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ABSTRACT In this study, a practical numerical method is proposed to estimate losses of high 

specific power density electric motors, using few simulated temperature data. In such electric 

motors, these losses generate high heat fluxes inside the motor components that can be critically 

sensitive to temperature. Electromagnetic and mechanical friction phenomena are behind the 

occurring of these thermal dissipations. For both phenomena, losses could be difficult to compute 

with electrical or mechanical approaches. However, thermal management of electric motors 

requires a precise knowledge of those losses, in particular for high-performance motors such as 

those considered in future hybrid planes. To determine electric motor losses in a Permanent Magnet 

Synchronous Motor (PMSM) in real time, an inverse method using a Lumped Parameter Thermal 

Model (LPTM) is elaborated. In the first step, the dynamic profile of losses is determined through 

the inverse method, based on temperature data at easy-access points of the motor. In a second step, 

the identified losses are used to find temperatures at critical non-accessible hot spot points of the 

motor through forward LPTM. The method is applied for three useful cases, from the simplest case 

scenario, where only one type of losses has to be identified, to the most complicated case where all 

losses are simultaneously estimated. A global strategy for the choice of the number of future time 

steps used for regularization of the ill-posed problem is also proposed. Results show that this 

method enables adequate real-time supervision of the critical motor temperatures, mainly rotor and 

winding core. 

Keywords: Electrical machines, Future time steps, Losses, Lumped Parameter Model, Thermal 

behavior, Regularization 

I. INTRODUCTION 

Nowadays, with the rising interest of electrification in the transportation sector, the study and conception of very 

high-specific power density electric motors is essential. Indeed, weight and volume are known to be classical 

constraints for electrified vehicles. Moreover, the recent use of electric motors for the propulsion of the new 

generation of ground and air vehicles requires the development of series of more efficient and higher performance 

electric motors [1]. This driving trend already exists in the automotive field for electric and hybrid-electric vehicles 

[2]. Recently, propulsion electrification is emerging into air vehicles design development. Numerous projects [3]-[6] 

are being conducted aiming to develop electrically propelled aircrafts and are targeting higher values of specific 

power density in electric motors. In general, these projects focus on hybrid aircrafts in which electric motors, 
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coupled to fans, would propel the plane, and the turbo-reactor will be mainly used as a turbine for electricity 

generation. The increase of specific power density of electric motors could be limited by electrical  
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and thermal constraints. The multiple electrical limits and the approaches allowing an increase of the motors 

specific power density are not discussed here, since the related issues are not the main purpose of the paper and are 

associated to loadability concepts. The interested reader may refer to [7] for further comprehension of these issues. 

Thermal limits in electric motors, majorly related to maximum temperature allowed in electric motors windings 

depending on the insulation thermal class, are at least of the same order of challenge - if not more - than the 

electrical limits [8-9]. Excessive temperature increase may irreversibly demagnetize magnets [10] or could lead to 

shortening motor lifetime due to overheated electric insulation material [11]. The temperature increase in electric 

machines results from electromagnetic and mechanical losses, generating heat in motor components. Generally, 

these losses are empirically estimated. Besides being hardly evaluated with analytical and some computational 

methods, it is believed that even with a motor prototype, the process of determination of the resulting losses and 

distinguishing their types or origins is quite complicated. Generally, such information can be barely obtained with 

long iterative methods. 

Our study focuses on a Permanent Magnet Synchronous Machine (PMSM). In such machines, the temperatures 

are very sensitive to losses, specifically at hot spot zones. A possible solution to identify electric motor losses is to 

measure temperature inside the motor and then apply an inverse method. Such methods require a thermal model 

with quick solving process. Thus, a thermal nodal network could be a good choice as it is commonly used to carry 

out numerical simulations in the design process of high-performance electric machines. 

Being mathematically ill-posed, the solution of the inverse problem may be unstable and not unique. Hence, 

several regularization techniques have been developed to ensure stable solutions [12]. Examples of inverse problems 

for electric machines can be found in the literature with different objectives: geometric, thermal or magnetic 

parameter estimation, loss mapping, source strength determination from temperature measurements. In [13], the 

authors propose an inverse problem in order to identify a set of 9 design parameters (geometry, magnetic 

parameters) for a permanent magnet brushless motor. The results show that the density of the magnetic flux in the 

air gap is increased, as well as the motor efficiency. Moreover, an inverse method for the identification of heat 

convection coefficients on coil end-windings from experimental data is presented by [14]. An interesting algorithm 

is developed and described for this nonlinear inverse heat conduction problem using a lumped parameter model. In 

[15], a low-order model is built in a first stage to estimate a set of thermal parameters. In a second stage, this model 

is used to identify thermal losses in the stator of an axial flux PM machine. In [16], the power loss density is 

estimated using a 2D finite-element thermal model associated to a conjugate gradient method from noisy 

temperature measurements. A prediction of the strength of the heat source field in an induction motor is also carried 

out in [17] using a steady state thermal model. Another example of reconstruction of thermal field sources can be 

found in [18]. The aim is to estimate a 3D source distribution using infrared data. The least square method is used in 

order to solve the inverse problem. 

Concerning now the on-line identification of electromagnetic losses, a recursive parameter estimation method is 

implemented in [19]. Furthermore, a 3D inverse heat conduction problem is presented by [20] to estimate the time-

dependent internal heat flux generated in rotor and stator for high speed electric motor. 

This article deals with the temperature prediction in the electric machines at low accessibility locations through 

the identification of the heat sources and using an inverse technique. The originality of our numerical study lies in 

the fact that a low order lumped parameter thermal model that requires a very low computation time is used first to 

identify the unknown heat sources through an inverse procedure, and secondly to compute the temperature field in 

the electric machine at each time step in real time. The technique used to solve the mathematically ill-posed problem 

relies on Beck’s contribution [21], [22], which takes into account the lagging and damping effects due to the 
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diffusion process by using a sequential method associated to a function specification procedure. This technique acts 

as a regularization procedure, as it will be shown in this study. 

After presenting the electric machine and associated heat transfer modeling, the inverse method applied to 

identify the heat sources dissipated inside the motor is detailed. Finally, results of parametric studies and 

corresponding analysis are presented. 

II. THERMAL MODEL 

A. DESCRIPTION OF THE ELECTRIC MOTOR 

The electric motor illustrated in Fig. 1 is a Surface Mounted-Permanent Magnets Synchronous Motor (SM-PMSM) 

used for hybrid electric aircraft propulsion with specifications found in [23-24]. It is a high efficiency electric motor 

(more than 96%) and maximum losses resulting in thermal sources are around 16 kW. These losses are divided into 

winding Joule losses, Iron losses and mechanical losses. 

 

Geometrically, the motor consists in two parts: the rotor (rotating in the center) and the stator around it. 

 

As shown in Fig. 1, the rotor consists of a shaft (brown) supported by two bearings (grey), surrounded by the 

rotor lamination (yellow) and the permanent magnets (orange). In the studied motor, the considered heat sources are 

due to mechanical losses and electric losses. Mechanical losses are mainly due to friction inside the bearings 

(PBearings), and to aerodynamic heating resulting from very high velocity gradient in the air gap between the rotor and 

the stator (PAirgap) and near the rotor end-caps (lateral surfaces of the rotor) termed PRotor. 

 

The stator consists of the stator laminations (purple) and the winding (green) whose biggest part is embedded in 

the stator slots and the remaining part are the end-windings at the extremities of the stator, which are the complex 

parts in the cavities from geometrical and thermal viewpoints. Windings are heterogeneous elements made up of 

two types of materials: copper conductors and electric (and thermal) insulation material. The iron losses (PIron) and 

Joule losses (PJoule) are thermal sources distributed in the stator laminations and winding respectively rising from the 

resistivity of copper in winding conductors. Iron losses are produced by magnetic effects (hysteresis and Foucault’s 

current) and the Joule losses in windings are due to Joule effect. 

It is assumed in this study that the thermo-physical properties are temperature independent. 

The motor cooling system in this case is a combination of a stator water-jacket with water-glycol flowing around 

the stator, and a water-glycol axial flow at the center of the shaft for rotor cooling. Both types of liquid cooling are 

being used in electric motors for vehicular applications (examples can be found in [25]). After flowing through the 

motor, the water-glycol is cooled with a simple heat exchanger: a channel in contact with ambient air through a flat 

plate. Moreover, high conductivity resin potting of end-windings is used to increase the heat transfer in those critical 

regions (due to their high Joule losses). This technique is investigated in [26-27]. 
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FIGURE 1.  SM-PMSM schematic section with specific 

temperatures’ locations. 

 

These techniques have dynamic impact on motor temperatures and thus influence the extraction of the generated 

heat resulting from the losses. They must be taken into account in any proposed model of the motors. 

 

B. HEAT TRANSFER EQUATIONS AND MODELING 

Temperature distribution within the motor is determined from solving the heat equation associated with initial and 

boundary conditions. The equation governing heat diffusion and convection in the domain Ω is written as: 

 

 

(1) 

Where T(M,t) is the temperature at a point M in the domain and  is the velocity field, ρ the density, Cp the 

specific heat and k the thermal conductivity. Pj is the time varying strength of the jth volumetric heat source and Volj 

the corresponding volume. The characteristic function χj(M) is equal to 1 if M is located in source j, else χj(M) =0. 

Heat exchanges between the motor and its environment are modeled through a global heat transfer coefficient h. 

Boundary conditions hence are written as follows: 

 (2) 

Moreover, the initial condition is: 

 (3) 

If the velocity field is not known in a particular region of domain Ω, the transport term in (1) may be modeled by 

a convective heat transfer as in (2). Then a convective coefficient h has to be evaluated from Nusselt correlations. 

Besides, the fluid temperature Text is required. 
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C.  STATE SPACE REPRESENTATION 

As analytical solutions for this 2D axisymmetric transient problem are not available, a Lumped Parameter Thermal 

Model (LPTM) is used to simulate motor thermal behavior according to (1)-(3). It consists in dividing the studied 

system into N discrete volumes, which are connected together by thermal conductances. For brevity reasons, details 

of the network are not given in this paper but can be found in [28]. It leads to a system of ordinary differential 

equations with a low number of parameters. In our study, N=58. This set of equations can be written as: 

 (4) 

Where T(t) (dimension N) is the vector of temperatures, function of time t, at the N discretization nodes,  its 

derivative with respect to time t. Matrix A (dimension N,N) is the state matrix which connects temperatures at 

discretization nodes and contains diffusion and transport terms, as well as terms related to convective boundary 

conditions. The vector Bc is associated with these latter conditions and links corresponding nodes to environment 

nodes. Matrix Bp (dimension N,np) links discretization nodes to the internal heat sources gathered in vector function 

P(t)=[PJoule PIron PRotor PAirgap PBearings]
T (dimension np). 

In what follows, let us separate vector P into two sets: unknown heat sources included in U (dimension nU) and 

known heat sources included in K (dimension (np-nU). The command matrix Bp is then also split into two matrices 

Bp=[BK BU] Defining the vector V=BcText+BKK, the state space representation takes the following form: 

 

(5a) 

(5b) 

Where an observation matrix C (dimension nq,N) allows to select nq temperatures in the whole temperature field 

T(t) and to store them in vector function Y(t). 

 

In this purely numerical study, a maximum of 9 temperature locations will be used as outputs. These temperatures 

are depicted in Fig. 1, and are located in the stator lamination (Ts1, Ts2 and Ts3), in the end-winding (Tw) at the 

surface of the end-winding (Tsw), on the surface of the stator in the airgap (Ta), in the cavity between the rotor end-

cap and the frame (Tc), in the bearings (Tb), and in the magnets (Tm). These locations have been chosen given the 

heat sources but also considering plausible experimental measurement system positions. Temperature in the static 

part of the motor could be obtained using thermocouples (Ts1, Ts2, Ts3, Tsw, Ta, Tb and Tc). The rotor flange 

temperature could be obtained by infrared measurement. Tm and Tw are the critical temperatures difficult to obtain 

experimentally due to their locations, i.e. Tw inside the end-windings is confined and thought to be the hottest point 

and Tm requires a slip ring due to the rotating rotor. 

 

III. INVERSE PROBLEM SOLUTION 

The form of heat transfer model, developed in subsection II.C, is convenient to be used now in the inverse 

procedure. The inverse problem aims at finding an estimation  of the input vector U from measured temperatures 

Y*. Note that, in this study, real temperature measurements are not available. The temperatures included in vector 

Y* derive from the direct problem with known heat sources. In order to simulate measurement errors, each 

temperature is altered with an additive Gaussian error, whose standard deviation is given by σ. 

Subsequently, in order to have simplified and clear annotations, we will write Uk for U(tk), Tk for T(tk), Yk for Y(tk).  

A sequential estimation method is adopted. Having the vector of noisy temperatures , and an estimated  of 

, an estimation of  is then computed.  

Using an Euler implicit scheme and Δt being the time step, (5a) becomes: 
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(6) 

Then: 

 (7) 

Hence, according to (5b): 

 (8) 

Due to the lagging and damping effects of heat diffusion and convection, a variation of heat source strength does 

not immediately affect the sensors. In order to take into account these effects, Future Time Steps (FTS) [29]-[32] are 

used. It means that output data at further times tk+2, tk+3, … are used to correctly estimate . 

If nf is the number of FTS, then for 1≤f ≤nf, (8) is written for k+1+f instead of k+1. A temporary approximation 

of Uk+1+f is therefore needed to look for . In this study, a constant value is chosen: 

 for  (9) 

 

Hence, a global matrix formulation is obtained as in (10):  

 (10) 

 

With: 

 

 

(11) 

 

(12) 

 

And: 
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(13) 

The size of vector Y* is (nf+1)×nq and matrix S is of size ((nf+1)×nq,nU). The objective is to identify the pseudo-

solution  of the inverse problem, such that Y*-Y≈0, where Y is the temperature vector computed by LPTM. As 

matrix S is not square due to the addition of future time steps, the least square method is used to solve (10) and leads 

to the sequential solution: 

 (14) 

In order to evaluate the accuracy of the estimations for the different studied cases, a mean quadratic discrepancy 

between exact heat sources (vector Uexact) and estimated ones (vector ) is defined as follows: 

 

(15) 

Where nt is the number of time steps in the inverse problem. It is worth to remind that, in a practical application, 

this quantity is not reachable. 

In a similar way, for each output Yi, a mean quadratic error between measured temperatures (or artificially noisy 

temperatures) and those computed with the estimated set of heat sources strengths, is defined as follows: 

 

(16) 

When the unknown heat sources  are identified, they will be used as inputs in the direct problem in order to 

predict temperature in inaccessible parts of the motor, for example critical temperatures Tcrit in windings or 

magnets. The complete procedure is illustrated in the block diagram of Fig. 2. 
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FIGURE 2.  Block diagram: use of LPTM for both 

inverse and direct problems. 

 

At each time-step, the model is solved in inverse problem to get motor losses. The inputs for inverse LPTM are 

the noisy temperature at accessible points (sensor temperature measurement on a real bench). 

Then, forward LPTM is used to determine indicated critical temperatures. 

IV. RESULTS AND ANALYSIS 

A scenario of motor operation is chosen corresponding to a profile mission in an aircraft flight application. The 

corresponding profiles of heat sources generated in the motor are depicted in Fig. 3 during 3600 s. The different 

phases correspond to: taxi-out phase (0 to 450s), take off and climb (450 to 900s), cruise flight (900 to 2250s), 

descent and landing (2250s to 2700s) and taxi-in (2700s to 3600s). 

 

 
FIGURE 3.  PMSM heat sources evolution as 

function of time PMSM. 
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Rotor, Airgap, and Bearings losses remain relatively low and quite constant all along the mission whereas Joule 

and Iron losses change significantly. Those losses are particularly high during the take-off phase as they are linked 

to propulsion power. Airgap and Bearings losses depend principally on the rotor rotation speed, which varies 

slightly between take-off and cruise, and is very low during taxi phases. 

Temperatures are then computed using LPTM and a time step equal to 1 s. Among these temperatures, a set of 

observables is chosen depending on the different case studies (see subsection II.C). A noise of standard deviation 

equal to σ=0.1°C is added to these observables so that they are used as temperature measurements in various inverse 

problems cases. 

 

A.  CASE 1: IDENTIFICATION OF IRON LOSSES 

In this first case, among the five heat sources, four are supposed to be known (PJoule PRotor PAirgap PBearings) and only 

iron losses (PIron(t)) have to be identified. Fig. 4a shows the evolution of temperature Ts1 with respect to time. From 

this temperature, the inverse problem is solved in order to identify P(t)=PIron(t) knowing K(t)=[PJoule PRotor PAirgap 

PBearings]
T . Hence, for this case, nq=nU=1. 

The procedure is sequential, as mentioned before, expressed in (14), and depends on the number of future time 

steps. Results of identification are presented in Fig. 4b and Fig. 4c for respectively nf=2 and nf=10. It is remarkable 

that, without regularization (nf=0), the oscillations of PIron (t) are huge. Hence, we have chosen to draw PIron (t) for 

nf=2 in Fig. 4b. 

It clearly appears that the number of future time steps filters the oscillations of PIron, what is confirmed by the 

quadratic criterion σU in Table 1. The main criterion, and the only one to be computed in a real case, is σY. Its 

evolution with respect to nf is quite interesting. For nf=0, even if the problem is ill-posed, large oscillations in  

allow to follow exactly the evolution of the noisy temperature. Hence, as indicated in Table 1, σY≈0°C. When nf 

increases, regularization tends to damp the time evolution of , leading to a bias in the temperature computation. 

We choose then the number nf for which σY≥σ to “get out” of the noise level. The identification of PIron(t) for nf=10 

is depicted in Fig. 4c and shows a very good agreement with the exact evolution of these losses drawn in Fig. 3. 
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FIGURE 4.  Iron losses identification from node Ts1 

with nf=2 and nf=10 and computation of critical 

temperatures Tw and Tm. 

 

TABLE 1.  Inversion results for iron losses identification from Ts1; bold lines correspond to results shown in Fig. 4. 

 

nf   

0 5303.1 3e-14 

2 936.7 0.0871 

4 451.3 0.0935 

6 304.7 0.0964 

8 249.4 0.0988 

10 229.2 0.1009 

12 224.0 0.1034 

 

Once PIron is identified, the aim is to predict temperatures Tw and Tm in inaccessible parts of the electric motor. 

They have been computed for the different values of nf and are shown in Fig. 4d for nf=0. Note that, for nf=0, 

temperature prediction occurs without any delay whereas it is executed with a 10s delay with nf=10 since the time 

step Δt is equal to 1s. For any value of nf, the temperature evolution in critical zones is the same, due to the fact that 

oscillations in  are damped by the thermal path and inertia of the system. Same as in (15), critical temperatures Tw 

and Tm are compared to the exact temperatures computed with the exact inputs. For nf=0, a quadratic error 

σTcrit=0.003°C is obtained, which gives a very accurate prediction. 

 

Now, a new test is carried out using a second measurement point Ts2 located in the stator. Graphical results are 

summarized in Fig. 5. 
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It appears obviously that the oscillations of PIron(t) decreased compared to Fig. 4, which is confirmed by Table 2 

where σU goes from 229 W to 200 W for nf=10. It is interesting to observe that in this case (nq=2, nU=1) it is not 

possible to obtain σY≈0°C for each of the two outputs from only one heat source PIron(t). 

 

 
FIGURE 5.  Iron losses identification from nodes Ts1 

and Ts2 with nf=2 and nf=10 and computation of critical 

temperatures Tw and Tm. 

 

 

TABLE 2.  Inversion results for iron losses identification from Ts1 and Ts2; bold lines correspond to results shown 

in Fig. 5. 

 

nf    

0 3713.2 0.0690 0.0700 

2 673.8 0.0921 0.0929 

4 336.0 0.0957 0.0960 

6 237.5 0.0976 0.0975 

8 205.1 0.0992 0.0987 

10 200.1 0.1011 0.1001 

12 205.0 0.1034 0.1020 

 

The temperature prediction in windings and magnets is also very accurate with an error σTcrit=0.002°C for nf=0. 
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B.  CASE 2: IDENTIFICATION OF JOULE AND IRON LOSSES 

For the second case, Joule losses (PJoule) are also unknown. The evolutions of PJoule(t) and PIron(t) have to be 

identified. Firstly, outputs Ts1 and Tsw located in the stator and at the winding surface are used. It can be remarked 

in Fig. 6 that both heat sources are well identified when increasing the number of future time steps. In this case, 

nf=12 gives σY≥σ for each output, as shown in Table 3. 

The condition number of the matrix STS to invert is also indicated. It is noteworthy that this last one decreases 

when the number of future time steps increases, which confirms the regularization effect of the function 

specification, knowing that in case 1, STS is a scalar, hence its condition number is equal to 1. 

 

 

 
FIGURE 6.  Joule and iron losses identification and 

computation of critical temperatures from nodes Ts1 and 

Tsw with nf=2 and nf=12. 

 

 

Compared to case 1, the winding temperature is quite sensitive to the oscillations in Joule losses identification, 

hence the error increases: σTcrit=1.161°C for nf=0. 

TABLE 3.  Inversion results for Joule and iron losses identification from Ts1 and Tsw; bold lines correspond to 

results shown in Fig. 6. 

 

nf    CN(STS) 

0 4125.2 3e-14 6e-15 3.74 

2 741.2 0.0859 0.0869 3.64 

4 359.2 0.0926 0.0931 3.54 

6 246.4 0.0949 0.0971 3.45 

8 209.3 0.0970 0.1007 3.36 
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10 198.9 0.0992 0.1051 3.28 

12 200.4 0.1017 0.1104 3.20 

14 207.9 0.1047 0.1168 3.12 

 

In the other hand, by adding two other outputs Ts2 and Ts3, located in the stator, better inversion results are again 

obtained, as depicted in Fig. 7 and Table 4, since σU goes from 200 W to 180 W. 

 

 
FIGURE 7.  Joule and iron losses identification and 

computation of critical temperatures from nodes Ts1, 

Tsw, Ts2 and Ts3 with nf=2 and nf=10. 

 

The addition of outputs acts as a filter in the inversion procedure and the condition number of matrix STS 

decreases also. The temperature prediction in windings and the magnets remains relatively accurate with an error 

σTcrit=1.158°C for nf=0. 

 

TABLE 4.  Inversion results for Joule and iron losses identification from Ts1, Tsw, Ts2 and Ts3; bold lines 

correspond to results shown in Fig. 7. 

 

nf      CN(STS) 

0 2849.0 0.0803 3e-5 0.0832 0.0816 1.26 

2 518.4 0.0941 0.0867 0.0974 0.0952 1.23 

4 262.6 0.0964 0.0937 0.0994 0.0974 1.21 

6 194.5 0.0976 0.0975 0.1004 0.0987 1.18 

8 179.2 0.0990 0.1012 0.1012 0.0999 1.16 

10 180.3 0.1007 0.1055 0.1025 0.1016 1.13 

12 188.3 0.1028 0.1109 0.1040 0.1038 1.11 
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C.  CASE 3: IDENTIFICATION OF ALL LOSSES 

In this third case, the five heat sources altogether are considered unknown and have to be identified 

simultaneously from five outputs Ts1, Tc, Tsw, Ta and Tb, whose temperature evolutions are given in Fig. 8a. 

 

These nodes are located in the stator, in the cavity, on the surface of the windings, in the air-gap and on the 

bearings respectively. 

 
FIGURE 8.  Identification of all the heat sources and 

computation of critical temperatures from nodes Ts1, Tc, 

Tsw, Ta and Tb with nf=4 and nf=12. 

 

TABLE 5.  Inversion results for all losses identification from Ts1, Tc, Tsw, Ta and Tb; bold lines correspond to 

results shown in Fig. 8. 

 

nf       CN(STS) 

0 11990.5 3e-14 1e-14 6e-15 2e-14 2e-14 2.46e6 

2 1859.6 0.0881 0.0861 0.0842 0.1213 0.0876 4.48e5 

4 859.3 0.0973 0.0930 0.0913 0.1639 0.0996 1.82e5 

6 529.7 0.1038 0.0959 0.0952 0.1982 0.1129 9.90e4 

8 382.1 0.1100 0.0975 0.0990 0.2282 0.1295 6.23e4 

10 305.8 0.1169 0.0987 0.1037 0.2557 0.1490 4.85e4 

12 263.9 0.1243 0.1000 0.1096 0.2816 0.1712 4.29e4 

14 240.1 0.1326 0.1014 0.1167 0.3061 0.1950 3.82e4 
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It can be remarked that the temperature magnitude is very different according to the outputs locations.  

As for previous cases, the quadratic errors and the condition number are given with respect to the number of 

future time steps. In this case, the condition number of the matrix STS is very high, hence, the noise in temperature 

measurements may be greatly amplified by the inverse problem. As in previous cases, nf=0 corresponds to a square 

case (nq=nU=5), thus, even if the problem is ill-posed, large oscillations in  allow to follow exactly the noisy 

temperature evolutions. Hence, as indicated in Table 5, σY≈0°C. An increase of nf leads to σY≥σ for all outputs for 

nf=12. Fig. 8c shows large oscillations in PRotor due to the fact that the outputs are located far from this heat source. 

 

Concerning now the temperature prediction in windings and magnets (Fig. 8d), the error is completely acceptable 

with σTcrit=1.178°C for nf=0. 

V. CONCLUSION 

The study presented in this paper deals with the determination of electric motors’ losses or heat sources, and 

prediction of critical temperature at non-accessible parts. A low-order lumped parameter thermal model is used to 

solve both inverse and direct problems. The method is sequential and includes regularization with the function 

specification technique. Different configurations are tested according to the number of heat sources to be identified. 

For each case, the influence of the required number of outputs to be used to solve the inverse problem and the 

number of future time steps are analyzed. The technique gives accurate prediction of the temperature in unreachable 

critical parts of the motor and is computationally efficient: only 10-3 s at each time step is needed for identification 

of the heat sources and prediction of the motor temperatures. 
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