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Abstract.The presence of flexibilities in rotational joints can limit the kinematic performances of manipulators
doing high speed tasks as Pick and Place. The problem addressed in this work concerns the vibration control of
serial robots with flexible joints performing Pick and Place tasks in order to improve productivity. Based on a
dynamic model of a robot with flexible joints, a model-based control law is proposed with its associated tuning
methodology. The robot dynamic model is then the key point of ourmethodology. This dynamic model considers
stiffness and damping of each flexible joint. To guarantee its accuracy, a geometrical and dynamic identification
procedure is realized. The objective is to show the relevancy of the proposed approach which integrates joint
flexibilities in the control law. Theoretical results based on a representative model are used to illustrate the
benefit of this model-based control law compare to two other control strategies (Feedforward control and control
dedicated to rigid structures). Finally, a sensitivity analysis of this control law is realized to quantify the impact
of modelling error and conclude on the criticality of joint damping value on vibration decreasing.

Keywords: Based-model control / robot with joint flexibilities / geometric identification /
dynamic identification / dynamic modelling
1 Introduction

Nowadays, the demand of productivity requires robots to
present a control behaviour in terms of geometric and
dynamic accuracy and task execution time. In this paper,
we are focusing on serial robots for Pick and Place tasks.

Pick and Place tasks requires pose accuracy, repeat-
ability, orientation accuracy, reduced stabilization time,
position overshoot and static compliance [1]. One of the
current challenges for this type of task is to increase
productivity while ensuring high accuracy for the final
pose.

To achieve this objective, lightweight robots are
developed; however resulting flexibilities lead to a high
sensitivity to different kind of loaded [2]. Thus, during high
acceleration motions, vibratory phenomena appears [3].
Main causes of these vibrations are inertial forces, external
loads coupled with the mechanical behaviour of the robot
structure and control system. Several researches are carried
out to improve the accuracy of trajectory tracking by
considering flexibilities in joints and links according to the
influential elements [4,5].
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Robot vibratory decreasing can be achieved with
different viewpoints: task pose in the robot workspace
[6,7], tool path interpolation [3,8] or control law [9]. In this
article, we focus on the influence of control law and
identification of influent parameters in vibratory behaviour
of Scara robot during a Pick and Place task.

In practice, this vibratory behaviour is due to the
flexibility in motorized joints transmission system or/and
the flexibility induced by the lightening of moving arms
[10,11]. Moreover, these elements may cause low resonance
frequencies [12,13].

This issue can be observed with a first experimental test
realised on a Scara S600 robot, set in motion by an
industrial control law, using an external measurement
sensor (Laser tracker) with an accuracy level of 15mm and
an acquisition time period of 5ms. The same end-effector
path (movement of the two first axes) was realised with
different speed levels from 10 to 80 rad/s. Vibrations
appear at the end of themovement phase. The amplitude of
the vibrations at the end of the movement is related to the
robot’s movement speed with a maximum of 0.15mm as
shown in Figure 1.

Different researches are carried out depending on the
type of flexibility parameters and models and compensated
by the control law [9]. In this article, we work on industrial
robot with flexible joints. Indeed, the presence of flexibility
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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Fig. 1. Vibrations of the end effector due to velocity.

Fig. 2. Schematic representation of a flexible joint robot [7].
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in the motion transmission systems of industrial robots is
classic due to the use of belts, long shafts, cables, harmonic
drive reducers or gears [9]. In very small to medium-sized
industrial robots, harmonic drives are frequently used;
these drives have low backlash [9]. Thus, backlash is
neglected, and classical control law only compensates
friction. The difficulty in setting up a control law to
compensate joint flexibility is based on the fact that the
system for measuring the position and speed of each joint is
generally placed before the system of transmitting
movement [9]. Thus, there is no direct measurement of
the elastic deformation of the joints and its compensation
requires to develop dedicated models.

In 1989, Spong proposed modelling joint flexibility
using a torsion spring with linear rigidity [14] (Fig. 2).
Multi-body models were established by adding generalized
coordinates, corresponding to the deformation of each
spring, to the rigid body model [15]. Moberg [16] explained
that the improvement of tracking accuracy of a heavy robot
requires considering the non-linear behaviour of the
transmission system (hysteresis, backlash, friction and
non-linear flexibility), and radial and axial joint flexibil-
ities. In addition, the consideration of non-linear behaviour
in the control requires the development of complex strategy
[17]. Hamon, added a friction model at the transmission
system level [18]. Different friction models are currently
available in the literature [19]. Thus in many research
projects on light weight robots, the flexibility of the joints is
often modelled by a torsion spring taking into account dry
friction, damping or viscous friction [9,20,21]. To identify
stiffness of the joints, Dumas suspended weights at the end
effector andmeasured the deformation using a laser tracker
[4]. Other methods based on the analysis of vibration
responses were proposed in Gunnarson [22]. However, there
is no discussion on the influence of model flexibility
parameters and identification errors on vibration decreas-
ing. Thus, the aim of this paper is to identify the critical
flexibility parameters for vibration decreasing of a robotic
cell (robot and control law).

From this literature review and according to Scara
robot behaviour, it seems relevant to authors to model joint
flexibilities by a linear torsion spring associated to a
damping, a dry friction and a viscous friction. The dynamic
model is then established using Lagrange’s formalism
[23,24]. This model aims to study the influence of control
strategy on the vibratory behaviour of the robot.



Fig. 3. Adept Scara Cobra S600 robot dimensions.
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This article aim is based on the study of the impact of
damping and stiffness parameters on the control law
performance regarding vibration decreasing and identifi-
cation errors.

Several control laws have been proposed to solve the
problem of controlling trajectory of flexible joint robots.
Control strategies proposed are within the field of non-
linear and multivariable system control. The particularity
of such robots is that elastic deformations are not directly
measured and can generate vibration frequencies that limit
stabilization time [25,26]. Control techniques like those
used for rigid robots can be proposed. Thus, Tomei varied
gains of a conventional PD controller to reduce final pose
accuracy [27]. An extension of the PD controller taking into
account the dynamics of the actuators and friction is
proposed by Lozano [23]. In the literature, other more or
less complex control strategies are developed to improve
the performance of Pick and Place operations. The singular
disturbance method can be applied to take joint flexibility
into account in the control scheme [26]. Flexibility is then
integrated into the control diagram as a disturbance. The
loop linearization method allows a non-linear model to be
transformed into a linear and decoupled system. Other
work focused on the implementation of advanced control
strategies such as adaptive, optimal, robust predictive
control laws based on neural networks [22].

The contribution of our work is to propose a model-
based control strategy in order to quantify the impact of
the particular behaviour of the motion transmission chain
(stiffness and damping) on the accuracy of the end effector
in terms of precision and stabilization time. The robot
under study is a Scara robot S600 illustrated on Figure 3.

In order to be able to extend our work to all
anthropomorphic robots, we are interested in the first
two axes, which are rotational joints and allow the end
effector to move in a horizontal plane.

This paper is organized as follows: modelling and
identification of the geometric and dynamic parameters
including damping, friction and stiffness is described in
Section 2. The vibration control approach is developed in
Section 3. Comparison with two other control strategies is
also achieved in order to show the effectiveness of the
proposed control strategy. Finally, a sensitivity analysis is
carried out in Section 4. Conclusion of this research work
are presented in Section 5.
2 Modelling and identification of geometric
and dynamic parameters

2.1 Geometric and dynamic modelling

This section provides a brief description on themodelling of
the robot. The robot segments are perfectly considered
rigid and joints are considered geometrically ideal.
Geometric parameters of the robot are presented in
Figure 4. O1 and O2 are centers of joint 1 and joint 2,
G1 andG2 are centers of mass of solid 1 and solid 2, q1 and q2
are articular values of joint 1 and joint 2, L1 and L2 are the
length of arm 1 and arm 2, and Lc1 and Lc2 are the distance
between arm center of mass and joint center of arm 1 and
arm 2.

The direct geometric model of the Scara robot is written
as:

x ¼ L1 cos q1ð Þ þ L2 cos q1 þ q2ð Þ
y ¼ L1 sin q1ð Þ þ L2 sin q1 þ q2ð Þ

(
ð1Þ



Fig. 4. Geometric modeling of the Adept Scara S600 robot.

Fig. 5. Parameter setting of the dynamic model with flexible
joint.
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where x and y are the coordinates of a point on the end
effector in the robot’s reference frame ℜ O1;~x;~yð Þ.

The inverse dynamic model of the rigid robot is
determined using Lagrange method.

This model is linear with respect to dynamic param-
eters [28]:

Gmid ¼ A qð Þ€q þC q; _qð Þ _q þ Fv _q þ FS sign _qð Þ ð2Þ
where Gmid;q; _q; €q respectively represent vectors of motor
torques, positions, speeds and joint accelerations.A(q) and
C q; _qð Þ are two square matrices, the inertia matrix and the
Coriolis matrix. Fs and Fv are vectors containing dry and
viscous friction coefficients of both joints.

For this case study, we obtain the following model:

See equation below.

wherem1 andm2 are the respective masses of links 1 and 2.
I1 and I2 are the inertia of solids 1 and 2 along the z-axis at
their centre of mass G1 and G2.

2.2 Dynamic modelling with flexible articulation of the
Scara S600 robot

The robot is modelled as a combination of rigid solid set in
motion between them by motorized joints whose transmis-
sion system is represented by a spring with a stiffness ki and
a damping coefficient ci. We note qi the instruction sent to
the articulation motor and qei the movement transmitted
to the solid after the flexible motion transmission system
(Fig. 5).

The equations of motion in matrix form are written as:

Kqþ j _q ¼ A qeð Þ€qe þC qe; _qeð Þ _qe þKqe þ j _qe

Kqe þ j _qe þ Gm ¼ Kqþ j _q þ Fv _q þ Fs signð _qÞ

(
ð3Þ
Gm1 ¼ m1L
2
c1 þm2L

2
c2 þm2L

2
1

�
þ m2L

2
c2 þm2L1Lc1 cos q2

�
�m2Lc1L1 sin q2 _q

2
2 þ Fs1 þ

Gm2 ¼ m2L
2
c2 þ L1m2Lc1 cos q2

�
þm2Lc1L1 sin q2 _q

2
1 þ Fs2 þ
where j and K are respectively damping and stiffness
matrices such that:

j ¼ j1 0

0 j2

" #
; K ¼ k1 0

0 k2

" #

The system’s natural frequencies vi and mode quation:

K½ � � A½ �⋅v2
i

� �
⋅Q ¼ 0ð Þ ð4Þ

⇔
k1 �A11⋅v2

i �A12⋅v2
i

�A21⋅v2
i k2 �A22⋅v2

i

" #
q1

q2

( )
¼ 0

0

( )

The accuracy of these models is obtained from a modal
identification procedure. In a first time, a geometric
identification is realized before the identification of
dynamic parameters.

2.3 Geometric identification

The geometric parameters of the model are arm lengths L1
and L2. Measurement of the end effector position is carried
out using a Leica AT901 Laser Tracker, the target being
positioned at the end of the robot at axis 4. According to
the Scara geometrical behaviour, we choose to perform the
identification using points measured statically during two
types of displacements:

–

þ
þ
F

þ
F

Displacement of q1 with fixed q2 (Fig. 6a). The end
effector follows a circular trajectory of center O1. 20
positions are measured over an angle near 45°. A least
squares plane P of all these measuring points is then
determined as the displacement plane of the end effector.
The measured points are then projected into this plane
2L1m2Lc1 cos q2 þ I1 þ I2
�
€q1

I2
�
€q2 � 2m2Lc1L1 sin q2 _q1 _q2

v1 _q1:

I2
�
€q1 þ m2L

2
c2 þ I2

� �
€q2

v2 _q2



Fig. 6. Displacements made during the identification of
geometric parameters. (a) Movement of q2 with q2 fixed.
(b) Movement of q2 with q1 fixed.
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before calculating the least squares circle of these points.
We thus determine the position of its center point O1 in
the measuring frame and its radius R.
–

Fig. 7. Experimental setup of modal analysis.
Displacement of q2 with fixed q1 (Fig. 6b). Trajectory
followed by the end-effector is a circle of center O2 and
radius L2. 14 positions are measured over an angle near
40°. By projecting these points into the plane P and
calculating the associated least square circle, we deter-
mine the length L2 and coordinates of O2 in the
measurement frame.

Finally, the length L1 is determined as the distance
between O1 and O2. The values identified are:
L1= 324.489mm and L1= 275.019mm (nominal values
are 325mm for L1 and 275mm for L2). These results are
validated on 5 randomly selected positions in the work-
space. For these 5 positions, mean error between calculated
positions by the direct geometric model and those
measured by the laser is 0.2mm and the standard deviation
is 0.03mm.
2.4 Dynamic parameters identification

Dynamic parameters are different kind of quantity
(stiffness, damping, inertia, friction and position of mass
centre). These parameters have to be identified with
different type of data.
2.4.1 Identification of joint stiffness and damping

The identification of the joint stiffness and damping can be
done from the determination of system’s natural frequen-
cies by modal analysis (Fig. 7). The modal analysis is
performed using LMS-TAB software.

Three configurations have been chosen to measure
natural frequencies of the robot: extended arm (q2= 0°),
arm bent at 45° (q2= 45°) and arm bent at 90° (q2= 90°).
Once the accelerometers are in place, the measurement
protocol is done in two steps:

Step 1: we apply an excitation force at the end effector
using an impact hammer.
Step 2: After choosing the bandwidth for signal
acquisition, the frequencies are then selected manually
by using PolyMax identification procedure. The software
proposes unstable and stable modes representative of
numerical or structural modes for the results. Then, only
the so-called “stable” modes are selected.

Observation of the modal shape of the model shows that
the first 2 modes are associated to the deformation of joints
1 and 2.

For the identification of stiffness and damping
parameters of joints 1 and 2, the first 2 modes are
considered (Tab. 1).

The others dynamic parameters are then identified
from motor torque measurement.

2.4.2 Dynamic identification

According to equations (2), (10) parameters must be
identified for the rigid dynamic model:

m1 m2 Lc1 Lc2 I1 I2 Fs1 Fs2 Fv1 Fv2ð Þ:
The identification procedure is done in four steps using

the same trajectory performed at different speeds:
Step 1: The robot goes from position A to position B in

the joint space.



Table 1. Frequency and damping for the three configurations.

Modes Extended arm Arm 2 bent at 45° Arm 2 bent at 90°

Frequency (Hz) Damping z (%) Frequency (Hz) Frequency (Hz)

1 20.33 9.51 24 31.98
2 81.96 2.18 80 75.01

Fig. 8. Dry friction identification. (a) Dry friction joint 1. (b) Dry friction joint 2.

Fig. 9. Measured and calculated torque. (a) Motor 1: Measured and calculated torque. (b) Motor 2: Measured and calculated torque.
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Step 2: The torque is not directly measurable. It is
deduced from the measurement of the motor current by the
following relationship for axis j:

Gmesj ¼ vj∗Kj;Kj ¼ Rj
∗gj∗KT ð5Þ

where vj is the value of the motor current, Rj the reduction
ratio of the joint, gj the static gain of the amplifier, KT the
torque coefficient of the motor.

Step 3: We calculate the torque Gmdi from equation (2).
To do so, we measure the angular position with the encoder
of each motorized axis. The estimation of acceleration
and speed is then computed by numerical derivation
and Butterworth filtering of this last measurement
[29,30].
Step 4: The identification procedure is achieved by
minimizing the following cost function:

f
coût

¼
X

i
Gmes tð Þ � Gmdi tð Þð Þ2 ð6Þ

First of all, the dry friction parameters were identified
using a low speed movement (axis by axis). The trajectory
is composed of two movements: firstly, movement of q1
with fixed q2 and secondly, movement of q2 with fixed q1
(Fig. 8).

For the rest of the parameters, trajectory is the same as
before but with higher speed. Measured torques during
movement of axis 1 and then axis 2 are isolated and used to
perform the identification. After optimization (Fig. 9), the
mean error is 0.648Nm and the standard deviation is
1.676Nm.



Table 2. Identified dynamic parameters.

Ident. Param. m1 (kg) m2 (kg) Lc1 (m) Lc2 (m) I1 (Nm2) I2 (Nm2)

Values 12 6.21 0,12 0.225 0.082 0.212
Ident. Param. Fs1 (Nm) Fs2 (Nm) Fv1 (Nm) Fv2 (Nm) k1 (Nm/rad) k2 (Nm/rad)
Values 2.73 3.61 23.12 8.915 124743 12062
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To identify the stiffness of the joints, we couple the cost
function expressed by equation (6) with another cost
function which compares the natural frequencies measured
with the modal analysis and estimated by the model
(Eq. (4)). Values of these modes varies according to q2 as
the inertia matrix is a function of q2 (Eq. (2)). Identified
parameters are found in Table 2. The parameters already
identified in the previous section are validated with a
random trajectory made by the end effector. The mean
error is 1.4N.m and standard deviation is 3Nm.

To finalize the identification process, damping param-
eters values have to be determined.
2.4.3 Damping identification

The modal analysis allowed us to determine the two modes
corresponding to deformations of joint 1 and joint 2.
Damping ratios are evaluated for these twomodes.We only
consider the first extended arm configuration for identify-
ing joint damping because all accelerometers and hammer
chock are oriented tangent to the displacement of joint 1
and 2. Thus, in this configuration, joints are directly loaded
by hammer chock and their vibration amplitudes are
directly measured by accelerometers. This makes it
possible to link the measured damping to the torsional
damping at each joint. Finally, damping coefficients of
joint 1 and joint 2 are deduced from measured damping
ratios (z) for these two modes according to robot
configuration using the following relation:

Cd ¼ 2⋅&⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KdAd

p
where & is the measured damping ratio matrix andCd, Kd,
Ad respectively the diagonalized matrixes of joint damp-
ing, stiffness and inertia. Damping parameters are finally
determined as follows, c1=57.484N.m.s. rad−1 and
c2= 12.983N.m.s. rad−1.

After the identification process, the identified model is
used to define a model-based control law.

3 Model based flexible control (MBC) law

In this chapter we develop a computed torque control law
taking into consideration joint flexibilities. Validity and
benefit of this control law for flexible joint robot is
evaluated through advanced simulations. All the values of
identified parameters in previous chapter is integrated in
the simulator in order to have a representation as close as
possible to the real behaviour of robot. Before reaching this
stage, we define a trajectory generator in the articular
space, and develop amethodology for tune gains of the used
corrector in order to compare similarly different kind of
control laws.

3.1 Control law scheme

The equation of motion governing the variable qe is
obtained from the relationship (3):

Gm ¼ jΔ _qe þ kDqe þ Fs⋅sign _qð Þ þ Fv⋅ _q ð7Þ

Ge ¼ jD _qe þ kDqe

Ge ¼ Gm � Fs⋅sign _qð Þ � Fv⋅ _q

↔ Dqe ¼
Ge

kþ p⋅j
¼ Gm � F s⋅sign _qð Þ � Fv⋅_q

kþ p⋅j

ðLaplace transformÞ
where Gm and Ge are respectively the motor torque and the
elastic torque, and Dqe=q�qe.

On the other hand, the equation of motion is written as:

Gm ¼ A qeð Þ⋅€qe þC qe; _qeð Þ⋅ _qe þ Fv⋅ _q þ Fs⋅sign _qð Þ
ð8Þ

where qe=q�Dqe.
These two relationships (Eqs. (7) and (8)) are the basis

of the new control law based on the dynamic model of a
manipulator with flexible joints. Flexibility of joints is
presented in the control diagram as a feedback loop (orange
block). In absence of gravity effect, PD control strategies
are asymptotically stable and do not require addition of an
integrator [31]. The control scheme corresponding to this
computed torque control law is defined in Figure 10.

To validate and to illustrate the benefit and limit of the
proposed control law, firstly, we develop an advanced
simulation with Adams’ and Simulink. Secondly, we make
a comparative analysis with two control strategies applied
to same simulator. Simulations results are presented in a
comparative table.

3.2 Adams simulink co-simulation unit

The numeric model of a robot with 2 degrees of freedomwas
developed in Adams software. The idea is to use its
mechanism solver to simulate robot motion generated by
discretised setpoint computed by the control law.



Fig. 10. New computed torque control law for flexible joint manipulator (MBC).

Fig. 11. Program tool path in the cartesian space.
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The dimensions and dynamic characteristics correspond to
the one identified on the Scara S600 robot of SIGMA
Clermont’s technological platform. The control laws are
implemented in Simulink. The numeric model defined in
Adams is set in motion via a co-simulation. The flexibility
of the connections is represented under Adams by a linear
torsion spring modelled by stiffness and damping. Two
segments of negligible mass compared to that of the two
robot axes (m1=m2= 0.15 kg) are added to perform the
simulation with flexible connections. The movement of
these two segments is controlled. The segments are in
rotational connection with the robot elements and the
movement is transmitted by the springs. The robot model
is defined geometrically and dynamically using the
parameters identified above.

3.3 Trajectory generation and gain correction

To be consistent with a classical robotized path, the
trajectory followed in this work is described with a five-
degree polynomial function, which ensures a position,
velocity and acceleration movement continuities without
excessive dynamic load (Fig. 11). The maximum velocity
and acceleration are those of Scara robot (max velocity:



Table 3. Initial and desired positions.

Positions Initial Desired

Px (m) 0.324489 −0.1709
Py (m) 0.275019 0.498
q1 (rad) pi/2 3*pi/4
q2 (rad) −pi/2 −1
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joint 1: 386 deg/s and joint 2: 720 deg/s; max acceleration:
joint 1: 386 deg/s2 and joint 2: 720 deg/s2).

Gain tuning is realized to avoid oscillations, and in
accordance with the response time at 5% (tr 5%) of position
loop. Thus, an appropriate adjustment [20] is:

wd ¼ 5

tr5%

Kp ¼ w2
d

Kd ¼ 2wd

8>>><
>>>:

ð9Þ

where Kp and Kd represents respectively proportional and
derivative gains of the PD corrector. In the following
paragraph, we develop a robot position control using the
co-simulation tool Adams and Simulink. Initially, the robot
is positioned in a configuration where arms are perpendic-
ular. Initial and desired operational and Cartesian
positions of the robot end effector are defined in Table 3.

3.3.1 Modal based control (MBC) law

This control law is our new computed torque control law for
flexible joint manipulator.

The gain setting used is the one defined in equation (9).
For this law, we choose a response time at 5%(tr 5%) of
0.0143 seconds for an adequate setting. Thus
wd ¼ 5

tr5%
¼ 350, the gains obtained for the two rotation

axes are Kd1=Kd2= 700 and Kp1=Kp2= 122500. Evolu-
tion curves of the positioning error in both joint and
Cartesian spaces are shown in Figure 12a.

Desired position is reached with a maximum trajectory
tracking error of 1 millimetre along x-direction and half a
millimetre in y-direction. The mean errors and standard
deviation are in the order of 10�4 meters and 10�6 radians
in Cartesian and articular spaces, respectively. At the end
of the task, robot’s behaviour is stable, positioning error is
10�9 meters and an accuracy of 1mm is achieved after
0.913 s.

3.3.2 Rigid control

In order to show the benefit to consider flexibilities in the
control loop, a control law dedicated to rigid robots
(Fig. 13) is applied to the same Adams robot model with
flexible joints.

The gain tuning used to minimize the error is defined in
the equation (9). For a tr 5% of 0.0143 seconds (identical to
that of the MBC control law), joint flexibilities are highly
stressed, vibrations appear, and desired positions are never
reached because the robot never converges to a fixed
position. The system stabilizes for a tr 5% of 0.3846 seconds,
and the proportional and derivative gains are 169 and 26,
respectively.

3.3.3 Feedforward control

In this section, a feedforward control combined with a PD
control is applied to the same simulator (Fig. 14). An
adequate adjustment [19] of the Kp and Kd gains to control
the transient behaviour of the error is:

Kp ¼ a11w
2
d

Kd ¼ 2a11jwd � c11
and wd ¼ 5

tr5%
j ¼ 1

�(
ð10Þ

where the element a11 designate maximum value of matrix
Amax and has the value 1.9117. Similarly, c11 has the value
1.14. For a proper gain adjustment, tr 5% is fixed at 0.103
seconds. Thus, the gains obtained for both rotational axes
are: Kp=182 and Kd=4441.

Results of the simulations are presented in Figure 12
and in the comparative balance sheet table (Tab. 4).

As a quick interpretation, MBC control law (consider-
ing joint flexibilities as a feedback loop in the control
diagram) provides an additional performance advantage
over all other control laws in terms of end effector
placement accuracy and stability time with a benefit of
10% and 50% according to feedforward and rigid control
respectively (Pick and Place operation requirements).

However, model-based control law can be sensitive to
identification errors. A sensitivity analysis ensures to
determine critical parameters for such control law strategy.

4 Sensitivity analysis

This sensitivity analysis ensures to determine critical
flexible joint parameters with regard to vibration decreas-
ing. The fact that we use a model-based control law
strategy allows us to only focus on the influence of
mechanical parameters used to describe joint behaviour.

The torques applied to flexible connections, according
to estimated dynamic parameters x̂, are obtained from the
following model:

Gm ¼ Â qeð Þ⋅Uþ Ĉ qe; _qeð Þ⋅ _qe þ F̂s⋅sign _qð Þ þ F̂v⋅ _q
ð11Þ

where Â ¼ A x̂ð Þ et Ĉ̂ ¼ C x̂̂̂ð Þ and ∧ is the symbol of

estimation notion.
Thus, control law U is defined by the following

relationship:
U ¼ €qd þ kp⋅eþ kd⋅ _e ð12Þ

where e ¼ qd � qe; _e ¼ _qd � _qe; €e ¼ €qd � €qe
Let consider that equation (3) is equal to equation (11):

Â qeð Þ⋅Uþ Ĉ qe; _qeð Þ⋅ _qe þ F̂s⋅sign _qð Þ þ F̂v⋅ _q
¼ A qeð Þ⋅€qe þC qe; _qeð Þ⋅ _qe þ Fs⋅sign _qeð Þ þ Fv⋅ _qe

ð13Þ



Fig. 12. Joint and Cartesian positioning errors. (a) Cartesian positionning errors for MBC. (b) Cartesian positionning errors for rigid
control. (c) Cartesian positionning errors for feedforward control.

10 J. Farah et al.: Mechanics & Industry 22, 38 (2021)



Fig. 13. Control law dedicated to rigid robots applied to robots with joint flexibility.

Fig. 14. Feedforward control.

Table 4. Comparison table of the tree control laws.

Control laws Max error (10−3m) tr5% (s) Gain Time needed for a
precision of 1mm (s)

End effector
precision (m)

X Y

MBC 1.1 0.58 0.0143 Kp = 122500
Kd = 700

0.913 10−9

Rigid 1.4 0.6 0.3846 Kp = 169
Kd = 26

1.498 10−6

Feedforward 1.2 0.58 0,103 Kp = 4441
Kd = 184

1.0205 10−6
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By substituting U with its expression in equation (12)
and eliminating the terms of dry and viscous friction on
both sides of this equality, equation (13) becomes:

Â qeð Þ⋅ €qd þ kp⋅eþ kd⋅ _e
� �þ Ĉ qe; _qeð Þ⋅ _qe

¼ A qeð Þ⋅€qe þC qe; _qeð Þ⋅ _qe
By adding and subtracting Â qeð Þ⋅€qe we obtain:

⇔ Â qeð Þ⋅ kp⋅eþ kd⋅ _e
� �

¼ A qeð Þ⋅€qe � Â qeð Þ⋅€qd þC qe; _qeð Þ⋅ _qe � Ĉ qe; _qeð Þ⋅ _qe

þÂ qeð Þ⋅€qe � Â qeð Þ⋅€qe



Table 5. Sensitivity analysis results.

Type of defect tr5% (s) Gain Time needed for a precision of 1mm (s)

no 0.0143 Kp = 122500
Kd = 700

0.913

12% on inertia 0.0154 Kp = 105625
Kd = 650

0.923

10% on stiffness 0.0286 Kp = 30625
Kd = 350

0.932

10% on damping 0.0358 Kp = 19600
Kd = 280

0.942
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⇔ Â qeð Þ⋅ €e þ kd⋅ _e þ kp⋅e
� �

¼ A qeð Þ � Â qeð Þ
� �

⋅€qe þ C qe; _qeð Þ � Ĉ qe; _qeð Þ
� �

⋅ _qe

ð14Þ
Let: ~A ¼ A� Â and ~C ¼ C� Ĉ equation (14) can

finally be written as follows:

€e þ kd⋅ _e þ kp⋅e ¼ Â qeð Þ�1 ~A qeð Þ⋅€qe þ ~C qe; _qeð Þ⋅ _qe

� �
ð15Þ

Normally, the error and its derivative converge towards
0 in a second order determined by the servo gains. However,
in equation (15), the secondmember is not null but depends
on identify values of inertial parameters and joint
flexibilities (stiffness and damping). Hence, this equation
illustrates the need to take into consideration the joint
flexibility in the control. These three parameters are
subject to estimation inaccuracies. A sensitivity study is
conduced to quantify the impact of these errors on the
vibration behaviour. This sensitivity analysis is realised by
isolating each source of error in order to determine its
influence separately by numerical simulations.

4.1 Errors in the estimation of inertia

In order to study the influence of inertial values on the
performance of our new model-based control (MBC) law,
we realise several simulations of theMBC control law (with
same settings of PD gains) with 2% error steps on inertial
parameters. For errors below 12%, simulation results
confirm that the control is able to adapt avoid vibrations at
the end of the movement. Starting from 12%, vibrations
related to instability phenomena appear.

4.2 Errors in joint stiffness

The relevance of MBC is evaluated for a case where values
of joint stiffness present defect with regard to implemented
one in Adams model. In this purpose, we apply the same
test as before but with a 1% error step (since the impact of
these errors is then greater). Simulations reveals that
vibrations appears from errors of 3% in joint stiffness.
These vibrations can be controlled by minimizing the
performance of the control law due to an increase in
response time at 5% (tr 5%) and consequently a decrease in
the corrector gains.

4.3 Errors in joint damping

The impact of these errors is significantly very important.
Vibrations appear from a 3% error on damping. These
vibrations can be controlled by minimizing the perfor-
mance of the control law due to an increase in response time
at 5% (tr 5%) and consequently a decrease in the corrector
gains.

Table 5 resume all the sensitivity test and the
decreasing of performances due to an increasing of tr 5%.
Thus, we can show that damping and stiffness is critical
parameters for vibration control. However, there is work on
stiffness joint robot identification and just few on damping.
Thus, this work demonstrates a huge need to develop
accurate methodology to identify joint damping parame-
ter.
5 Conclusion

In this work we have developed a new model-based control
law dedicated to manipulators with flexible joints to
control vibrations behaviour during Pick and Place
operations. Simulations are applied on a Scara robot with
2 Degree of freedom, so that this law is applicable to more
complex structures. We have modelled and identified the
geometric and dynamic parameters of a Sacra robot
including friction, stiffness and damping. MBC law
dedicated to robots with joints flexibility is then developed
using Simulink after defining the trajectory and PD
correction system. Advanced simulations results in terms
of response time and maximum and average trajectory
errors clearly shows the relevance of the proposed approach
integrating joint flexibilities as a feedback loop in control
diagram. In parallel, its performance is validated due to
comparisons with other control laws. Finally, we concluded
this work by a sensitivity analysis to modelling errors. We
demonstrate, by calculations, that joint flexibilities and
damping are influential on the modelling error which
indicates the importance of taking them into consideration
for the control accuracy of robot vibrations.
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Nomenclature
A(q)
 The inertia matrix

C q; _q_ð Þ
 Coriolis matrix

j
 Damping matrix

Fs
 Vector containing dry friction coefficients of

joints

Fv
 Vector containing viscous friction coefficients

of joints

Oi
 Center of joint i

Gi
 Center of mass of solid i

gj
 Static gain of the amplifier

Gmdi
 Vectors of motor torques

Gm
 Motor torque

Ge
 Elastic torque

Ii
 Inertia of solids i along the z-axis

K
 Stiffness matrix

Kp and Kd
 Respectively proportional and derivative

gains of the PD corrector

KT
 Torque coefficient of the motor

Li
 ith arm length

Lci
 Distance between ith arm center of mass Gi

and ith joint center Oi

mi
 Masses of links i

vj
 Motor current

vi
 System’s natural frequencies

q; _q;€q
 Positions, speeds and joint accelerations

qei
 The movement transmitted to the solid after

the flexible motion transmission system

qi
 Instruction sent to the motor

ℜ O1;~x;~yð Þ
 Robot’s reference frame

Rj
 Reduction ratio of the joint

(x,y)
 Coordinates of a point on the end effector in

the robot’s reference frame

&
 Measured damping ratio matrix

x̂
 Estimated dynamic parameters
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