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Abstract

The ever-growing popularity of WLANs has lead to a numerous and highly
diverse set of solutions for increasing the available link data rates. Amongst
these solutions, channel bonding offers the possibility to use wider channels and
increase the data rates by a factor of two, four, or eight. The issue of prop-
erly selecting the channels and their width remains a complex problem. In this
paper, we present a fast, scalable, and fully graph-centric strategy for choosing
a channel width and assignment for the APs of an IEEE 802.11-based WLAN.
It typically outperforms strategies consisting of selecting the channel width re-
gardless of the WLAN topology by 15% in fairness and 20% in throughput.

1. Introduction

The ever-growing popularity of WLANs (Wireless Local Area Networks) has
lead to a numerous and highly diverse set of solutions for increasing the available
link data rates. Amongst these solutions, channel bonding was introduced in
IEEE 802.11n allowing an Access Point (AP) to use two 20 MHz channels as a
single 40 MHz channel. By using a bandwidth that is twice as large and limiting
the number of used pilot channels in OFDM, the resulting data rates are slightly
more than doubled as compared to those of a single 20 MHz channel. Channel
bonding was further enhanced in IEEE 802.11ac/ax by offering the possibility
to bond up to four or eight 20 MHz channels and forming a single 80 MHz or
160 MHz channel.

While the benefits of increased data rates are easily comprehensible, finely
characterizing the drawbacks of channel bonding can be challenging. In a
WLAN where channel access is decentralized, spatial reutilization is an im-
portant asset that ensures the coexistence of simultaneous transmissions within
the same communication area. When APs use wider channels, a trade-off is
made in favor of having higher data rates at the expense of lower number of
simultaneous transmissions. It is often established that, in most cases, wider
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channels favor the average throughput of APs while narrower channels may rep-
resent a better option when fairness among the APs is a priority. However, the
issue of selecting the channels and their width remains a complex problem.

To the best of our knowledge, there is currently no simple recipe for select-
ing the appropriate channel width and assignment (a.k.a allocation). In this
paper, we present a fast and robust strategy for choosing a channel width and
assignment for the APs of an IEEE 802.11ax-based WLAN. The approach is
fully graph-centric and highly tractable. The proposed solution is an extended
and improved version of a work published in [4]: we introduce a larger set of
randomly-generated graphs; we enhance the algorithm using more diverse train-
ing data; we extend our simulation results and deepen the analysis by varying
the transmission parameters and the number of associated stations.

Overall, our solution helps restrain the number of APs experiencing severe
starvation, hence leading to a good trade-off between the average throughput of
APs and fairness. On average, it outperforms strategies consisting of selecting
the channel width regardless of the WLAN topology by 15% in fairness and 20%
in throughput. Additionally, the obtained results challenge the preconceived
notion that wider channels generally result in higher average throughputs of
APs and shed light upon the importance of the WLAN’s topology and average
degree when selecting a channel width.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the related work. In Section 3, we precisely describe the problem
under study. Our proposed solution is presented in Section 4. We evaluate
the precision and applicability its in Section 5 through a number of simulation
experiments. Section 6 concludes this paper.

2. Related Work

In the first versions of IEEE 802.11, namely the initial standard and the
amendments b/a/g, channels had a fixed width of 20 MHz. In this context, chan-
nel assignment (CA) algorithms consisted of assigning non-overlapping channels
to APs with the aim of minimizing interference between APs [13, 10, 16, 19].

Since the IEEE 802.11n amendment, APs can aggregate channels using a
mechanism called channel bonding. More precisely, the bonding can be applied
to two 20 MHz channels in 802.11n, and two, four or eight 20 MHz channels for
the most recent amendments (ac/ax) leading to channel widths of 40, 80, and
160 MHz, respectively. While wider channels provide higher physical data rates
for transmitting frames, their use increases the number of overlapping channels,
interference, and conflicts between APs. Overall, the introduction of channel
bonding hardens the CA problem that typically aims at finding an appropriate
trade-off between interference and throughput. In particular, the number of
possible configurations is significantly increased.

The CA problem with channel bonding is referred to as CB (Channel Bond-
ing) problem in the literature. We categorize solutions to the CB problem
through three approaches: i) methods that consider a model to evaluate as-
signments and that try to find the assignment that optimizes a given objective
function, ii) solutions that are based on measurements and adapt their config-
uration accordingly, and iii) algorithms that use machine learning techniques.

One of the pioneering works presenting a solution for the CB problem be-
longs to the first approach (model based). The solution named SA (Spectrum
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Assignment for WLAN) is formulated as an optimization problem for which
the authors proposed a distributed resolution [7]. For a given topology, the
algorithm aims at minimizing interference between APs while taking into ac-
count the preferences of APs for certain channel widths. The authors of [12]
present an analytical model that considers both collisions and interference. The
CB problem applies to IEEE 802.11ac WLAN and is formulated to optimize
the throughput given traffic demand. The optimization problem is then solved
using a genetic algorithm. In [8] and [1], the model is based on a continuous
time Markov chain (CTMC). The authors of [8] use this model to evaluate the
throughput and the system utility for any WLAN topology. It is then combined
into an optimization problem for which the authors proposed a heuristic. The
authors of [1] use the CTMC on simple topologies to evaluate the performance
of the WLAN as a function of the channel widths. Simulations are used for more
complex scenarios. They show that, on average, an adaptation of the channel
width on a per-packet basis outperforms single-channel transmissions. However,
it may generate unfair situations where WLANs starve. A Markov network that
models the interaction between the nodes is proposed in [2]. The model and
simulations considering IEEE 802.11ac and ax amendments are applied to dense
WLANs. Results show that spatial correlations between the nodes significantly
impact the performance even between nodes that are not in the sensing range
of each other. A renewal process is proposed in [11] to model IEEE 802.11ac
and ax WLANs. Results on simple topologies allow the authors to derive the
performance of channel bonding for these two amendments. Based on these
results, a heuristic is proposed to select the channels.

The second category of algorithms uses a data-based approach where chan-
nels are set in real-time according to local measurements. In [14], a centralized
solution is proposed to solve the CB problem. A controller collects the channel
utilization data from the APs and updates a matrix whose elements represents
the estimated utilization of a given channel when it is assigned to a particular
AP. The channel assignment problem is solved by finding a solution that max-
imizes the sum of the channel utilization. Another online solution is proposed
in [3]. As in [14], the algorithm is based on the activity of the channels. When
an AP tests a new channel, it associates a satisfaction score based on what it
has been able to send on this channel during a certain period. If the score is
satisfactory, the AP remains on this channel, otherwise, it resumes its explo-
ration. Two scenarios are studied in [23] corresponding to an enterprise and a
residential WLAN. Their method to the CA problem considers the constraints
imposed by bonding, and attempts to use wider bandwidths as they often result
in higher throughput.

Machine learning (ML) techniques offer a promising approach to the CB
problem. In [22], a neural network is employed and combined to a Markov
chain. This allows the APs to predict the usage of different channels. The
assignment is then performed to maintain fairness between channels and APs.
Two algorithms based on reinforcement learning are proposed in [17] and [15].
They consist of a real-time exploration of new configurations and then exploiting
the ones that offer good performance. A dense WLAN scenario is studied in [17].
The proposed method relies on a graph convolutional network to extract the
carrier sensing relationships between APs. A game theory method is then used
to collect the training set, on which a neural network is applied to perform
the CA. The authors of [15] focus on a multi-armed bandits approach with the
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Figure 1: Available channels in the 5GHz band in Europe [6]. Only the channels of U-NII-1
and U-NII-2A are labeled as they are reused in Section 5.

Thompson sampling algorithm to select new configurations to evaluate. In their
work, the solution performs both the CA and the associations between APs and
stations.

In summary, solutions based either on models or machine learning techniques
must explore a tremendous number of assignments and channel widths. They
typically improve the current assignment in terms of fairness or throughput, but
they often involve a very limited exploration of the solution space. As for on-line
and ML techniques, their exploration phase incurs a cost as new configurations
that can be poor in terms of performance have to be tested continuously. In
this paper, we split the solution space into its two dimensions, i.e., channel and
width. By doing so, we significantly reduce the complexity of the CA problem
at the cost of having a less fine-grained exploration. Note that the exploration
of solutions is performed using an analytical model so that only the solution
chosen as most appropriate is applied to the WLAN. This can prove to be a
useful property when trying to avoid disrupting an operational network.

3. Terminology

Before presenting our proposed strategy to select channel width and assign-
ment, we introduce some terminology used to describe WLANs and performance
metrics of interest for our study.

3.1. Physical and logical neighbors

We consider an IEEE 802.11 WLAN composed of N APs that use Static
Channel Bonding (SCB) [9]. The APs n and m (∈ {1, . . . , N}2) of the WLAN
are said to be physical neighbors if they can detect each other’s transmissions.
Note that the physical neighbors of an AP are mainly determined by the trans-
mission power and sensitivity threshold of its NIC (Network Interface Card)
and by the radio wave propagation. We assume that all detection ranges are
symmetrical, i.e., if n is a physical neighbor of m, then m is also a physical
neighbor of n. A sample four-AP WLAN is shown in Figure 2a, where AP 3
detects all the other APs, while AP 4 detects only the transmissions of AP 3.
Thus AP 3 is the only physical neighbor of AP 4 as depicted in Figure 2b.

Each AP operates either on a basic channel of 20 MHz, or on a bonded
channel of 40 MHz, 80 MHz, or 160 MHz. The number of non-overlapping
channels for a given width will depend on the chosen width, but also on regional
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regulations. For example, Figure 1 shows the available channels in Europe in
the 5 GHz band. In our solution, we use the same channel width for all APs,
and we use w to denote its value and Cw to denote the set of available channels
for the width w MHz. For instance, for w = 160 MHz in Europe and in the
U-NII-1 and U-NII-2A bands, we have Cw = {a} and |Cw| = 1, as shown in
Figure 1. It is important to mention that in real-life WLANs, it may happen
that two APs that detect each other’s transmissions on a 20 MHz channel no
longer do so on a wider channel, as the energy is spread over a wider spectrum.

For the sake of our study, we introduce the notion of logical neighbors. Log-
ical AP neighbors are APs that are both physical neighbors and operating on
overlapping channels. Clearly, unless there is only one channel in use for the
whole WLAN, there are typically much less logical neighbors than physical
neighbors thanks to the use of non-overlapping channels.

3.2. Physical and logical conflict graphs
We associate two graphs to any WLAN: its physical conflict graph, and

its logical conflict graph. The former derives only from the pairs of physical
neighbors of each AP. Its vertices represent the WLAN’s APs and an edge
exists between two vertices when the corresponding APs are physical neighbors.
Figure 2b depicts the physical conflict graph associated to the WLAN shown in
Figure 2a.

The logical conflict graph depends on the chosen channel assignment and
hence on the logical neighbors. We use Gw(v) to denote the logical conflict
graph associated to a channel of width w and an assignment v where v is a
vector describing the channels assigned to each AP. For instance, v = (b, b, c, b)
represents a possible channel assignment for our sample four-AP WLAN when
the channel assignment is as follows: APs 1, 2, and 4 are all using the same
channel of 80 MHz, whereas AP 3 is using another channel of 80 MHz (depicted
by the dashed line). Note that, with this channel assignment, AP 3 is no longer
in conflict with any of its neighbors and the logical conflict graph includes only
one edge between APs 1 and 2. The corresponding logical conflict graph depicted
in Figure 2c is denoted by G80(b, b, c, b).

1 3

2

4

(a) APs and their detection
zones.

1 3

2

4

(b) Physical conflict graph.

1 3

2

4

(c) Logical conflict graph for
a given channel assignment.

Figure 2: An example of a WLAN with 4 APs.

3.3. Performance metrics
Each AP of the WLAN exchanges traffic with its associated station(s). The

traffic is characterized by the frame’s payload length L, the HE-MCS index
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Notation Description
N Number of APs in the WLAN
Gw(v) Logical conflict graph for channel width w and channel assignment

described by vector v
Cw Set of available channels of width w
L IP payload length, in bytes
R Physical data rate in Mbps for a given MCS index, number of

spatial streams and guard interval length
a A-MPDU rate, a ∈ {1, ..., 64} MPDUs
An Achievable throughput of AP n in Mbps
Bn Achieved throughput of AP n in Mbps
τ Starvation threshold in Mbps
TH Average throughput of APs for the WLAN in Mbps
ST Starvation index (number of APs in starvation)
PF Proportional fairness in Mbps

Table 1: Principal notation.

(High-Efficiency Modulation and Coding Scheme) of 802.11ax, the number of
spatial streams, the guard interval length, and the A-MPDU rate a (i.e., the
maximum number of MPDUs aggregated in every frame transmission). From
these parameters, we can derive the achievable throughput of AP n, denoted by
An, as:

An =
L× a

TDCF + a× L+HMAC

R + TACK

, (1)

where TDCF is the sum of the overhead times needed for the DCF procedure [6]
including the physical layer header, HMAC is the MAC header in bytes, R is
the physical data rate resulting from the combination of MCS index and guard
interval length, and TACK is the total time needed to send the acknowledgment
frame. The achievable throughput An is simply the throughput AP n would
achieve in downlink if it were the only AP to access its channel. However, this
is often not the case and the AP has to share the channel with other APs (i.e.,
its logical neighbors) resulting in a so-called achieved throughput. We denote
AP n’s achieved throughput as Bn, and it follows that Bn ≤ An. The average
throughput of APs of the WLAN, denoted TH, is simply computed as the sum
of the achieved throughputs of all the APs divived by the number of APs:

TH =

N∑
n=1

Bn

N
. (2)

Defining starvation is a bit more problematic as it depends on both the
interpretation and the performance goals. In this paper, we consider that an
AP is experiencing starvation whenever its achieved throughput Bn is lower
than some fixed threshold denoted by τ . We use ST to denote the number of
APs in starvation:

ST =

N∑
n=1

1Bn<τ . (3)
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Furthermore, for the sake of completeness, we also consider the proportional
fairness metric that we compute here as follows:

PF =

(
N∏
n=1

Bn

)1/N

. (4)

Note that PF is a non-negative real number expressed in Mbps.
Having defined our WLAN representation and the performance metrics of

interest for our study, we now detail our proposed solution for radio channel
assignment.

4. Proposed Solution

We now describe our solution for channel selection that circumvents the
original problem’s complexity by decoupling the channel width and the channel
assignment issues.

4.1. Maximum Independent Set Ratio

Our proposed solution is based on the WLAN’s conflict graphs, i.e., its phys-
ical conflict graph and the logical conflict graphs arising from different channel
assignments. It relies on the identification of the APs that are in advantageous
positions regarding transmission opportunities, or equivalently, those most likely
to be in starvation because of their location in the conflict graph.

We first recall some graph-theoretic definitions useful for our study. The
maximal independent set refers to a subset of vertices that contains no neighbor
nodes and cannot be extended by adding more vertices. For example, in our
sample four-AP conflict graph of Figure 2b, there are three maximal independent
sets: {1, 4}, {2, 4}, and {3}. A maximum independent set denotes the maximal
independent set(s) with the highest cardinality. In our example, {1, 4} and
{2, 4} are both maximum independent sets. We use MMS(Gw(v)) to denote
the set containing all the maximum independent sets of Gw(v).

We can now introduce a new quantity that we specifically devise for our
study: the Maximum Independent set Ratio (MIR). MIR is calculated for each
of the graph’s vertices as the proportion of maximum independent sets to which
the vertex belongs. Therefore, for vertex n, we have:

MIR(n,Gw(v)) =
|K|

|MMS(Gw(v))|
. (5)

where K is the subset of MMS(Gw(v)) that verifies n ∈ K.
The maximum independent sets and the MIR values of any graph and any

vertex can be obtained using the Bron-Kerbosch algorithm [21]. We discuss the
complexity of this algorithm in Section 4.3.

As an example, the MIR values for the vertices representing our four-AP
sample network when using a single channel of 160 MHz for all APs (i.e., v =
(a, a, a, a)) are shown in Figure 3. AP 4 belongs to all maximum independent
sets and so it has an MIR(4,G160(a, a, a, a)) = 1. APs 1 and 2 belong to
half of the maximum independent sets, so we have MIR(1,G160(a, a, a, a)) =
MIR(2,G160(a, a, a, a)) = 0.5. Finally, we have MIR(3,G160(a, a, a, a)) = 0
since AP 3 does not belong to any maximum independent set.
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Figure 3: Calculated MIRs (Maximum Independent set Ratio) for a given logical conflict
graph.

Interestingly, the MIR of vertex n is a major factor in determining its
achieved throughput Bn. Let us consider a (training) set of 52 randomly gen-
erated physical conflict graphs of WLANs containing between 10 and 25 APs
and with average AP degrees ranging from 2.9 to 8.5. Recall that the degree
of a vertex (an AP in our case) is the number of edges containing it, and that
the average degree of a graph is simply computed as twice the number of edges,
divided by the number of vertices. We assume that the APs are in saturation
and sending downlink traffic to their associated station using MCS (Modula-
tion and Coding Scheme) index 5, a frame aggregation rate a = 4 MPDUs, a
payload L = 1400 bytes, and a guard interval of 3200 ns. We use the ns–3
discrete-event network simulator [18] to evaluate the achieved throughput Bn
of each AP. Figure 4 depicts the AP’s achieved throughput as a function of its
MIR for every AP of these graphs when two channel widths are used: 20 and
160 MHz. We observe that, in either case, there is a strong correlation between
an AP’s MIR and its achieved throughput Bn. Note that similar correlations
(not shown in this paper) hold for channel widths of 40 and 80 MHz.

This observation is the cornerstone of our proposed solution: for a given
logical conflict graph, we can easily calculate the MIR value of each AP that,
in turn, helps us estimate its attained throughput and hence predict whether
that AP is in starvation or not. To do that, we naturally resort to a linear
regression as follows:

B = β0,w + β1,w ×MIR , (6)

with β0,w and β1,w representing the linear coefficient found for a channel width
of w MHz.

The intuition behind the MIR lies in the fact that the mechanism of medium
access in WLANs tends to maximize the number of simultaneous transmis-
sions [5]. Therefore, APs that belong to many maximum independent sets
(and have high MIR values) are more likely to be in transmission and achieve
higher throughputs. Figure 4 shows that there are two points where estimating
throughput based on MIR is not as precise, namely the extremes MIR = 0 and
MIR = 1. However, the simulation results of Section 5 show that we can use
Eq. (6) to estimate the achieved throughput even for these two extreme values
of MIR with a satisfactory accuracy.

4.2. Channel width and assignment algorithm

In our solution, we perform the search for the channel assignment in the
worst-case scenario, namely when all APs are saturated (permanently needing
to access the channel). As it was shown in [1], we rely on the assumption that
typically wider channels favor the average throughput of APs of the WLAN,
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(a) Channel width: 20 MHz.

(b) Channel width: 160 MHz.

Figure 4: The achieved throughput as a function of MIR (Maximum Independent set Ratio)
obtained by simulating the behavior of hundreds of APs for 52 different WLANs.

while narrower and separate channels avoid starvation. Hence, our solution
iterates on all the possible channel widths, starting with the widest channel of
160 MHz. For each channel width, we use the Tabu Search algorithm [20] to
compute a k-coloring of the physical conflict graph, where k is the number of
available channels for the considered channel width. In a nutshell, the Tabu
search attempts to find a channel assignment that minimizes the number of
edges in the resulting logical conflict graph. We then calculate the MIR of each
AP and estimate its achieved throughput using the linear regression model. At
this stage, we are able to compute ST , i.e., the number of APs in starvation.
If ST is larger than zero, we divide the channel width in half and multiply the
number of available channels by two. With this new setting, we run the same
procedure: coloring the graph, calculating the APs’ MIRs and then the ST
metric, and if there are starving nodes we divide the channel width once again.
The procedure ends when either a channel width for which there are no starving
APs is found, or when the minimum channel width of 20 MHz is reached. The
pseudo-algorithm of the complete solution is given in Algorithm 1.

Note that Algorithm 1 has a single tuning parameter: the starvation thresh-
old, τ . If its value is too large, this could cause the algorithm to erroneously
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Algorithm 1 Solution to select channel width and assignment

1: Input: physical conflict graph, number of vertices N , starvation threshold τ

2: Output: selected channel width w, channel assignment v

3: w ← 160
4: k ← |C160| //# of channels for the current width
5: while w ≥ 20 do
6: v ← compute a k-coloring channel assignment (Tabu)
7: compute MIR(n,Gw(v)),∀n ∈ {1, ..., N} using Eq. 5
8: compute B(n),∀n ∈ {1, ..., N} using Eq. 6
9: compute ST using Eq. 3

10: if ST > 0 then
11: w ← w / 2
12: k ← |Cw|
13: else
14: return (w, v)
15: end if
16: end while
17: return (w, v)

suppose APs in starvation and to wrongfully reject an otherwise appropriate
channel assignment. Conversely, a too small value for τ can lead the algorithm
to overlook APs in starvation and lead to channel assignment causing starvation.

In the interest of clarity, Figure 5 shows the results returned by Algorithm 1
on the sample four-AP WLAN using a starvation threshold τ = 5Mbps. For the
sake of this example, we assume that there is only a single 160 MHz channel so
that |C160| = 1. The main round of the algorithm was executed twice, namely
for a channel width of 160 MHz and then 80 MHz. In the first round, we have
MIR(3,G160(a, a, a, a)) = 0, AP 3’s estimated attained throughput is then B3 =
0, i.e., AP 3 is in starvation. Thus, we have ST > 0 and the algorithm rejects
the channel width of 160 MHz. The algorithm now considers a channel width
of 80 MHz. For this second round, we obtain MIR(3,G80(b, b, c, b)) = 1 leading
to an estimated attained throughput of 20 Mbps that is above the starvation
threshold. Because APs 1, 2, and 4 have MIRs of 0.5, 0.5, and 1, respectively,
our algorithm estimates that they are also above the starvation threshold and
therefore all APs have a satisfactory throughput. As a result, the algorithm
ends and returns w = 80 MHz and v = (b, b, c, b) for the channel assignment as
its solution.

4.3. Complexity analysis

The complexity of the proposed solution is highly dependent on the com-
plexity of the underlying algorithms. The Tabu Search algorithm that we use to
find a k-coloring has an O(DmaxN

4) complexity (when the objective function
is to minimize the number of edges in the logical conflict graph), where Dmax is
the maximum degree in the graph [20]. Bron-Kerbosch’s algorithm that is used

to find the MIR ratios has an O(3
N
3 ) complexity [21]. All other parts of our
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Figure 5: Logical conflict graph and MIR values computed by Algorithm 1 on the example
of the four-AP WLAN of Figure 2b.

Very sparse Sparse Dense Very dense Ultra dense
Average degree, d d<5 5≤ d<7 7≤ d<9 9≤ d <11 11≤ d
Numbers of graphs 19 22 18 14 15

Table 2: Graph distribution by average degree.

algorithm have a lower complexity, meaning that the overall complexity of the
proposed solution is O(3N ).

It should be noted that the use of the Tabu Search and the Bron-Kerbosch
algorithms is fully independent of the rest of the solution. Moreover, other
objective functions than the minimization of the number of edges in the logical
conflict graph can be used as well. These possible modifications, as well as the
choice of starvation threshold, create an easily adaptable framework suited for
different WLAN performance goals.

5. Simulation Results

For the sake of our simulation study, we consider a large set of 88 WLANs
that together form our validation set. Note that these WLANs differ from those
used previously to train our solution in Section 4, i.e., learn the parameters of
the linear regression estimating TH as a function of MIR. In this validation
set, WLANs comprise between 8 and 30 APs. The physical conflict graphs of
these 88 WLANs, which derive from the spatial arrangement of their APs, were
randomly generated and they exhibit average degrees ranging from 2.5 to 15.
As shown in Table 2, we label the WLANs as being very sparse, sparse, dense,
very dense, or ultra dense depending on their average degree.

For each AP of the WLANs, we let the number of associated stations be
uniformly distributed in the range [2,5]. The APs are sending downlink traffic
to their associated stations using a frame aggregation rate a = 4 MPDUs with a
payload of 1400 bytes and a uniform distribution of MCS indexes 0 to 11, and a
guard interval of 3200 ns. We study each WLAN in saturation conditions, i.e.,
the transmission queue at each of their AP is always nonempty. By considering
this worst-case scenario, we investigate the behavior of our solution when pushed
to extreme conditions. Note that if our solution succeeds in the worst case, then
it can only do better in more favorable conditions.

The set of available channels contains all the channels from the U-NII-1 and
U-NII-2A bands accessible in Europe (see Figure 1), i.e., one channel of 160
MHz, two of 80 MHz, four of 40 MHz, and eight channels of 20 MHz.
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We consider the three metrics of interest as defined in Section 3.3:

• TH: the average throughput of APs in Mbps (see Eq. (2)),

• ST : the number of starving APs (see Eq. (3)),

• PF : the proportional fairness in Mbps (see Eq. (4)).

Throughout this section, we evaluate the performance gain of our solution
as opposed to baseline solutions under different configurations. The baseline
configurations include i) a single 160 MHz channel (i.e., the physical and logical
conflict graphs always coincide) and ii) eight appropriately-assigned channels of
20 MHz (i.e., almost no conflicts in the logical conflict graph). As for the
changing parameters, we test different values of the starvation threshold τ ,
evaluate the impact of average degrees, and assess the robustness of our approach
when the traffic parameters are varying.

We implemented our solution in C++ and we then use ns–3 and the IEEE
802.11ax standard amendment to evaluate the channel assignments proposed by
our solution and by other common strategies. Table 3 reports the simulation
settings.

Parameter Value
ns–3 version 3.32
Simulation duration 3 seconds
Frequency band 5 GHz
MCS Control HeMcs (High Efficiency)
IP Payload length, L 1400 bytes
Transport Protocol UDP
Maximum A-MPDU length 4 IP packets
Number of APs 8 - 30
Number of stations per APs 2 - 5

Table 3: Simulation settings.

5.1. Starvation threshold and average degree

We begin by examining how the choice of τ , the starvation threshold, impacts
the channel width chosen by our solution for WLANs with different average
degrees. Figure 6 shows the results for τ = 1 Mbps (Figure 6a) and τ = 5 Mbps
(Figure 6b). We first notice that 40 MHz is the most commonly chosen channel
width, in around 50% of the cases. As expected, wider channels are more
frequently chosen when the average degree is fairly low, and a channel of 20
MHz is never proposed when the network is very sparse. On the other side of
the spectrum, when the network is very or ultra dense, the only chosen channel
widths are those of 20 MHz and 40 MHz. Figure 6 also suggests that the impact
of the starvation threshold τ is fairly minimal. The distribution of recommended
channel widths remains roughly the same when τ is increased from 1 to 5 Mbps.

5.2. Comparison with baseline solutions

Properly configuring channel width is highly dependent on the performance
metric of interest. It is well accepted that, in general, narrower channels fa-
vor fairness, and wider channels provide higher average throughput of APs [1].
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(a) For a starvation threshold of τ = 1 Mbps. (b) For a starvation threshold of τ = 5 Mbps.

Figure 6: Distribution of the channel widths selected by our solution as a function of the
average degree of WLANs.

This reasoning leads to two opposing, but equally relevant, strategies: i) us-
ing multiple narrow, but independent, channels, or ii) using less, but wider,
channels.

We use these two strategies as baselines when studying the performance of
our proposed solution. The first strategy consists in assigning all APs to the
160 MHz channel (channel a in Figure 1), with the aim of maximizing average
throughput of APs. The second strategy is assigning as many independent
channels as possible, or the eight 20 MHz channels, using an appropriate channel
allocation. In our case, we use the Tabu Search algorithm to find the allocation
that minimizes the number of conflicts in the logical conflict graph. Finally, we
compare the obtained PF , ST , and TH metrics for these two strategies and
our proposed solution.

Figure 7 shows the corresponding results for τ = 5 Mbps. Note that, in
the interest of brevity, we show the results for a single τ value and that similar
results were obtained for larger and smaller τ thresholds. The vertical lines in
the figure show the median values found by the three strategies labeled ”160
MHz”, ”20 MHz”, and ”Our solution”. For all three metrics, the 160 MHz
channel solution performs worse than the two other strategies. It is the only
strategy that experiences some starvation (a median of 5 APs in starvation),
which is not compensated by a higher average throughput of APs. Results show
that our solution leads to both a higher PF and a higher TH than the eight 20
MHz channel strategies.

5.3. Varying traffic parameters: MCS index

We now test how well our solution performs under more specific traffic con-
ditions. We are interested in how the MCS indexes, or their distribution, can
affect the performance of our proposed solution. Using the same two baseline
strategies as before, we compare the obtained PF , ST , and TH values for dif-
ferent ranges of MCS indexes on the same collection of 88 graphs. We define
four such ranges: low MCS (from 0 to 3), medium MCS (from 4 to 7), high
MCS (from 8 to 11), and all MCS (from 0 to 11). Then, the MCS index of each
pair of AP and station is uniformly chosen in the given range. As before, the
number of associated stations per AP is uniformly distributed in the interval [2,
5].
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(a) PF : Proportional Fairness.

(b) ST : Number of Starving APs.

(c) TH: Average throughput of APs.

Figure 7: Distribution of the performance metrics for the 88 WLANs of the validation set
using 3 different strategies with a starving threshold τ = 5 Mbps.

Table 4 summarizes the results. We observe that, in the considered scenarios,
both our solution and using 20 MHz channels always offer a configuration with
no starving nodes (i.e., ST = 0). Using a channel of 160 MHz can cause an
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PF (Mbps) ST (nb of APs) TH (Mbps)
160 MHz 20 MHz Our sol. 160 MHz 20 MHz Our sol. 160 MHz 20 MHz Our sol.

MCS 0-3 7.70 13.54 17.69 7 0 0 17.54 15.16 21.18
MCS 4-7 19.22 43.60 49.74 3 0 0 32.11 44.17 54.10
MCS 8-11 23.68 65.97 69.25 2 0 0 36.38 66.20 75.35
All MCS 14.65 31.99 37.72 5 0 0 27.36 41.02 46.79

Table 4: Comparing the performance of the 3 strategies (160 MHz, 20 MHz, Our solution)
in terms of PF (Proportional fairness), ST (number of starving APs), and TH (Average
throughput of APs) for different MCS configurations and 88 WLANs . We use the following

color code: Green designates the best strategy with regards to the performance metric in

the multi-column; Red designates the worst strategy; Yellow designates the in-between
strategy.

average as high as 7 starving APs in the case of MCS ranging from 0 to 3. Our
solution consistently offers the highest TH and PF median values. However,
the degree of improvement of these metrics is highly varying. Table 5 shows
the average improvement provided by our solution as opposed to the two other
strategies. On average, we improve the PF by 16.9% (resp. 159.60%) and the
TH by 22.53% (resp. 66.84%) when compared to using eight 20 MHz channels
(resp. a single 160 MHz channel).

PF 160 MHz PF 20 MHz TH 160 MHz TH 20 MHz
MCS 0-3 129.70% 30.65% 20.75% 39.71%
MCS 4-7 158.79% 14.08% 68.48% 22.48%
MCS 8-11 192.44% 4.97% 107.12% 13.82%
All MCS 157.47% 17.91% 71.02% 14.07%
Average 159.60% 16.90% 66.84% 22.52%

Table 5: Relative increase for PF (Proportional fairness) and TH (Average throughput of
APs) observed over 88 WLANs when using our solution in place of each baseline strategy
(viz. a single channel of 160 MHz or 8 channels of 20 MHz each).

6. Conclusions and Future work

In this paper, we presented a fast and robust solution for channel width
selection and channel assignment in 802.11 WLANs using channel bonding. The
proposed solution chooses a single channel width for all the APs of the WLAN
that aims to avoid starvation in any of the network’s APs.

By introducing a novel, graph-centric metric, and by decoupling the channel
width selection and the channel assignment, we offer a scalable approach that
bypasses the usual complexity issues of classic channel assignment schemes. The
approach is also fully adaptable to different performance goals, as it is a collec-
tion of several algorithms that can be modified separately and independently.

Simulation results using the ns–3 discrete-event network simulator and the
most recent IEEE 802.11ax standard amendment show that the proposed solu-
tion is robust to different traffic parameters and network densities. It typically
outperforms strategies consisting of selecting the channel width regardless of
the WLAN topology by 15% in fairness and 20% in throughput.

As future work on the choice of radio channel width, we will seek to go beyond
the objective of closing fairness gaps among the APs. We will investigate if we
can adapt our solution to improve fairness among the stations of the WLAN.
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[1] S. Barrachina-Muñoz, F. Wilhelmi, and B. Bellalta. 2019. To overlap or not
to overlap: Enabling channel bonding in high-density WLANs. Computer
Networks 152 (2019), 40 – 53. https://doi.org/10.1016/j.comnet.

2019.01.018
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