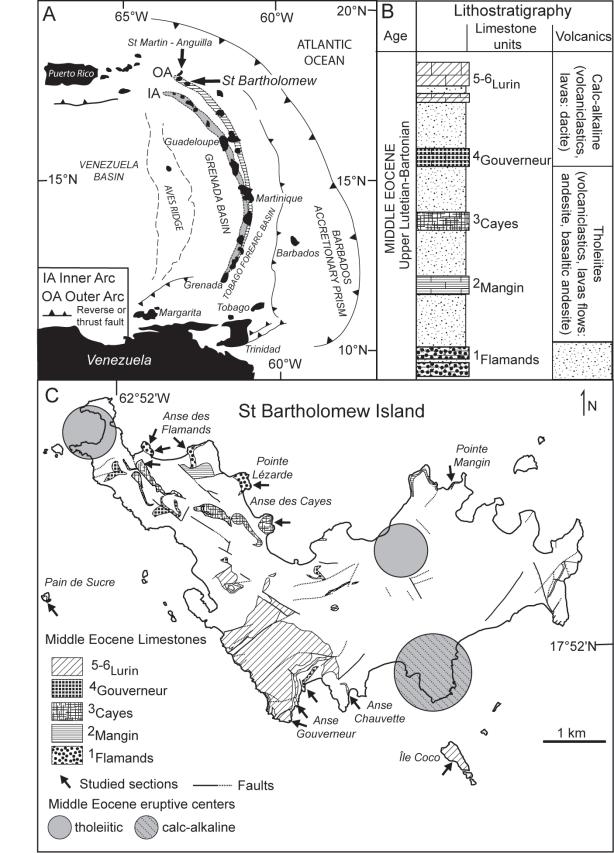
959	Pandolfi, J.M., Tudhope, A.W., Burr, G., Chapell, J., Edinger, E., Frey, M., Steneck, R., Sharma,
960	C., Yeates. A., Jennions, M., Lescinsky, H., Newton. A., 2006. Mass mortality following
961	disturbance in Holocene coral reefs from Papua New Guinea. Geology 34, 949-952.
962	
963	Payros, A., Pujalte, V., Tosquella, J., Orue-Etxebarria, V., 2010. The Eocene storm-dominated
964	foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): An analogue of future
965	shallow-marine carbonate systems? Sedimentary Geology 228, 184-204.
966	
967	Perry, C.T., 1998. Grain susceptibility to the effects of microboring: implications for the
968	preservation of skeletal carbonates: Sedimentology 45, 39-51.
969	
970	Pomar, L., 2001. Ecological control of sedimentary accommodation: evolution from carbonate
971	ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeography Palaeoclimatolog
972	Palaeoecology 175, 249-272.
973	
974	Pomar, L., Brandano, M., Westphal, H., 2004. Environmental factors influencing skeletal grain
975	sediment associations: a critical review of Miocene examples from the western
976	Mediterranean. Sedimentology 51, 627-651.
977	

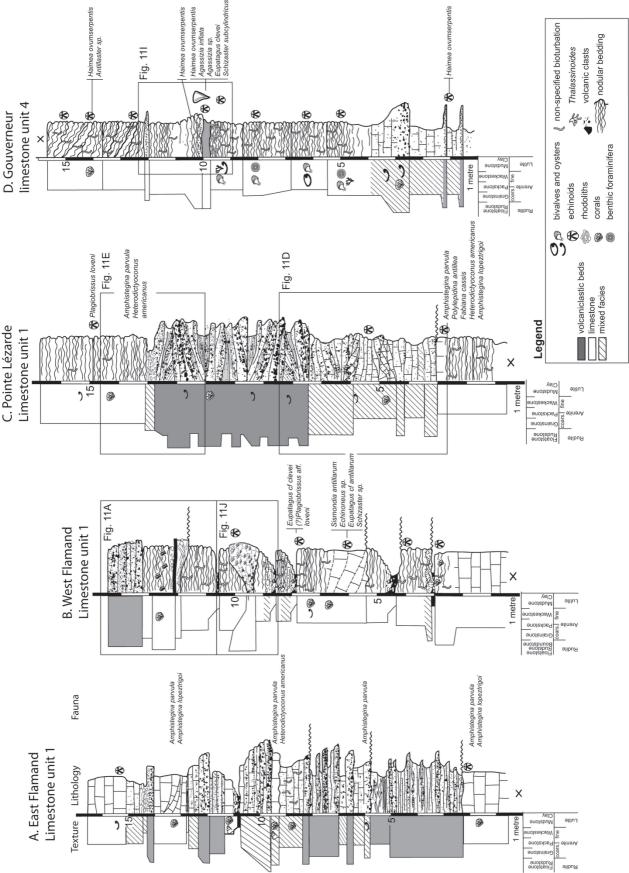
978	Puga-Bernabéu, A., Martín, J.M., Braga, J.C., Sánchez-Almazo, I.M., 2010. Downslope-
979	migrating sandwaves and platform-margin clinoforms in a current-dominated, distally
980	steepened temperate-carbonate ramp (Guadix Basin, Southern Spain). Sedimentology 57,
981	287-311.
982	
983	Rasser, M.W., 2000. Coralline red algal limestones of the Late Eocene Alpine Foreland Basin in
984	Upper Austria: component analysis, facies and paleoecology. Facies 42, 59-92.
985	
986	Rasser, M.W., Piller, W.E., 1999. Application of neontological taxonomic concepts to Late
987	Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. Journal of
988	Micropalaeontology 18, 67-80.
989	
990	Reading, H.G., 1996. Sedimentary environments: Processes, facies and stratigraphy. Blackwell
991	Science, Oxford.
992	
993	Reuter, M., Piller, W.E., 2011. Volcaniclastic events in coral reef and seagrass environments:
994	evidence for disturbance and recovery (Middle Miocene, Styrian Basin, Austria). Coral
995	Reefs 30, 889-899.
996	
997	Reuter, M., Piller, W.E., Erhart, C., 2012. A Middle Miocene carbonate platform under silici-
998	volcaniclastic sedimentation stress (Leitha Limestone, Styrian Basin, Austria) - Depositional
999	environments, sedimentary evolution and palaeoecology. Palaeogeography
1000	Palaeoclimatology Palaeoecology 350-352, 198-211.

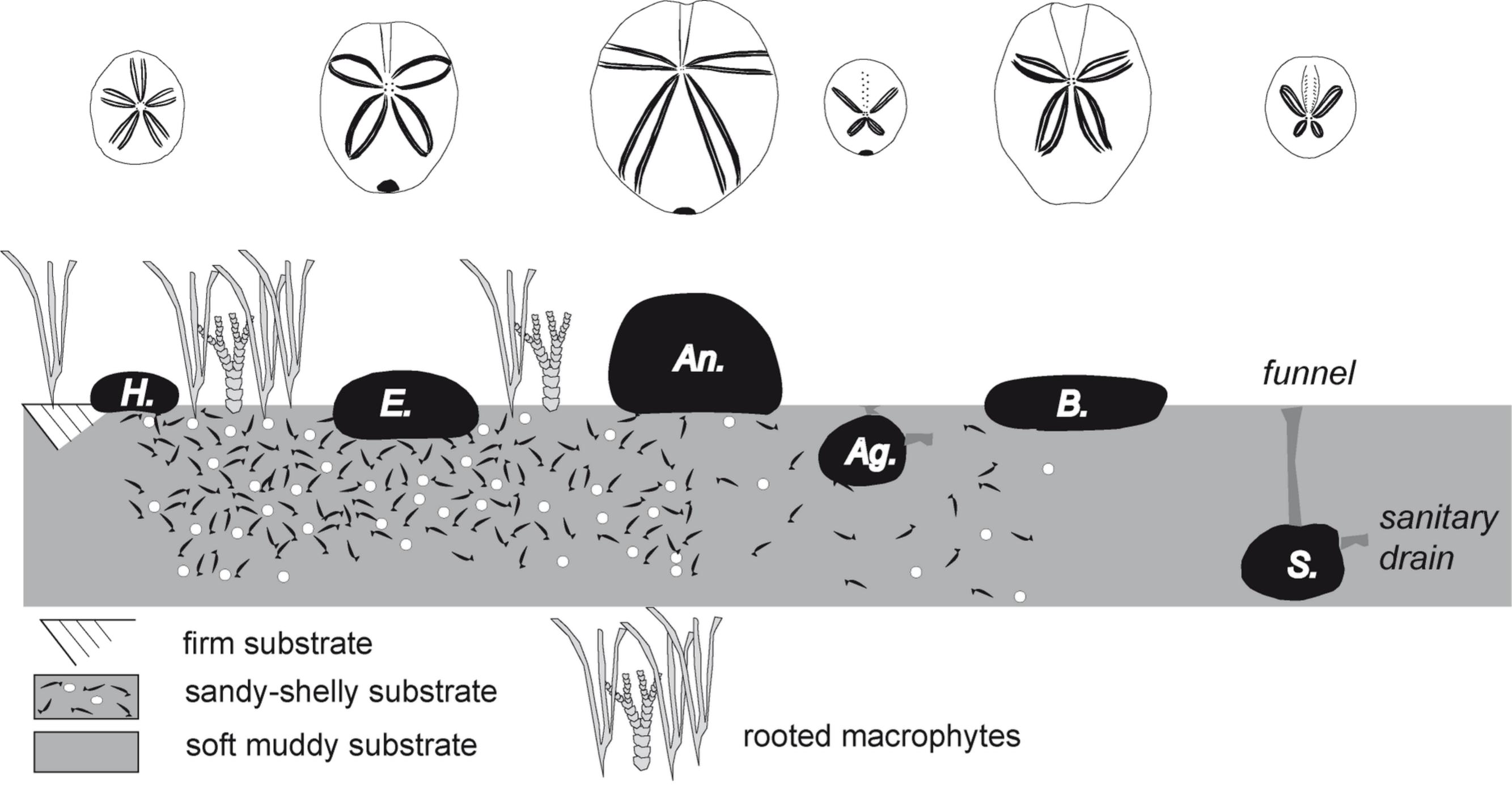
1001	
1002	Rusciadelli, G., Di Simone, S., 2007. Differential compaction as control on depositional
1003	architectures across the Maiella carbonate platform margin (central Appenines, Italy).
1004	Sedimentary Geology 196, 133- 155.
1005	
1006	Schlager, W., 1989. Drowning unconformities on carbonate platforms. In: Crevello, P.D.,
1007	Wilson, J.L., Sarg, J.F., Read, J.F. (Eds.), Controls on Carbonate Platforms and Basins
1008	Development. SEPM Special Publication 44, pp. 15-25.
1009	
1010	Sola, F., Braga, J.C., Aguirre, J., 2013. Hooked and tubular coralline algae indicate seagrass beds
1011	associated to Mediterranean Messinian reefs (Poniente Basin, Almería, SE Spain).
1012	Palaeogeography Palaeoclimatology Palaeoecology 374, 218-229.
1013	
1014	Tinterri, R., 2011. Combined flow sedimentary structures and the genetic link between
1015	sigmoidal- and hummocky- cross stratification. GeoActa 10, 43-85.
1016	
1017	Tomascik, T., van Woesik, R., Mah, A.J., 1996. Rapid coral colonization of a recent lava flow
1018	following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169-175.
1019	
1020	Trofimovs, J., Amy, L., Boudon, G., Deplus, C. Doyle, E., Fournier, N., Hart, M.B., et al. 2006.
1021	Submarine pyroclastic deposits formed at the Soufrière Hills volcano, Montserrat (1995-
1022	2003): What happens when pyroclastic flows enter the ocean? Geology 34, 549-552.
1023	
1024	Vecchio E. Hottinger L. 2007. Agalutinated conical foraminifera from the Lower-Middle

1025	Eocene of the Trentinara Formation (southern Italy). Facies 53, 509-533.
1026	
1027	Vroom, P.S., Zgliczynski, B.J., 2011. Effects of volcanic ash deposits on four functional groups
1028	of a coral reef. Coral Reefs 30, 1025-1032.
1029	
1030	Westercamp, D., Andreieff, P., 1983a. St-Barthélémy et ses îlets, Antilles françaises:
1031	stratigraphie et evolution magmato-structurale. Bulletin de la Société Géologique de France
1032	25, 873-883.
1033	
1034	Westercamp, D., Andreieff, P., 1983b. Saint-Barthélémy et ses îlets - Carte géologique à
1035	1/20000: Notice explicative. Service Géologique National, Orléans, France, 38 pp.
1036	
1037	Wilson, M.E.J., 2002. Cenozoic carbonates in Southeast Asia: implications for equatorial
1038	carbonate development. Sedimentary Geology 147, 295-328.
1039	
1040	Wilson, M.E.J., Bosence, D.W.J., Limbong, A., 2000. Tertiary syntectonic carbonate platform
1041	development in Indonesia. Sedimentology 47, 395-419.
1042	
1043	Wilson, M.E.J., Lokier, S.W., 2002. Siliciclastic and volcaniclastic influences on equatorial
1044	carbonates: insights from the Neogene of Indonesia. Sedimentology 49, 583-601.
1045	
1046	Wilson, M.E.J., Vecsei, A., 2005. The apparent paradox of abundant foramol facies in low
1047	latitudes: their environmental significance and effect on platform development. Earth-
1048	Science Reviews 69, 133-168.

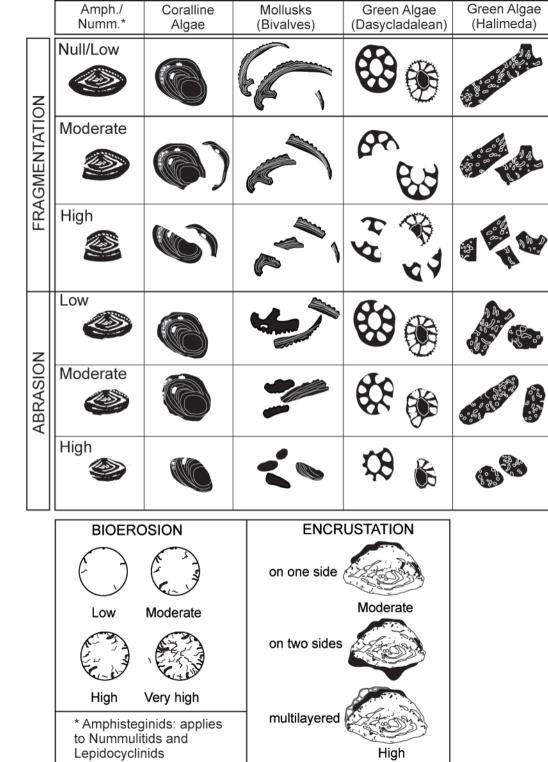
1049	
1050	Zamagni, J., Mutti, M., Kosir, A., 2008. Evolution of shallow benthic communities during the
1051	Late Paleocene-earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies 54,
1052	25-43.
1053	
1054	Figure captions
1055	
1056	Fig. 1. (A) Location of St. Bartholomew relative to the main geological features of the Lesser
1057	Antilles in the eastern Caribbean. (B) Simplified lithostratigraphy of the Middle Eocene of St
1058	Bartholomew showing the main volcanic and limestone units. Not to scale. (C) Map showing
1059	outcropping distribution of limestone units, key stratigraphical sections (arrowed) and inferred
1060	location of eruptive centers (based on Westerkamp and Anfreieff, 1983b).
1061	
1062	Fig. 2. Examples of stratigraphic columns logged in the studied Eocene limestones. See Fig. 1 for
1063	locations.
1064	
1065	Fig. 3. Paleoecological modes of the most frequent irregular echinoids found in the St.
1066	Bartholomew middle Eocene limestones (based on Kanazawa, 1992).
1067	
1068	Fig. 4. Taphonomic grading system established for several skeletal categories. The scale of
1069	fragmentation features for benthic foraminifers derives from that proposed by Beavington-
1070	Penney (2004). The scale of mechanical alteration for calcareous green algae is modified from
1071	Caron (2011). The importance of test infestation follows the visual chart presented in Perry
1072	(1998).

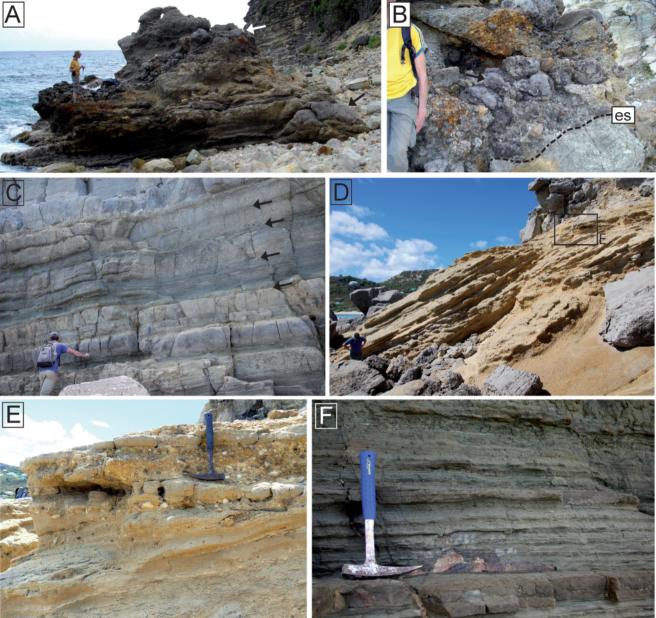

Fig. 5. Field photographs of volcaniclastic deposits from various locations (see Fig. 1). (A, B) Coarse volcaniclastic breccia containing heterometric angular clasts, ranging in size from gravel to boulder (white arrow in A), tapering limestone clasts (black arrow in A) and coral heads (arrowed in B). es: erosional surface. Location: Anse Chauvette. (C) Superposed fining-upwards dm- to m-thick pyroclastic beds exhibiting from base (arrowed) to top an erosional surface (relief <5 cm), a conglomeratic layer grading into planar-bedded gravels and sands. Anse des Cayes (Figs. 1, 12B). (D, E) Reworked hyaloclastites. Hammer: 30 cm. Location: Anse des Flamands. (F) cm- and dm-thick tabular beds of silty to sandy lapilli tuffs with wavy bases in places.

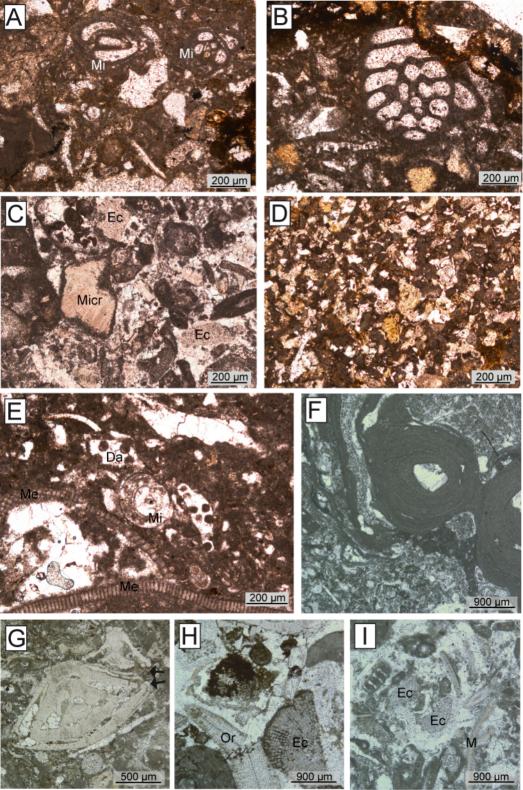

Fig. 6. Photomicrographs illustrating dominant microfacies in the studied deposits. (A-B) mixed microfacies Mf1, packstone containing abundant miliolids (Mi)(A) and common agglutinated conicals (dictyoconids, B). (C) Microfacies Mf3, packstone/grainstone containing echinoid plates (Ec), peloids and micritized grains (Micr). (D) Microfacies Mf5 (see Table 1). (E) Microfacies facies DaMi, wackestone/packstone characterized by dasycladal algal debris (Da), miliolids (Mi) and meliobesoids (Me). (F) Example of larger benthic foraminiferal - rhodolith photozoan microfacies LfRh. (G, H) Example of photozoan microfacies LfCa, packstone containing abraded and fragmented (arrowed) amphisteginids (G) and (H) grainstone showing bioclasts of orthophragminid (Or) and echinoid (Ec). (I) Example of echinoid facies association EcF, grainstone with echinoid plate (Ec) and mollusk (M) fragments.


Fig. 7. Examples of coral reef buildups. For locations see Figure 1. (A) Meter-sized lenticular reef possibly exhibiting several growth-phases (arrows), each one being laterally correlated to

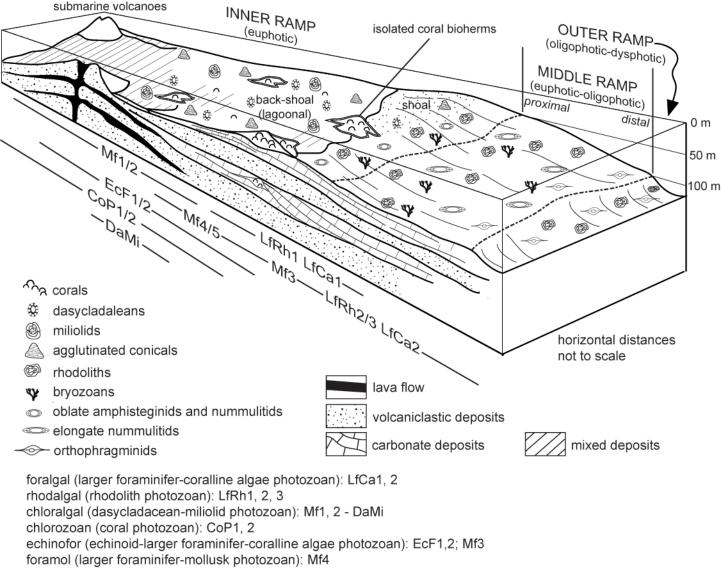
1097 limestone beds. Location: Anse des Cayes. (B) Massive coral buildup, 8 m thick (dashed line), 1098 interpreted as an isolated coral bioherm. Coral heads are in living position in the upper part of the 1099 structure whereas it is not as clear in its lower part. Location: Pain de sucre. 1100 1101 Fig. 8. Hypothetical paleoenvironmental reconstruction and depositional profile of the ramp 1102 attached to submarine volcanoes for the middle Eocene limestones of St. Bartholomew. 1103 1104 Fig. 9. Anse des Cayes section (Limestone unit 3 - see Fig. 1 for location and Fig. 12 for field 1105 photograph) showing the interplay between volcaniclastic and carbonate sedimentation. t. arr.: 1106 temporarily arrested. 1107 1108 Fig. 10. Consequences of the onset of volcanic activity on inner- to middle-ramp carbonate 1109 factories. A) Demise due to burial following emplacement of coarse-grained pyroclastic deposits 1110 (facies Vbr and Hy; Table 1); B) Collapse due to burial by volcanic ash (facies Tu; Table 1). 1111 1112 Fig. 11. Detailed portions of lithologic logs (see Fig. 2) showing the vertical facies successions 1113 within the deposits associated with carbonate production breaks and renewal. 1114 1115 Fig. 12. Sedimentary surfaces recording interruption of carbonate production. See Figure 1 for 1116 locations. (A) Sharp contact (sc) between lagoonal facies below and sand-sized volcaniclastics 1117 above. Hammer: 30 cm. Location: Pointe Mangin. (B) Gradational contact (gc) between mixed 1118 carbonate-volcaniclastic deposits (Mf) below and cross-bedded hyaloclastites above (Hy2). The 1119 contact with the limestone unit (Lu) above is described in Figure 11E. Location: Anse des 1120 Flamands. (C, D) Burrowed omission surface (bs). Close-up view in D. Scale: 12 cm. (E)

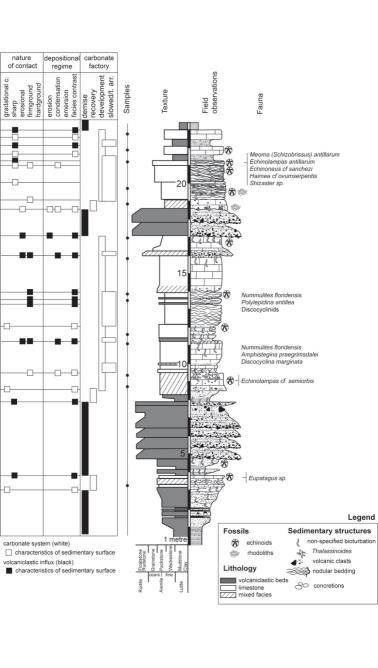

1121 Burrowed surface (bs). Iron mineralization is pervasive in the 50 cm-thick layer above. Location: 1122 Anse Gouverneur. (F) Burrowed omission surface seen in bedding plane on the right and 1123 overlying iron-stained deposit on the left. Arrow points to iron mineralization of burrow walls. 1124 Scale: 12 cm. (G) Close-up view of iron-stained deposit in E and F. Irregular echinoids (Ec) of 1125 different paleoecological modes (see text for details) are abundant together with pinnid fragments 1126 (Pi). Scale: 12 cm. 1127 1128 Fig. 13. Sedimentary surfaces recording the renewal of carbonate production after prolonged 1129 interruption due to volcanic activity. See Figure 1 for locations. (A) Sharp (sc), slightly 1130 undulating, weakly burrowed surface at volcaniclastic-carbonate boundary. Location: Anse des 1131 Cayes. (B) Lateral correlative surface seen in B. (C) Erosional surface (es) with a relief up to 10 1132 cm. From the surface, fine-grained volcaniclastic deposits below are densely bioturbated by 1133 Thalassinoides (See D). Location: Pointe Mangin. (D) Close up view of Thalassinoides burrows 1134 beneath the erosional surface in C. Scale: 12 cm. (E-F) Gradational contact (gc) from argillaceous 1135 tuffitic deposits below to well-lithified grey limestone beds above with a transitional 1136 concretionary layer in between. Close-up view in F. Scale: 20 cm. Location: Pointe Lézarde. 1137 1138 Table 1. Summary of facies in middle Eocene limestone units of St. Bartholomew island. 1139 Texture: 'Ms' correspond to mudstone; 'Ws' to wackestone; 'Ps' to packstone; 'Gs' to 1140 grainstone; 'Fs' to floatsone; 'Rs' to rudstone; 'Bs' to boudnstone; and 'Bis' to bindstone. 1141 Taphonomy: '1' correspond to low; 'm' to moderate, 'h' to high degree of alteration. 1142 1143

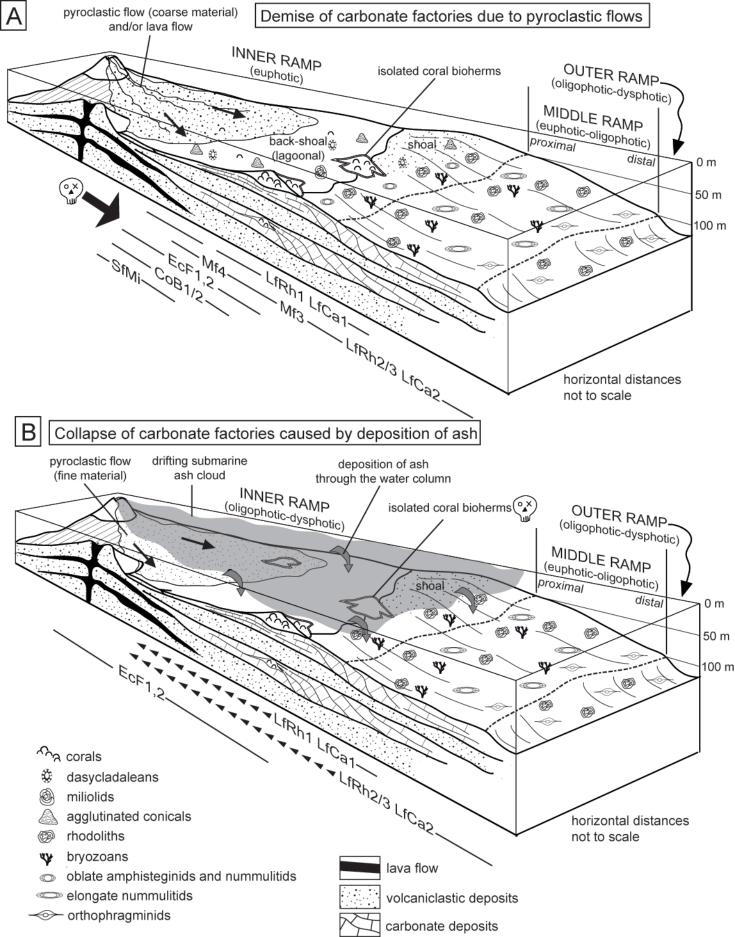


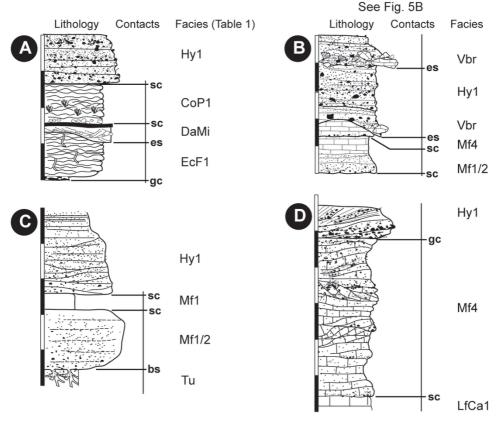


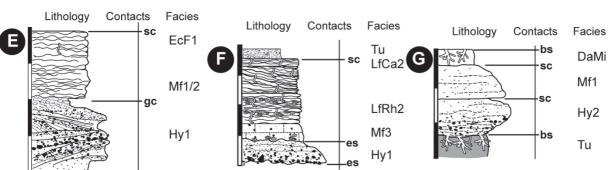
H.: Haimea; E.: Eupatagus; An: Antillaster; Ag.: Agassizia; B.: Brissoides; S.: Schyzaster.

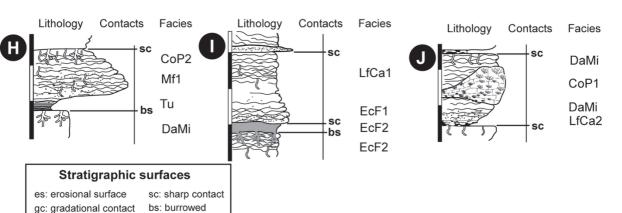


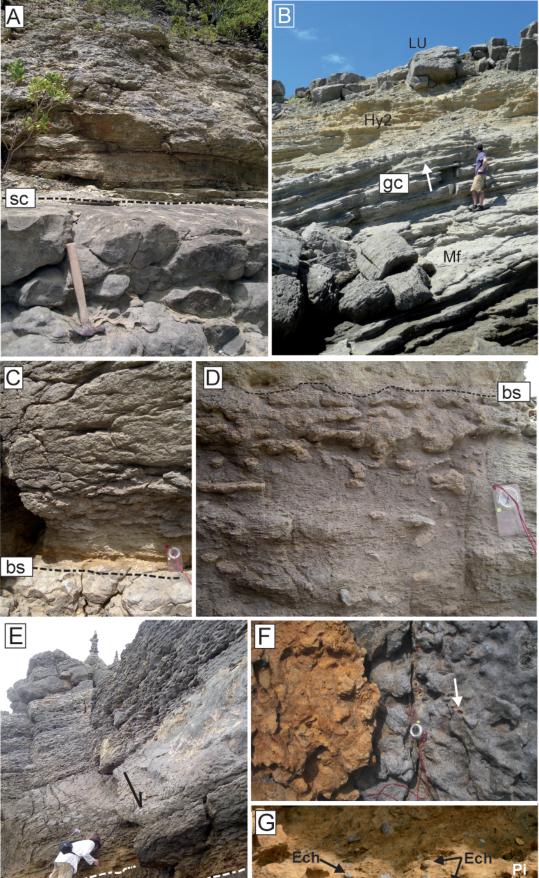


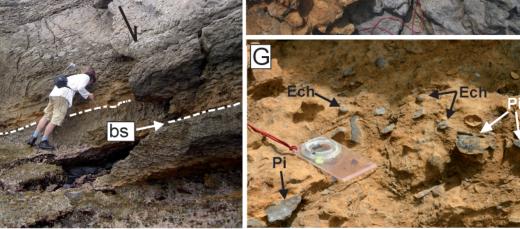


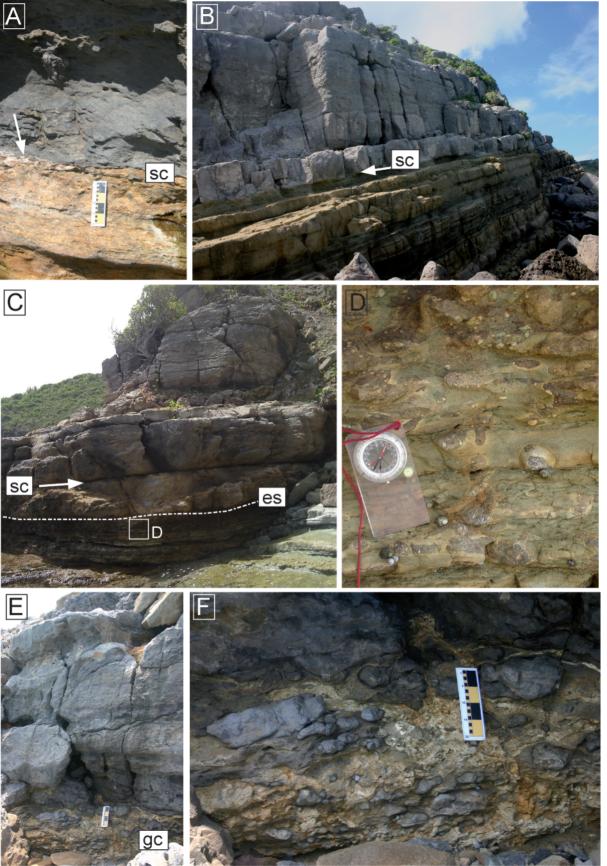





A. Demise of carbonate factories




B. Recovery of carbonate factories



C. Temporarily arrested or slowed carbonate production

Facies code	Facies after James (1997)	Biotic constituents and skeletal association	Texture	Main skeletal and non skeletal components	Subordinate skeletal and non skeletal components	Taphonomy	Depositional environnement
Mixed fac	cies						
MF1	Smaller foraminiferan – dasycladalean – coral photozoan	Foralgal 1 Chloralgal 2 Chlorozoan 3	Ws/Fs, Ps and rarely Gs	Smaller benthic foraminifera. Peloids and micritized grains (cortoids). Agglutinated conical foraminifera and laminar cruts of coralline red algae (<i>Lithoporella</i>).	Miliolids and dasyclad algae. Echinoid (<i>Eupatagus</i> , <i>Antillaster</i>), ostracods, gastropods, bivalves, braching corals and amphisteginids.	Fragmentation : 1 to m Abrasion : t to m Encrustation : 1 Bioerosion : m	Inner ramp : shallow back shoal, lagoonal
MF2	Dasycladalean- coral photozoan	Chlorozoan 1 Chloralgal 2 Foralgal 3	Bs Matrix : Fs	Same as MF1 but dominated by branching corals. Gastropods, dasyclad algae and miliolids.	Amphisteginids and nummulitids. Echinoid spatangoids (<i>Antillaster</i>) and agglutinated conical formainifera.	Fragmentation: I to m Abrasion: I tp m Encrustation: m Bioerosion: m	Inner ramp: shallow back shoal, lagoonal
MF3	Echnoid – Red algal photozoan	Echinoforalgal	Ws to Ps/Gs	Echinoids and non-geniculate, small, rhodoliths, coralline branches and laminar crusts Peloids and cortoids.	Large foraminifera (orthophragminids, rare nummulitids and amphisteginids). Bivalves and corals	Fragmentation: m to h Abrasion: m to h Encrustation: l to m Bioerosion: l to m	Distal middle ramp: episodic wave influence
MF4	Larger foraminiferan – molluscan photozoan	Foramol	Ps and/or Gs - volcaniclastic Rs.	Larger nummulitids, amphisgenitds and agglunatinated conicals.	Cora land coraline algal, mollusks. Echinoids are found fragented (Eupatagus, Meoma and Haimea). Peloids, bryozoans.	Fragmentation: m to h Abrasion: m to h Encrustation: 1 Bioerosion: 1	Open inner ramp to middle ramp : wave-dominated
MF5	Bioclastic – peloidal photozoan	Chloralgal	Ps	Peloids and cortoids.	Benthic formaminifera, echinoid plates and spines, and corals. Thin-shelled mollusks.	Fragmentation: m to h Abrasion: m to h Encrustation: l Bioerosion: h	Inner ramp : shallow back shoal, lagoonal
Carbonat	e-dominated facies					Discression . II	
DaMi	Dasycladalean algae – miliolid photozoan association	Foralgal 1 Chloralgal 2 Chlorozoan 3	Ws and Ps	Similar to MF1 and MF2. Smaller benthic foraminifera, associated with miliolids and peloids. Dasyclad algae and ostracods. Branching corals and articulated bivales.	Cortoids, bivalves, agglutinated conicals (<i>Heterodictyoconus</i>) and amphisteginids. Melobesioids.	Fragmentation: 1 Abrasion: 1 Encrustation: m to h Bioerosion: m to h	Inner ramp : shallow back shoal, lagoonal
LfRh1	Large bentihc foraminifera – rhodolith photozoan	Rhodalgal 1 Foralgal 2	Ps, Rs/Gs and rare Bis	Amphisteginids. Mastophoroids (<i>Litophorella</i>) and sporolithecean (<i>Sporolithon</i>). Melobesioids (<i>Mesophyllum</i> , <i>Lithothamnion</i>). Peloids, oncoids and cortoids. Rhodoltihs mean diameter range in size from 1-10 cm. Echinoids (<i>Haimea</i> , <i>Antillaster</i>) and large thick-shelled oysters.	Nummulitids (<i>Nummulites</i>) and lepidocyclinids (<i>Polylepidina</i>). Textulariids, mollusks (epifaunal bivalves), small benthic foraminifers (textulariids, miliolids), encrusting foraminifera (acervulinids), bryozoan, molluks, and corals.	Fragmentation: 1 to h Abrasion: 1 to h Encrustation: 1 to h Bioerosion: 1 to h	Open inner ramp to middle ramp : wave- dominated
LfRh2	Large bentihc foraminifera – rhodolith photozoan	Rhodalgal 1 Foralgal 2	Ps, Rs.	Nummulitids (<i>Nummulites</i>) and lepidocyclinids (<i>Polylepidina</i>). Rhodoltihs mean diameter range in size from 1-10 cm.	Amphisteginids, textulariids, mollusks (epifaunal bivalves dominate), coral fragments and planktonic foraminifera. Rare to common peloids and cortoids.	Fragmentation: 1 to h Abrasion: 1 to h Encrustation: 1 to h Bioerosion: 1 to h	Middle ramp : episodic wave influence
LfRh3	Large bentihe foraminifera – rhodolith photozoan	Rhodalgal	Gs	Small rhodoliths. Echinoids and peloids. Rhodoltihs mean diameter range in size from 1-5 cm.	Larger benthic foraminifera, mollusks, corals, dasyclad algae and planktonic foraminifera.	Fragmentation: 1 to h Abrasion: 1 to h Encrustation: 1 to h Bioerosion: 1 to h	Middle ramp: episodic wave influence
LfCa1	Larger benthic foraminiferan – coralline algal photozoan	Foralgal	Ps, Gs	Amphisteginids (<i>Amphistegina</i>). Echinoid, Peloids, cortoids and smaller bentic foraminifera (rotaliids). Subspherical rhodoliths (up to 3 cm diameter). Melobesioids and mastophoroids (<i>Lithoporella</i>).	Nummulitids (<i>Nummulites</i>). Smaller bentic foraminifera (textulariids). Lepidocyclinids (<i>Polylepidinia</i>).	Fragmentation: 1 to m Abrasion: 1 to m Encrustation: m Bioerosion: 1 to m	Open inner ramp to middle ramp : wave- dominated
LfCa2	Larger benthic foraminiferan – coralline algal	Foralgal	Ps, Gs	Nummulitids (Nummulites) and orthophragminids (Discocyclina, Pseudophragmina)	Lepidocyclinids (Polylepidinia).	Fragmentation: 1 to h Abrasion: 1 to h Encrustation: 1 to h	Middle ramp : episodic wave influence

orthophragminids (Discocyclina, Pseudophragmina).

coralline algal

Encrustation: 1 to h

EcF1	photozoan Echnoid – non- skeletal carbonate photozoan	Echinofor Echinoforalgal	Ps, Gs	Echinoid spatangoids (<i>Haimea</i>) and cassiduloids (<i>Echinolampas</i>). Peloids and cortoids.	Corals. Bryozoans. Mollusks. Larger benthic foraminifera (amphisteginids and nummulitids), red algal debris and miliolids.	Bioerosion: 1 to h Fragmentation: m to h Abrasion: m to h Encrustation: 1 to m Bioerosion: h	Open inner ramp to middle ramp: wave-dominated
EcF2	Echnoid – smaleer benthic foraminiferan phtozoan	Echinoforalgal	Ps, Ws	Infaunal and epifaunald echinoids are abundant. Co-occurrence of <i>Haimea</i> , <i>Schizaster</i> , <i>Agassizia</i> , <i>Eupatagus</i> and <i>Echinolampas</i> . Small benthic foraminifera (rotaliids). Mollusks. Peloids.	Large benthic foraminifera. Red algal fragments. Small agglutinated foraminifera, miliolids and calcispheres. Cortoids and oncoids.	Fragmentation: m to h Abrasion: m to h Encrustation: l to m Bioerosion: l to m	Inner ramp : shallow back shoal, lagoonal
CoP1	Coral photozoan	Chlorozoan	Bs Matrix : Ws, Ps, Gs .	Branching and platy corals. Peloids.	Encrusting coralline algae, gastropods, and small benthic foraminifera.	Fragmentation: I to m Abrasion: I to m Encrustation: m Bioerosion: m	Inner ramp : shallow back barrier, lagoonal. Lenticular coral bioherms.
CoP2	Coral photozoan	Chlorozoan	Bs Matrix : Rs	Dendroid corals. Peloids, amphisteginids, nummulitids and orthophragminids, mollusks, coralline red algae.	Dasyclad algae and smaller benthic foraminifera.	Fragmentation: m Abrasion: m Encrustation: m Bioerosion: m to h	Open inner ramp to middle ramp: wave- dominated. Domal coral bioherms