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Abstract: This paper presents an Unknown Input Observer (UIO) for a class of Lipschitz nonlinear
systems affected by disturbances/faults and having slow internal dynamics after the decoupling of
the Unknown Input (UI). Thanks to the Asymptotic Decoupling notion, the constraint related to the
internal dynamics is bypassed. The nonlinear UIO presents time varying dynamics that allows to
obtain the Asymptotic Decoupling notion. It will be shown that the proposed approach allows to
enhance the convergence rate of the UIO. The convergence enhancement of the state estimation error
is demonstrated via a Lyapunov analysis and the established conditions are expressed in terms of Linear
Matrix Inequalities. Finally, simulations will be given in order to illustrate the proposed approach with
some comparisons to existing techniques.
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1. INTRODUCTION

Fault diagnosis and state estimation are important tasks in
modern automatic control design. It allows to estimate precisely
the state and detect a fault earlier and exploit these informations
for control, supervision and maintenance, and consequently,
enhance the performances of the system and the security of
human operator and the system.

Model-based approaches have reached a certain maturity these
last years and several diagnosis problems have been solved
thanks to such approaches Ding (2008); Gertler (1998); Patton
et al. (1998). The main commonly used approach is the one
exploiting the observers as residual generators through mild
modifications. For example, the design purpose differs from
the observer design in the sense that the residual generators are
designed in such a way to maximize the influence of faults on
the residual and to minimize the effect of eventual disturbances.
This concept can be found in many approaches using the H∞

and H− techniques Mazars et al. (2008, 2006). In Jaimoukha
et al. (2006), a factorization approach is provided to solve the
H−/H∞ fault detection problem. The same problem is explored
in Liu et al. (2005), Wang et al. (2007) by using the sensitivity
analysis. In Zhong et al. (2003), a LMI approach is provided
for fault detection by introducing a reference model in order
to shape the residual signal. This approach is developed for
uncertain LTI systems affected by faults on both the state and
the output equations. The problem of actuator fault diagnosis
is generally more complex to study compared to sensor ones
due the fact that the actuator faults do not affect directly the
outputs. These techniques can be enhanced by a simple analysis
of the system instead of applying the H− approach directly. In
another hand, more interesting approaches based on Propor-
tional Integral Observers can be exploited in order to estimate
both the state of the system and the fault affecting it. This
technique is suitable when a knowledge on the dynamic of the

system is available. This is the case for incipient or abrupt fault
which can be approximated by second order polynomials of the
form f (t) = a1t + a0 which satisfies the property f̈ (t) = 0. Of
course, it is possible to derive similar results for more general
models of the faults (see Gao et al. (2016); Ichalal et al. (2009)
for more details). There exists also other techniques based on
Unknown Input Observers which are suitable for system where
no information is known on the faults. In such a situation, the
decoupling approach is more suitable instead of simultaneous
estimation of the state and the faults by PI observers. How-
ever, the use of UIO requires two main conditions Darouach
et al. (1994): The decoupling condition, and the stability of
the internal dynamics. Since the internal dynamics cannot be
moved or controlled in order to enhance the performances of
the observer the dynamics of the UIO is constrained by such
dynamics. Recently, in Ichalal and Mammar (2020), a solution
is proposed in order to handle such constraint. It consists on the
use of the notion ”Asymptotic Decoupling” instead of the clas-
sical ”Algebraic Decoupling”. This notion allows to enhance
the convergence rate of the UIO in the transient phase.

In this paper, the Asymptotic Decoupling approach is used to
construct an UIO in order to estimate both the state and the
faults, while guaranteeing a good convergence rate even in the
presence of stable but slow internal dynamics. It will be shown
that this fact allows to estimate correctly the UI compared to
the classical approaches.

2. PROBLEM STATEMENT

Let us consider the nonlinear systems of the form{
ẋ(t) = Ax(t)+Ed(t)+ f (x(t),u(t))
y(t) =Cx(t) (1)

where x ∈ Rn, u ∈ Rnu , d ∈ Rnd and y ∈ Rny represent, respec-
tively, state, known input, unknown input and output vectors



with corresponding dimensions. A, E and C are real matrices
with appropriate dimensions. f (x,u) is a Lipschitz nonlinear
vector function depending on x and u which satisfies the condi-
tion

‖ f (x,u)− f (y,u)‖ ≤ ν ‖x− y‖ ,∀x ∈ D⊆ Rn (2)
The UI d(t) may model disturbances and / or faults affecting
the state equation. In order to derive the proposed UIO, the
following assumptions are also assumed
Assumption 1. (1) The internal dynamics are stable
(2) The unknown input d(t) is bounded ‖d(t)‖

∞
≤ σ , σ > 0

(3) The system without UI is observable
(4) rank(CE) = rank(E)

The last hypothesis is commonly used in LTI UIO design in
order to ensure that there exists a constant matrix that is able to
decouple the Unknown Inputs (UI) (See for example Darouach
et al. (1994)). This paper focuses on this class of systems but
it is possible to generalize the approach to systems that do
not satisfy this rank condition (see for example Ichalal and
Mammar (2015), Ichalal et al. (2015), Barbot et al. (2007),
Floquet et al. (2007) for linear, LPV or nonlinear systems). In
the rest of the paper it is assumed that the effect of the UI on x
is taken into account in the subset D ensuring (2).

3. UNKNOWN INPUT OBSERVER DESIGN

3.1 Structure of the UIO

The proposed UIO takes the following form

ż(t) = Nβ z(t)+Gβ f (x̂(t),u(t))+Lβ y(t)
x̂(t) = z(t)−Mβ y(t)
Mβ = (1−β (t))H
H =−E(CE)−

β (t) = κ exp(−αt)
η(t) = ν(1+β (t))

(3)

where (.)− denotes the pseudo-inverse of a matrix and κ , α

and ν are positive parameters to design and η(t) is a positive
bounded function satisfying the following definitions Ichalal
and Mammar (2020). The notation Xβ means that the matrix
X depend on the time-varying parameter β (t). The structure of
the matrices will be defined later.

The following definition presents a class of functions which
will be used a a time-varying decay rate Ichalal and Mammar
(2020).
Definition 1. (Time-Varying decay rate) A bounded time-varying
function η(t) : R+ → R+ is a Time-Varying Decay rate if it
satisfies the following conditions

(1) η(t) is strictly monotonically decreasing
(2) η1 ≤ η(t)≤ η2, with 0 < η1 < η2

Notice that lim
t→+∞

t∫
0

η(τ)dτ =+∞

The objective is to design the matrices Nβ , Gβ , Lβ and H in
order to ensure asymptotic state estimation and to enhance the
convergence rate even in the presence of stable but slow internal
dynamics.

The state estimation error is given by
e(t) = x(t)− x̂(t) = (I +MβC)x(t)− z(t) (4)

By defining the matrix Pβ = I +MβC and computing the time
derivative of e(t), it follows

ė(t) =
(
Pβ A+ Ṗβ −LβC−Nβ Pβ

)
x(t)+Pβ Ed(t)

+ Nβ e(t)+Pβ f (x(t),u(t))−Gβ f (x̂(t),u(t)) (5)

Under the conditions

Pβ A+ Ṗβ −LβC−Nβ Pβ = 0 (6)

Pβ = Gβ (7)

The state estimation error dynamics becomes

ė(t) = Nβ e(t)+Pβ f̃ (x(t), x̂,u(t))+Sβ d(t) (8)

where
f̃ (x(t), x̂,u(t)) = f (x(t),u(t))− f (x̂,u(t))

and Sβ = Pβ E.

In one hand, as discussed in Zemouche et al. (2008); Phanom-
choeng et al. (2011); Ichalal and Guerra (2019), instead of using
the classical Lipschitz condition, it is much more interesting to
use the polytopic form of the Lipschitz condition with the aid
of the Differential Mean Value Theorem. Therefore, the term
f̃ (x(t), x̂(t),u(t)) can be expressed in the following polytopic
form

f̃ (x(t), x̂(t),u(t)) =
r

∑
i=1

hi(z(t))Āie(t) = Φhe(t) (9)

with z ∈]min(x, x̂),max(x, x̂)[. From this equivalent expression,
the state estimation error dynamics is written equivalently as
follows

ė(t) =Nh,β e(t)+Sβ d(t) (10)

where Nh,β = Nβ +Pβ Φh.

On the other hand, due to the Asymptotic decoupling concept,
the matrix Sβ converges to zero asymptotically i.e. lim

t→∞
Sβ = 0.

Consequently, if the matrix Nh,β is stable, the state estimation
error e(t) converges asymptotically to zero.

The matrix Sβ can be expanded as follows

Sβ = Pβ E = E +(1−β (t))HCE

And by construction, the matrix H = −E(CE)− satisfies (I +
HC)E = 0, it comes

Sβ =−β (t)HCE

And under the assumptions that ‖E‖2 ≤ λ ) and β (t) is positive,
one obtains the following norm bound∥∥Sβ

∥∥
2 ≤ λβ (t) (11)

Consequently, due to the definition of the function β (t), the
norm

∥∥Sβ

∥∥
2 converges to zero when t → ∞. Then, if the state

estimation error dynamics is stable, it will be asymptotically
converging to zero since Sβ goes to zero too.

3.2 Stability analysis

Let us consider the Lyapunov function candidate

V (e(t)) = eT (t)Xe(t), X = XT > 0 (12)
Its time derivative along the trajectory of (8) is expressed by

V̇ (e(t)) = eT (t)
(
N T

h,β X +XNh,β

)
e(t)

+ eT (t)XSβ d(t)+dT (t)ST
β

Xe(t) (13)



By adding and subtracting the term
−η(t)eT (t)Xe(t)+ γdT (t)ST

β
Sβ d(t)

where η(t) is a positive bounded and monotonic decreasing
scalar function (0 < η1 ≤ η(t) ≤ η2) and γ is a positive scalar
(for more details of the function η(t) please refer to Ichalal and
Mammar (2020)). Therefore, the inequality (13) is equivalent
to

V̇ (e(t)) = ζ
T (t)Ξh,β ζ (t)−η(t)V (e(t))+ γdT (t)ST

β
Sβ d(t)

(14)
where

Ξh,β =

[
N T

h,β X +XNh,β +η(t)X XSβ

ST
β

X −γST
β

Sβ

]
,ζ (t) =

[
e(t)
d(t)

]
(15)

Finally, if Ξh,β ≤ 0 and taking into account (11) the time
derivative of the Lyapunov function can be bounded as follows

V̇ (e(t))≤−η(t)V (e(t))+ γλ
2
β

2(t)‖d(t)‖2
2 (16)

The solution of the inequality (16) is given by

V (e(t))≤
(
V (e(0))+ γλ

2
σ

2
ϖ
)

e
−

t∫
0

η(τ)dτ

(17)
where ϖ is a positive scalar that bounds the term

t∫
0

e
∫

τ
0 η(s)ds

β
2(τ)dτ < ϖ ,∀t

This proves that V (e(t)) converges asymptotically to zero with
the time varying rate η(t).

3.3 LMI design procedure

In the previous section, the stability analysis is given and it
is established under the condition that Ξh,β ≤ 0. Straightfor-
wardly, this condition can be expressed in a polytopic form.
Firstly, let us recall the matrices

Nh,β = Pβ (A+Φh)+ Ṗβ −KβC (18)
which comes from the equation (6) where Kβ = Lβ +Nβ Mβ

and Pβ = I +MβC.

The matrix Ṗβ is expressed as follows
Pβ = I +MβC = I +(1−κ exp(−αt))HC

Consequently, its time derivative is given by
Ṗβ = κα exp(−αt))HC

Then, the matrix Nh,β can be expressed as follows

Nh,β = (A+Φh)+(1−κ exp(−αt))HC(A+Φh)

+ κα exp(−αt)HC−KβC (19)
or in compact form as follows

Nh,β = Ah,β −KβC
where

Ah,β = (I +(1−β (t))HC)(A+Φh)+αβ (t)HC
Knowing that the function 0 < β (t)≤ κ , a first polytopic form
is obtained as follows

Ah,β =
2

∑
j=1

µ j(β (t)) ¯Ah, j

Sβ =
2

∑
j=1

µ j(β (t))S j

(20)

where

¯Ah,1 = (I +(1−κ)HC)(A+Φh)+ακHC (21)
¯Ah,2 = (I +HC)(A+Φh) (22)

S1 =−κHCE (23)

S2 = 0 (24)

From this polytopic form, we construct the gain matrix Kβ and
the positive function η(t) in the same polytopic form as follows

Kβ =
2

∑
j=1

µ j(β (t))K j, η(t) =
2

∑
j=1

µ j(β (t))η j

which allows to get the matrix Nh,β in the form

Nh,β =
2

∑
j=1

µ j(β (t))
( ¯Ah, j−K jC

)
=

2

∑
j=1

µ j(β (t)) ¯Nh, j

Consequently, the matrix Ξh,β can be expressed as follows

Ξh,β =
2

∑
j=1

2

∑
k=1

µ j(β )µk(β )Θh, j,k

where :

Θh, j,k =

[ ¯N T
h, jX +X ¯Nh, j +η jX XS j

S T
j X −γS T

j Sk

]
Now, by using the polytopic form of the matrix Φh, it allows to
obtain

Ξh,β =
r

∑
i=1

2

∑
j=1

2

∑
k=1

hi(z(t))µ j(β )µk(β )Θi, j,k

where

Θi, j,k =

[ ¯N T
i, j X +X ¯Ni, j +η jX XS j

S T
j X −γS T

j Sk

]
(25)

Then, sufficient conditions for the negativity of Ξh,β are given
by

Θi, j,k ≤ 0, i = 1, ...,r, j,k = 1,2

Finally, change of variables ¯K j = XK j is performed in order
to obtain LMI conditions (See Ichalal and Mammar (2020) for
more details).

3.4 Algorithm

The UIO design procedure is summarized as follows:

(1) Define the parameters κ and α

(2) Compute the matrix H = −E(CE)− and compute the
matrix Mβ

(3) Compute the polytopic form of the nonlinear term (9)
(4) Construct the polytopic matrices (20) and then the matri-

ces (25)
(5) Solve the LMIs

X = XT > 0 (26)[ ¯N T
i, j X +X ¯Ni, j +η jX XS j

S T
j X −γS T

j Sk

]
≤ 0 (27)

i = 1, ...,r

j,k = 1,2

and obtain the gain matrix Kβ

(6) Compute the remaining matrices:
Nh,β = Pβ (A+Φh)+ Ṗβ −KβC
Lβ = Kβ −Nh,β H



3.5 Unknown Input Estimation

After estimating the state x(t) of the system, it is often im-
portant to estimate the Unknown Inputs. Indeed, in the fault
diagnosis problems or fault tolerant controllers, the availability
of a precise estimation of the faults is highly required for better
performances in diagnosis or fault tolerant control tasks. In
order to obtain such an estimation, the following expression is
used

d̂(t) = (CE)− (ẏ−CAx̂(t)−C f (x̂(t),u(t)))
which is nothing than the inversion of the system, but since the
state estimation x̂(t) is precise, the estimation of the unknown
input is also precise (see the simulation example). This esti-
mation can be used for both fault diagnosis or in fault tolerant
controllers to compensate the effect of the faults. Notice that
due to the inherent presence of noises in the measurements y,
the use of recent signal differentiation algorithms are suitable,
instead of classical derivation, in order to have a precise estima-
tion of the time derivative of y. For instance, it is possible to use
the High Order Sliding Mode Differentiator Levant (2005) or
ALIEN differnetiator Barbot et al. (2007) or Algebraic asymp-
totic differentiator Ibrir (2003).

Another application of the proposed observer is in the classical
bank of observers for actuator fault detection and isolation in
the case where the number of inputs is greater than the number
of outputs.

4. SIMULATION RESULTS AND COMPARISONS

Let us consider the system (1) defined by the following matrices

A =

[ 0 1 0
−3 −2 1
−5 −6 −0.03

]
,E =

[ 0
1
0

]
,

C = [ 1 1 0 ] ,
f (x,u) = [ 0 u(t) x2 sin(x2) ]

The input is u(t) = sin(t) and the fault signal is defined by

d(t) =


0 0≤ t < 5
4 5≤ t < 15

t−11 15≤ t < 20
t−11+2sin(1.5t)cos(0.5t) t ≥ 20

In order to construct the UIO, the time varying function β (t) =
10exp(−0.1t) (κ = 10 and α = 0.1) is considered and the
matrix H is computed from H = −E(CE)−. By following
the procedure of constructing the matrices of the UIO, the
proposed LMIs provide a solution and the obtained results are
depicted in the figures 1 and 2. Notice that, for comparison, the
classical UIO is constructed according to the procedure given
in Chen and Saif (2006) with a Lipschitz constant ν = 10 in
(2) computed for a subset D = {x ∈ R3 : |x2| ≤ 10}. This same
subset is used also, in the proposed approach, to express the
polytopic form of the nonlinear term f (x,u) as in (9). From the
figure 1, it can be seen that the slow internal dynamics affect the
convergence rate of the observer, especially, for the third state
which is only detectable with the classical Exact Decoupling
approach. However, with the proposed Asymptotic Decoupling
notion, the state estimation is better. Additionally, since the
state estimations are used to compute an estimation of the fault,
these lasts will be considerably affected if the estimated states
are obtained from a classical UIO which is not the case with the
proposed UIO as illustrated in figure 2.
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Fig. 1. Real states (blue) and estimations (red). Classical UIO
(Left), Proposed UIO (Right)
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Fig. 2. Fault d(t) and its estimation with both a classical
approach and the proposed one

5. CONCLUSION

This paper presents a novel approach to design an observer-
based fault diagnosis by using a new UIO. The particularity of
the proposed UIO is its ability to handle stable but slow internal
dynamics of a system and then enhance the convergence rate of
the observer. The proposed UIO uses a time varying function
aiming to ensure the asymptotic decoupling property. This
property allows to preserve the observability (lost due exact
decoupling) at least in a short time interval in the transient
phase. Consequently, this allows to enhance the convergence
rate of the state estimation error dynamics, and then provide an
acceptable estimation of the system states and faults.
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